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1. Introduction

Denote by C the class of groups that satisfy the K- and L-theoretic Farrell–Jones

conjecture with �nite wreath products (with coe�cients in additive categories)

with respect to the family of virtually cyclic subgroups. Farrell and Wu [5] showed

that the conjecture holds for the solvable Baumslag–Solitar groups, and Wegner

[9] generalized their proof to show that the conjecture in fact holds for all solvable

groups.
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Let .�;G/ be a �nite graph of �nitely generated abelian groups. We construct

a group homomorphism � from �1.�;G/ to a semidirect product Qm
Ì Fn, where

Fn denotes the free group of rank n. Wegner’s result implies that Qm
Ì Fn lies in

C (Corollary 2.2). �en, given a torsion-free cyclic subgroup C � Qm
Ì Fn we

show that its preimage ��1.C / � �1.�;G/ is a directed colimit of CAT.0/-groups

and hence lies in C. Together with inheritance properties of C (�eorem 2.1) and

a sequence of colimit arguments this proves the following:

Main �eorem. Let .�;G/ be a graph of abelian groups. �en �1.�;G/ lies in C.

Here, we do not require � to be �nite or countable, and we do not make any

assumptions on the cardinality of the generating sets of the groups of G.

A generalized Baumslag–Solitar group is the fundamental group of a �nite

graph of in�nite cyclic groups.

Corollary 1.1. All generalized Baumslag–Solitar groups, and in particular all

Baumslag–Solitar groups, lie in C.

Remark. Farrell and Wu have informed us about a recent independent result of

theirs which proves the Farrell–Jones conjecture for Baumslag–Solitar groups.

Acknowledgements. We would like to thank Dieter Degrijse for his helpful com-

ments.

2. Facts about the Farrell–Jones Conjecture

�e proof of the main theorem will rely on previously known cases of the conjec-

ture and on inheritance properties. �e following list is not complete; it highlights

results that will be made use of in the present paper.

�eorem 2.1 ([6],[1], [2], [8], [9]). �e class C has the following properties:

(1) CAT.0/-groups lie in C.

(2) Virtually solvable groups lie in C.

(3) �e class C is closed under taking subgroups.

(4) �e class C is closed under taking directed colimits.

(5) Let f W G ! H be a group homomorphism and assume that H lies in C and

f �1.C / lies in C for any torsion-free cyclic subgroup C of H . �en G lies

in C.
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Proof. For CAT.0/-groups, the version with �nite wreath products follows from

the version without wreath products, since the wreath product of a CAT.0/-group

with a �nite group is again a CAT.0/-group. �e wreath product version for vir-

tually solvable groups has been shown in [9, �eorem 1.1].

�e inheritance properties of the version with �nite wreath products follow

easily from the inheritance properties of the version without wreath products; see

for example [9, Proposition 2.17] and [9, Proposition 2.22].

We will individually refer to each property above as “property (�).”

Corollary 2.2. If G is a solvable group and H 2 C then any semidirect product

G Ì H lies in C.

Proof. Consider the projection homomorphism G Ì H ! H . �e claim follows

from properties (2) and (5), as preimages of cyclic subgroups of H are solvable.

In particular, as �nitely generated free groups are CAT.0/-groups, for any

m; n 2 N any semidirect product Qm
Ì Fn lies in C.

3. Graphs of groups

Given a connected graph � (in the sense of Serre) and an oriented edge e 2 E.�/,

denote by �.e/ 2 V.�/ its initial and by �.e/ 2 V.�/ its terminal vertex. If by Ne

we denote the edge e with opposite orientation then �. Ne/ D �.e/ and �. Ne/ D �.e/.

A graph of groups structure G on � consists of families of groups .Gv/v2V.�/ and

.Ge/e2E.�/ satisfying G Ne D Ge for all e 2 E.�/ together with an injective group

homomorphism ˛e W Ge ,! G�.e/ for each e 2 E.�/. We call the pair .�;G/ a

graph of groups.

Given a maximal tree T in �, let �1.�;G; T / be the group generated by the

groups Gv; v 2 V.�/ and the elements e 2 E.�/ subject to the relations

(i) Ne D e�1 for all e 2 E.�/;

(ii) e � ˛ Ne.s/ � Ne D ˛e.s/ for all e 2 E.�/ and s 2 Ge;

(iii) e D 1 if e 2 E.T /.

We call �1.�;G; T / the fundamental group of .�;G/ relative to T . For each v 2

V.�/ the canonical map Gv ! �1.�;G; T / turns out to be injective [3, Corol-

lary 1.9]. �e isomorphism type of �1.�;G; T / does not depend on the choice of

T [7, Proposition 20], and we will often speak of the fundamental group of .�;G/

and denote it by �1.�;G/.
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Example 3.1. Let G D BS.p; q/ D hx; t j txpt�1 D xqi. �en G is isomorphic

to the fundamental group of a graph of groups with a single edge e and vertex v,

where Gv D Ge D hxi Š Z and ˛ Ne D .x 7! xp/ and ˛e D .x 7! xq/.

A subgraph of subgroups of a graph of groups .�;G/ is a graph of groups

.� 0;G0/ such that � 0 � �, for all v 2 V.� 0/ and e 2 E.� 0/ we have G0
v � Gv

and G0
e � Ge respectively, and ˛0

e D ˛e jG0
e

for all e 2 E.� 0/. If T 0 and T are

maximal trees in � 0 and � respectively such that T 0 � T then there is a natural

group homomorphism �1.� 0;G0; T 0/! �1.�;G; T / that maps for v 2 V.� 0/ every

x 2 G0
v to x 2 Gv and every e 2 E.� 0/ to e 2 E.�/.

Lemma 3.2. Let .�i ;Gi /i2I be a directed system of graphs of groups with binary

relation � where .�i ;Gi / � .�j ;Gj / if .�i ;Gi / is a subgraph of subgroups of

.�j ;Gj /. Moreover, let .Ti/i2I be a directed system of corresponding maximal

trees, i.e. Ti is a maximal tree in �i for all i 2 I and Ti � Tj whenever .�i ;Gi/ �

.�j ;Gj /. Let

� � D
S

i2I �i ;

� G D
S

i2I Gi be the graph of groups structure on � whose vertex and edge

groups are the unions of the vertex and edge groups of the Gi ’s and where

for e 2 E.�/ and s 2 Ge we de�ne ˛e.s/ by .˛e/i .s/ 2 .G�.e//i � G�.e/

whenever e 2 E.�i / and s 2 .Ge/i ;

� T D
S

i2I Ti be our choice of a maximal tree in �.

Consider the directed system of fundamental groups of graphs of groups de�ned

by the natural maps �1.�i ;Gi ; Ti/ ! �1.�j ;Gj ; Tj / whenever .�i ;Gi ; Ti/ �

.�j ;Gj ; Tj /. We have

�1.�;G; T / Š colimi2I �1.�i ;Gi ; Ti/:

Proof. It easily follows from the de�nition of .�;G; T / that �1.�;G; T / has the

universal property of colimi2I �1.�i ;Gi ; Ti/, whence the claim.

Given a graph of groups .�;G/, one can de�ne a simplicial tree X D A.�;G/,

the Bass-Serre covering of .�;G/, and a continuous map p W X ! � sending

edges to edges such that the group �1.�;G/ acts on X by simplicial automorphisms

without edge inversions and the stabilizer of v 2 V.X/ is conjugate to the vertex

group Gp.v/ 2 G. Vice versa, by the fundamental theorem of Bass-Serre theory

[7, section I.5.3] any action of a group G on a simplicial tree T gives rise to a

(generally non-canonical) graph of groups structure G on the quotient graph GnT

such that �1.GnT;G/ Š G.
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Lemma 3.3. If a group acts on a simplicial tree with �nite point stabilizers then

it lies in C.

Proof. A group that acts on a simplicial tree with �nite point stabilizers is isomor-

phic to the fundamental group of a graph of �nite groups .�;G/. By Lemma 3.2,

the group �1.�;G/ is isomorphic to the colimit of the directed system of funda-

mental groups associated to the directed system of �nite subgraphs of subgroups

of .�;G/. Fundamental groups of �nite graphs of �nite groups are CAT.0/-groups

(in fact, they are virtually �nitely generated free) and hence lie in C by property (1).

�erefore, �1.�;G/ is isomorphic to the colimit of a directed system of groups that

lie in C and hence lies in C by property (4).

A tree of groups is a graph of groups whose underlying graph is a tree.

Proposition 3.4. �e fundamental group of a �nite tree of �nitely generated

abelian groups .T;G/ is a CAT.0/-group.

We will make use of the following theorem:

�eorem 3.5 (Equivariant Gluing [4, II.11.18]). Let �0, �1 and H be groups acting

properly by isometries on complete CAT.0/ spaces X0, X1 and Y respectively.

Suppose that for j D 0; 1 there exists both an injective group homomorphism

'j W H ! �j and a 'j -equivariant isometric embedding fj W Y ! Xj . �en

(1) the amalgamated free product � D �0 �H �1 associated to the maps 'j acts

properly by isometries on a complete CAT.0/ space X;

(2) if the given actions of �0, �1 and H are cocompact, the action of � on X is

cocompact.

We also need that the spaces X0 and X1 embed equivariantly and isometrically

into X . However, this is clear from the construction given in the proof of the

Equivariant Gluing �eorem in [4].

Proof of Proposition 3.4. De�ne for v 2 V.T / and e 2 E.T / the R-vector spaces

Xv D Gv˝Z R and Xe D Ge ˝ZR respectively. �e induced action of Gv on Xv

given by

Gv �Xv �! Xv;

.g; x/ 7�! .g ˝ 1/C x;
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is proper and cocompact, and we analogously obtain a proper and cocompact

action of Ge on Xe. Let v0 2 V.T / and exhaust the �nite tree T by subtrees

¹v0º D T0 � � � � � Tn D T

such that for all i D 1; : : : ; n the tree Ti has one more vertex vi than Ti�1. We will

denote the graph of groups structure on Ti obtained by restricting G to Ti � T

also by G. For each i D 1; : : : ; n denote by ei the unique oriented edge of Ti for

which �.ei / 2 V.Ti�1/ and �.ei / D vi .

Choose an inner product on the �nite-dimensional R-vector space Xv0
and

thereby endow it with a complete CAT.0/ metric. Independent of this choice, Gv0

acts on Xv0
by isometries. We inductively construct for each i D 1; : : : ; n inner

products on Xei
and Xvi

such that the ˛ei
-equivariant respectively ˛ xei

-equivariant

embeddings

X�.ei /  �- Xei
,�! Xvi

induced by the injective edge homomorphisms

�1.Ti�1;G/ � G�.ei /

˛ei
 �� Gei

˛ xei
��! Gvi

are isometric. In order to do so, pull back the inner product on X�.ei / to obtain

an inner product on Xei
. �en, choose any inner product on Xvi

that extends the

inner product on Xei
,! Xvi

.

By applying �eorem 3.5 repeatedly, we construct for i D 1; : : : ; n a com-

plete CAT.0/ space XTi
on which �1.Ti ;G/ acts properly and cocompactly by

isometries, and into which for j � i each Xvj
embeds equivariantly and isomet-

rically.

Remark. Free products with amalgamation of virtually �nitely generated abelian

groups need not be CAT.0/-groups; for a counterexample, see [4, III.�.6.13].

However, if the amalgam is virtually cyclic then the vertex groups can be arbi-

trary CAT.0/-groups [4, Corollary II.11.19].

Corollary 3.6. �e fundamental group of a tree of �nitely generated abelian

groups lies in C.

Proof. Any graph of groups can be exhausted by the directed system of its �nite

subgraphs of groups. �e claim follows from Lemma 3.2, Proposition 3.4, and

properties (1) and (4).
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4. Proof of the main theorem

Proof of the Main �eorem. We may assume that .�;G/ is a �nite graph of �nitely

generated abelian groups; this follows from three consecutive applications of

Lemma 3.2.

(1) Let .�;G/ be a �nite graph of abelian groups with �nitely generated edge

groups. For every vertex v 2 V.�/ there exists a �nitely generated subgroup

of Gv that contains the images of all adjacent edge homomorphisms so that

we can easily �nd a directed system of �nite subgraphs of �nitely generated

subgroups of .�;G/ that exhausts .�;G/.

(2) If .�;G/ is a �nite graph of abelian groups, we can write every edge group

as the directed colimit of its �nitely generated subgroups and �1.�;G/ as

the directed colimit of fundamental groups of �nite graphs of abelian groups

with �nitely generated edge groups.

(3) Finally, any graph of (abelian) groups can be exhausted by the directed system

of its �nite subgraphs of (abelian) groups.

Let T be a maximal tree in �. We will construct a group homomorphism

� from �1.�;G; T / to a group of the form Qm
Ì Fn, where Qm

Ì Fn lies in C

by Corollary 2.2. We then prove that �1.�;G; T / lies in C by showing that all

preimages of torsion-free cyclic subgroups of Qm
Ì Fn lie in C, i.e. by applying

property (5).

Let the vertex set of � be given by ¹v1; : : : ; vkº and de�ne Q as the Q-vector

space

Q D

k
M

iD1

.Gvi
˝Z Q/:

For every e 2 E.�/ the injective group homomorphism ˛e W Ge ! G�.e/ gives

rise to an injective Q-linear homomorphism

Me D ˛e ˝Z id W Ge ˝Z Q �! G�.e/ ˝Z Q:

De�ne R to be the Q-subvector space of Q spanned by the vectors

M Ne.s˝1/ �Me.s˝1/ for all e 2 E.T /; s 2 Ge:

For every vertex v 2 V.�/ the rationalized vertex group Gv˝ZQ naturally embeds

into Q=R, which can be seen as follows: Fix an orientation O.T / � E.T / for



790 G. Gandini, S. Meinert, and H. Rüping

each edge of T and suppose that this is not the case, i.e. we can �nd an element

0 ¤ q 2 Gv ˝Z Q and for every e 2 O.T / an element qe 2 Ge ˝Z Q such that

q D
X

e2O.T /

.M Ne.qe/ �Me.qe// 2 Q: (4.1)

Consider the subforest F � T spanned by all edges for which qe ¤ 0. It contains

at least one edge, as the right hand side of (4.1) would otherwise be zero, con-

tradicting that q ¤ 0. Choose a leaf w 2 V.F /, i.e. a vertex of valence 1, such

that w ¤ v and let e be the unique edge in O.T / \ E.F / adjacent to w, say with

�.e/ D w. Since q 2 Gv˝Z Q with v ¤ w and e is the only edge in O.T /\E.F /

adjacent to w, projecting (4.1) to the factor Gw˝ZQ � Q gives rise to the equation

0 D �Me.qe/:

However, this is a contradiction, as qe ¤ 0 and Me is injective.

Let ¹e1; : : : ; enº be the set of edges of � X T and denote by Fn the free group

with basis ¹e1; : : : ; enº. We obtain a linear representation

� W Fn �! GL.Q=R/

by extending for every ei the isomorphism of subspaces

Mei
ıM xei

�1 W im.M xei
/

Š
�! im.Mei

/

to an automorphism of the �nite-dimensional Q-vector space Q=R. De�ne a

group homomorphism

� W �1.�;G; T / �! .Q=R/ Ì� Fn

by mapping for v 2 V.�/ any element x 2 Gv to .x˝1; 1/ and e 2 E.� X T / to

.0˝0; e/. �is assignment is well-de�ned: Suppose that x 2 Gv lies in the image

of ˛e for some edge e 2 E.�/ with �.e/ D v, i.e. x D ˛e.s/ for some s 2 Ge.

�en �.x/ D �.˛e.s// D .˛e.s/˝1; 1/. By de�nition, in �1.�;G; T / we have that

x D

8

<

:

˛ Ne.s/ if e 2 E.T /;

e � ˛ Ne.s/ � Ne if e 2 E.� X T /:

In the �rst case, �.˛ Ne.s// D .˛ Ne.s/˝1; 1/, where ˛ Ne.s/˝1 D ˛e.s/˝1 in Q=R

and hence �.˛ Ne.s// D �.x/. In the second case,

�.e � ˛ Ne.s/ � Ne/ D .0˝0; e/ � .˛ Ne.s/˝1; 1/ � .0˝0; Ne/

D .0˝0C �.e/.˛ Ne.s/˝1/C 0˝0; e Ne/

D .Me.M Ne
�1.˛ Ne.s/˝1//; e Ne/

D .˛e.s/˝1; 1/ D �.x/
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whence � is well-de�ned. Recall that .Q=R/ Ì� Fn lies in C by Corollary 2.2,

Q=R being isomorphic to Qm for some m 2 N.

Let C be a torsion-free cyclic subgroup of .Q=R/ Ì� Fn and �rst assume that

C is not contained in .Q=R/ Ì ¹1º. Consider the induced subgroup action of

��1.C / � �1.�;G; T / on the Bass-Serre covering tree X D A.�;G/ and recall

that every point stabilizer of this action is contained in a conjugate of some vertex

group Gv; v 2 V.�/. For each vertex v 2 V.�/ the kernel of the natural map

Gv ! Gv ˝Z Q equals the torsion subgroup of Gv, and Gv ˝Z Q embeds into

Q=R and hence into the normal subgroup .Q=R/ Ì ¹1º. Consequently, ��1.C /

contains of every point stabilizer only its torsion subgroup and acts on X with

�nite point stabilizers. We conclude that C lies in C by Lemma 3.3.

On the other hand, if C is contained in .Q=R/ Ì ¹1º, consider the composition

of group homomorphisms

ˆ W �1.�;G; T /
�
�! .Q=R/ Ì� Fn �! Fn

where the second homomorphism is given by projection to the second factor. �e

preimage ��1.C / is a subgroup of ker.ˆ/, whence, by property (3), in order to

show that ��1.C / lies in C it su�ces to show that ker.ˆ/ lies in C. We claim

that ker.ˆ/ is isomorphic to the fundamental group of a tree of �nitely gener-

ated abelian groups and hence lies in C by Corollary 3.6. Equivalently, we claim

that ker.ˆ/ acts on a tree with �nitely generated abelian point stabilizers and con-

tractible quotient. Since �1.�;G; T / acts on X with �nitely generated abelian

point stabilizers, it su�ces to show that the quotient ker.ˆ/nX is a tree. Note

that �1.�;G; T /= ker.ˆ/ Š Fn and thus we obtain an induced action of the free

group Fn on ker.ˆ/nX . As every point stabilizers of the �1.�;G; T /-action on X

is contained in ker.ˆ/, the action of Fn on ker.ˆ/nX is free. We conclude that

ker.ˆ/nX is the universal covering space of the �nite graph Fnn.ker.ˆ/nX/ Š �

and therefore a tree.
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