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Abstract. We study automorphisms of a relatively hyperbolic group G. When G is one-

ended, we describe Out.G/ using a preferred JSJ tree over subgroups that are virtually

cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out.G/ is virtually

built out of mapping class groups and subgroups of GLn.Z/ �xing certain basis elements.

When more general parabolic groups are allowed, these subgroups of GLn.Z/ have to be

replaced by McCool groups: automorphisms of parabolic groups acting trivially (i.e. by

conjugation) on certain subgroups.

Given a malnormal quasiconvex subgroup P of a hyperbolic group G, we view G as hy-

perbolic relative to P and we apply the previous analysis to describe the group Out.P 1 G/

of automorphisms of P that extend to G: it is virtually a McCool group. If Out.P 1 G/ is

in�nite, then P is a vertex group in a splitting of G. If P is torsion-free, then Out.P 1 G/

is of type VF, in particular �nitely presented.

We also determine when Out.G/ is in�nite, for G relatively hyperbolic. �e interesting

case is when G is in�nitely-ended and has torsion. When G is hyperbolic, we show that

Out.G/ is in�nite if and only if G splits over a maximal virtually cyclic subgroup with

in�nite center. In general we show that in�niteness of Out.G/ comes from the existence of

a splitting with in�nitely many twists, or having a vertex group that is maximal parabolic

with in�nitely many automorphisms acting trivially on incident edge groups.
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1. Introduction

�is paper studies automorphisms of hyperbolic and relatively hyperbolic groups

in relation with their splittings. �e �rst result in this direction is due to Paulin [54]:

if G is a hyperbolic group with Out.G/ in�nite, then G has an action on an R-tree

with virtually cyclic (possibly �nite) arc stabilizers. Rips theory then implies that

G splits over a virtually cyclic group.

Understanding the global structure of Out.G/ requires techniques which de-

pend on the number of ends of G. If G is one-ended, there is an Out.G/-invariant

JSJ decomposition, and its study leads to Sela’s description of Out.G/ as a virtual

extension of a direct product of mapping class groups by a virtually abelian group

[59, 45]. If G has in�nitely many ends, one does not get such a precise description

because there is no Out.G/-invariant splitting. One may study Out.G/ by letting

it act on a suitable space of splittings, the most famous being Culler–Vogtmann’s

outer space for Out.Fn/.

Before moving on to relatively hyperbolic groups, here is a basic problem about

which we get new results in the context of hyperbolic, and even free, groups. Given

a �nitely generated subgroup P of a group G, consider the group Out.P 1 G/ �

Out.P / consisting of outer automorphisms of P which extend to automorphisms

of G. What can one say about this group ? For instance, is it �nitely generated?

�nitely presented? �is question was asked by D. Calegari for automorphisms of

free groups, and we answer it when P is malnormal.

�e answer is related to splittings through the following simple remark: if P is

a vertex group in a splitting of G, say G D A�C1
P �C2

B , then any automorphism

of P which acts trivially (i.e. as conjugation by some element pi 2 P ) on each
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incident edge group Ci , extends to G (this is the algebraic translation of the fact

that any self-homeomorphism of a closed subset Y � X which is the identity on

the frontier of Y extends by the identity to a homeomorphism of X).

�e following theorem says that this phenomenon accounts for almost all of

Out.P 1 G/.

�eorem 1.1 (see Corollary 6.3). Let P be a quasiconvex malnormal subgroup
of a hyperbolic group G. If Out.P 1 G/ is in�nite, then P is a vertex group in
a splitting of G, and the group of outer automorphisms of P acting trivially on
incident edge groups has �nite index in Out.P 1 G/.

We call the group of outer automorphisms of P acting trivially on a family of

subgroups a McCool group of P , because of McCool’s paper about subgroups of

Out.Fn/ �xing a �nite set of conjugacy classes [50]. In this language, �eorem 1.1

says that Out.P 1 G/ is virtually a McCool group of P . It is a theme of this

paper that many groups of automorphisms may be understood in terms of McCool

groups, and that many results concerning the full group Out.G/ also apply to

McCool groups (see also [37]).

�e groups considered by McCool are �nitely presented [50]. In fact, they have

a �nite index subgroup with a �nite classifying space [13]. In [37] we extend these

results to all McCool groups of torsion-free hyperbolic groups (and more generally

of toral relatively hyperbolic groups). From this, one deduces that Out.P 1 G/

has a �nite index subgroup with a �nite classifying space when G and P are as in

�eorem 1.1, with G torsion-free.

Our hypotheses for �eorem 1.1, namely quasiconvexity and malnormality of P ,

imply that G is hyperbolic relative to P (see [6]). In fact, �eorem 1.1 is just a spe-

cial case of a result describing Out.P 1 G/ as a virtual McCool group when G is

relatively hyperbolic and P is a maximal parabolic subgroup (see �eorem 6.2 for

a precise statement).

�is paper also addresses the question of whether Out.G/ is �nite or in�nite. It

turns out that the answer is much simpler when G is torsion-free, owing to the fact

that Out.G/ is then in�nite whenever G has in�nitely many ends (see Lemma 7.1).

�ings are more complicated when torsion is allowed. For instance, charac-

terizing virtually free groups with Out.G/ in�nite is a non-trivial problem which

was solved by Pettet [56]. �e following theorem gives a di�erent characteriza-

tion. We say that a subgroup of G is Zmax if it is maximal for inclusion among

virtually cyclic subgroups with in�nite center.
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�eorem 1.2 (see �eorems 7.14 and 7.15). Let G be a hyperbolic group. �en
Out.G/ is in�nite if and only G splits over a Zmax subgroup C ; in this case, any
element c 2 C of in�nite order de�nes a Dehn twist which has in�nite order in
Out.G/.

Moreover, one may decide algorithmically whether Out.G/ is �nite or in�nite.

�e �rst assertion answers a question asked by D. Groves. See [10] for a related

result proved independently by M. Carette, and [45, 17] for the one-ended case.

Let us now consider (in)�niteness of Out.G/ when G is relatively hyperbolic.

Suppose that G is hyperbolic with respect to a �nite family P of �nitely gener-

ated subgroups Pi . Since automorphisms of G need not respect P (for instance, G

may be free and P may consist of any �nitely generated malnormal subgroup), we

consider the group Out.GIP/ consisting of automorphisms mapping each Pi to

a conjugate (in an arbitrary way). Note that Out.GIP/ has �nite index in the full

group Out.G/ when the groups Pi are small but not virtually cyclic, more gener-

ally when they are not themselves relatively hyperbolic in a nontrivial way [51].

Given a splitting of G, we have already pointed out that any automorphism of a

vertex group acting trivially on incident edge groups extends to an automorphism

of G. Twists around edges of the splitting also provide automorphisms of G. For

instance, if G D A �C B , and a 2 A centralizes C , there is an automorphism of

G equal to conjugation by a on A and to the identity on B . Note that we do not

require that C be virtually cyclic or that a 2 C (see Subsection 2.6).

�e following result says that in�niteness of Out.GIP/ comes from twists or

from a McCool group of a parabolic group.

�eorem 1.3 (see Corollary 7.13). Let G be hyperbolic relative to a family P D

¹P1; : : : ; Pnº of �nitely generated subgroups. �en Out.GIP/ is in�nite if and
only if G has a splitting over virtually cyclic or parabolic subgroups, with each
Pi contained in a conjugate of a vertex group, such that one of the following holds:

� the group of twists of the splitting is in�nite;

� some Pi is a vertex group and there are in�nitely many outer automorphisms
of Pi acting trivially on incident edge groups.

As mentioned above, one can get similar results characterizing the in�niteness

of McCool groups of G. We refer to Section 7, in particular �eorem 7.6 and

Corollary 7.13, for more detailed statements.

Let us now discuss the techniques that we use. We assume that G is hyper-

bolic relative to P, and we distinguish two cases according to the number of ends
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(technically, we consider relative one-endedness, but we will ignore this in the

introduction).

When G is one-ended, we use a canonical Out.GIP/-invariant decomposition

�can of G, namely (see Subsection 3.3) the JSJ decomposition over elementary
(i.e. parabolic or virtually cyclic) subgroups relative to parabolic subgroups (i.e.

parabolic subgroups have to be contained in conjugates of vertex groups).

One may thus generalize the description of Out.G/ given by Sela for G hyper-

bolic, and express Out.GIP/ in terms of mapping class groups, McCool groups of

maximal parabolic subgroups, and a group of twists T. For simplicity we restrict

to a special case here (see Section 4 for a general statement).

�eorem 1.4 (see Corollary 4.4). Let G be toral relatively hyperbolic and one-
ended. �en some �nite index subgroup Out1.G/ of Out.G/ �ts in an exact se-
quence

1 �! T �! Out1.G/ �!

pY

iD1

MCG0.†i / �

mY

kD1

GLrk ;nk
.Z/ �! 1

where T is �nitely generated free abelian, MCG0.†i / is the group of isotopy
classes of homeomorphisms of a compact surface †i mapping each boundary
component to itself in an orientation-preserving way, and GLr;n.Z/ is the group
of automorphisms of ZrCn �xing the �rst n generators.

More generally, McCool groups of a one-ended toral relatively hyperbolic

group G have a similar description (see Corollary 4.9). A more general state-

ment (without restriction on the parabolic subgroups) is given in �eorems 4.3

and 4.6.

We also show that the modular group of G, introduced by Sela [60, 61] and

usually de�ned by considering all suitable splittings of G, may be seen on the

single splitting �can. We refer to Section 5 for details.

To prove �eorem 1.1 when G is one-ended, one applies the previous analysis,

viewing G as hyperbolic relative to P . Note that we use a JSJ decomposition

which is relative (to P ), and over subgroups which are not small (any subgroup

of P is allowed).

Another example of the usefulness of relative JSJ decompositions is to prove

the Scott conjecture about �xed subgroups of automorphisms of free groups. �e

proof that we give in Section 8, though not really new, is simpli�ed by the use of

the cyclic JSJ decomposition relative to the �xed subgroup.

We therefore work consistently in a relative context. We �x another family of

�nitely generated subgroups H D ¹H1; : : : ; Hqº, and we de�ne Out.GIP;H.t//
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as the group of automorphisms mapping Pi to a conjugate (in an arbitrary way)

and acting trivially on Hj (i.e. as conjugation by an element gj of G).

In order to understand the structure of the automorphism group of a one-ended

relatively hyperbolic group from its canonical JSJ decomposition, one needs to

control automorphisms of rigid vertex groups. �is is made possible by the fol-

lowing generalisation of Paulin’s theorem mentioned above:

�eorem 1.5 (see �eorem 3.9). Let G be hyperbolic relative toP D ¹P1; : : : ; Pnº,
with Pi �nitely generated and Pi ¤ G. Let H D ¹H1; : : : ; Hqº be another family
of �nitely generated subgroups.

If Out.GIP;H.t// is in�nite, then G splits over an elementary (virtually cyclic
or parabolic) subgroup relative to P [ H.

Note that there is no quasiconvexity or malnormality assumption on groups in

H, but the automorphisms that we consider have to act trivially on them (see also

Remark 9.3).

�e theorem is proved using the Bestvina-Paulin method (extended to rela-

tively hyperbolic groups in [1]) to get an action on an R-tree T , and then applying

Rips theory as developed in [3] to get a splitting. �ere are technical di�culties

in the second step because G may fail to be �nitely presented (the Pi ’s are not

required to be �nitely presented), and the action on T may fail to be stable if the

Pi ’s are not slender; it only satis�es a weaker property which we call hyposta-
bility, and in the last section we generalize [3] to hypostable actions of relatively

�nitely presented groups.

�eorem 1.5 explains why McCool groups appear in �eorems 1.3 and 1.4.

Indeed, given a rigid vertex group Gv in a JSJ decomposition of a one-ended

group, �eorem 1.5 implies that only �nitely many outer automorphisms of Gv

extend to automorphisms of G. In turn, this implies that, after passing to a �-

nite index subgroup, automorphisms of G act trivially on edge groups of the JSJ

decomposition. See Subsection 4.1 for details.

When G is not one-ended, one has to consider splittings over �nite groups.

We do not have an exact sequence as in �eorem 1.4 because there is no

Out.GIP/-invariant splitting. In order to prove �eorems 1.2 and 1.3, we use

the tree of cylinders introduced in [34] to obtain a non-trivial splitting over �nite

groups which is invariant or has an in�nite group of twists (Corollary 7.11).

�e paper is organized as follows. Section 2 consists of preliminaries

(JSJ decompositions, automorphisms of a tree, trees of cylinders). Section 3 con-

tains generalities about relatively hyperbolic groups. We point out that vertex

groups of a splitting over relatively quasiconvex subgroups are relatively quasi-
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convex, and that the canonical JSJ decomposition �can has �nitely generated edge

groups. In Section 4 we study the structure of the automorphism group of a one-

ended relatively hyperbolic group. Section 5 is devoted to the modular group.

In Section 6 we study extendable automorphisms; �eorem 1.1 is a special case

of �eorem 6.2. Section 7 is devoted to the question of whether groups like

Out.GIP;H.t// and Out.GIP.t/;H.t// are �nite or in�nite. Section 8 contains a

proof of the Scott conjecture, and a partial generalization to relatively hyperbolic

groups. �eorem 1.5 is proved in Section 9.

Acknowledgments. We thank D. Groves and D. Calegari for asking stimulat-

ing questions, and the organizers of the 2007 Geometric Group �eory program

at MSRI where this research was started. We also thank the referee for helpful

comments.

2. Preliminaries

Unless mentioned otherwise, G will always be a �nitely generated group.

Given a group A and a subgroup B , we denote by Z.A/ the center of A,

by ZA.B/ the centralizer of B in A, and by NA.B/ the normalizer of B in A.

We write Bg for gBg�1.

A subgroup B � A is malnormal if Bg \ B is trivial for all g … B , almost
malnormal if Bg \ B is �nite for all g … B .

A group is virtually cyclic if it has a cyclic subgroup of �nite index; it may be

�nite or in�nite. Its outer automorphism group is �nite.

A group G is slender if G and all its subgroups are �nitely generated.

We say that G is small if it contains no non-abelian free group (see [2] for a slightly

weaker de�nition).

Let P be a family of subgroups Pi . In most cases, P will be a �nite collection

of �nitely generated groups P D ¹P1; : : : ; Pnº.

�e group G is �nitely presented relative to P D ¹P1; : : : ; Pnº if it is the quo-

tient of P1 � � � � � Pn � F by the normal closure of a �nite subset, with F a �nitely

generated free group. If G is �nitely presented relative to P D ¹P1; : : : ; Pnº, and

if g1; : : : ; gn 2 G, then G is also �nitely presented relative to ¹P
g1

1 ; : : : ; P
gn
n º.

Let H be a �nitely generated subgroup. If G is �nitely presented relative to P,

then G is �nitely presented relative to P[¹H º; the converse is not true in general.
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2.1. Relative automorphisms. Given G andP, we denote by Aut.GIP/ the sub-

group of Aut.G/ consisting of automorphisms mapping each Pi to a conjugate,

and by Out.GIP/ its image in Out.G/. If P D ¹P1; : : : ; Pnº, we use the nota-

tions Aut.GI P1; : : : ; Pn/ and Out.GI P1; : : : ; Pn/. We also write Out.GIP;Q/ for

Out.GIP [ Q/.

We de�ne Out.GIP.t// � Out.GIP/ by restricting to automorphisms whose

restriction to each Pi agrees with conjugation by some element gi of G (we call

them marked automorphisms, or automorphisms acting trivially on P). An outer

automorphism ˆ belongs to Out.GIP.t// if and only if, for each i , it has a repre-

sentative ˛i 2 Aut.G/ equal to the identity on Pi .

�e group Out.GIP.t// is denoted by PMCG in [45], by Outm.GIP/ in [17],

and is called a (generalized) McCool group in [37].

Note that Out.GI G.t// is trivial, and that Out.GIP.t// has �nite index in

Out.GIP/ if P is a �nite collection of �nite groups (more generally, of groups

P with Out.P / �nite).

If H D ¹H1; : : : ; Hqº is another family of subgroups, we de�ne

Out.GIP;H.t// D Out.GIP/ \ Out.GIH.t//:

We allow P or H to be empty, in which case we do not write it.

�e groups de�ned above do not change if we replace each Pi or Hj by a

conjugate, or if we add conjugates of the Pi ’s to P or conjugates of the Hj ’s to H.

2.2. Splittings. A splitting of a group G is an isomorphism between G and the

fundamental group of a graph of groups �. Equivalently, using Bass-Serre theory,

we view a splitting of G as an action of G on a simplicial tree T , with T=G D �.

�is tree is well-de�ned up to equivariant isomorphism, and two splittings are con-

sidered equal if there is an equivariant isomorphism between the corresponding

Bass-Serre trees.

�e group Out.G/ acts on the set of splittings of G (by changing the isomor-

phism between G and �1.�/, or precomposing the action on T ).

Trees will always be simplicial trees with an action of G without inversion.

We usually assume that the splitting is minimal (there is no proper G-invariant

subtree). Since G is assumed to be �nitely generated, this implies that � is a �nite

graph.

A splitting is trivial if G �xes a point in T (minimality then implies that T is

a point).

A splitting is relative to P if every Pi is conjugate to a subgroup of a vertex

group, or equivalently if Pi is elliptic (i.e. �xes a point) in T . If P D ¹P1; : : : ; Pnº,

we also say that the splitting is relative to P1; : : : ; Pn.
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�e group G splits over a subgroup A (relative to P) if there is a non-trivial

minimal splitting (relative to P) such that A is an edge group. �e group is one-
ended relative to P if it does not split over a �nite group relative to P.

If � is a graph of groups, we denote by V its set of vertices, and by E its set

of oriented edges. �e origin of an edge e 2 E is denoted by o.e/. A vertex v or

an edge e carries a group Gv or Ge, and there is an inclusion ie W Ge ! Go.e/

2.3. Trees and deformation spaces [24, 32]. In this subsection we consider

trees rather than graphs of groups. We denote by Gv or Ge the stabilizer of a

vertex or an edge.

We often restrict edge stabilizers of T by requiring that they belong to a family

A of subgroups of G which is stable under taking subgroups and under conjuga-

tion. We then say that T is an A-tree. For instance, A may be the set of �nite

subgroups, of cyclic subgroups, of abelian subgroups, of elementary subgroups

of a relatively hyperbolic group (see Section 3). We then speak of cyclic, abelian,

elementary trees (or splittings).

Besides restricting edge stabilizers, we also often restrict to trees T relative
to P: every Pi is elliptic in T . We then say that T is an .A;P/-tree.

A tree T 0 is a collapse of T if it is obtained from T by collapsing each edge in

a certain G-invariant collection to a point; conversely, we say that T re�nes T 0. In

terms of graphs of groups, one passes from � D T=G to � 0 D T 0=G by collapsing

edges; for each vertex v0 2 � 0, the vertex group Gv0 is the fundamental group of

the graph of groups occuring as the preimage of v0 in �.

Given two trees T and T 0, we say that T dominates T 0 if there is a G-equivariant

map f W T ! T 0, or equivalently if every subgroup which is elliptic in T is also

elliptic in T 0. In particular, T dominates any collapse T 0.

Two trees belong to the same deformation space if they dominate each other.

In other words, a deformation space D is the set of all trees having a given family

of subgroups as their elliptic subgroups. We denote by D.T / the deformation

space containing a tree T , and by Out.D/ � Out.G/ the group of automorphisms

leaving D invariant. �e set of A-trees contained in a deformation space is called

a deformation space over A (and usually denoted by D also).

A tree is reduced if Ge ¤ Gv; Gw whenever an edge e has its endpoints v; w in

di�erent G-orbits. Equivalently, no tree obtained from T by collapsing the orbit

of an edge belongs to the same deformation space as T . If T is not reduced, one

may collapse edges so as to obtain a reduced tree in the same deformation space.

Any two reduced trees in a deformation space over �nite groups may be joined

by slide moves (see [24, 32] for de�nitions). In particular, they have the same set

of edge and vertex stabilizers.
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2.4. Induced structures

De�nition 2.1 (Incident edge groups Incv). Given a vertex v of a graph of groups

�, we denote by Incv the collection of all subgroups ie.Ge/ of Gv , for e an edge

with origin v. We call Incv the set of incident edge groups. We also use the

notation IncGv
.

Similarly, if v is a vertex of a (minimal) tree, there are �nitely many Gv-orbits

of incident edges, and Incv is the family of stabilizers of some representatives of

these orbits. �is is a �nite collection of subgroups of Gv , each well-de�ned up

to conjugacy.

Any splitting �v of Gv relative to Incv extends (non-uniquely) to a splitting ƒ

of G, whose edges are those of �v together with those of �; an edge e of � incident

to v is attached to a vertex of �v whose group contains Ge (up to conjugacy).

We call this re�ning � at v using �v . One recovers � from ƒ by collapsing edges

of �v .

Lemma 2.2. Consider subgroups H � K � G such that, if g 2 G and H g � K,
then g 2 K (this holds in particular when K is a vertex stabilizer of a tree T , and
H is a subgroup which �xes no edge of T ).

� If H 0 � K is conjugate to H in G, it is conjugate to H in K.
� If ˛ 2 Aut.G/ leaves K invariant and maps H to gHg�1, then g 2 K.

�is lemma is trivial, but very useful. Given a vertex stabilizer Gv of a tree T , it

allows us to de�ne a family PjGv
as follows (like Incv , it is a �nite set of subgroups

of Gv, each well-de�ned up to conjugacy).

De�nition 2.3 (Induced structure PjGv
). Let P D ¹Piº be a collection of sub-

groups of G, and let Gv be a vertex stabilizer in a tree T relative to P. For each i

such that Pi �xes a point in the orbit of v, but �xes no edge of T , let zPi � Gv be a

conjugate of Pi . When de�ned, zPi is unique up to conjugacy in Gv by Lemma 2.2.

We de�ne PjGv
as this collection of subgroups zPi � Gv; we de�ne PjGv

similarly

if Gv is a vertex group of � D T=G.

Remark 2.4. Given v and i , one of the following always holds: Pi �xes a vertex

of T not in the orbit of v, or some conjugate of Pi �xes v and an edge incident

to v, or Pi is conjugate to a group in PjGv
.

Remark 2.5. In this de�nition, PjGv
depends not only on P and Gv , but also on

the incident edge groups of Gv. In practice, we will not work with PjGv
alone, but

with Qv D PjGv
[ Incv. �is is the case for instance in the following lemma.
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Lemma 2.6. If �v is a splitting of Gv relative to Qv D Incv [ PjGv
, re�ning � at

v using �v yields a splitting ƒ of G which is relative to P.

Proof. �e re�nement is possible because �v is relative to Incv . Each Pi is elliptic

in ƒ by Remark 2.4.

2.5. JSJ decompositions [35]. Fix A as in Subsection 2.3, and a (possibly

empty) family P of subgroups. All trees considered here are .A;P/-trees.

A subgroup H is universally elliptic if it is elliptic (�xes a point) in every tree.

A tree is universally elliptic if its edge stabilizers are. A tree T is a JSJ tree over A

relative to P if it is universally elliptic and dominates every universally elliptic tree

(see Section 4 of [35]). JSJ trees exist if G is �nitely presented relative to P. �e

set of JSJ trees, if non-empty, is a deformation space called the JSJ deformation
space over A relative to P. When A is the set of cyclic (abelian, elementary...)

subgroups, we refer to the cyclic (abelian, elementary...) JSJ.

When A is the set of �nite subgroups, and P D ;, the JSJ deformation space is

the Stallings–Dunwoody deformation space, characterized by the property that its

trees have vertex stabilizers with at most one end (see Section 6 of [35]). Because

it is a deformation space over �nite groups, all its reduced trees have the same edge

and vertex stabilizers (see Subsection 2.3). �is space exists if and only if G is

accessible, in particular when G is �nitely presented [22]. If G is torsion-free, the

Stallings–Dunwoody deformation space is the Grushko deformation space; edge

stabilizers are trivial, vertex stabilizers are freely indecomposable and non-cyclic.

More generally, the JSJ deformation space over �nite subgroups relative to P

will be called the Stallings–Dunwoody deformation space relative to P. We will

also consider JSJ spaces over �nite subgroups of cardinality bounded by some k;

these exist whenever G is �nitely generated by Linnell’s accessibility [49].

If T is a tree (in particular, if it is a JSJ tree), a vertex stabilizer Gv of T not

belonging to A (or v itself) is rigid if it is universally elliptic. Otherwise, Gv

(or v) is �exible. In many situations, �exible vertex stabilizers Gv of JSJ trees are

quadratically hanging subgroups (see Section 7 of [35]).

De�nition 2.7 (QH vertex). A vertex stabilizer Gv (or v) is quadratically hanging,

or QH, (relative to P) if there is a normal subgroup F C Gv (called the �ber
of Gv) such that Gv=F is isomorphic to the fundamental group �1.†/ of a compact

hyperbolic 2-orbifold † (usually with boundary); moreover, if H � Gv is an

incident edge stabilizer, or is the intersection of Gv with a conjugate of a group

in P, then the image of H in �1.†/ is �nite or contained in a boundary subgroup
(a subgroup conjugate to the fundamental group of a boundary component).



610 V. Guirardel and G. Levitt

De�nition 2.8 (Full boundary subgroups). Let Gv be a QH vertex stabilizer. For

each boundary component of †, we select a representative for the conjugacy class

of its fundamental group in �1.†/, and we consider its full preimage in Gv . �is

de�nes a �nite family Bv of subgroups of Gv .

If Gv is QH with �nite �ber, every in�nite incident edge stabilizer is virtually

cyclic and (up to conjugacy in Gv) contained with �nite index in a group of Bv.

If G is one-ended relative to P, then every incident edge stabilizer is in�nite, so is

contained in a group of Bv .

Remark 2.9. If Gv is a �exible QH vertex stabilizer with �nite �ber, and H � Gv

is universally elliptic, then the image of H in �1.†/ is �nite or contained in a

boundary subgroup (see Proposition 7.6 of [35]; this requires a technical assump-

tion on A, which holds in all cases considered in the present paper). In particular,

H is virtually cyclic.

2.6. �e automorphism group of a tree [45]. Let T be a tree with a minimal

action of G. We assume that T is not a line with G acting by translations.

We denote by Aut.T / � Aut.G/ the group of automorphisms ˛ leaving T

invariant: there exists an isomorphism f˛ W T ! T which is ˛-equivariant in the

sense that f˛.gx/ D ˛.g/f˛.x/ for g 2 G and x 2 T .

Following [45], we describe the image Out.T / of Aut.T / in Out.G/ in terms

of the graph of groups � D T=G. Our assumptions on T imply that � is minimal,

and is not a mapping torus (as de�ned in [45]).

�e group Out.T / acts on the �nite graph � D T=G, and we de�ne Out0.T /

as the �nite index subgroup acting trivially. We use the notations

Out.T IP;H.t// D Out.T / \ Out.GIP;H.t//;

and

Out0.T IP;H.t// D Out0.T / \ Out.GIP;H.t//

(see Section 2.1).

Action on vertex groups. If v 2 V is a vertex of �, there is a natural map

�v W Out0.T / �! Out.Gv/

de�ned as follows. Let ˆ 2 Out0.T /. When NG.Gv/ acts on Gv by inner automor-

phisms, in particular when Gv �xes a unique point in T (in this case NG.Gv/ D

Gv), one de�nes �v.ˆ/ simply by choosing any representative ˛ 2 Aut.T / of ˆ
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leaving Gv invariant and considering its restriction to Gv. In general, one has to

choose ˛ more carefully: one �xes a vertex Qv of T mapping to v such that the

stabilizer of Qv is Gv, one chooses ˛ so that f˛ �xes Qv, and �v.ˆ/ is represented by

the restriction ˛jGv
.

If e is an edge of �, one may de�ne

�e W Out0.T / �! Out.Ge/

similarly.

Let

� W Out0.T / �!
Y

v2V

Out.Gv/

be the product map. As observed in Subsection 2.3 of [45], the image �.Out0.T //

contains
Q

v2V Out.GvI Inc.t/
v / and is contained in

Q
v2V Out.GvI Incv/. More pre-

cisely:

Lemma 2.10. Let P;H be two families of subgroups of G. Let T be a tree relative
to P [ H. �en

Out.GvI Inc.t/
v ;PjGv

;H
.t/
jGv

/ � �v.Out0.T IP;H.t///

� Out.GvI Incv;PjGv
;H

.t/
jGv

/
(1)

for every v 2 V , and

Y

v2V

Out.GvI Inc.t/
v ;PjGv

;H
.t/
jGv

/ � �.Out0.T IP;H.t///

�
Y

v2V

Out.GvI Incv;PjGv
;H

.t/
jGv

/:

If Out.Ge/ is �nite for all edges (resp. for all edges e incident to v), all inclu-
sions (resp. all inclusions in (1)) have images of �nite index.

Recall that PjGv
was de�ned in De�nition 2.3.

Proof. �e inclusion
Q

v2V Out.GvI Inc.t/
v / � �.Out0.T // is proved in [45] by

extending any ˆv 2 Out.GvI Inc.t/
v / “by the identity” to get ˆ 2 Out0.T /, with

ˆv D �v.ˆ/, acting as a conjugation on each edge group and on each Gw for

w ¤ v. �e left hand side inclusions in the lemma follow from Remark 2.4.

�e inclusion �v.Out0.T // � Out.GvI Incv/ follows from the fact that, given

an edge e of T containing the lift Qv of v used to de�ne �v, any ˆ 2 Out0.T / has
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a representative ˛ such that f˛ �xes e; this representative induces an automor-

phism of GQv leaving Ge invariant. To prove the right hand side inclusions, apply

Lemma 2.2 with K D GQv, recalling that groups in HjGv
or PjGv

�x a unique point

in T .

If Out.Ge/ is �nite for all incident edge groups, Out.GvI Inc.t/
v / has �nite index

in Out.GvI Incv/ (see Proposition 2.3 in [45]). Considering the intersection with

Out.GvIPjGv
;H

.t/
jGv

/, we get that Out.GvI Inc.t/
v ;PjGv

;H
.t/
jGv

/ has �nite index in

Out.GvI Incv;PjGv
;H

.t/
jGv

/. �is concludes the proof.

Remark 2.11. We can also consider automorphisms which do not leave T invari-

ant, but only leave some vertex stabilizer Gv invariant. Assuming that Gv equals

its normalizer, there is a natural map

�v W Out.GI Gv/ �! Out.Gv/

and

Out.GvI Inc.t/
v ;PjGv

;H
.t/
jGv

/ � �v.Out.GI Gv;P;H.t/// � Out.GvIPjGv
;H

.t/
jGv

/:

Twists. As in Subsection 2.5 of [45], we now consider the kernel of the product

map � W Out0.T / !
Q

v2V Out.Gv/. It consists of automorphisms in Out0.T / hav-

ing, for each v, a representative in Aut.T / whose restriction to Gv is the identity.

If T is relative to P, the group ker � is contained in Out.T IP.t//.

To study ker �, we need to introduce the group of twists T associated to T or

equivalently to � (we write T.T / or T.�/ if there is a risk of confusion).

Let e be a separating edge of � with origin v and endpoint w. �en G D

A �Ge
B with Gv � A and Gw � B . Given g 2 ZGv

.Ge/, one de�nes the twist
by g around e near v as the (image in Out.G/ of the) automorphism of G equal

to the identity on B and to conjugation by g on A. �ere is a similar de�nition in

the case of an HNN extension G D A�C D hA; t j tct�1 D '.c/; c 2 C i: given

g 2 ZA.C /, the twist by g is the identity on A and sends t to tg.

�e group T is the subgroup of Out.G/ generated by all twists. It is a quotient

of
Q

e2E ZGo.e/
.Ge/ and is contained in ker �. �e following facts follow directly

from Section 2 of [45].

Lemma 2.12. (1) If every Out.Ge/ is �nite, then T has �nite index in ker �.

(2) Assume that every non-oriented edge e of � has an endpoint v such that
NGv

.Ge/ acts on Ge by inner automorphisms (this holds in particular if Gv is
abelian, or if Ge is malnormal in Gv, or if Ge is in�nite and almost malnormal in
Gv). �en T D ker �.
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�e kernel of the epimorphism from
Q

e2E ZGo.e/
.Ge/ to T is the image of a

natural map

j W
Y

v2V

Z.Gv/ �
Y

e2E

Z.Ge/ �!
Y

e2E

ZGo.e/
.Ge/

where E is the set of non-oriented edges of � (see Proposition 3.1 of [45]). �e

image of an element of Z.Gv/ is called a vertex relation at v, the image of an

element of Z.Ge/ is an edge relation.

For instance, if � is a non-trivial amalgam G D A �C B , then T is the image

of the map p W ZA.C / � ZB.C / ! Out.G/ sending .a; b/ to the class of the au-

tomorphism acting on A as conjugation by a and on B as conjugation by b. �e

kernel of p is generated by the elements .a; 1/ with a 2 Z.A/ and .1; b/ with

b 2 Z.B/ (vertex relations), together with the elements .c; c/ with c 2 Z.C /

(edge relations).

Lemma 2.13. Let e be an edge of � with origin v. If Z.Ge/ and Z.Gv/ are �nite,
but ZGv

.Ge/ is in�nite, then the image of ZGv
.Ge/ in T is in�nite. In particular,

T is in�nite.

Note that ZGv
.Ge/ is in�nite if NGv

.Ge/ is in�nite and Ge is �nite.

Proof. It is pointed out in [47, Lemma 3.2] that the image of ZGv
.Ge/ in T maps

onto the quotient ZGv
.Ge/=hZ.Gv/; Z.Ge/i. Since Z.Gv/ and Z.Ge/ are com-

muting �nite subgroups, this quotient is in�nite.

Let � be a graph of groups with fundamental group G, and �0 � � a connected

subgraph. We view �0 as a graph of groups, with fundamental group G0 � G and

associated group of twists T.�0/ � Out.G0/.

Lemma 2.14. If T.�0/ is in�nite, then so is T.�/.

Proof. Let E0 be the set of oriented edges of �0. Consider the projection fromQ
e2E ZGo.e/

.Ge/ to
Q

e2E0
ZGo.e/

.Ge/ obtained by keeping only the factors with

e � �0. It is compatible with the vertex and edge relations, so induces an epimor-

phism from T.�/ to T.�0/.

Lemma 2.15. If � is a graph of groups with T.�/ in�nite, there is an edge e such
that the graph of groups �e obtained by collapsing every edge except e has T.�e/

in�nite.

Proof. �ere is an edge e such that ZGo.e/
.Ge/ has in�nite image in Out.G/.

Twists of � around e are also twists of �e .
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2.7. Trees of cylinders [34]. We recall some basic properties of the tree of cylin-

ders (see Section 4 of [34] for details). Besides A (and possibly P), we have to �x

a conjugacy-invariant subfamily E � A and an admissible equivalence relation

� on E. Rather than giving a general de�nition, we describe the examples that

will be used in this paper (with A consisting of all �nite, elementary, or abelian

subgroups respectively):

(1) E consists of all �nite subgroups of a �xed order k, and � is equality;

(2) G is relatively hyperbolic (see Section 3), E consists of all in�nite elementary

subgroups (parabolic or loxodromic), and � is co-elementarity: A � B if and

only if hA; Bi is elementary;

(3) G is a torsion-free CSA group, E consists of all in�nite abelian subgroups,

and � is commutation: A � B if and only if hA; Bi is abelian (recall that G

is CSA if centralizers of non-trivial elements are abelian and malnormal).

Let T be a tree with edge stabilizers in E. We declare two (non-oriented)

edges e and f to be equivalent if Ge � Gf . �e union of all edges in an equiv-

alence class is a subtree Y , called a cylinder of T . Two distinct cylinders meet

in at most one point. �e tree of cylinders Tc of T is the bipartite tree such that

V0.Tc/ is the set of vertices x of T which belong to at least two cylinders, V1.Tc/

is the set of cylinders Y of T , and there is an edge " D .x; Y / between x and Y

in Tc if and only if x 2 Y . In other words, one obtains Tc from T by replacing

each cylinder Y by the cone on its boundary (de�ned as the set of vertices of Y

belonging to some other cylinder). Note that Tc may be trivial even if T is not.

�e tree Tc is dominated by T (in particular, it is relative to P if T is). It only

depends on the deformation spaceD containing T (we sometimes say that it is the

tree of cylinders of D). In particular, Tc is invariant under any automorphism of

G leaving D invariant.

�e stabilizer of a vertex x 2 V0.Tc/ is the stabilizer of x, viewed as a vertex

of T . �e stabilizer GY of a vertex Y 2 V1.Tc/ is the stabilizer GC of the equiva-

lence class C 2 E= � containing stabilizers of edges in Y , for the action of G on

E by conjugation (see Subsection 5.1 of [34]). It is the normalizer of a �nite sub-

group in case 1, a maximal elementary (resp. abelian) subgroup in case 2 (resp. 3).

Note that A � GC if A 2 E and C is its equivalence class.

�e stabilizer of an edge " D .x; Y / of Tc is G" D Gx \ GY ; it is elliptic

in T . In cases 2 and 3, G" belongs to A. But, in case 1, it may happen that edge

stabilizers of Tc are not in A, so we also consider the collapsed tree of cylinders
T �

c obtained from Tc by collapsing each edge whose stabilizer does not belong to

A (see Subsection 5.2 of [34]). It is an .A;P/-tree if T is, and .T �
c /�

c D T �
c .
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3. Relatively hyperbolic groups

In this section we assume that G is hyperbolic relative to a �nite family P D

¹P1; : : : ; Pnº of �nitely generated subgroups; we say that P is the parabolic struc-
ture.

�e group G is �nitely generated. It is not necessarily �nitely presented, but

it is �nitely presented relative to P [53], so JSJ decompositions relative to P ex-

ist. In particular, there is a deformation space of relative Stallings–Dunwoody

decompositions (see Subsection 2.5).

3.1. Generalities. We refer to [39] for equivalent de�nitions of relative hyper-

bolicity. In particular, G acts properly discontinuously on a proper geodesic

ı-hyperbolic space X (which may be taken to be a graph [28]), the action is co-

compact in the complement of a G-invariant union B of disjoint horoballs, and

the Pi ’s are representatives of conjugacy classes of stabilizers of horoballs. Any

horoball B 2 B has a unique point at in�nity �, and the stabilizer of � (for the

action of G on @X) coincides with the stabilizer of B .

For each constant M > 0, one can change the system of horoballs so that any

two distinct horoballs are at distance at least M . Indeed, for each horoball B with

stabilizer P de�ned by a horofunction h, the function h0.x/ D supg2P h.gx/ is an-

other (well-de�ned) horofunction which is P -equivariant; then B 0 D h0�1.ŒR; 1//

is a new P -invariant horoball such that d.B 0; X n B/ � M for R large enough.

Doing this for a chosen horoball in each orbit, and extending by equivariance, one

gets a system of horoballs at distance at least M from each other.

A subgroup of G is parabolic if it is contained in a conjugate of some Pi ,

loxodromic if it is in�nite, virtually cyclic, and not parabolic, elementary if it is

parabolic or virtually cyclic (�nite or loxodromic). Any small subgroup is ele-

mentary. �e group G itself is elementary if it is virtually cyclic or equal to a Pi .

We say that A is an elementary subgroup of B if it is elementary and contained

in B .

One may remove any virtually cyclic subgroup from P, without destroying rel-

ative hyperbolicity (see e.g. [20, Cor 1.14]). Conversely, one may add to P a �nite

subgroup or a maximal loxodromic subgroup (see e.g. [52]). �ese operations

do not change the set of elementary (or relatively quasiconvex, as de�ned below)

subgroups, and it is sometimes convenient (as in [39]) to assume that every Pi is

in�nite. Any in�nite Pi is a maximal elementary subgroup.

�e following lemma is folklore, but we have not found it in the literature.
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Lemma 3.1. Given a relatively hyperbolic group G, there exists a number M such
that any elementary subgroup H � G of cardinality > M is contained in a unique
maximal elementary subgroup E.H/. �ere are �nitely many conjugacy classes
of non-parabolic �nite subgroups.

Proof. We may assume that every Pi is in�nite. Let H be elementary. �e ex-

istence of E.H/ is well-known if H is in�nite (see for instance [53]), so assume

H is �nite. We also assume that the distance between any two distinct horoballs

in B is bigger than 6ı. Given r > 0, let Xr be the set of points of X which are

moved less than r by H . It follows from Lemma 3.3 p. 460 of [7] (existence of

quasi-centres) that X5ı is nonempty.

Arguing as in the proof of Lemma 1.15 page 407 and Lemma 3.3 page 428

in [7], one sees that any geodesic joining two points of X5ı , or a point of X5ı to a

�xed point of H in @X , is contained in X9ı .

If X9ı meets X n B, properness of the action of G on X n B implies that

there are only �nitely many possibilities for H up to conjugacy, so we can choose

M to ensure X9ı � B. �is implies that X5ı is contained in a unique horoball

B0 of B. �is horoball is H -invariant since horoballs are 6ı-apart, so H �xes

the point at in�nity �0 of B0 and is contained in the maximal parabolic subgroup

E.H/ D Stab.B0/. In particular, H is parabolic.

�ere remains to prove uniqueness of E.H/. It su�ces to check that H cannot

�x any point � ¤ �0 in @X . If it did, a geodesic joining � to a point of X5ı would

be contained in X9ı and meet X n B. �is contradicts our choice of M .

Since maximal elementary subgroups are equal to their normalizer, we get:

Corollary 3.2 ([21, Lemma 4.20]). Maximal elementary subgroups E are uni-

formly almost malnormal: if E \ gEg�1 has cardinality > M , then g 2 E.

3.2. Quasiconvexity

De�nition 3.3 (Hruska [39]). Let X and B be as above, and C > 0. A subspace

Y � X is relatively C -quasiconvex if, given y; y0 2 Y , any geodesic Œy; y0� � X

has the property that Œy; y0� nB lies in the C -neighbourhood of Y . �e space Y is

relatively quasiconvex if it is relatively C -quasiconvex for some C . A subgroup

H < G is relatively quasiconvex if some (equivalently, every) H -orbit is relatively

quasiconvex in X .

Proposition 3.4. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi

�nitely generated. If G acts on a simplicial tree T relative to P with relatively
quasiconvex edge stabilizers, then vertex stabilizers are relatively quasiconvex.
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�e proposition applies in particular if edge stabilizers are elementary, since

elementary subgroups are relatively quasiconvex. It was proved by Bowditch [5,

Proposition 1.2] and Kapovich [41, Lemma 3.5] for G hyperbolic. We generalize

Bowditch’s argument.

Proof. As usual, we assume that G acts on T minimally and without inversion.

Since G is �nitely generated, the graph T=G is �nite. We also assume that X is a

connected graph, and edges of T have length 1.

Since Pi is elliptic in T , and stabilizers of points of X are �nite, hence elliptic

in T , there exists an equivariant map f W X ! T sending vertices to vertices,

mapping each edge linearly to an edge path, and constant on each horoball of B.

For each edge e of T , let me be the midpoint of e, and Qe D f �1.me/. Let v

be a vertex of T , and let Ev be the set of edges of T with origin v. Let Qv � X

be the preimage under f of the closed ball of radius 1
2

around v in T . Note that

Qe � Qv for all e 2 Ev and Qe \ B D ;. Also note that Qe ¤ ; by minimality

of T and connectedness of X .

If f .x/ D f .hx/ for x 2 X and h 2 G, then h �xes f .x/. Since G acts

cocompactly on X nB, it follows that Gv acts cocompactly on Qv nB and Ge acts

cocompactly on Qe D Qe n B. In particular, Qe is the Ge-orbit of a �nite set.

Relative quasiconvexity of Ge implies that Qe is relatively quasiconvex. Since

T=G is a �nite graph, there exists a common constant C such that all subsets Qe

are relatively C -quasiconvex.

We now �x a vertex v, and we show that Gv is relatively quasiconvex. Choose

x 2 Qv nB. Since Gv acts cocompactly on Qv nB, the Hausdor� distance between

Qv n B and the Gv-orbit of x is �nite, so it su�ces to prove that Qv is relatively

quasiconvex. Let  be a geodesic of X joining two points of Qv , and let 0 be a

maximal subgeodesic contained in nQv. Considering the image of  in T , we see

that both endpoints of 0 belong to the same Qe, for some e 2 Ev . �us 0 n B is

C -close to Qe , hence to Qv . �is shows that Qv is relatively C -quasiconvex.

A relatively quasiconvex subgroup is relatively hyperbolic in a natural way

([39, �eorem 9.1]). In particular:

Lemma 3.5. If Gv is an in�nite vertex stabilizer of a tree with �nite edge stabi-
lizers, it is hyperbolic relative to the family PjGv

of De�nition 2.3.

Proof. �is follows from �eorem 9.1 of [39], adding �nite groups belonging to

PjGv
to the parabolic structure if needed.
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3.3. �e canonical JSJ decomposition. In this section we recall the description

of the canonical relative JSJ decomposition. �e content of the word canonical is

that the JSJ tree (not just the JSJ deformation space) is invariant under automor-

phisms.

Let G be hyperbolic relative to P, and denote by A the family of elementary

subgroups. In this subsection we �x another (possibly empty) family of �nitely

generated subgroups H D ¹H1; : : : ; Hqº and we assume that G is one-ended rel-

ative to P [ H.

We consider the canonical Out.GIP[H/-invariant JSJ tree Tcan de�ned (under

the name T �
c ) in �eorem 13.1 of [36] (see also �eorem 7.5 of [34]). It is the tree

of cylinders (see Subsection 2.7) of the JSJ deformation space D over elementary

subgroups relative to P [ H, and it belongs to D. It is Out.GIP [ H/-invariant

because the JSJ deformation space D is.

Being a tree of cylinders, Tcan is bipartite, with vertices x 2 V0.Tcan/ and

Y 2 V1.Tcan/. Stabilizers of vertices in V0.Tcan/ are non-elementary, and stabiliz-

ers of vertices in V1.Tcan/ are maximal elementary subgroups. Non-elementary

vertex stabilizers may be rigid or �exible (see Subsection 2.5), and �exible vertex

stabilizers are QH with �nite �ber (see �eorem 13.1 of [36]). Elementary vertex

stabilizers are in�nite by one-endedness, they may be parabolic or loxodromic.

�us there are exactly four possibilities for a vertex v 2 Tcan:

0.a. rigid: Gv is non-elementary and is elliptic in every .A;P [ H/-tree.

0.b. (�exible) QH: Gv is non-elementary and not universally elliptic. �en v is a

�exible QH vertex with �nite �ber as in Subsection 2.5.

1.a. maximal parabolic: Gv is conjugate to a Pi .

1.b. maximal loxodromic: Gv is a maximal virtually cyclic subgroup of G, and

Gv is not parabolic.

Remark 3.6. A QH vertex v 2 V0.Tcan/ is �exible, except in a few cases; for

instance, if G is torsion-free, the only exceptional case is when the underlying sur-

face is a pair of pants (thrice punctured sphere). In these cases we view v as rigid

rather than QH. �is should not cause confusion. In particular, Propositions 4.1

and 4.7 would remain valid with v viewed as QH.

If " D .x; Y / is an edge, then G" D Gx \GY is an in�nite maximal elementary

subgroup of Gx (but G" may fail to be maximal elementary in G and GY ). In par-

ticular, G" is always almost malnormal in Gx, so that Assertion 2 of Lemma 2.12

applies to Tcan, showing T D ker �.
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Let now v be a QH vertex. We claim that, if H D ; and every Pi is in�nite, then
Bv D Incv [ PjGv

, and Bv D Incv if no Pi is virtually cyclic (see De�nitions 2.1,

2.3 and 2.8).

Groups in Incv [ PjGv
are in�nite maximal elementary subgroups of Gv, and

groups in Bv are virtually cyclic, so Incv [ PjGv
� Bv by De�nition 2.7. Con-

versely, because of one-endedness, every boundary component of † is used by

Incv [PjGv
[36, Subsection 2.5 and �eorem 13.1]: for any full boundary subgroup

B 2 Bv , there exists a subgroup H 2 Incv [ PjGv
such that some Gv-conjugate

of H is a �nite index subgroup of B (hence equals B). �is proves the converse.

Since groups in Bv are virtually cyclic, Bv D Incv if no Pi is virtually cyclic. �is

proves the claim.

When H ¤ ;, we still have Incv [PjGv
� Bv . If Hj is in�nite, the intersection

of any of its conjugates with Gx is contained in a full boundary subgroup, in

particular is virtually cyclic. Conversely, a group of Bv belongs to Incv [PjGv
or

contains with �nite index a Gv-conjugate of a group H 2 HjGv
.

�is analysis implies that a group Pi which is not virtually cyclic is contained

in a rigid Gx or is equal to some GY (which may be contained in a rigid Gx).

A group Hj which is not virtually cyclic is contained in a rigid Gx or in a GY .

Lemma 3.7. Tcan has �nitely generated edge (hence vertex) stabilizers.

We do not assume that the Pi ’s are slender, so there may exist in�nitely gen-

erated elementary subgroups.

Proof. Since G is �nitely presented relative to P [ H, there is an elementary JSJ

tree TJ relative to P[H having �nitely generated edge stabilizers ([35], �eorem

5.1). �e tree Tcan is the tree of cylinders of TJ .

Consider an edge " D .x; Y / of Tcan, and G" D Gx \ GY . We view Y as a

subtree of TJ containing x. If GY is virtually cyclic, then G" is obviously �nitely

generated, so we can assume that GY is a maximal parabolic group Pi .

Since GY D Pi is elliptic in TJ and leaves Y invariant, it �xes a vertex y 2 Y .

If y D x, then GY � Gx, so G" D GY D Pi is �nitely generated. If y ¤ x, let e

be the initial edge of the segment Œx; y� in TJ . It is contained in Y , so Ge � GY ,

hence Ge � Gx \ GY � Gx \ Gy � Ge. It follows that G" D Gx \ GY D Ge is

�nitely generated.

By Proposition 3.4, vertex groups of Tcan are relatively quasiconvex, hence

relatively hyperbolic. We make the parabolic structure explicit.
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Lemma 3.8. If x 2 V0.Tcan/, the group Gx is hyperbolic relative to the �nite
family of �nitely generated subgroups Qx D Incx [ PjGx

, where Incx is a set of
representatives of conjugacy classes of incident edge stabilizers and PjGx

is the
induced structure (see De�nitions 2.1 and 2.3).

Proof. By �eorem 9.1 of [39], we have to consider in�nite groups of the form

Gx \ gPig
�1. Recall that stabilizers of vertices adjacent to x are maximal ele-

mentary subgroups, and distinct maximal elementary subgroups have �nite inter-

section. �us gPig
�1 must be the stabilizer of an adjacent vertex, or have x as

unique �xed point, so Gx \ gPig
�1 is conjugate in Gx to a group in Incx [ PjGx

.

Conversely, a group in Incx [ PjGx
which is not an in�nite group of the form

Gx \gPig
�1 is �nite or is a loxodromic maximal virtually cyclic subgroup of Gx.

Such groups may be added to the parabolic structure.

3.4. Rigid groups have �nitely many automorphisms.

�eorem 3.9. Let G be hyperbolic relative to �nitely generated subgroups P D

¹P1; : : : ; Pnº, with Pi ¤ G. Let H D ¹H1; : : : ; Hqº be another family of �nitely
generated subgroups. If Out.GIP;H.t// is in�nite, then G splits over an elemen-
tary subgroup relative to P [ H.

�e hypothesis means that there are in�nitely many (classes of) automorphisms

which map each Pi to a conjugate (in an arbitrary way) and act on each Hj as con-

jugation by an element of G.

�e proof of the theorem has two steps. First, using the Bestvina-Paulin method

(see [54]), extended by Belegradek-Szczepański [1] to relatively hyperbolic groups,

one constructs an action of G on an R-tree T . Rips theory then yields a splitting.

�is is fairly standard but there are technical di�culties, in particular because the

action on T is not necessarily stable if the Pi ’s are not assumed to be slender.

Details are in Section 9.

4. Automorphisms of one-ended relatively hyperbolic groups

Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi in�nite and �nitely

generated. We assume that G is one-ended relative to P. In Subsection 4.1 we

study Out.GIP/ through its action on the canonical JSJ tree. �is leads to the

main results of this section, which are stated in Subsection 4.2. In Subsection 4.3

we study automorphisms which act trivially on another family H.
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4.1. Automorphisms of the canonical JSJ splitting. Let Tcan be the canoni-

cal Out.GIP/-invariant JSJ tree as in Subsection 3.3 (with H D ;), and �can D

Tcan=G. Edge stabilizers are in�nite elementary subgroups. Vertex stabilizers may

be rigid (non-elementary), QH with �nite �ber, maximal parabolic (conjugate to

a Pi ), or maximal loxodromic (virtually cyclic). A rigid or QH stabilizer Gx �xes

a unique point in Tcan, hence is equal to its normalizer; incident edge stabilizers

are maximal elementary subgroups of Gx.

We study Out.GIP/ through its action on Tcan as in Subsection 2.6. In general,

Out.GIP/ is a proper subgroup of Out.Tcan/.

We de�ne �nite index subgroups Out0.GIP/ and Out0.GIP.t// by taking the

intersection of Out.GIP/ and Out.GIP.t// with the group Out0.Tcan/ consisting

of automorphisms acting trivially on the graph �can D Tcan=G.

By the second assertion of Lemma 2.12, the kernel of

� W Out0.Tcan/ �!
Y

v2V

Out.Gv/

is the group of twists T. Note that T � Out0.GIP.t// � Out0.GIP/ since every

Pi is elliptic in Tcan and a twist acts as a conjugation on any vertex stabilizer.

�e group T is the image in Out.G/ of a �nite direct product
Q

e2E ZGo.e/
.Ge/.

Each factor is virtually cyclic or contained in a conjugate of some Pi .

We now consider the image of Out0.GIP/ and Out0.GIP.t// by

�v W Out0.Tcan/ �! Out.Gv/;

for v a vertex of �can (viewed as a vertex of Tcan with stabilizer Gv). Using �e-

orem 3.9, we shall show that both images are �nite if Gv is rigid. If Gv D Pi ,

the index of Out.GvI Inc.t/
v / in the image of Out0.GIP/ is �nite because w is rigid

whenever e D vw is an edge with Out.Ge/ in�nite. More precisely:

Proposition 4.1. �e images of Out0.GIP/ and Out0.GIP.t// by

�v W Out0.Tcan/ �! Out.Gv/

may be described as follows:

� if Gv is virtually cyclic or rigid, both images are �nite;

� if Gv is a QH vertex stabilizer, both images contain Out.GvIB
.t/
v / with �nite

index;

� if Gv is (conjugate to) Pi , the image of Out0.GIP.t// is trivial. �e image of
Out0.GIP/ contains Out.GvI Inc.t/

v / with �nite index.
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If e is any edge of Tcan, the images of Out0.GIP/ and Out0.GIP.t// by

�e W Out0.Tcan/ �! Out.Ge/

are �nite.

See De�nition 2.8 for the de�nition of the family of full boundary subgroups

Bv , and recall that Bv D Incv if no Pi is virtually cyclic.

Proof. If Gv is virtually cyclic, Out.Gv/ is �nite. If Gv is rigid, �niteness follows

from �eorem 3.9, as we now explain. We have seen (Lemma 3.8) that Gv is

hyperbolic relative to a �nite family Qv D Incv [PjGv
consisting of incident edge

groups and conjugates of the Pi ’s having v as unique �xed point. �ese groups

are �nitely generated by Lemma 3.7. By Lemma 2.10, the group �v.Out0.GIP//

is contained in Out.GvIQv/. If it is in�nite, Gv splits over an elementary subgroup

relative to Qv by �eorem 3.9 (applied with P D Qv and H D ;). By Lemma 2.6,

this splitting may be used to re�ne Tcan, yielding an elementary splitting of G

relative to P in which Gv is not elliptic. �is contradicts rigidity.

If Gv is QH, �rst note that

Out.GvIB.t/
v / D Out.GvI Inc.t/

v ;P
.t/
jGv

/

and

Out.GvIBv/ D Out.GvI Incv;PjGv
/

because Bv D Incv [ PjGv
(see Subsection 3.3, recalling that groups in P are

assumed to be in�nite).

Lemma 2.10 then yields

Out.GvIB.t/
v / � �v.Out0.GIP.t/// � �v.Out0.GIP// � Out.GvIBv/:

We conclude by observing that Out.GvIB
.t/
v / has �nite index in Out.GvIBv/

because groups in Bv are virtually cyclic, hence have �nite outer automorphism

group.

If Gv is (conjugate to) Pi , the image of Out0.GIP.t// is clearly trivial. Since

PjGv
equals ¹Gvº or is empty, the image of Out0.GIP/ contains Out.GvI Inc.t/

v / D

Out.GvI Inc.t/
v ;PjGv

/, and we have to show that the index is �nite. If Out.G"/ is

�nite for every incident edge ", this follows from Lemma 2.10. In general, we have

to control the action of automorphisms on G" for incident edges " with Out.G"/ in-

�nite. Note that there is no natural map from Out.GvI Incv/ to Out.G"/ if NGv
.G"/

acts non-trivially on G".
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In�niteness of Out.G"/ implies that the other endpoint of " is a rigid vertex x:

it cannot be QH since G" would then be virtually cyclic. As explained above, the

image of Out0.GIP/ in Out.Gx/ is �nite. Any ˆ 2 Out0.GIP/ has a represen-

tative ˛ leaving Gx and Gv invariant (the associated map f˛ �xes "). Replacing

Out0.GIP/ by a �nite index subgroup, we may suppose that ˛ acts on Gx as con-

jugation by some element g. �is g must be in Gx since Gx equals its normalizer,

and in fact in G" because G" is almost malnormal in Gx. �is shows that ˆ maps

into Out.GvI G
.t/
" /. Arguing in this way for each incident edge proves the result

for the image of �v.

Since any edge of Tcan has a vertex v with Gv virtually cyclic or conjugate to

a Pi , the previous argument also shows �niteness for images by �e .

De�nition 4.2. Let † be a compact 2-dimensional hyperbolic orbifold. �e ex-
tended mapping class group MCG�.†/ is the group of outer automorphisms of

�1.†/ preserving the set of boundary subgroups.

If v is a QH vertex of Tcan with underlying orbifold † and �nite �ber F , we

de�ne MCG0
Tcan

.†/ as the group Out.GvIB
.t/
v /. �is group maps with �nite kernel

onto a �nite index subgroup of MCG�.†/ [17, pp. 240 and 268].

As noted in [26, 17], one can understand the extended mapping class group

of an orbifold with mirrors in terms of the extended mapping class group of a

suborbifold without mirrors.

If G is torsion free, † is a surface, MCG�.†/ is the group of isotopy classes of

homeomorphisms, and MCG0
Tcan

.†/ is the group of isotopy classes of homeomor-

phisms which map each boundary component to itself in an orientation-preserving

way (in this case it only depends on † since the �ber is trivial).

Mapping class groups are usually in�nite, but there are exceptions. In the

torsion-free case, the exceptions are the pair of pants and the twice punctured

projective plane [44, Cor 4.6]; all other hyperbolic surfaces contain an essential

2-sided simple closed curve not bounding a Möbius band, so there is a Dehn twist

of in�nite order. As a QH vertex, a pair of pants is rigid; every simple closed

curve is homotopically trivial or boundary parallel. A twice punctured projective

plane is �exible, but every 2-sided simple closed curve is homotopically trivial,

boundary parallel, or bounds a Möbius band, so there is no non-trivial Dehn twist.

4.2. Automorphisms of G . Motivated by the previous subsection, we de�ne a

subgroup Out1.GIP.t// � Out0.GIP.t// as the set of ˆ such that �v.ˆ/ is trivial

if Gv is virtually cyclic, rigid, or conjugate to a Pi , and

�v.ˆ/ 2 Out.GvIB.t/
v / D MCG0

Tcan
.†/



624 V. Guirardel and G. Levitt

if Gv is QH. Proposition 4.1 shows that this subgroup has �nite index. We de�ne

a �nite index subgroup Out1.GIP/ � Out0.GIP/ similarly, allowing �v.ˆ/ 2

Out.GvI Inc.t/
v / if Gv is conjugate to a Pi .

We may now sum up the discussion in Subsection 4.1 as:

�eorem 4.3. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi in�nite
and �nitely generated. Assume that G is one-ended relative to P.

�en Out.GIP.t// and Out.GIP/ have �nite index subgroups Out1.GIP.t// and
Out1.GIP/ which �t in exact sequences

1 �! T �! Out1.GIP.t// �!

pY

iD1

MCG0
Tcan

.†i / �! 1

and

1 �! T �! Out1.GIP/ �!

pY

iD1

MCG0
Tcan

.†i / �
Y

j

Out.Pj I Inc
.t/
Pj

/ �! 1;

where:

� T is the group of twists of the canonical elementary JSJ decomposition Tcan

relative to P; it is a quotient of a �nite direct product where each factor is a
subgroup of G which is virtually cyclic or contained in a Pi I

� †1; : : : ; †p are the 2-orbifolds occuring in �exible QH vertices v of Tcan,
and MCG0

Tcan
.†i / maps with �nite kernel onto a �nite index subgroup of the

extended mapping class group MCG�.†i /I

� the last product is taken only over those Pj ’s which occur as vertex stabilizers
of Tcan, and IncPj

is the set of incident edge groups.

Note that T is slender (resp. small, virtually solvable, virtually nilpotent, vir-

tually abelian) if the Pi ’s are. Also note that Out.GIP/ has �nite index in Out.G/

if the Pi ’s are small but not virtually cyclic, since they may be characterized up to

conjugacy as maximal among the subgroups of G which are small but not virtually

cyclic. More generally, this holds if no Pi is relatively hyperbolic [51, Lemma 3.2].

Recall that G is toral relatively hyperbolic if it is torsion-free and hyperbolic

relative to a �nite family P of �nitely generated abelian subgroups. Limit groups,

and more generally groups acting freely onR
n-trees, are toral relatively hyperbolic

[15, 30].
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Corollary 4.4. Let G be toral relatively hyperbolic and one-ended. �en some
�nite index subgroup Out1.G/ of Out.G/ �ts in an exact sequence

1 �! T �! Out1.G/ �!

pY

iD1

MCG0.†i / �

mY

kD1

GLrk ;nk
.Z/ �! 1

where T is �nitely generated free abelian, MCG0.†i / is the group of isotopy
classes of homeomorphisms of a compact surface †i mapping each boundary
component to itself in an orientation-preserving way, and

GLr;n.Z/ D Mr;n.Z/ Ì GLr.Z/

is the group of automorphisms of ZnCr �xing the �rst n generators.

See �eorem 5.3 of [9] and �eorem 6.5 of [33] for the case of limit groups,

based on results from [43] and [9].

Proof. We may assume that no Pi 2 P is cyclic, so Out.GIP/ has �nite index in

Out.G/. If Pj is isomorphic to Z
a, then Out.Pj I Inc

.t/
Pj

/ is isomorphic to some

GLr;n.Z/ with r C n D a, so the exact sequence follows from �eorem 4.3.

We know that the group of twists T of Tcan is �nitely generated and abelian. �ere

remains to check that it is torsion-free.

Recall from Subsection 2.6 that T is generated by the product of all ZGo.e/
.Ge/,

subject to edge and vertex relations. Denoting an edge of �can D Tcan=G by

" D .x; Y / with x 2 V0.�can/ and Y 2 V1.�can/, there is no relation at the vertex

x since Z.Gx/ is trivial. Moreover, ZGx
.G"/ D G", so the edge relation identi�es

the twists around " near x with twists near Y . �us T is the direct product, over

vertices v of �can carrying an abelian group, of .
Q

e2Ev
ZGv

.Ge//=Z.Gv/ where

Ev is the set of oriented edges with origin v and Z.Gv/ is embedded diagonally.

Since Gv is abelian, ZGv
.Ge/ D Z.Gv/ D Gv , so T is isomorphic to a �nite direct

product
Q

.Gv/jEv j�1 of abelian vertex groups. It is therefore torsion-free.

Corollary 4.5. If G is a toral relatively hyperbolic group, Out.G/ is virtually
torsion-free and has a �nite index subgroup with a �nite classifying space.

Proof. �is follows from Corollary 4.4 if G is one-ended. In general, we write

G D G1�� � ��Gq �F with G` one-ended and F free. All groups G` and G`=Z.G`/

have a �nite classifying space [14], so we can apply �eorem 5.2 of [33]. (We men-

tion here that the arguments given in [33] are insu�cient to get a �nite classifying

space: there should exist �nite classifying spaces for the groups OutS .G/ them-

selves (rather than for �nite index subgroups); this is achieved by restricting to

some �nite index subgroup of Out.G/, see [37] for details.)
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4.3. �e relative case. We generalize the analysis of Subsection 4.1 to a relative

situation.

Let G;P be as above, and �x another family of �nitely generated subgroups

H D ¹H1; : : : ; Hqº. Assume that G is one-ended relative to P [ H, and let now

Tcan be the canonical elementary JSJ tree relative to P [ H.

�eorem 4.6. Under these hypotheses, both Out.GIP.t/;H.t// and Out.GIP;H.t//

have �nite index subgroups Out1.GIP.t/;H.t// and Out1.GIP;H.t// which �t in
exact sequences

1 �! T �! Out1.GIP.t/;H.t// �!

pY

iD1

MCG1
Tcan

.†i / �! 1

and

1 �! T �!Out1.GIP;H.t//

�!

pY

iD1

MCG1
Tcan

.†i / �
Y

j

Out.Pj I Inc
.t/
Pj

;H
.t/
jPj

/ �! 1;

as in �eorem 4.3.
�e group MCG1

Tcan
.†i / equals Out.GvIB

.t/
v ;F

.t/
v /, where Fv is a set of rep-

resentatives of conjugacy classes of �nite subgroups in Gv; it is a �nite index
subgroup of MCG0

Tcan
.†i/ D Out.GvIB

.t/
v /.

Note that Fv is a �nite set since the QH vertex group Gv maps onto a 2-orbifold

group with �nite kernel. �e family Fv is not needed if all groups in H are in�nite

(see the proof below).

�e theorem is proved as in the absolute case, replacing Proposition 4.1 by the

following result.

Proposition 4.7. �e images of Out0.GIP;H.t// and Out0.GIP.t/;H.t// by

�v W Out0.Tcan/ �! Out.Gv/

may be described as follows;

� if Gv is virtually cyclic or rigid, both images are �nite:

� if Gv is a QH vertex stabilizer, both images contain Out.GvIB
.t/
v ;F

.t/
v / with

�nite index (where Fv is as in �eorem 4.6 and Bv is as in De�nition 2.8);

� if Gv is (conjugate to) Pi , the image of Out0.GIP.t/;H.t// is trivial.
�e image of Out0.GIP;H.t// contains Out.GvI Inc.t/

v ;H
.t/
jGv

/ with �nite
index.
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Proof. We only mention the di�erences with the proof of Proposition 4.1.

If v is a (non-elementary) rigid vertex, the images of Out0.GIP;H.t// and

Out0.GIP.t/;H.t// by �v are contained in Out.GvIQv;H
.t/
jGv

/ by Lemma 2.10. It

follows that the images are �nite since, otherwise, �eorem 3.9 would yield a

splitting relative to Qv [HjGv
, which extends to a splitting of G relative to P[H

by Lemma 2.6.

When Gv is conjugate to a parabolic group Pj , Lemma 2.10 says that the image

of Out0.GIP;H.t// contains Out.GvI Inc.t/
v ;H

.t/
jGv

/, and the index is �nite for the

same reason as before.

When Gv is QH, we write

Out.GvI Inc.t/
v ;PjGv

;H
.t/
jGv

/ � �v.Out0.T IP;H.t///

� Out.GvI Incv;PjGv
;H

.t/
jGv

/

using Lemma 2.10.

�e proof in the non-relative case relied on the equality

Bv D Incv [ PjGv
:

Here (see Subsection 3.3) we have Incv [ PjGv
� Bv , and a group B 2 Bv not

in Incv [ PjGv
contains with �nite index a group H 0 conjugate to some H 2

HjGv
. Since B is the only maximal elementary subgroup of Gv containing H 0,

any automorphism preserving H 0 preserves B , so

Out.GvI Incv;PjGv
;H

.t/
jGv

/ � Out.GvIBv/:

If all groups in H are in�nite, the intersection of any conjugate of Hj with Gv

is contained in a full boundary subgroup, so

Out.GvIB.t/
v / � Out.GvI Inc.t/

v ;PjGv
;H

.t/
jGv

/:

Otherwise HjGv
may contain �nite groups (�xing v but no other vertex of Tcan)

and we can only write

Out.GvIB.t/
v ;F.t/

v / � Out.GvI Inc.t/
v ;PjGv

;H
.t/
jGv

/:

�e proposition follows because the index of Out.GvIB
.t/
v ;F

.t/
v / in Out.GvIBv/ is

�nite.

Remark 4.8. Because we use �eorem 3.9 to control automorphisms of rigid

groups, we do not have a similar result concerning Out.GIP.t/ [H/ or Out.GIP[

H/: we have to impose that automorphisms act trivially on H. We also need �nite

generation of groups in H.
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Arguing as in the previous subsection, one gets:

Corollary 4.9. Let G be toral relatively hyperbolic, one-ended relative to a family
H D ¹H1; : : : ; Hqº of �nitely generated subgroups. �en Out.GIH.t// has a �nite
index subgroup Out1.GIH.t// �tting in an exact sequence as in Corollary 4.4.

5. �e modular group

�e goal of this section is to show that the modular group, usually de�ned by

considering all suitable splittings of a group G, may be seen on a single splitting,

namely the canonical JSJ decomposition.

5.1. De�nitions and examples. Let G be hyperbolic relative toPD ¹P1; : : : ;Pnº,

where each Pi is �nitely generated. Without loss of generality, we assume that no

Pi is virtually cyclic (in particular, Pi is in�nite). Let H be another �nite family

of �nitely generated subgroups Hj such that every Pi which contains a free group

F2 is contained in a group of H.

In particular, we may take H D P, or H D ; if every Pi is small. We will

assume that G is one-ended relative to H (equivalently, relative to P [ H since

every Pi is one-ended or contained in a group of H).

We consider trees T with elementary edge stabilizers, which are relative to H

(universal ellipticity will be with respect to these trees, unless indicated other-

wise). �ey are not necessarily relative to Pi if Pi is small, but our assumption on

H implies that elementary subgroups which are not small have a conjugate con-

tained in a group in H, so are universally elliptic. We shall associate a modular

group Mod.T / � Out.T / � Out.G/ to such a tree T .

Lemma 5.1. If v is a �exible QH vertex with �nite �ber, then any elementary
subgroup of Gv is virtually cyclic.

Recall (De�nition 2.7) that Gv maps onto �1.†/ with �nite kernel F ; �exibility

of Gv is equivalent to the 2-orbifold † containing an essential 1-suborbifold. Since

T is only assumed to be relative to H, De�nition 2.7 only restricts intersections

of Gv with conjugates of groups in H.

Proof. Assume on the contrary that some subgroup E < Gv is elementary, but

not virtually cyclic. �en E contains F2 and is parabolic. As pointed out be-

fore, our assumption on H implies that E is universally elliptic. �is contradicts

Remark 2.9 saying that such a group has to be virtually cyclic.
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Remark. If Gv is a �exible QH vertex stabilizer with elementary �ber F , then

F is �nite. Indeed, if F is in�nite, then Gv is elementary by almost malnormal-

ity of maximal elementary subgroups (Corollary 3.2). Since it contains F2, it is

universally elliptic, contradicting �exibility.

De�nition 5.2. We say that a vertex v of T (or of � D T=G) is modular if Gv

is �exible and QH (relative to H) with �nite �ber, or Gv is elementary. Note that

Gv cannot be both.

Recall (Subsection 2.6) the maps �v W Out0.T / ! Out.Gv/ de�ned on the

�nite index subgroup of Out.T / consisting of automorphisms acting trivially on

� D T=G.

De�nition 5.3. We de�ne Mod.T / by saying that ˆ 2 Out0.T / belongs to Mod.T /

if it satis�es the following conditions:

� if v is not modular, �v.ˆ/ is trivial;

� if Gv is elementary, �v.ˆ/ 2 Out.GvI Inc.t/
v /; in other words, �v.ˆ/ acts on

each incident edge group as a conjugation;

� if Gv is QH with �nite �ber, and �exible, then �v.ˆ/ 2 Out.GvIB
.t/
v /, with

Bv consisting of full preimages of boundary subgroups of �1.†/ as in De�-

nition 2.8.

Note that Mod.T / contains the group of twists T.T /, and that automorphisms

in Mod.T / need not preserve H.

We have assumed that G is one-ended relative to H, so we can consider the

canonical elementary JSJ tree Tcan relative to P [ H as in Subsection 3.3. Note

that Mod.Tcan/ has �nite index in Out.GIP/ when H D P (it contains the group

Out1.GIP/ de�ned in Subsection 4.2, possibly strictly because of vertices with

Gv virtually cyclic).

�eorem 5.4. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with each Pi

�nitely generated, not virtually cyclic. Let H be a family of subgroups such that
every Pi which contains F2 is contained in a group of H, and G is one-ended
relative to H.

If T is any elementary splitting of G relative to H, then Mod.T / � Mod.Tcan/,
where Tcan is the canonical elementary JSJ tree relative to P [ H.

�is applies in particular if G is one-ended and no Pi contains F2 (taking

H D ;), or if G is one-ended relative to an arbitrary P and we restrict to splittings

relative to P (taking H D P). �e theorem will be proved in the next subsection.
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Remark 5.5. Rather than de�ning Mod.T / by imposing conditions on the ac-

tion on vertex groups, as we just did, one could de�ne it by giving generators:

twists around edges, and certain automorphisms of vertex groups. �is would

yield a slightly smaller group Mod0.T /: its intersection with ker � is T, whereas

Mod.T / contains all of ker �. �eorem 5.4 (and �eorem 5.6 below) also hold with

this more restrictive de�nition, since Mod0.Tcan/ D Mod.Tcan/ by Assertion 2 of

Lemma 2.12.

�ere is a similar statement for torsion-free CSA groups (recall that G is CSA if

centralizers of non-trivial elements are abelian and malnormal). We now consider

abelian splittings of G. A vertex v is modular if Gv is either abelian or QH as above

(in this case F is trivial and † is a surface). �e de�nition of Mod.T / is the same

(with elementary replaced by abelian). �e tree Tcan is the canonical abelian JSJ

tree relative to non-cyclic abelian subgroups; it is also the tree of cylinders of the

(non-relative) abelian JSJ deformation space (see �eorem 11.1 of [36]).

�eorem 5.6. Let G be a �nitely generated, torsion-free, one-ended, CSA group.
If T is any splitting of G over abelian groups, then Mod.T / � Mod.Tcan/, where
Tcan is the tree of cylinders of the abelian JSJ deformation space.

Example 5.7. Let G be the Baumslag–Solitar group

BS.2; 4/ D ha; b j ba2b�1 D a4i:

Any splitting of G as a graph of in�nite cyclic groups is a cyclic JSJ decomposi-

tion of G [25, 35]. Its modular group coincides with its group of twists, and is a

�nite abelian group (see [47]). But the JSJ deformation space of BS.2; 4/ is quite

large [11], and JSJ splittings of BS.2; 4/ may have modular groups of arbitrarily

large order. In particular, there is no splitting whose modular group contains all

others.

Example 5.8. Even if G is as in �eorem 5.4, one cannot replace Tcan by an ar-

bitrary tree in its deformation space: there exists such trees whose modular group

is not maximal (even up to �nite index).

Indeed, let G D A1 �C1
B �C2

A2, where:

� A1 and A2 are torsion-free hyperbolic groups with no cyclic splitting;

� Ci is a maximal in�nite cyclic subgroup of Ai ;

� B is torsion-free, hyperbolic relative to a subgroup

yC D C1 ˚ C2 ˚ Z ' Z
3;

and does not split over an abelian group.

�e group G is hyperbolic relative to yC by [15].
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�e graph of groups

B

C1˚C2

A1
C1

C1 ˚ C2
C2

A2

is an elementary JSJ decomposition of G (both absolute and relative to yC ) be-

cause its vertex groups are universally elliptic (see Lemma 4.7 of [35]). Given any

z 2 yC n .C1 ˚ C2/, the automorphism � de�ned as the identity on A1 and B and

as conjugation by z on A2 is not an automorphism of this graph of groups. But �

is a twist of Tcan, which is the Bass-Serre tree of the graph of groups below.

B

yC

A1
C1

yC
C2

A2

5.2. Proof of �eorem 5.4. We prove �eorem 5.4. �e proof of �eorem 5.6 is

similar and left to the reader. �e main di�erence in the context of a general CSA

group is that we have no version of �eorem 3.9 saying that a rigid vertex group

only has �nitely many outer automorphisms. But the proof given below does not

use �eorem 3.9.

By �eorem 13.1 of [36], the trees Tcan and T are compatible: they have a

common re�nement yT (as de�ned in Subsection 2.3). We may assume that no

edge of yT is collapsed in both Tcan and T (so yT is the least common multiple

of Tcan and T as de�ned in Section 3 of [36]). �e tree yT has elementary edge

stabilizers and is relative to H since Tcan and T are (Proposition 3.22 of [36]).

We �rst claim that Tcan is Mod.T /-invariant. To see this, it su�ces to show

that the image of an in�nite group J 2 P [ H by a modular automorphism ˆ has

a �nite index subgroup which is contained (up to conjugacy) in a group belonging

to P [ H.

If J is a small Pi , its image is elementary and not virtually cyclic, so is para-

bolic. If J is a Pi containing F2, it is contained in a group of H, so we only have to

consider groups J 2 H. Such a group �xes a vertex v in T , and Gv is ˆ-invariant.

We distinguish three cases.

If v is non-modular, ˆ acts trivially on J . If v is a �exible QH vertex, then J is

contained in a group of Bv, hence ˆ-invariant. Now suppose that J is contained

in an elementary Gv . If Gv contains F2, it is a ˆ-invariant group contained in a

group of H, so the image of J is contained in a group of H. �e case when Gv is
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small but not virtually cyclic has been dealt with before. If Gv is virtually cyclic,

ˆ.J / has a �nite index subgroup contained in J . �is completes the proof of the

claim.

Let ˆ 2 Mod.T /. �e heart of the proof of the theorem is to study the action of

ˆ on a non-elementary vertex stabilizer Gv of Tcan (it is rigid or QH). In particular,

given an edge e D vw in Tcan, we show that ˆ has a representative ˛ leaving Gv

invariant and equal to the identity on Ge.

We have de�ned Tcan as a JSJ tree relative to P [ H. When Tcan is viewed

as relative to H only, a �exible QH vertex remains �exible QH. It follows from

Sections 8 and 13 of [36] that a rigid (non-elementary) vertex stabilizer Gv of Tcan

remains universally elliptic relative to H. �e argument goes as follows: if T is

an elementary splitting relative to H, then Gv is elliptic in its tree of cylinders Tc

because Tc is relative to H [ P and Gv is rigid relative to H [ P; since groups

elliptic in Tc but not in T are elementary (see Subsection 2.7), and Gv is not, this

implies that Gv is elliptic in T .

We distinguish two cases.

Case 1: v is rigid. �en Gv is universally elliptic, so �xes a point u in T ,

which is unique because edge stabilizers are elementary and Gv is not. �e group

Gu cannot be elementary. By Remark 2.9, it cannot be �exible QH because its

subgroup Gv is universally elliptic and non-elementary. �us u is not modular

and ˆ has a representative ˛ equal to the identity on Gu, hence on Gv .

Case 2: v is a �exible QH vertex of Tcan. Let e be an adjacent edge and Oe its lift

to yT . Recall that Ge D G Oe is a maximal elementary subgroup of Gv . We de�ne

a point Ov 2 yT as follows. If Gv is elliptic in yT , we call Ov its unique �xed point.

If it is not elliptic, its action on its minimal subtree in yT is dual to a family of

1-suborbifolds of † (see Lemma 7.4 of [35]). We let Ov be the point of that subtree

closest to Oe (possibly an endpoint of Oe).

�e stabilizer of Ov is QH, associated to a suborbifold y† of † (if y† contains no

essential 1-suborbifold, Ov is a rigid vertex of yT ). Note that G Ov is non-elementary

by Lemma 5.1. �e stabilizer of Oe, and also of edges between Oe and Ov if any, is

contained in G Ov, in fact in the preimage of a boundary subgroup of �1.†/ and

�1.y†/.

Let u be the image of Ov in T .

Subcase 2a: u is not modular. �en ˆ has a representative ˛ equal to the

identity on Gu, hence on G Ov and on Ge D G Oe. Note that ˛ leaves Gv invariant

because ˛ is an automorphism of Tcan and v is the only vertex of Tcan �xed by G Ov.

Subcase 2b: Gu is QH with �nite �ber. �en Gu is elliptic in Tcan (see Propo-

sition 7.13 of [35], which is valid in a relative setting), hence in yT , cf. [36, Proposi-
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tion 3.22], so Gu D G Ov . Unfortunately, this argument says nothing about incident

edge groups at u.

First suppose that Ov is an endpoint of Oe. Choose an edge path with origin Ov,

starting with Oe, such that all edges except the last one get collapsed to u in T (this

path consists of the single edge Oe if Oe is not collapsed to a point in T ). Call this

last edge Oe0, and its initial vertex a. We have G Oe0 � Ga � Gu D G Ov , so G Oe0 � G Oe.

�e group Gu is QH with �nite �ber, and G Oe0 is an incident edge group. It

is in�nite by one-endedness, so is contained in a unique maximal elementary

subgroup C of Gu (the preimage of a boundary subgroup of the underlying 2-

orbifold). Since G Oe0 � G Oe, we have G Oe � C . By de�nition of Mod.T /, there is a

representative ˛ of ˆ leaving Gu invariant and equal to the identity on C , hence

on Ge D G Oe. As above, ˛ leaves Gv invariant.

If there are edges between Ov and Oe, call Oe0 the edge that contains Ov. It is not

collapsed to a point in T , since it is collapsed in Tcan, so G Oe0 is an incident edge

group of Gu. We now have G Oe � G Oe0 � C and we argue as in the previous case.

�is completes the analysis of the action of ˆ on Ge in case 2.

Still in case 2 (i.e. assuming that v is a �exible QH vertex stabilizer of Tcan),

we also need to understand the action of ˆ on an element B 2 Bv which is not an

incident edge stabilizer. Such a B contains a conjugate of an Hj with �nite index.

By minimality of yT , the group B �xes a QH vertex Ov 2 yT . We then argue as

above. In subcase 2b, we have B 2 Bu (up to conjugacy) because B contains a

conjugate of Hj , so we can �nd ˛ leaving Gu invariant and equal to the identity

on B since ˆ 2 Mod.T /. �is �nishes case 2.

We can now conclude. Consider �can D Tcan=G, and recall that Tcan is a tree

of cylinders, so �can is bipartite, with edges joining a vertex x 2 V0.�can/ carrying

a non-elementary group to a vertex Y 2 V1.�can/ carrying an elementary group.

We know that ˆ �xes each vertex x 2 V0.�can/, and its action on Gx is trivial if x

is not modular, in Out.GxIB
.t/
x / if Gx is QH.

Since Tcan is a tree of cylinders, distinct edges of �can with origin x in V0.�can/

carry groups which are not conjugate in Gx . As �x.ˆ/ 2 Out.GxI Inc.t/
x /, we

deduce that ˆ acts as the identity on edges of �can with origin x, hence on the

whole of �can. �us ˆ 2 Out0.Tcan/.

�ere remains to check that �Y .ˆ/ 2 Out.GY I Inc
.t/
Y / for Y 2 V1.�can/. If

" D .x; Y / is an adjacent edge, we have seen that ˆ has a representative ˛ equal

to the identity on G". Since G" is in�nite, GY is the unique maximal elementary

subgroup containing it, so ˛ leaves GY invariant. �is completes the proof.
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6. Induced automorphisms

In this section G is hyperbolic relative to P D ¹P1; : : : ; Pnº, and we study auto-

morphisms of P1 which are induced by automorphisms of G. We then apply this

to the case when G is hyperbolic and H is a malnormal quasiconvex subgroup,

viewing G as hyperbolic relative to H .

De�nition 6.1. Given families of subgroups P and H, and a subgroup Q, we say

that ˛ 2 Aut.Q/ is extendable to G relative to P and H.t/ if it is the restriction to

Q of an automorphism of G representing an element of Out.GIP;H.t//.

Being extendable only depends on the image of ˛ in Out.Q/, so we de�ne the

group of extendable automorphisms

Out.Q 1.GIP;H.t/// � Out.Q/:

We write Out.Q 1.GIP// when H D ;, and Out.Q 1 G/ for Out.Q 1.GI ;// D

Out.Q 1.GI ¹Qº//.

If Q equals its normalizer (for instance if Q is an in�nite maximal parabolic

subgroup), there is a map Out.GI Q/ ! Out.Q/, and Out.Q 1 G/ is its image.

Suppose that P1 D Gv is a vertex group of a splitting of G relative to P D

¹P1; : : : ; Pnº, and P1 contains no conjugate of Pi for i > 1 (this is automatic if

no Pi is �nite). �en Out.P1 1.GIP// contains Out.GvI Inc.t/
v / (see Lemma 2.10).

�e following theorem says that virtually all extendable automorphisms occur in

this fashion.

�eorem 6.2. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi �nitely
generated and in�nite, and Pi ¤ G. Let H be a �nite family of �nitely generated
subgroups of G. If Out.P1 1.GIP;H.t/// is in�nite, then:

(1) P1 is a vertex group Gv in an elementary JSJ decomposition � relative to
P [ H. Edge groups of � are �nitely generated;

(2) �e group Out.P1 1.GIP;H.t/// � Out.P1/ has a �nite index subgroup
equal to Out.P1IK.t//, where K D Incv [ HjGv

is a �nite family of �nitely
generated subgroups of P1 (the family of incident edge groups Incv , and
HjGv

, are de�ned in Subsection 2.4).

Since we do not assume that G is one-ended relative to P [ H, there is no

canonical JSJ decomposition.
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Proof. � First assume that G is one-ended relative to P[H. Consider the canon-

ical elementary JSJ tree Tcan relative to P [ H as in Subsection 3.3.

Let Gv be a vertex stabilizer containing P1. It cannot be �exible QH because

P1 is not virtually cyclic (see Remark 2.9). If it is rigid (non-elementary), we

have seen in Subsection 4.3 that the image of Out0.GIP;H.t// in Out.Gv/ is �-

nite (recall that Out0.GIP;H.t// is the �nite index subgroup of Out.GIP;H.t//

acting trivially on Tcan=G). Since P1 equals its normalizer, this implies that

Out.P1 1.GIP;H.t/// is �nite, a contradiction. �us Gv is elementary, so we

deduce Gv D P1. �is proves Assertion 1 in the one-ended case (edge stabi-

lizers of Tcan are �nitely generated by Lemma 3.7). Assertion 2 is also clear since

Out.P1 1.GIP;H.t/// is virtually Out.P1I Inc.t/
v ;H

.t/
jGv

/ by Proposition 4.7.

� We now consider the general case, �rst assuming that G is torsion-free. Let

F D Gu be the vertex stabilizer containing P1 in a Grushko decomposition S

relative to P[H (see Subsection 2.5), and let PjF ;HjF be the induced structures

(see De�nition 2.3); if P [ H D ¹P1º, then F is simply the smallest free factor

containing P1.

Since F is hyperbolic relative to PjF by Lemma 3.5, and

Out.P1 1.GIP;H.t/// D Out.P1 1.F IPjF ;H
.t/
jF

//

because F is a free factor (or by Remark 2.11), the results of the previous case

apply. �e group P1 is a vertex group Gv of a splitting �F of F , which may be

used to re�ne S to an elementary JSJ decomposition � of G having Gv as a vertex

group (see Subsection 8.1 of [35]). �e families Incv and HjGv
are the same for

�F and �.

� If G has torsion, we de�ne F D Gu andPjF ;HjF as above, using a Stallings–

Dunwoody tree S relative to P [ H. �e proof is technically more complicated

because we cannot neglect the incident edge groups Incu.

All Stallings–Dunwoody trees S have a unique vertex stabilizer Gu.S/ equal

to F , but the incident edge groups may vary. �is was studied in Section 4 of [32],

where we de�ned a “peripheral structure” for F . To state the relevant result, we

choose a Stallings–Dunwoody tree S for which the valence of u.S/ in the quotient

graph of groups S=G is minimal. Since no edge stabilizer is properly contained

in a conjugate, it follows from Proposition 4.9 of [32] that the incident structure

Incu.S/ does not depend on the choice of such an S (in trees with non-minimal

valence, there may be more incident edge groups; such a group is contained in a

group belonging to Incu.S/). We �x S , and from now on we write u rather than

u.S/, so F D Gu.
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Any automorphism representing an element of Out.GIP;H.t// and leaving P1

invariant also leaves F invariant. Since P1 and F are equal to their normalizers,

Out.P1 1.GIP;H.t/// is the image of the map

p W Out.GIP;H.t// �! Out.P1/;

and p factors through

�u W Out.GIP;H.t// �! Out.F /:

By Remark 2.11, the image of �u contains Out.F I Inc.t/
u ;PjF ;H

.t/
jF

/ and is con-

tained in Out.F IPjF ;H
.t/
jF

/.

Our choice of S implies that automorphisms in the image of �u preserve Incu

globally. Since Incu consists of �nitely many �nite subgroups of F (well de�ned

up to conjugacy), the index of Out.F I Inc.t/
u ;PjF ;H

.t/
jF

/ in Out.F IPjF ;H
.t/
jF

/ is

�nite. It therefore su�ces to study the image of

q W Out.F I Inc.t/
u ;PjF ;H

.t/
jF

/ �! Out.P1/;

and to show that it is virtually Out.P1IK.t//.

�e group F D Gu is hyperbolic relative to the family PjF (see Lemma 3.5),

and one-ended relative to PjF [HjF . Since the image of q is in�nite, we have seen

that P1 is a vertex group Gv in the canonical elementary JSJ decomposition �can

of F relative to PjF [HjF . One obtains an elementary JSJ tree T of G relative to

P[H by re�ning S using JSJ decompositions of vertex groups (see Subsection 8.1

of [35]), so Assertion 1 is proved.

Moreover, Out.P1 1.GIP;H.t/// is virtually Out.P1IK0.t//, where K0 is the

union of Incv (the incident edge groups of P1 in Tcan) and .Incu [ HjF /jP1
.

We now show that K0 D K if we construct T carefully.

When S is re�ned to yield T , the vertex u is replaced by Tcan. �ere is some

freedom in the way edges of S containing u are attached to Tcan: an edge e may

be attached to any vertex of Tcan which is �xed by Ge. We may therefore assume

that, if e is an edge of T n Tcan attached to v, then v is the only �xed point of Ge

in Tcan.

�e family .HjF /jP1
is de�ned viewing F as a vertex group of S , and then P1

as a vertex group of Tcan. Since groups in H are in�nite and edge stabilizers of

S are �nite, .HjF /jP1
equals HjP1

, de�ned viewing P1 as a vertex group of T .

We complete the proof by showing that Incv [ .Incu/jP1
is the family of incident

edge groups in P1 D Gv viewed as a vertex stabilizer of T .
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�ere are two types of incident edge groups of Gv in T . �ose �xing edges

in Tcan are precisely those in Incv . Because of the way we constructed T , those

�xing edges in T n Tcan have v as unique �xed point in Tcan, they are the groups

in .Incu/jP1
(see De�nition 2.3).

If G is (absolutely) hyperbolic, and P is a subgroup, then G is hyperbolic

relative to ¹P º if (and only if) P is quasiconvex and almost malnormal, see [6,

�eorem 7.11] or [52]. If so, �eorem 6.2 applies and describes Out.P 1 G/, the

automorphisms of P which extend to G.

Corollary 6.3. Let P be a quasiconvex, almost malnormal subgroup of a hyper-
bolic group G, with P ¤ G.

� If Out.P 1 G/ is in�nite, then P is a vertex group in a splitting of G with
�nitely generated edge groups, and Out.P 1 G/ is virtually Out.P IK.t// with
K the family of incident edge groups (a �nite family of �nitely generated sub-
groups of P ).

� If P is torsion-free, then Out.P 1 G/ has a �nite index subgroup with a �nite
classifying space.

Proof. �e �rst assertion follows from �eorem 6.2. Being quasiconvex, P is a

hyperbolic group. It is proved in [37] that, if P is a torsion-free hyperbolic group

and K is an arbitrary family of subgroups, then Out.P IK.t// has a �nite index

subgroup with a �nite classifying space.

If G D Fn, every �nitely generated subgroup is quasiconvex (it is a virtual

retract by [38]), so we get:

Corollary 6.4. If P � Fn is �nitely generated and malnormal, then Out.P 1 Fn/

is virtually Out.P IK.t// for some �nite family K of �nitely generated subgroups
of P . It has a �nite index subgroup with a �nite classifying space.

�is is a partial answer to a question that was asked by D. Calegari. Note that

the proof uses JSJ decompositions over groups which are not small.

Example 6.5. Let P � Fn be a characteristic subgroup of �nite index, with

n � 3. �en Out.P 1 G/ is not virtually of the form Out.P IK.t// because there

exist automorphisms of Fn with no nontrivial periodic conjugacy class. �ere are

similar examples with P of in�nite index.
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7. Groups with in�nitely many automorphisms

In this section, we characterize those relatively hyperbolic groups whose automor-

phism group is in�nite.

In the �rst subsection, we point out that determining whether Out.G/ is in�nite

or not is relatively easy when G is torsion-free or one-ended. In particular, we give

a complete answer for toral relatively hyperbolic groups.

�e most interesting case is thus when G has torsion and splits over a �nite

group. For instance, virtually free groups with Out �nite were determined by

M. Pettet [56]. We will give a di�erent characterization (see Example 7.7).

If G is hyperbolic relative to P, we will show in Subsection 7.2 that the group

Out.GIP.t// of automorphisms which act trivially on each parabolic subgroup is

in�nite if and only if G has an elementary splitting relative to P whose group of

twists is in�nite.

In Subsection 7.3, we get a characterization for the full group Out.GIP/ being

in�nite: this happens if and only if G has an elementary splitting relative to P

whose group of twists is in�nite, or in which a maximal parabolic subgroup P

occurs as a vertex group and P has in�nitely many outer automorphisms acting

trivially on incident edge groups (such automorphisms extend to G).

When G is hyperbolic, we show in Subsection 7.4 that Out.G/ being in�nite

is equivalent to G having a splitting over a maximal virtually cyclic group with

in�nite center; this is decidable algorithmically.

7.1. Torsion free groups. We �rst note:

Lemma 7.1. If a torsion-free, �nitely generated, group G is a non-trivial free
product, then Out.G/ is in�nite.

Proof. Write G D A � B . If a 2 A is not central, the automorphism of G equal

to conjugation by a on A and to the identity on B has in�nite order in Out.G/.

Assuming that Out.G/ is �nite, we deduce that Z.A/ has �nite index in A, so A

is abelian because ŒA; A� is �nite by a result due to Schur [57, 10.1.4]. Similarly,

B is abelian. Moreover, Out.A/ and Out.B/ are �nite, so A D B D Z. �is is a

contradiction since Out.Z � Z/ is in�nite.

�us, for torsion-free groups, in�niteness of Out.G/ is only interesting for one-

ended groups. One can get a similar result in a relative setting.



Splittings and automorphisms of relatively hyperbolic groups 639

Proposition 7.2. Let G be a �nitely generated, non-cyclic, torsion-free group, and
H a �nite collection of �nitely generated subgroups. If the Grushko decomposition
of G relative to H is non-trivial, and not an amalgam G D A1 � A2 with A1; A2

abelian, then Out.GIH.t// is in�nite.

Remark 7.3. If the Grushko decomposition � relative to H is G D A1 � A2 with

A1; A2 abelian, then Out.GIH.t// is �nite if and only if, for i D 1; 2, the subgroup

of Ai generated by subgroups conjugate to a group in H has �nite index. �is

is because � is Out.GIH.t//-invariant by [24] (its Bass-Serre tree is the unique

reduced tree in its deformation space). Twists are trivial because A1 and A2 are

abelian, so Out.GIH.t// is in�nite if and only if A1 or A2 has in�nitely many

automorphisms acting trivially on HjAi
.

Proof. Assume that Out.GIH.t// is �nite, and let � be a reduced Grushko decom-

position of G relative to H. We assume that � is non-trivial and we show that it

is an amalgam as in the proposition.

We �rst note that G cannot split relative to H as an HNN extension G D

A�¹1º over the trivial group. Indeed, the group of twists of this HNN extension

is isomorphic to .A � A/=Z.A/, with Z.A/ embedded diagonally, so contains the

in�nite group A, a contradiction. It follows that � is a tree of groups.

�e proof of Lemma 7.1 shows that, whenever G splits as a free product A � B

relative to H, then A and B are abelian: otherwise the group of twists of the

splitting is in�nite. Since � is reduced, it follows that it is an amalgam G D A1�A2

with A1; A2 abelian: if � has more than one edge, collapsing an edge provides a

decomposition with a non-abelian vertex group.

Let now G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi �nitely gener-

ated, not virtually cyclic.

If G is one-ended relative to P, one can read in�niteness of Out.GIP/ from

the JSJ decomposition thanks to �eorem 4.3: Out.GIP/ is �nite if and only if the

canonical elementary JSJ decomposition relative to P has no �exible QH vertex

with in�nite mapping class group, the parabolic subgroups Pj appearing as vertex

stabilizers have Out.Pj I Inc
.t/
Pj

/ �nite, and the group of twists is �nite. We may be

more speci�c under additional conditions on the parabolic subgroups.

Proposition 7.4. Let G be a non-abelian toral relatively hyperbolic group. �e
following are equivalent.

(1) Out.G/ is �nite.

(2) Every non-trivial abelian one-edge splitting of G is an amalgam A�C B with
C of �nite index in A or B .



640 V. Guirardel and G. Levitt

(3) G has no non-trivial splitting over an abelian subgroup stable under taking
roots.

(4) G is freely indecomposable and its canonical abelian JSJ decomposition �can

relative to non-cyclic abelian subgroups satis�es the following:

� �can consists of a central vertex, possibly connected to terminal vertices
carrying an abelian group;

� the central vertex is rigid, or QH with underlying surface † homeomor-
phic to a pair of pants or a twice punctured projective plane;

� at each terminal vertex, the incident edge group has �nite index in the
vertex group.

A subgroup A is stable under taking roots if g 2 A whenever gn 2 A for some

n � 2 (this is also called pure, or isolated).

�e pair of pants and the twice punctured projective plane appear in this state-

ment because they are the only compact hyperbolic surfaces with �nite mapping

class group (see the end of Subsection 4.1). �e fundamental group of a pair of

pants is rigid. �e fundamental group of a twice punctured projective plane has

two (incompatible) cyclic splittings relative to the boundary (it is �exible), but

none over a maximal cyclic subgroup.

Automorphisms of toral relatively hyperbolic groups were considered in [16],

and some of the equivalences in Proposition 7.4 follow from their results (note

for instance that a splitting as in (3) is an essential splitting in the sense of their

De�nition 3.30).

Proof. If G is a free product, (2) and (3) are false, and so is (1) by Lemma 7.1.

We therefore assume that G is freely indecomposable.

We prove .1/ ) .2/ by assuming that (2) does not hold, and showing that

Out.G/ is in�nite. If G is an HNN extension over an abelian group, or an amalgam

with A and B non-abelian, the group of twists of the splitting is in�nite. If G D

A�C B with A abelian containing C with in�nite index, Out.G/ is in�nite because

A has nontrivial automorphisms equal to the identity on C .

It is clear that (2) implies (3). To prove that (3) implies (2), �rst assume that

G D A �C B with C abelian of in�nite index in both A and B . Let yC be the

set of all roots of elements of C , an abelian subgroup containing C with �nite

index (recall that all abelian subgroups of G are cyclic or parabolic, hence �nitely

generated). Since yC is elliptic in the amalgam, up to exchanging the role of A

and B , we can assume that yC < A. �en G D A � yC
hB; yC i is a decomposition
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contradicting (3). �e case of an HNN extension is similar, but we do not need

the hypothesis that C has in�nite index in A.

If (4) does not hold, we construct a splitting contradicting (2). If �can has a

�exible QH vertex, and if the underlying surface is not a twice punctured projec-

tive plane, then one simply considers the cyclic splitting dual to a 2-sided essential

simple closed curve not bounding a Möbius band. �e other possibility is that �can

has a vertex v carrying an abelian group such that either v has valence � 2, or v

is terminal with the edge group of in�nite index in Gv . One gets the required

splitting by collapsing edges of �can.

We have proved .1/ ) .2/ ) .4/ and .2/ , .3/ . We conclude by deducing

from the exact sequence of Corollary 4.4 that Out.G/ is �nite if (4) holds. �e

groups GLrk ;nk
.Z/ are trivial because rk D 0 by the �niteness assumption at

terminal vertices. �e mapping class group of † is �nite. Twists are trivial because

terminal vertices carry an abelian group.

Proposition 7.5. Let G be torsion-free, hyperbolic relative to nilpotent subgroups.
Assume that G is not nilpotent. If Out.G/ is �nite, then G is freely indecomposable
and its canonical JSJ decomposition �can over nilpotent groups relative to non-
cyclic nilpotent subgroups consists of a central vertex which is rigid, or QH with
underlying surface † homeomorphic to a pair of pants or a twice punctured pro-
jective plane, possibly connected to terminal vertices carrying a nilpotent group.

Proof. We may assume that no Pi is cyclic, so Out.G/ D Out.GIP/. As above,

G is freely indecomposable and there is no QH vertex other than those mentioned.

Recall that an in�nite torsion-free nilpotent group has in�nite center. As in the

proof of Corollary 4.4, the group of twists of �can contains the direct productQ
.Z.Gv//jEv j�1 taken over vertices carrying a nilpotent group, so is in�nite as

soon as there is a vertex with valence jEv j � 2.

7.2. In�nity of marked automorphisms

�eorem 7.6. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with each Pi

�nitely generated. �en Out.GIP.t// is in�nite if and only if there is a splitting
of G over �nitely generated elementary subgroups, relative to P, with an in�nite
group of twists T (see Subsection 2.6).

More generally, if Q is a �nite family of �nitely generated subgroups with
P � Q, the same characterization holds for Out.GIQ.t//, with a splitting rela-
tive to Q.
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By Lemma 2.15, the splittings may be assumed to have only one edge. �e

proof will be given at the end of the subsection.

Example 7.7. Consider the virtually free group G D D4 �C D6 �C D4, where Dn

is the dihedral group of order n and C has order 2 (note that C is central in D4,

but equal to its centralizer in D6). For this two-edge splitting �, and any splitting

obtained by collapsing an edge, the group of twists is �nite. �e one-edge splitting

� given by the amalgam G D D6 �C .D4 �C D4/, however, has a twist of in�nite

order. �e Bass-Serre tree of � is the tree of cylinders of the Bass-Serre tree T of

�, and Assertion 1 of Proposition 7.10 holds in this case. Compare [56].

When G is hyperbolic, the group of twists of the splitting provided by �e-

orem 7.6 contains an element of in�nite order (see also �eorem 7.14). �e fol-

lowing example shows that this does not hold for general relatively hyperbolic

groups.

Example 7.8. Let G D B1 � B2 be the free product of two in�nite torsion groups

with trivial center. It is hyperbolic relative to P D ¹B1; B2º, and Out.GIP.t// is

in�nite. But no splitting over elementary subgroups has a twist of in�nite order,

as we now show. By way of contradiction, suppose that some ZGo.e/
.Ge/ contains

an element of in�nite order. �e group Ge is trivial, or contains a torsion element

g ¤ 1, or is isomorphic to Z. It cannot be trivial since Go.e/ would then be a

torsion group. �e existence of a torsion element g also leads to a contradiction

since the centralizer of such a g is a torsion group. We conclude by observing that

G does not split over Z: if it does, an equivariant map from the Bass-Serre tree of

the amalgam B1 � B2 to that of the splitting maps vertices to vertices and must be

locally injective, hence globally injective, a contradiction.

Before proving �eorem 7.6, we note the following fact, which follows from

the presentation of T recalled in Subsection 2.6.

Lemma 7.9. Let G be a relatively hyperbolic group. Let � be a one-edge splitting
of G over a virtually cyclic group Ge with in�nite center, with Ge not parabolic.
Any element of in�nite order in Z.Ge/ de�nes a twist which has in�nite order in
Out.G/, unless � is an amalgam and one of the vertex groups is virtually cyclic
with in�nite center.

�e following result is a key step in the proof of �eorem 7.6.
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Proposition 7.10. Let T be a non-trivial tree with edge stabilizers of constant
�nite cardinality k. Let Tc be its tree of cylinders for the equality equivalence
relation (see Subsection 2.7). �en at least one of the following holds:

(1) Tc is nontrivial and its edge stabilizers are �nite;

(2) T has a collapse T 0 which is nontrivial and has an in�nite group of twists
T.T 0/;

(3) T has a collapse T 0 which is nontrivial and invariant under Out.D.T //.

D.T / denotes the deformation space of T over groups of cardinality � k. All

reduced trees in D.T / have edge stabilizers of order k (see Subsection 2.3). Also

note that Tc is invariant under Out.D.T //, and dominated by T , so we get:

Corollary 7.11. T has a collapse which is nontrivial and has an in�nite group
of twists, or T dominates a nontrivial tree T 0 with �nite edge stabilizers which is
invariant under Out.D.T //.

Proof of Proposition 7.10. We can assume that T is reduced. We �rst consider the

case when Tc is trivial. Since edges of T belong to the same cylinder if and only

if they have the same stabilizer, all edges of T have the same stabilizer, a �nite

normal subgroup A.

If there is only one orbit of edges, T is the unique reduced tree inD.T / because

no edge stabilizer may be properly contained in another [46]. It follows that T 0 D

T is invariant under Out.D.T //.

Assume that there is more than one orbit of edges. Since A is normal and �nite,

its centralizer in G has �nite index, so for any vertex v in an arbitrary collapse T 0

of T (including T itself), and any edge e of T 0 incident to v, the group ZGv
.Ge/

is in�nite as soon as Gv is in�nite. By Lemma 2.13, if Assertion 2 does not hold,

then all vertex stabilizers of nontrivial collapses T 0 are either �nite or in�nite

with in�nite center. Since T is reduced, this is possible only if T has one orbit

of vertices, all vertex stabilizers equal to A, and only two orbits of edges (this is

respectively because a non-trivial amalgam H1 �A H2, an HNN extension H1�A

with H1 ¤ A, and a double HNN extension .A�A/�A, have �nite center). In

particular, G=A is free of rank 2. One easily checks that collapsing the orbit of

any edge gives a tree T 0 with T.T 0/ in�nite, though Lemma 2.13 does not apply.

�is concludes the case when Tc is trivial.

From now on, we assume that Tc is nontrivial and some edge " D .x; Y / of

Tc has in�nite stabilizer. View the cylinder Y as a subtree of T containing x,

and consider an edge e � Y with origin x. �en we have GY D NG.Ge/ and
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G" D GY \ Gx D NGx
.Ge/. We know that ZGx

.Ge/ is in�nite, but we cannot

apply Lemma 2.13 since we do not know that Z.Gx/ is �nite.

Assume for a moment that Y contains edges from at least two G-orbits. Con-

sider T 0 obtained from T by collapsing all edges in the orbit of e, and denote by

x0 the image of x in T 0. Since T is reduced, Gx   Gx0 . By the assumption on Y ,

there is an edge e0 of T 0 incident to x0 with Ge0 D Ge. Since ZGx0
.Ge0/ is in�nite,

we are done if Z.Gx0/ is �nite. We now show that Z.Gx0/ being in�nite leads

to a contradiction. Edge stabilizers of T being �nite, x is the unique point of T

�xed by G". Since G" � Gx � Gx0 , the group Z.Gx0/ normalizes G", hence also

�xes x, and only x since it is in�nite. �is implies that Gx0 �xes x, a contradiction

to Gx   Gx0 .

Returning to the general case, there is a G-invariant partition of the set of

cylinders: those for which there is an edge .x; Y / of Tc with in�nite stabilizer,

and the others. �anks to the previous argument, we may assume that all edges

contained in a given cylinder of the �rst type belong to the same G-orbit. Let now

T 0 be the tree obtained from T by collapsing all edges in cylinders of the second

type. It is nontrivial (but T 0 D T is possible). We show that T 0 does not change if

we replace T by another reduced tree T1 in D.T /. �is implies that T 0 is invariant

under Out.D.T //.

One may join T and T1 by slide moves (see Subsection 2.3). In a slide move, an

edge e slides over an edge f belonging to a di�erent orbit, with Ge � Gf . Here

one must have Ge D Gf , so e and f belong to the same cylinder, necessarily

of the second type. �e slide move does not change T 0 since the cylinder gets

collapsed.

Proof of �eorem 7.6. We prove the “only if ” direction (the other direction is

clear since twists act by conjugations on vertex groups). We may assume that

all groups in Q are in�nite. We �rst suppose that G is one-ended relative to Q.

Let T be the canonical elementary JSJ tree relative to Q D P [ H as in Subsec-

tion 3.3. Its edge stabilizers are �nitely generated by Lemma 3.7. By �eorem 4.6,

if Out.GIQ.t// is in�nite, then either T.T / is in�nite and we are done, or T has at

least a non-rigid QH vertex v with Out.GvIBv/ in�nite.

�e underlying orbifold group �1.†/ splits, relative to its boundary subgroups,

over a maximal virtually cyclic subgroup with in�nite center (see [17], Proposi-

tion 3.1). �is induces an elementary splitting of Gv which extends to a splitting

of G. By Lemma 2.6, this splitting of G is relative to Q (because the intersec-

tion of Gv with a conjugate of a group in Q projects into a boundary subgroup in

�1.†/), and has an in�nite group of twists by Lemmas 7.9 and 2.14. �is proves

the theorem if G is one-ended relative to Q.
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In the general case, let k 2 N be the smallest number such that G splits relative

to Q over a group of cardinality k. Let T be a reduced JSJ tree relative to Q over

subgroups of cardinality k (see Subsection 2.5). Its deformation space is invariant

under Out.GIQ.t//. By Corollary 7.11, either some collapse of T has an in�nite

group of twists (and we are done), or T dominates a nontrivial tree T 0 with �nite

edge stabilizers which is invariant under Out.GIQ.t//. Note that the groups in Q

are elliptic in T 0, since they are elliptic in T and T dominates T 0.

We may assume that T.T 0/ is �nite. Let A0 � Out.GIQ.t// be the �nite index

subgroup acting trivially on the graph T 0=G. By Assertion 1 of Lemma 2.12, there

exists a vertex group Gv of T 0 such that �v.A0/ � Out.Gv/ is in�nite. In particular,

Gv is in�nite.

�e group Gv is hyperbolic relative to the family PjGv
(see Lemma 3.5).

By Lemma 2.10, we have �v.A0/ � Out.GvIQ
.t/
jGv

/.

If the theorem holds for Gv, we get a graph of groups decomposition �0 of

Gv relative to QjGv
having an in�nite group of twists. Since T 0 has �nite edge

stabilizers, �0 is relative to Incv and one may re�ne T 0=G to a graph of groups ƒ

by using �0. By Lemma 2.14, the splitting ƒ has an in�nite group of twists. It is

relative to Q by Lemma 2.6.

If the theorem does not hold for Gv , we repeat the construction. If the process

stops after �nitely many steps, we get a splitting ƒ as in the previous case. If it does

not stop, we get an in�nite sequence of trees Ti relative to Q with �nite edge stabi-

lizers, with TiC1 strictly dominating Ti . Since G is �nitely presented relative to Q,

there is a Stallings–Dunwoody decomposition relative to Q (see Subsection 2.5),

and we reach a contradiction (see [19, p. 130]).

7.3. In�nity of unmarked automorphisms. Using �eorem 6.2, we now char-

acterize relatively hyperbolic groups for which Out.GIP/ is in�nite.

We �rst note the following consequence of �eorem 7.6.

Corollary 7.12. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, where each Pi

is in�nite and �nitely generated, and let H be a �nite family of �nitely generated
subgroups.

If Out.GIP;H.t// is in�nite, there is an elementary splitting relative to
P [ H with an in�nite group of twists, or there is an i such that the natural map

Out.GIP;H.t// �! Out.Pi/

(de�ned because Pi equals its normalizer) has in�nite image.
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Proof. If all maps Out.GIP;H.t// ! Out.Pi/ have �nite image, then the inter-

section of their kernels, namely Out.GIP.t/;H.t//, is in�nite. We can now apply

�eorem 7.6.

Corollary 7.13. Assume furthermore that G is non-elementary (i.e. Pi ¤ G).
�en Out.GIP;H.t// is in�nite if and only if G has an elementary splitting as a
graph of groups ƒ relative to P [ H such that one of the following holds:

� the group of twists of ƒ is in�nite,

� or ƒ has a vertex v such that Gv D Pi is a maximal parabolic subgroup and
Out.GvI Inc.t/

v ;H
.t/
jGv

/ is in�nite.

Proof. As in �eorem 7.6, the “if” direction is clear, so we can assume that

Out.GIP;H.t// is in�nite. By Corollary 7.12, and up to renumbering, we can as-

sume that Out.P1 1.GIP;H.t/// is in�nite. By �eorem 6.2, P1 is a vertex group

in some elementary decomposition of G relative toP[H and Out.P1I Inc.t/
v ;H

.t/
jGv

/

has �nite index in Out.P1 1.GIP;H.t///. In particular, Out.P1I Inc.t/
v ;H

.t/
jGv

/ is

in�nite.

7.4. Hyperbolic groups. We apply the results of the previous subsections to the

case when G is a hyperbolic group. We say that a subgroup of G is Zmax if it is

maximal for inclusion among virtually cyclic subgroups with in�nite center. Note

that any virtually cyclic subgroup C with in�nite center is contained in a unique

Zmax subgroup yC (the pointwise stabilizer of @C ).

Given any splitting of a hyperbolic group over a Zmax subgroup C , any central

element c 2 C of in�nite order de�nes a twist of in�nite order in Out.G/.

�eorem 7.14. If G is hyperbolic, Out.G/ is in�nite if and only if there is a non-
trivial splitting of G over a Zmax subgroup (such a splitting always has a twist of
in�nite order).

If H is a �nite family of �nitely generated subgroups, Out.GIH.t// is in�nite if
and only if there is a non-trivial splitting over a Zmax subgroup relative to H.

It was proved independently by M. Carette [10] that Out.G/ is in�nite if and

only if G has a splitting over a �nite group or a (maybe non maximal) virtually

cyclic group with in�nite center, with a twist of in�nite order (see [45, 17] for the

one-ended case).

Proof. �e “if” direction is clear, so we assume that Out.GIH.t// is in�nite.

All splittings considered in this proof will be relative to H.
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�eorem 7.6 and Lemma 2.15 say that G has a one-edge splitting over a (possi-

bly �nite) virtually cyclic group C , whose group of twists is in�nite. We assume

that this splitting is an amalgam G D A �C B; the case of an HNN extension

is similar. We �rst explain how to replace this amalgam over C by one over a

(possibly non-maximal) virtually cyclic subgroup C 0 with in�nite center.

If C is in�nite with �nite center, its centralizer in G is �nite and this forces the

group of twists to be �nite. So assume that C is �nite.

If both ZA.C /=Z.A/ and ZB.C /=Z.B/ are �nite, the group of twists is �nite,

so assume for instance that ZA.C /=Z.A/ is in�nite. Note that Z.A/ has to be

�nite, since otherwise A would be virtually cyclic, and ZA.C /=Z.A/ would be

�nite. Consider an element of in�nite order t 2 ZA.C /, and perform a fold to get

G D A �hC;ti hB; ti. �is is a splitting over a virtually cyclic subgroup C 0 with

in�nite center, and it is relative to H. �e twist de�ned by t has in�nite order in

Out.G/ by Lemma 7.9.

Now suppose that an amalgam G D A0 �C 0 B 0 has an in�nite group of twists,

with C 0 virtually cyclic with in�nite center. �en A0; B 0 have �nite center. �e

Zmax subgroup yC 0 containing C 0 is elliptic in the amalgam, and one can perform

a fold to get an amalgam over yC 0. �is splitting is non-trivial because yC 0 is not

conjugate to A0 or B 0 since they have �nite center. �e group of twists of the new

splitting is clearly in�nite.

�eorem 7.15. �ere is an algorithm which, given a hyperbolic group G, decides
whether Out.G/ is in�nite or not. More generally, if H is a �nite family of �nitely
generated subgroups, one may decide whether Out.GIH.t// is in�nite.

Proof. We start with the �rst assertion.

We �rst construct an algorithm that stops if and only if Out.G/ is �nite. By

�eorem 8.1 of [17], one can compute a �nite generating set of Out.G/. Moreover,

one can solve the word problem in Out.G/ as this amounts to solving (uniformly)

the simultaneous conjugacy problem in G (see [8] for a solution). �us, for each

R > 0, one can determine the ball BR of radius R in the Cayley graph of Out.G/.

Checking whether BR D BRC1 for some R gives the required algorithm.

It now su�ces to construct an algorithm that stops if Out.G/ is in�nite. By

[17, Lemma 2.8], one can decide whether a subgroup of G (given by generators)

is Zmax or not. One can therefore enumerate all decompositions of G as an amal-

gam or HNN extension over Zmax subgroups. By Corollary 7.14, this provides an

algorithm that stops if Out.G/ is in�nite.

�e argument to decide whether Out.GIH.t// is in�nite is similar. �e �rst al-

gorithm is the same since �eorem 8.1 of [17] provides generators for Out.GIH.t//.
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For the second algorithm, one has to restrict to splittings relative to H, so one

needs an algorithm that, given a splitting, stops if the splitting is relative to H.

�is is done by choosing a generating set Si for each Hi 2 H, enumerating all

conjugates of Si , and comparing them with words written using the generators of

a vertex group.

In general, we do not know how to decide whether Out.GIH/ is in�nite (see

Remark 4.8). �e following is an answer when G is hyperbolic relative to H.

Proposition 7.16. �ere is an algorithm which, given a torsion-free hyperbolic
group G, a �nite family P of �nitely generated locally quasiconvex subgroups Pi

such that G is hyperbolic relative to P, and a �nite family H of �nitely generated
subgroups, decides whether Out.GIP;H.t// is in�nite.

Since G is assumed to be hyperbolic relative to P, each Pi is quasiconvex

in G. In particular, Pi is itself a hyperbolic group. Local quasiconvexity of Pi

means that its �nitely generated subgroups are quasiconvex (in Pi , hence also in

the hyperbolic group G).

Proof. First, using Touikan’s algorithm [63, �eorem A], one can decide whether

G splits as a free product relative to P[H. If it does, it is easy to decide whether

Out.GIP;H.t// is in�nite using Proposition 7.2 and Remark 7.3.

So assume that G is one-ended relative to P [ H. We may also assume that

no Pi is cyclic. We use [63, �eorem C] to decide whether G splits in a suitable

way. For this, we need our parabolic groups Pi to be algorithmically tractable in

the sense of [63, De�nition 1.13].

Since Pi is locally quasiconvex, it is hyperbolic and the conjugacy problem is

solvable in Pi . Moreover, local quasiconvexity of Pi implies that one can decide

whether a �nite subset S � Pi generates Pi or not, by checking whether a given

generating set of Pi lies in the quasiconvex subgroup hSi [40]. �is says that Pi

is algorithmically tractable.

Applying [63, �eorem C], one can decide whether there exists an elementary

splitting of G (viewed as a relatively hyperbolic group) relative to P [ H with

�nitely generated edge groups, and if so �nd one. By local quasiconvexity of Pi ,

edge groups of the splitting are quasiconvex in the hyperbolic group G, and so are

vertex groups (see Subsection 3.2).

Iterating this process, one can compute a maximal elementary splitting � of G

relative toP[H (i.e. a splitting that cannot be re�ned non-trivially into an elemen-

tary splitting relative toP[H). Arguing as in [16, Section 6] and [17, Lemma 2.34],
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one may then recognize the QH subgroups in �, and �nd the canonical elementary

JSJ decomposition of G relative to P [ H (see also [18, �eorem 3.12]).

By �eorem 4.6, Out.GIP;H.t// is in�nite if and only if the group of twists T

is in�nite, or there is a vertex v such that Out.GvI Inc.t/
v ;H

.t/
jGv

/ is in�nite.

Recall that T is isomorphic to a quotient of
Q

e2E ZGo.e/
.Ge/ by edge and

vertex relations. Each group ZGo.e/
.Ge/ is either trivial or in�nite cyclic, and is

computable. Edge relations and vertex relations are generated by embeddings of

groups Z.Ge/ and Z.Gv/ in this product. Since one can compute the correspond-

ing subgroups of the abelian group
Q

e2E ZGo.e/
.Ge/, one can decide whether the

group of twists is in�nite or not.

To decide whether Out.GvI Inc.t/
v ;H

.t/
jGv

/ is in�nite, we can apply [16] (or more

explicitly [17, Corollary 3.4]), or �eorem 7.15, but we need to determine HjGv

(see De�nition 2.3). Given H 2 H generated by a �nite set S , one can decide

whether there is g 2 G such that Sg � Gv in the same way as above because Gv

is quasiconvex. One can similarly decide whether H �xes an edge, which allows

to compute HjGv
.

8. Fixed subgroups

In this section, we use JSJ decompositions to study �xed subgroups of automor-

phisms. �is is inspired by arguments due to Sela [58]. �e proof of the Scott

conjecture (�eorem 8.1) given below is not really new, but using the relative JSJ

decomposition makes the argument more direct. Using �eorem 8.2, we will prove

in [37] that, given a toral relatively hyperbolic group G, there are only �nitely

many possibilities for �xed subgroups of automorphisms of G, up to isomorphism.

�is was proved by Shor [62] for G torsion-free hyperbolic.

�eorem 8.1 ([4]). Let ˛ be an automorphism of a free group Fn. Its �xed sub-
group Fix ˛ has rank at most n.

Proof. �e smallest free factor containing Fix ˛ is ˛-invariant. Replacing G by

this free factor, we may assume that Fn is one-ended (freely indecomposable)

relative to Fix ˛. We also assume that Fix ˛ is not cyclic.

Let T be the canonical cyclic JSJ tree relative to Fix ˛ (see Subsection 3.3),

and let Gv be the vertex stabilizer containing Fix ˛. It is ˛-invariant because T

is invariant and v is the only vertex �xed by Fix ˛, and abelianizing shows that

it has rank � n. By Remark 2.9 it cannot be �exible QH because Fix ˛ is not

cyclic, so it is rigid. By standard arguments due to Paulin and Rips, ˛ has �nite
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order in Out.Gv/: otherwise, applying �eorem 3.9 with P consisting of incident

edge groups and H consisting of Fix ˛ (which is �nitely generated) yields a cyclic

splitting of Gv which contradicts rigidity. By Dyer-Scott [23], Fix ˛ is a free factor

of Gv so has rank � n.

If we do not wish to use Gersten’s result that Fix ˛ is �nitely generated [27],

we argue by contradiction as follows. Let H be a �nitely generated free factor

of Fix ˛ of rank > n. We claim that Fn is one-ended relative to H (see [55]

and Lemma 7.6 of [36] for more general statements). Otherwise, let yH be the

smallest free factor of Fn containing H . �en yH is ˛-invariant, and Fix ˛ \ yH

has rank at most n � 1 (assuming that the theorem holds in yH by induction on n),

a contradiction since Fix ˛ \ yH retracts onto H .

De�ne Gv as above, using the cyclic JSJ splitting of Fn relative to H . �e �xed

subgroup of ˛jGv
is a subgroup of Fix ˛ which has rank � n and contains H . �is

is a contradiction since H is a retract of Fix ˛.

�is proof uses [23], which is speci�c to free groups. Applying the same ar-

gument to (relatively) hyperbolic groups only yields:

�eorem 8.2. Let G be hyperbolic relative to a �nite family P of slender sub-
groups. Consider ˛ 2 Aut.GIP/ such that Fix ˛ is not elementary (i.e. not virtu-
ally cyclic or parabolic). �en Fix ˛ is contained in an ˛-invariant vertex group
Gv of a splitting of G over elementary subgroups relative to P, and ˛jGv

has �nite
order in Out.Gv/.

Proof. �e proof is similar to the one above. Note that Fix ˛ is �nitely generated

by [39, Cor. 9.2] because it is relatively quasiconvex [51] and groups in P are

slender. First assume that G is one-ended relative to P [ ¹Fix ˛º. Let Tcan be

the canonical elementary JSJ decomposition of G relative to P [ ¹Fix ˛º. Let

v be the unique vertex of Tcan �xed by Fix ˛. As above, Gv is ˛-invariant; it

cannot be QH because it contains the universally elliptic subgroup Fix ˛ which

is not virtually cyclic, so Gv is rigid: it has no elementary splitting relative to

Incv [ PjGv
[ ¹Fix ˛º. By Lemma 3.8, Gv is hyperbolic relative to Incv [ PjGv

.

By �eorem 3.9, the group Out.GvI Incv;PjGv
; ¹Fix ˛º.t// is �nite. It contains the

class of ˛jGv
by Lemma 2.10, so ˛jGv

has �nite order in Out.Gv/.

If G is not relatively one-ended, we consider a reduced Stallings–Dunwoody

tree S relative to P [ ¹Fix ˛º (see Subsection 2.5). Since Fix ˛ is in�nite, it �xes

a unique vertex u 2 S . �e deformation space of S is ˛-invariant, so ˛.Gu/

�xes a vertex u0 2 S . Since Fix ˛ � ˛.Gu/ �xes only u, we have u0 D u and

˛.Gu/ D Gu. We now apply the previous analysis to the restriction of ˛ to Gu,
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which is hyperbolic relative to PjGu
by Lemma 3.5. We get a splitting ƒ of Gu

relative to PjGu
, and we obtain the desired splitting of G by re�ning S=G using

ƒ (see Lemma 2.6).

9. Rigid groups have �nitely many automorphisms

�e goal of this section is to prove �eorem 3.9. Let us �rst recall its statement.

�eorem 3.9. Let G be hyperbolic relative to �nitely generated subgroups
P D ¹P1; : : : ; Pnº, with Pi ¤ G. Let H D ¹H1; : : : ; Hqº be another family of
�nitely generated subgroups. If Out.GIP;H.t// is in�nite, then G splits over an
elementary subgroup relative to P [ H.

As mentioned earlier, the proof usesR-trees. All actions onR-trees considered

here are by isometries. An arc is a subset isometric to an interval Œa; b� � R with

a ¤ b. As in the simplicial case, an action on an R-tree T is relative to subgroups

Hi if each Hi is elliptic (�xes a point) in T .

Because the parabolic groups are not assumed to be slender, we will need to

analyze actions on R-trees which are not quite stable.

9.1. Constructing an R-tree

�eorem 9.1 ([1]). Let G;P;H be as in �eorem 3.9. If Out.GIP;H.t// is in�nite,
then G has a non-trivial action on an R-tree T relative to P [ H such that arc
stabilizers are elementary.

�e proof is essentially in [1], noting that a locally elementary subgroup is

elementary by Lemma 3.1. We also add the remark that the groups Pi ; Hj are

elliptic in T .

Proof. Let 'k be automorphisms representing distinct elements of Out.GIP;H.t//.

Let X be a ı-hyperbolic space on which G acts as in Subsection 3.1. Consider a

�nite generating set S of G, and the minimal displacement

dk D inf
x2X

max
s2S

dX .x; 'k.s/ � x/:

Choose a point xk 2 X where maxs2S dX .xk; 'k.s/:xk/ � dk C 1
k
.

Using the Bestvina–Paulin method, it is shown in [1] that dk goes to in�nity,

the rescaled pointed metric spaces Xk D . 1
dk

X; xk/ converge to an R-tree T (after

taking a subsequence), and the action of G on Xk twisted by 'k converges to a
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non-trivial isometric action of G on T with locally elementary (hence elementary)

arc stabilizers.

We now prove that the action is relative to P [ H. Since groups in P [ H are

�nitely generated, it su�ces to show that any element g belonging to Pi or Hj is

elliptic in T .

Suppose g acts hyperbolically in T . �en there exists a 2 T such that

dT .a; g2a/ D 2dT .a; ga/ > 0:

If ak is an approximation point of a in Xk D 1
dk

X , then

dX .ak; 'k.g2/ak/ � dX .ak; 'k.g/ak/

dk

converges to

dT .a; g2a/ � dT .a; ga/ D dT .a; ga/ > 0;

so for k large enough

dX .ak; 'k.g2/ak/ � dX .ak; 'k.g/ak/ > 2ı C
dk

2
dT .a; ga/:

Lemme 9.2.2 of [12] implies that 'k.g/ acts loxodromically on X , with translation

length going to in�nity since dk ! 1. �is is a contradiction if g 2 Pi , since

every 'k.g/ is parabolic in this case. If g 2 Hj , all elements 'k.g/ are conjugate

so have the same translation length in X , also a contradiction.

Remark 9.2. One can show that a group H 2 H is elliptic in T , even if it is not

assumed to be �nitely generated. We know that every h 2 H is elliptic. If H is

not elliptic, it �xes an end of T , so every �nitely generated subgroup of H �xes

a ray. �is implies that �nitely generated subgroups of H are parabolic, so H is

parabolic and therefore elliptic in T .

On the other hand, �eorem 9.4 below requires �nite generation.

Remark 9.3. �e hypothesis that automorphisms act trivially on Hj may be weak-

ened. It is su�cient to assume that their growth under iteration is slower on Hj

than on G.

9.2. Hypostability. To deduce a splitting as in �eorem 3.9 from the action on

the R-tree of �eorem 9.1, we will generalize the following basic fact (see �eo-

rem 9.9):
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�eorem 9.4 ([3, �m 9.6]). Let G be a �nitely presented group, and let Q be
a �nite family of �nitely generated subgroups. Assume that G has a non-trivial
stable action on an R-tree T relative to Q. �en G splits relative to Q over a group
K which is an extension 1 ! A ! K ! Z

k ! 1, where A �xes an arc of T and
k � 0.

Recall that an arc J is stable if any subarc of J has the same stabilizer as J .

An action is stable if every arc I contains a stable subarc J .

Corollary 9.5. �eorem 3.9 holds if every Pi is slender and G is �nitely presented.

Proof. Assume that every Pi is slender. In this case a subgroup of G is elementary

if and only if it is slender. In particular, elementary subgroups satisfy the ascend-

ing chain condition, so the action on the R-tree T provided by �eorem 9.1 is sta-

ble. If furthermore G is �nitely presented, �eorem 9.4 (applied with Q D P[H)

gives a splitting that satis�es the conclusion of �eorem 3.9 (note that K is slender

because A is).

In general, however, G is only �nitely presented relative to P, and the action

on T only satis�es a weaker property than stability, which we call hypostability

(see [42] for a di�erent property called semistability).

De�nition 9.6. Let G be a group acting on an R-tree T . �e action is hypostable
if, for each arc I � T , there exists a subarc J � I satisfying the following

hypostability condition: if g 2 G acts hyperbolically in T and gJ \ J is an arc,

then StabJ D Stab.gJ / (equivalently, g normalizes StabJ ).

Hypostability is weaker than stability, because any stable arc J satis�es the

hypostability condition: if gJ \ J is an arc, hStab.J /; Stab.gJ /i is contained in

the stabilizer of gJ \ J , which coincides with Stab.J / and Stab.gJ / by stability

of J and gJ .

Lemma 9.7. Let G be hyperbolic relative to �nitely generated subgroups
P D ¹P1; : : : ; Pnº. Any action of G on an R-tree T relative to P with elemen-
tary arc stabilizers is hypostable.

Proof. Let C be such that any elementary subgroup H of G of cardinality > C is

contained in a unique maximal elementary subgroup E.H/ (see Lemma 3.1). Let

I � T be an arc. If the stabilizer of every subarc has cardinality at most C , then

a subarc J � I whose stabilizer has the greatest cardinality is stable and we are

done.
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Otherwise, consider J � I whose stabilizer H D Stab.J / has cardinality

greater than C . �e stabilizer of every subarc of J is elementary, so is contained

in E.H/. If subgroups of E.H/ satisfy the ascending chain condition, in particular

if E.H/ is virtually cyclic, then J contains a stable subarc. �us we can assume

that E.H/ is parabolic.

We prove hypostability by showing that any g such that gJ \ J contains an

arc is elliptic in T . Indeed, hH; H gi �xes an arc in T , so is elementary. It follows

that hH; H gi � E.H/, so E.H/ D E.H g / D E.H/g . Since E.H/ is its own

normalizer, we get g 2 E.H/. But T is relative to P, so g is elliptic.

Example 9.8. We sketch the construction of an action as in Lemma 9.7 which is

not stable. Let G be the free product G D P � Z, with P a (non-slender) �nitely

generated group containing a copy of the free abelian group on a countable basis

Z
.Q/. Note that G is hyperbolic relative to ¹P;Zº. Informally, identifying the edge

of the free product with Œ0; 1�, one can produce an R-tree from the Bass-Serre tree

of this splitting by folding the group Z
.Œ0; p

q
�\Q/ on a length p

q
for all 0 < p

q
< 1.

�e stabilizer of an arc Œa; b� � Œ0; 1� is then Z
.Œ0;b�\Q/. �is action is hypostable

but unstable.

�eorem 9.9. �eorem 9.4 holds if the action on the R-tree is only assumed to be
hypostable, and the group G is only assumed to be �nitely presented relative to Q.

�e proof will be given in the next subsection. �e following corollary is an

immediate consequence of Lemma 9.7 and �eorem 9.9.

Corollary 9.10. Let G be a relatively hyperbolic group, with P;H as in �eo-
rem 3.9. If G acts non-trivially on an R-tree T relative to P[ H with elementary
arc stabilizers, then G splits over an elementary subgroup relative to P [ H.

�eorem 3.9 follows immediately from this corollary, using the R-tree pro-

vided by �eorem 9.1. A re�nement of Corollary 9.10 will be given in Subsec-

tion 9.4.

Remark 9.11. Let G and T be as in �eorem 9.4. If T is not a line, one can

get a splitting over a group K which is an extension of Z or Z=2Z by a group

A �xing an arc in T (see [3]). One can also approximate T (in the equivariant

Gromov topology) by simplicial trees with controlled edge stabilizers, as in [29].

�e same facts are true under the assumptions of �eorem 9.9.
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9.3. Proof of �eorem 9.9. Recall that a subtree Y � T is indecomposable [31]

if, given arcs I; L � Y , there exist g1; : : : ; gn 2 G such that L � g1I [ � � �[ gnI ,

and every giI \ giC1I is an arc. We call g1; : : : ; gn an I -covering of L.

Lemma 9.12. Assume that Y � T is an indecomposable subtree. Given two arcs
I; L � Y with I � L, there exists an I -covering g1; : : : ; gr of L such that g1 D 1

and every gig
�1
i�1 is hyperbolic in T .

Proof. Given any I -covering of L, there exists i such that I \ gi I is an arc, and

therefore 1; gi ; gi�1; : : : ; g1; g2; : : : ; gn is an I -covering starting with 1. From now

on, we only consider coverings starting with 1. �e interval covered will always

be L.

We �x an orientation of I . It induces an orientation of gI for any g 2 G.

If I \ gI is an arc, the orientations of I and gI may agree or disagree on this

arc. We �rst claim that there exists an I -covering 1 D a1; : : : ; ap of L such that,

for each i , the orientation of aiI agrees with that of aiC1I on their intersection

(we say that such an I -covering is orientation-preserving).

If not, we can �nd arcs gI; g0I whose intersection is an arc on which the ori-

entations disagree. De�ne g0 D g0�1g and J D I \ g0I ; the orientations of I

and g0I disagree on J . Now consider a J -covering 1 D b1; : : : ; bp of L. It is also

an I -covering of L. Since J D I \ g0I , we get another I -covering of L if we

replace some of the bi ’s by big0. Starting with a1 D b1 D 1, we then de�ne ai

inductively as either bi or big0, making sure that orientations agree. �is proves

the claim.

Next note that there exists a hyperbolic element h 2 G mapping an arc J 0 � I

to a di�erent arc h.J 0/ � I in an orientation-preserving way. To see this, �rst

choose h1 mapping an arc J1 � I to a disjoint arc J2 � I . If orientation is

reversed, choose h2 mapping an arc J3 � J2 to an arc J4 � I di�erent from J1

and J3. �en take h equal to h2 or h2h1.

We can now conclude. Let 1 D a1; : : : ; ar be an orientation-preserving

J 0-covering of L. Since J 0 � I \ h�1I , we get another orientation-preserving

I -covering if we replace some of the ai ’s by aih
�1. If ai a

�1
i�1 is not hyperbolic,

it is the identity on ai�1J 0 \ aiJ
0. We therefore get the required I -covering of

L by de�ning gi inductively as ai or aih
�1 so that gig

�1
i�1 is not the identity on

ai�1J 0 \ aiJ
0.

Corollary 9.13. Let T be hypostable, and let Y � T be an indecomposable sub-
tree. Any element g 2 G �xing an arc in Y �xes the whole of Y . In particular, any
arc in Y is stable.
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Proof. Assume that g �xes an arc I � Y . Given x 2 Y , we aim to prove that g

�xes x. After making I smaller, we can assume that there is an arc L containing

x and I . De�nition 9.6 provides a subarc J � I satisfying the hypostability

condition. Consider a J -covering 1 D g1; : : : ; gr of L as in Lemma 9.12. Since

giC1g�1
i , hence also g�1

i giC1, is hyperbolic, hypostability of J implies that all

arcs gi J have the same stabilizer. �e element g �xes g1J D J , so it �xes every

gi J and therefore L. In particular, g �xes x.

Proof of �eorem 9.9. We explain how to adapt the arguments in [3, 29].

Let Q D ¹Q1; : : : ; Qqº. Let hSi j Ri i be a presentation of Qi , with Si a

�nite generating set and Ri a possibly in�nite set of relators. Let hS j Ri be a

presentation of G such that S is a �nite generating set of G containing each Si ,

and R is the union of R1 [ � � � [ Rq with �nitely many additional relators.

Consider a �nite subtree K � T , i.e. the convex hull of �nitely many points.

We explain how to choose K large enough so as to yield a resolution of T as in

[29, De�nition 2.2], even though G is only relatively �nitely presented.

For each s 2 S , we consider Ks D K \s�1K and the restriction 's W Ks ! sKs

of s (we may assume that no Ks is empty). We then de�ne the suspension † as

the foliated 2-complex obtained by gluing foliated bands Ks � Œ0; 1� to K, where

we glue .x; 0/ to x and .x; 1/ to 's.x/. Note that �1.†/ is naturally identi�ed with

the free group on S .

Next, we need all relators of R to be represented by loops contained in leaves

of †. Since each Qi �xes a point pi in T , and S contains Si , requiring that K

contains p1; : : : ; pq takes care of R1 [ � � � [ Rq. �ere remain �nitely many other

relators, and, as in [3, 29], one can choose K so that they also are represented by

loops contained in leaves.

�e complex † provides a resolution of T in the sense of De�nition 2.2 of [29]

(as pointed out in [29], the set C of curves contained in leaves mentioned in Def-

inition 2.2 is not assumed to be �nite). Obtaining a resolution is the only place

where �nite presentation is used in [29].

As for stability, it is used only in Proposition 4.3 of [29] to prove that, if an el-

ement �xes an arc in the subtree T�v
� T corresponding to a minimal component

of †, then it �xes the whole of T�v
. By [31, Proposition 1.25], the geometric R-tree

dual to a minimal component of † is indecomposable, and by Lemma 1.19(1)

of [31] its image T�v
� T is an indecomposable subtree of T . Corollary 9.13

then replaces Proposition 4.3 of [29] under our hypostability assumption.

�e rest of the argument of [29] applies without modi�cation. As in Propo-

sition 4.1 of [29], the tree dual to † is a graph of actions on R-trees T .G0/, such

that arc stabilizer of the vertex actions lie in the kernel of these actions. Apply-
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ing Propositions 5.2, 7.2 and 8.1 of [29], one can replace these vertex actions by

actions on simplicial trees whose stabilizers are abelian modulo the kernel. By

Bass-Serre theory, this provides a splitting of G over the extension of an abelian

group A by the kernel K of a vertex action. �is splitting is relative to Q as in the

Reduction Lemma in [29, §4].

9.4. Zmax splittings. Say that a subgroup of a relatively hyperbolic group is Zmax

if it is maximal for inclusion among non-parabolic virtually cyclic subgroups with

in�nite center.

�eorem 9.14. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi �nitely
generated. LetH D ¹H1; : : : Hqº be a (possibly empty) family of �nitely generated
subgroups. Assume that G acts non-trivially on an R-tree T relative to P [ H,
and that arc stabilizers are either �nite, parabolic or Zmax.

�en G splits relative to P [ H over a �nite, parabolic or Zmax subgroup.

Corollary 9.10 provides a splitting over an elementary group A. Here we as-

sume that every loxodromic arc stabilizer of T is Zmax, and we claim that the same

is true for A: if it is loxodromic, then it is Zmax.

Proof. � Assume �rst that the foliated 2-complex † constructed in the proof of

�eorem 9.9 has a minimal component †v. Let Gv be the image of its fundamental

group in G, and let TGv
� T be the corresponding subtree of T . In particular, Gv

is not elliptic in T . By [3, �eorem 5.13] or [29, �eorem 3.1], Gv is a vertex group

in a decomposition of G as a graph of groups � relative to P[H. All arcs in TGv

have the same stabilizer F , a normal subgroup of Gv.

We claim that F is �nite. Otherwise, there are two cases. If F is non-parabolic,

hence virtually cyclic, it has �nite index in its normalizer and therefore in Gv, so

Gv is elliptic, a contradiction. If F is in�nite and contained in a maximal para-

bolic group P , then almost malnormality of P implies that the normalizer of F is

contained in P , so Gv � P . Since P is elliptic in T , this is also a contradiction.

�us F is �nite.

We now distinguish several cases, depending on the nature of the minimal

component †v .

First, †v cannot be a homogeneous (axial, toral) component since Gv would

then be virtually Z
k for some k � 2 ([3, �eorem 9.4(2)] or [29, section 5.1]),

hence parabolic, contradicting ellipticity of parabolic groups in T .

If †v is an exotic (Levitt, thin) minimal component, one obtains a splitting of

G over F , and we are done ([29, Proposition 7.2], [3, �eorem 9.4(3)]).
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If †v is a surface (IET) component, then by [3, �eorem 9.4(1)] or [29, section

8], after performing some moves, one can assume that †v is a surface with bound-

ary, and Gv=F is the fundamental group of a 2-orbifold with conical singularities

supporting a measured foliation with dense leaves. Moreover, Gv is a QH vertex

group (with �ber F ) of �.

Let A � Gv be the preimage of the fundamental group of an essential two-sided

simple closed curve not bounding a Möbius band, and not boundary parallel. �en

G splits over A relative to P[H. We check that A is Zmax. Clearly, A is virtually

cyclic with in�nite center, and is maximal among virtually cyclic subgroups of

Gv . Since Gv is QH and A is not conjugate into a boundary subgroup, it easily

follows that A is Zmax in G.

� �e remaining case is when † has no minimal component. In this case, all

leaves of † are �nite, and the dual tree T† is simplicial. Its edge stabilizers �x

an arc in T , so we are done if one of these edge stabilizers is �nite or parabolic.

Otherwise, arc stabilizers of T† are virtually cyclic with in�nite center but may fail

to beZmax. If this happens, we have to enlarge the �nite tree K used to construct †.

By [48], we can �nd an exhaustion of T by an increasing sequence of �nite

subtrees Kk such that the corresponding dual trees T†k
strongly converge to T .

We refer to [48] for the de�nition of strong convergence; we will only use the fact

that, if A is a �nitely generated group �xing an arc in T , then A �xes an edge in

T†k
for large enough k.

We can assume that all dual trees T†k
are simplicial, and that their edge stabi-

lizers are in�nite and not parabolic. Let A0 be an edge stabilizer of T†0
. �en A0

�xes an arc I in T . By the hypothesis on arc stabilizers of T , the stabilizer of I is

a Zmax subgroup A � A0, which �xes an edge e of T†k
for k large enough. Since

Ge contains A and �xes an arc in T , it is equal to A, so T†k
provides the desired

splitting.

A similar proof yields the following results.

�eorem 9.15. Let G be hyperbolic relative to P D ¹P1; : : : ; Pnº, with Pi slender,
and let H D ¹H1; : : : Hqº be a family of �nitely generated subgroups. Assume
that G acts non-trivially on an R-tree T relative to P [ H, with elementary arc
stabilizers.

�en G splits relative to P [ H over a Zmax subgroup or over the stabilizer of
an arc of T .
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Corollary 9.16. Let G be a toral relatively hyperbolic group. Consider a non-
trivial action of G on an R-tree relative to non-cyclic abelian subgroups. If arc
stabilizers are abelian and stable under taking roots, then G splits (relative to non-
cyclic abelian subgroups) over an abelian subgroup stable under taking roots.
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