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1. Introduction

In his Ph.D. thesis [19], McShane established the following remarkable identity for

lengths of simple closed geodesics on a once-punctured torus S1;1 with a complete,

�nite area hyperbolic structure:

X




1

1 C exp.l.
//
D 1

2
; (1)

where 
 varies over all simple closed geodesics on S1;1, and l.
/ is the hyper-

bolic length of 
 under the given hyperbolic structure on S1;1. �is result was

later generalized to (general) hyperbolic surfaces with cusps by McShane himself

[20], to hyperbolic surfaces with cusps and/or geodesic boundary components

by Mirzakhani [23], and to hyperbolic surfaces with cusps, geodesic boundary

and/or conical singularities, as well as to classical Schottky groups by Tan, Wong

and Zhang in [27], [29].

On the other hand, Bowditch in [4] gave an alternative proof of (1) via Marko�

maps, and extended it in [6] to type-preserving representations of the once-punc-

tured torus group into SL.2;C/ satisfying certain conditions which we call here

the BQ-conditions (Bowditch’s Q-conditions). He also obtained in [5] a variation

of (1) which applies to hyperbolic once-punctured torus bundles. Subsequently,

Sakuma [25], Akiyoshi, Miyachi and Sakuma [1], [2] and recently Sakuma and

Lee [17] re�ned Bowditch’s results and generalized them to those which apply to

hyperbolic punctured surface bundles. In [28] Tan, Wong and Zhang also further

extended Bowditch’s results to representations of the once-punctured torus group

into SL.2;C/ which are not type-preserving, that is, where the commutator is not

parabolic, and also to representations which are �xed by an Anosov element of

the mapping class group and which satisfy a relative version of the Bowditch’s

Q-conditions. �ey also showed that the BQ-conditions de�ned an open subset

of the character variety on which the mapping class group of the punctured torus

acted properly discontinuously.

In a di�erent direction, Labourie and McShane in [16] showed that the identity

above has a natural formulation in terms of (generalised) cross ratios, and then, us-

ing this formulation, studied identities arising from the cross ratios constructed by

Labourie for representations from fundamental groups of surfaces to PSL.n;R/.

�e above papers provided much of the motivation for this paper, in particular,

the identities obtained were in many cases valid for the moduli spaces of hyper-

bolic structures, so invariant under the action of the mapping class group, and in

the case of cone structures, they could be interpreted as identities valid for cer-

tain subsets of the character variety which were invariant under the action of the
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mapping class group, even though the representations in the subset may be non-

discrete or non-faithful. �is leads naturally to the question of whether there were

interesting subsets of the character varieties on which the mapping class group

acts properly discontinuously, but which consists of more than just discrete, faith-

ful representations, as explored in the punctured torus case in [28].

In this paper we will consider representations of the free group on three gen-

erators F3 D h˛; ˇ; 
; ı W ˛ˇ
ı D I i into SL.2;C/. We adopt the viewpoint that

F3 is the fundamental group of the four-holed sphere S , with ˛; ˇ; 
; ı identi�ed

with @S , and study the natural action of MCG.S/, the mapping class group of S

on the character variety

X WD Hom.F3; SL.2;C//== SL.2;C/;

where we take the quotient in the sense of geometric invariant theory. If � 2
MCG.S/ and Œ�� 2 X, this action is given by

�.Œ��/ D Œ� ı .��/�1�;

where �� W �1.S/ ! �1.S/ is the map associated to � in homotopy. We are inter-

ested in the dynamics of this action, in particular, on the relative character varieties

X.a;b;c;d/, which is the set of representations for which the traces of the boundary

curves are �xed.

We describe the following result, see �eorems 4.19 and 4.20.

�eorem A. �ere exists a domain of discontinuity for the action of MCG.S/

on X.a;b;c;d/, that is, an open MCG.S/-invariant subset D � X.a;b;c;d/ on which

MCG.S/ acts properly discontinuously.

Remark 1.1. As already observed by several other authors in related situations

(see Goldman [12], Tan, Wong, and Zhang [28], and Minsky [21]), our domain of

discontinuity contains the interior of the discrete and faithful characters, but also

characters which may not be discrete or faithful. For example, when the boundary

traces are in .�2; 2/ we can produce representations that are non-discrete, but are

nevertheless in the domain of discontinuity.

A much deeper question is about the case of non-elliptic boundary values. In

that situation, we don’t know the complete answer, and the question is certainly

not easy. For example, in the case X�2.†1;1/ Bowditch conjectured that this set

coincides with the quasifuchsian representations, see [6].

�is set is described by two conditions, much in the spirit of [6] and [28], and

is given as follows. If S denotes the set of free homotopy classes of essential,
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non-peripheral simple closed curves on S , then the conditions for Œ�� to be in D

are

(i) tr �.
/ 62 Œ�2; 2� for all 
 2 S;

(ii) j tr �.
/j < K for only �nitely many 
 2 S, where K > 0 is a �xed constant

that depends only on a; b; c; d .

Furthermore, the set of 
 satisfying condition (ii) above satisfy a quasi-convexity

property, equivalently, is connected when represented as the subset of the com-

plementary regions of a properly embedded binary tree (see �eorem 3.1). �is

property is particularly important when writing a computer program to draw slices

of the domain of discontinuity.

Of particular interest is the set of real characters, which consists of representa-

tions in SL.2;R/ or SU.2/. In the latter case, Goldman [11] proved ergodicity of the

mapping class group action for all orientable hyperbolizable surfaces, with respect

to the invariant measure induced by the natural symplectic structure on the moduli

space. (�is was generalized by the second author in the non-orientable case in

[24]). On the other hand, in the SL.2;R/ case the dynamics is much richer and

less understood. For example, when Sg is a closed surface of genus g � 2, Gold-

man conjectured that the action of MCG.Sg/ on the components of X.Sg/ with

non-maximal Euler class is ergodic. An approach towards a proof of this would

be to use a cut-and-paste argument involving pieces homeomorphic to one-holed

tori and four-holed spheres. While the case of the one-holed torus was completely

described by Goldman in [12], we obtain partial results in the four-holed sphere

case here. In fact, an important corollary of our analysis is the following (see

�eorem 5.3):

�eorem B. In the real case, for all boundary datas, except a dimension one sub-

set, there is a non-empty open domain of discontinuity for the action of MCG.S/

on the relative SL.2;R/-character variety.

�is implies that there are representations in these components for which all

essential simple closed curves on S have hyperbolic representatives, even though

these representations may not be discrete and faithful. �ere are also some sur-

prises here, in particular, certain slices of the real character variety satisfying some

general condition always have non-empty intersection with the domain of discon-

tinuity.
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�e mapping class group MCG.S/ consisting of equivalence classes of dif-

feomorphisms of S �xing the boundary is isomorphic to the index two normal

subgroup of the triangle group Z2 � Z2 � Z2 generated by re�ections on an ideal

triangle and it acts on the character variety as given in the earlier part of the intro-

duction. For a representation � W F3 ! SL.2;C/, we can look at its character

�� W F3 �! C;

W 7�! tr.�.W //:

�e character variety is exactly the set of characters, by results of [18], see for

example [12], and each character is in turn determined entirely by its value on the

seven elements as follows, satisfying equation (2):

��.˛/ WD a; ��.ˇ/ WD b; ��.
/ WD c; ��.ı/ WD d;

��.˛ˇ/ WD x; ��.ˇ
/ WD y; ��.
˛/ WD z:

Hence, we identify X with the variety V consisting of points .a; b; c; d; x; y; z/ 2
C7 satisfying the equation

x2 C y2 C z2 C xyz D px C qy C rz C s; (2)

where

p D ab C cd;

q D bc C ad;

r D ac C bd;

s D 4 � a2 � b2 � c2 � d 2 � abcd:

In particular, this identi�es the character variety with the branched double

cover of C6, which is homotopic to a 6-sphere, see [7].

�e MCG.S/ action extends to an action of Z2 � Z2 � Z2 on V, which is gen-

erated by

�1; �2; �3 W V ! V;

where

�1.a; b; c; d; x; y; z/ D .a; b; c; d; p � yz � x; y; z/;

�2.a; b; c; d; x; y; z/ D .a; b; c; d; x; q � xz � y; z/;

�3.a; b; c; d; x; y; z/ D .a; b; c; d; x; y; r � xy � z/:
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Elements of the mapping class group correspond to words of even length in �1; �2

and �3, in particular, �2�3, �3�1 and �1�2 correspond to Dehn twists about essential

simple closed curves on S and generate the MCG.S/ action on V.

It is somewhat remarkable that many of the results of [6] and [28] generalize to

the problem we study here, although the analysis is necessarily more technical and

complicated, but in some sense, also more interesting. �ere are however some

results which do not generalize, see Example 3.11. Finally, we note that recent

work of Hu, Tan and Zhang [14] on Coxeter group actions on varieties de�ned

by the Marko�–Hurwitz equation indicate that in fact, there should be a deeper

underlying theory for analyzing the domains of discontinuity for group actions of

this type.

�e rest of this paper is organized as follows. In §2 we set the notation and give

some basic de�nitions. In §3 we prove the generalizations of the basic lemmas (in

terms of Marko� maps) required to analyse and understand the orbit of a character

under the action of the mapping class group. In particular, generalizations of the

“fork” lemma (Lemma 3.3) and the quasi-convexity result (�eorem 3.1) from [6]

and [28], as well as an analysis of the values taken by the neighbors around a

region are covered. In §4 we give a proof of our main theorem (�eorem A) which

describes the domain of discontinuity for the action in terms of the BQ-conditions.

In §5, we consider the real case and show that domains of discontinuity can occur

in the components of the PSL.2;R/ relative character variety which do not have

maximal relative Euler class (�eorem B). Finally, in §6 we give some concluding

remarks.

Acknowledgements. �is project was initiated when the authors were participat-

ing in the trimester program on “Geometry and Analysis of surface group repre-

sentations” at the Institut Henri Poincaré (Jan-Mar 2012). �e authors are grateful

to the organizers of the program for the invitations to participate in the program,

and to the IHP and its sta� for their hospitality and generous support. In particular,

we would like to thank Bill Goldman and Richard Canary for helpful conversa-

tions, and the anonymous referee for the very careful reading of the manuscript

and the many helpful comments and suggestions.

2. Notation

In this section we set the notation which we will use in the paper and give some im-

portant de�nitions. Since many of the results included in this article are in�uenced
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by, and are generalisations of the results of Tan, Wong and Zhang’s article [28],

we will try to follow closely the notation and structure of that paper, so that the

interested reader will �nd it easier to compare our results with theirs. We should

also note that their paper was a generalisation of Bowditch’s results [6].

2.1. �e four-holed sphere group. Let S D S0;4 be a (topological) four-holed

sphere, that is, a sphere with four (disjoint) open disks removed, and let � be its

fundamental group. �e group � admits the following presentation

� D h˛; ˇ; 
; ı j ˛ˇ
ıi;

where ˛, ˇ, 
 and ı correspond to homotopy classes of the four boundary com-

ponents, one for each removed disk. Note that � is isomorphic to the free group

on three generators Z � Z � Z D h˛; ˇ; 
i since ı D .˛ˇ
/�1.

We de�ne an equivalence relation � on � by g � h if and only if g is conjugate

to h or h�1. Note that �=� can be identi�ed with the set of free homotopy classes

of unoriented closed curves on S .

2.2. Simple closed curves on the sphere. Let S D S.S/ be the set of free ho-

motopy classes of essential (that is, non-trivial and non-peripheral) simple closed

curves on S and let y� � �=� be the subset corresponding to S. Note that y� can

be identi�ed with yQ D Q[¹1º by considering the ‘slope’ of Œg� 2 y�, see, among

others, Proposition 2.1 of Keen and Series [15]. For example, we can identify ˛ˇ

with 0, ˇ
 with 1, ˛
 with �1, and so on.

We also observe that y� inherits a cyclic ordering from the cyclic ordering of
yQ induced from the standard embedding into yR D R [ ¹1º Š S1.

2.3. Relative character variety of � . �e character varietyX D X.�; SL.2;C//

is the space of equivalence classes of representations � W � ! SL.2;C/, where

the equivalence classes are obtained by taking the closure of the orbit under the

conjugation action by SL.2;C/.

A representation

� W � �! SL.2;C/

is said to be a �-representation, or a �-character, where � D .a; b; c; d/ 2 C4,

when for some �xed generators ˛; ˇ; 
; ı 2 � corresponding to the boundary com-
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ponents of S ,

tr �.˛/ D a;

tr �.ˇ/ D b;

tr �.
/ D c;

tr �.ı/ D d:

�e space of equivalence classes of �-representations is denoted by X� and is

called the �-relative character variety. �ese representations correspond to rep-

resentations of the four-holed sphere where we �x the conjugacy classes of the

four boundary components in the space of closed orbits.

For � 2 X� , we let

x D tr.�.˛ˇ//;

y D tr.�.ˇ
//;

and

z D tr.�.˛
//:

A classical result on the character varieties (see (9) in Fricke and Klein [9], p. 298)

states that X� is identi�ed with the set

¹.x; y; z/ 2 C3 W x2 C y2 C z2 C xyz D px C qy C rz C sº;

where

p D ab C cd;

q D bc C ad;

r D ac C bd;

s D 4 � a2 � b2 � c2 � d 2 � abcd:

�e mapping class group of S ,

MCG WD �0.Homeo.S//

acts on X� , see [12]. For concreteness, we adopt the convention here that MCG

consists of orientation-preserving homeomorphisms �xing the boundary, there

will be no essential di�erence to the ensuing discussion. �e mapping class group
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is generated by Dehn twists along the simple closed curves corresponding to ˛ˇ,

ˇ
 and ˛
 . �e action of each Dehn twist can be read easily on the trace coordi-

nates of X� . For example the Dehn twist about the separating curve ˛ˇ is the map

C3 ! C3 given by

0

@

x

y

z

1

A 7�!

0

@

x

q � x.r � xy � z/ � y

r � xy � z

1

A ;

where p; q; r are de�ned as above. �is corresponds to the action of �2�3 given in

the Introduction, see also Remark 3.6.

2.4. �e BQ-conditions. For a �xed �, let K D K.�/ > 0 be a constant de-

pending only on �, that we will de�ne later in De�nition 3.9. A �-representation

� W � ! SL.2;C/ is said to satisfy the BQ-conditions (Bowditch’s Q-conditions) if

(BQ1) tr�.g/ 62 Œ�2; 2� for all Œg� 2 y�;

(BQ2) jtr�.g/j � K for only �nitely many (possibly no) Œg� 2 y�.

We call such a representation � a BQ-representation, or Bowditch represen-

tation, and the space of equivalence classes of such representations the Bowditch

representation space, denoted by .X�/Q.

Note that tr�.g1/ D tr�.g2/ if Œg1� D Œg2� (since g1 is conjugate to g2 or its

inverse by de�nition); so the conditions (BQ1) and (BQ2) make sense.

2.5. �e binary tree †. Let † be a countably in�nite simplicial tree properly

embedded in the plane all of whose vertices have degree 3. As an example, we can

consider, as †, the binary tree dual to the Farey triangulation F of the hyperbolic

plane H2(also called an in�nite trivalent tree). See [28] for the de�nition of F.

2.6. Complementary regions. A complementary region of † is the closure of

a connected component of the complement.

We denote by

� D �.†/

the set of complementary regions of †. Similarly, we use V.†/, E.†/ for the set

of vertices and edges of † respectively.
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Figure 1. �e edge e $ .X; Y I Z; W /.

We use the letters X; Y; Z; W; : : : to denote the elements of �. For e 2 E.†/,

we also use the notation e $ .X; Y I Z; W / to indicate that e D X \ Y and e \ Z

and e \ W are the endpoints of e; see Figure 1.

2.7. A tri-coloring of the tree. We choose a coloring of the regions and edges,

namely a map

C W �.†/ [ E.†/ �! ¹1; 2; 3º

such that for any edge e $ .X; Y I Z; W / we have C.e/ D C.Z/ D C.W / and such

that C.e/, C.X/ , C.Y / are all di�erent. �e coloring is completely determined by

a coloring of the three regions around any speci�c vertex, and hence is unique up

to a permutation of the set ¹1; 2; 3º. We denote by �i .†/ the set of complementary

regions with color i , and by Ei .†/ the set of edges with color i .

As a convention, in the following, when X; Y; Z are complementary regions

around a vertex, we will have X 2 �1.†/, Y 2 �2.†/, and Z 2 �3.†/.

2.8. �-Marko� triples. For a complex quadruple � D .p; q; r; s/ 2 C4, a

�-Marko� triple is an ordered triple .x; y; z/ of complex numbers satisfying the

�-Marko� equation:

x2 C y2 C z2 C xyz D px C qy C rz C s: (3)

Note that, if .x; y; z/ is a �-Marko� triple in the sense of Tan, Wong, and Zhang,

then .�x; �y; �z/ is a .0; 0; 0; �/-Marko� triple in our sense.

It is easily veri�ed that, if .x; y; z/ is a �-Marko� triple, so are the triples

.x; y; r � xy � z/; .x; q � xz � y; z/; .p � yz � x; y; z/: (4)

It is important to note that permutations triples are not �-Marko� triples, contrary

to the situation with �-Marko� triples.
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2.9. Relation with �-representations. Let GT W C4 �! C4 be the map

de�ned by

2

6

6

6

4

a

b

c

d

3

7

7

7

5

7�!

2

6

6

6

4

ab C cd

ad C bc

ac C bd

4 � a2 � b2 � c2 � d 2 � abcd

3

7

7

7

5

D

2

6

6

6

4

p

q

r

s

3

7

7

7

5

:

�is map is de�ned and studied by by Cantat and Loray in [8] and by Goldman

and Toledo in [13], where they show, among many other results, that the map is

onto and proper. (Note that Goldman and Toledo denote this map ˆ.)

Remark 2.1. Given � 2 C4, a representation � is in X� if and only if the triple

.tr.�.˛ˇ//; tr.�.ˇ
//; tr.�.˛
/// is a �-Marko� triple with � D GT.�/.

�e elementary operations de�ned in (4) are intimately related with the action

of the mapping class group on the character variety, as we will see later.

2.10. �-Marko� map. A �-Marko� map is a function

� W � �! C

such that

(i) for every vertex v 2 V.†/, the triple .�.X/; �.Y /; �.Z// is a �-Marko�

triple, where X; Y; Z 2 � are the three regions meeting v such that X 2 �1,

Y 2 �2 and Z 2 �3;

(ii) for any i 2 ¹1; 2; 3º and for every edge e 2 Ei .†/ we have

– If i D 1 and e $ .Y; ZI X; X 0/, then

x C x0 D p � yz; (5)

– If i D 2 and e $ .X; ZI Y; Y 0/, then

y C y0 D q � xz; (6)

– If i D 3 and e $ .X; Y I Z; Z0/, then

z C z0 D r � xy; (7)

where x D �.X/; y D �.Y /, z D �.Z/, x0 D �.X 0/; y0 D �.Y 0/ and

z0 D �.Z0/
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Note that if condition (i) is satis�ed at one vertex, then condition (ii) guarantees

that it is satis�ed at every vertex. �is is related to the fact that the edge relations

in fact arise from mapping class group actions of the four-holed sphere which

preserve the boundary traces, and hence the relative character variety.

We shall use ˆ� to denote the set of all �-Marko� maps and lower case letters

to denote the � values of the regions. For example, we have �.X/ D x; �.Y / D
y; �.Z/ D z.

Remark 2.2. �ere exists a bijective correspondence between �-Marko� maps

and �-Marko� triples. Hence, using Remark 2.1, there exists a bijective corre-

spondence between the set ˆ� of �-Marko� maps and the �-relative character

variety X� , where � D GT.�/.

In fact, as in the case of Marko� maps and �-Marko� maps, if the edge re-

lations (5), (6) and (7) are satis�ed along all edges, then it su�ces that the ver-

tex relation (3) is satis�ed at a single vertex. So one may establish a bijective

correspondence between �-Marko� maps and �-Marko� triples, by �xing three

regions X; Y; Z which meet at some vertex v0. �is process may be inverted by

constructing a tree of �-Marko� triples as Bowditch did in [6] for Marko� triples

and as Tan, Wong and Zhang did in [28] for the �-Marko� triples: given a triple

.x; y; z/, set �.X/ D x; �.Y / D y; �.Z/ D z, and extend over � as dictated by

the edge relations. In this way one obtains an identi�cation of ˆ� with the alge-

braic variety in C3 given by the �-Marko� equation. In particular, ˆ� gets an

induced topology as a subset of C3.

2.11. �e subsets ��.k/ � �. Given � 2 ˆ� and k � 0, the set ��.k/ � � is

de�ned by

��.k/ D ¹X 2 � W j�.X/j � kº:

�ese sets will be crucial in the proof of our main results.

We can now state the BQ-conditions in terms of Marko� maps.

De�nition 2.3. For a �xed �, let L D L.�/ > 0 be a constant depending only on

�, that we will de�ne later in De�nition 3.9. A �-Marko� map � 2 ˆ� is said to

satisfy the BQ-conditions if

(BQ1) ��1.Œ�2; 2�/ D ;;

(BQ2) ��.L/ is �nite.
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We denote by .ˆ�/Q the set of all �-Marko� maps which satisfy the

BQ-conditions, and call the set of all such maps the Bowditch �-Marko� maps.

We will see that it is su�cient to give a large enough constant L to de�ne the

BQ-conditions. Indeed, taking a bigger constant L0 > L.�/ in the de�nition will

give rise to the same subset of Marko� maps.

3. Estimates on Marko� maps

�e main aim of this section is to prove the following result, which is a generali-

sation of �eorem 3.1 of Tan, Wong, and Zhang [28].

�eorem 3.1 (quasi-convexity). Let � 2 C4.

(1) �ere exists a constant l D l.�/ > 0 such that for all � 2 ˆ�, we have that

��.l/ is non-empty.

(2) �ere exists a constant ˛ D ˛.�/ � 0 such that for all � 2 ˆ� and all

k � 2 C ˛, the set ��.k/ is connected.

For doing that, we need to do lots of estimates. In order to shorten a bit the

formulae which will appear, we introduce the following notation.

Notation 3.2. Given a � 2 C4, let

˛ D ˛.�/ D max¹jpj; jqj; jr jº
2

:

For the rest of this section, let us �x � 2 C4 and a �-Marko� map �.

3.1. Arrows assigned by a �-Marko� map. As Bowditch [6] and Tan, Wong

and Zhang [28] did, we may use � 2 ˆ� to assign to each undirected edge e a par-

ticular directed edge vect�.e/ with underlying edge e. Suppose e $ .X; Y I Z; W /.

If jzj > jwj, then the arrow on e points towards W ; in other words, vect�.e/ D
.X; Y I Z ! W /. If jzj < jwj, we put an arrow on e pointing towards Z, that is,

vect�.e/ D .X; Y I W ! Z/. If it happens that jzj D jwj then we choose vect�.e/

arbitrarily, the choice does not a�ect the arguments in the latter part of this paper.

Let EE.†/ be the set of oriented edges.

A vertex with all three arrows pointing towards it is called a sink, one where

two arrows point towards it and one away is called a merge, and vertex with two

(respectively three) arrows pointing away from it is called a fork (respectively

source).
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Lemma 3.3 (fork lemma). Suppose .X; Y; Z/ 2 �1 � �2 � �3 meet at a vertex

v 2 V.†/, and the arrows on the edges X \ Y and X \ Z both point away from

v. �en at least one of the following is true:

� jxj � 2 C jqj C jr j
4

;

� jyj < 2;

� jzj < 2.

We have similar results if the edges Y \ Z and Y \ X (or Z \ X and Z \ Y )

both point away from v.

Proof. Let e2 and e3 be the arrows pointing away from v, as shown in Figure 2.

Figure 2. A fork.

Let Y 0 and Z0 be the regions such that

e2 D .X; ZI Y �! Y 0/

and

e3 D .X; Y I Z �! Z0/:

�e edge relation gives

jxzj D jy C y0 � qj
� jyj C jy0j C jqj
� 2jyj C jqj:

Similarly

jxyj � 2jzj C jr j:
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Adding both inequalities, one obtains

jxj.jyj C jzj/ � 2.jyj C jzj/ C .jqj C jr j/:

If jyj � 2 and jzj � 2, then we have

jxj � 2 C jqj C jr j
jyj C jzj � 2 C jqj C jr j

4
:

A weaker statement will be su�cient for most of the paper.

Corollary 3.4. Suppose .X; Y; Z/ 2 �1 � �2 � �3 meet at a vertex v 2 V.†/,

and two arrows point away from v, that is, v is a fork or a source. �en

min¹jxj; jyj; jzjº � 2 C ˛:

Lemma 3.5. �ere is a constant m.�/ 2 R>0 such that if three regions X; Y; Z

meet at a sink, then

min¹jxj; jyj; jzjº � m.�/:

Proof. We show that, if jxj; jyj; jzj are all su�ciently large, then the vertex v

cannot be a sink. We may assume x; y; z ¤ 0 and

max¹jpj; jqj; jr jº � jxj � jyj � jzj:

We can rewrite (3) as

z

xy
C y

xz
C x

yz
C 1 D p

yz
C q

xz
C r

xy
C s

xyz
:

�ere exists K > 0 such that if K < jxj � jyj � jzj, then

ˇ

ˇ

ˇ

y

xz

ˇ

ˇ

ˇ ;

ˇ

ˇ

ˇ

ˇ

x

yz

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

p

yz

ˇ

ˇ

ˇ

ˇ

;
ˇ

ˇ

ˇ

q

xz

ˇ

ˇ

ˇ ;

ˇ

ˇ

ˇ

ˇ

r

xy

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

s

xyz

ˇ

ˇ

ˇ

ˇ

are all smaller than 1
12

where the bounds for j y
xz

j and j x
yz

j follows from the fact

that jxj � jyj � jzj and jxj; jyj; jzj > K with K large (say K > 12). It follows

that
ˇ

ˇ

ˇ

ˇ

z

xy
C 1

ˇ

ˇ

ˇ

ˇ

<
1

2
and so

ˇ

ˇ

ˇ

ˇ

z

xy

ˇ

ˇ

ˇ

ˇ

>
1

2
:

On the other hand, we have
ˇ

ˇ

ˇ

ˇ

z

xy
C 1 � r

xy

ˇ

ˇ

ˇ

ˇ

<
1

2
:

So we infer that jzj > jz C xy � r j. Hence the arrow on the edge X \Y is directed

away from v which proves that v is not a sink.
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3.2. Neighbors around a region. For each X 2 �1, its boundary @X is a

bi-in�nite path consisting of a sequence of edges of the form X \ Yn alternating

with X \ Zn, where .Yn/n2Z and .Zn/n2Z are bi-in�nite sequences of comple-

mentary regions in �2 and �3. �e edge relations (6) and (7) are such that

ynC1 D q � xzn � ynI

znC1 D r � xynC1 � zn

D r � xq C .x2 � 1/zn C xyn:

Remark 3.6. �e map .x; yn; zn/ ! .x; ynC1; znC1/ is exactly the map de�ned

by the Dehn twist along the curve ˛ˇ de�ned in the introduction.

We can reformulate these equations in terms of matrices:
�

ynC1

znC1

�

D
��1 �x

x x2 � 1

�

�
�

yn

zn

�

C
�

q

r � qx

�

: (8)

If x ¤ ˙2, this can be rewritten as
 

ynC1

znC1

!

D
 

y.x/

z.x/

!

C
 

�1 �x

x x2 � 1

!

�
��

yn

zn

�

�
�

y.x/

z.x/

��

; (9)

with

y.x/ D 1

4 � x2
.2q � xr/;

z.x/ D 1

4 � x2
.2r � xq/:

Note. y.x/ and z.x/ are the coordinates of the center of the conic in coordinates

.y; z/ de�ned by the vertex relation.

�e matrix

M WD
��1 �x

x x2 � 1

�

has determinant one. Hence its eigenvalues � and ��1 are such that � C ��1 D
tr M D x2 � 2. Explicitly, if ı is a square root of x2 � 4 in C, then the eigenvalues

are given by

� D x2 � 2 C xı

2
;

��1 D x2 � 2 � xı

2
:
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�e matrix M is

� elliptic, if tr M 2 Œ�2; 2/ () x 2 .�2; 2/;

� parabolic, if tr M D 2 () x D ˙2;

� loxodromic, if tr M … Œ�2; 2� () x … Œ�2; 2�.

Case 1 . M is elliptic, that is x 2 .�2; 2/. Let � 2 .0; �/ such that

� D arccos
�x2 � 2

2

�

:

In this case, there exists an invertible matrix P such that

M D P �
�

ei� 0

0 e�i�

�

� P �1:

So, the sequences .yn/, .zn/ are given by

�

yn

zn

�

D
�

y.x/

z.x/

�

C P �
�

ein� 0

0 ein�

�

� P �1 �
��

y0

z0

�

�
�

y.x/

z.x/

��

: (10)

Hence, the sequences .yn/ and .zn/ are bounded.

Case 2. M is parabolic, that is x 2 ¹�2; 2º. When x D 2, we get the exact

formulae:

yn D n2.q � r/ C nr � .2n � 1/.y0 C z0/I

zn D n2.r � q/ � nq C 2n.y0 C z0/:

Similarly, when x D �2, we get the formulae:

yn D n2.q C r/ � nr C .2n � 1/.z0 � y0/I

zn D n2.q C r/ C nq C 2n.z0 � y0/:

Case 3. M is loxodromic, that is x … Œ�2; 2�. In particular, x2 ¤ 4 and x and

ı are both non-zero. It follows that I2 � M is invertible. We have the following

formula:
�

yn

zn

�

D
�

y.x/

z.x/

�

C M n

��

y0

z0

�

�
�

y.x/

z.x/

��

: (11)
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Diagonalizing M , we obtain the following formula

M D P �
�

� 0

0 ��1

�

� P �1;

with

P D

0

B

@

��1 C 1

x

� C 1

x

�1 �1

1

C

A
:

Hence, a straightforward calculation gives

M n D 1p
x2 � 4

0

B

@

� C 1

x
.��n � �n�1/ ��n � �n

�n � ��n
� C 1

x
.�n � ��n�1/

1

C

A
:

Using the de�nition of �, we can see that

ƒ D � C 1

x
D x C ı

2

is a square root of �. And similarly

ƒ�1 D ��1 C 1

x
D x � ı

2

is a square root of ��1. Moreover we have

ı D ƒ � ƒ�1:

So we obtain the following closed formulae for yn and zn:

yn D 1

ƒ � ƒ�1
.�ƒ2n.ƒ�1.y0 � y/ C .z0 � z//

C ƒ�2n.ƒ.y0 � y/ C .z0 � z/// C yI

zn D 1

ƒ � ƒ�1
.ƒ2nC1.ƒ�1.y0 � y/ C .z0 � z//

� ƒ�2n�1.ƒ.y0 � y/ C .z0 � z/// C z:
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�is means we can express these formulae as

yn D Aƒ2n C Bƒ�2n C yI

zn D �.Aƒ2nC1 C Bƒ�2n�1/ C z;

with

A D �1

ƒ � ƒ�1
.ƒ�1.y0 � y/ C .z0 � z//;

B D 1

ƒ � ƒ�1
.ƒ.y0 � y/ C .z0 � z//:

Hence, we see that both sequences have the same behavior, up to sign.

We have

jƒj D 1 () j�j D 1 () x 2 Œ�2; 2�:

Hence, when x … Œ�2; 2� and A; B are both non-zero, the sequences jynj and jznj
grow exponentially in n and �n. To determine when at least one of A; B D 0, we

have the following identity concerning the product AB:

AB D �1

ı2

�x C ı

2
.y0 � y/ C .z0 � z/

��x � ı

2
.y0 � y/ C .z0 � z/

�

D 1

4 � x2

�

.y0 � y/2 C
�x C ı

2
C x � ı

2

�

.y0 � y/.z0 � z/ C .z0 � z/2
�

D 1

4 � x2
.y2

0 C xy0z0 C z2
0 � y0.2y C xz/ � z0.2z C xy/ C y

2 C z
2 C xyz/

D 1

4 � x2

�

y2
0 C xy0z0 C z2

0 � qy0 � rz0 C q2 C r2 � xrq

4 � x2

�

D 1

4 � x2

�

px C s � x2 C q2 C r2 � xrq

4 � x2

�

:

Remark 3.7. �e vertex relationship is

y2
n C xynzn C z2

n � qyn � rzn C x2 � px � s D 0;

so it is a quadric and its type depends on the sign of the determinant

D D det

2

6

4

1
x

2
x

2
1

3

7

5
D 1 � x2

4
:
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For detecting when the conic is degenerate we need the determinant

� D det

2

6

6

6

6

6

6

4

1
x

2
�q

2

x

2
1 � r

2

�q

2
�r

2
.x2 � px � s/

3

7

7

7

7

7

7

5

D �x4 C px3 C .4 C s/x2 C 2.rq � 2p/x � .q2 C r2 C 4s/

4
:

Note that

� D �AB.x2 � 4/2

4
:

We infer that the conic is degenerate when x is a solution of the equation AB=0.

Following Benedetto and Goldman’s notation [3], we can rewrite � as

� D ��a;b.x/�c;d .x/

4
;

where .a; b; c; d/ are such that

GT.a; b; c; d/ D .p; q; r; s/

and

�a;b.x/ D x2 � abx C a2 C b2 � 4:

Let u; v 2 C and denote by x˙
u;v the two solutions of the equation �u;v.x/ D 0.

Using this notation the solutions of the equation AB D 0 are x˙
a;b

; x˙
c;d

.

We note that AB does not depend on y0 and z0. �e coe�cients A and B are

both non-zero unless x 2 ¹x˙
a;b

; x˙
c;d

º. Note also that, in the case

p D q D r D 0;

we recover the formula of Tan, Wong, and Zhang, namely

AB D .x2 � s/

.x2 � 4/
:

We can now conclude the discussion with the following lemma.
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Lemma 3.8. Suppose that X 2 �1 has neighboring regions Yn and Zn, n 2 Z.

(1) If x 2 .�2; 2/, then jynj and jznj remain bounded.

(2) If x D ˙2, then jynj and jznj grow at most quadratically.

(3) If x 62 Œ�2; 2� and x is not a solution of AB D 0, then jynj and jznj grow

exponentially as n ! C1 and as n ! �1.

(4) If x 62 Œ�2; 2� and x is a solution of AB D 0, then

� either

lim
n!�1

yn D y;

lim
n!�1

zn D z

and both jynj and jznj grows exponentially as n ! C1;

� or

lim
n!C1

yn D y;

lim
n!C1

zn D z

and both jynj and jznj grows exponentially as n ! �1;

� or

yn D y and zn D z

for all n 2 Z.

Given � D GT.a; b; c; d/, let

S� WD ¹x˙
i;j W ¹i; j º � ¹a; b; c; dºº:

Note that the case (4) of the previous Lemma can only happen for a Marko� map �

if one of the neighboring regions takes value in S�. In particular, the subcases

of (4) correspond to the cases A ¤ 0, B ¤ 0 and A D B D 0.

We can now give the de�nition of the constant L.�/ used to de�ne the

BQ-conditions. First de�ne M.�/ as

M.�/ D max

²
ˇ

ˇ

ˇ

ˇ

2pi � xpj

4 � x2

ˇ

ˇ

ˇ

ˇ

W x 2 S.�/ n ¹˙2º; pi ¤ pj 2 ¹p; q; rº
³

:

So M.�/ is the maximum modulus of the coordinates of the center of the conic

equation taken on the �nite number of cases where the conic is degenerate.
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De�nition 3.9. Let

L.�/ D max¹2 C ˛; M.�/ C 1º;

and, similarly, let

K.�/ D L.GT.�//:

Lemma 3.10. Suppose ˇ is an in�nite ray in † consisting of a sequence .en/n2N

of edges of † such that the arrow on each en assigned by � is directed towards

enC1. �en the ray ˇ meets at least one region X with j�.X/j � 2 C ˛ and an

in�nite number of regions with j�.X/j � L.�/. Moreover, if ��1.S�/ D ;, then

ˇ meets an in�nite number of regions with j�.X/j � 2 C ˛.

Proof. � First we show that for any � > 0, there exists a region X adjacent to ˇ

such that �.X/ < 2 C ˛ C �.

Let

� D �

2 C ˛

and let .Xi /; .Yi/, and .Zi / the sequences of neighboring regions along the in�nite

ray. �e sequences .jxi j/, .jyi j/, and .jzi j/ are decreasing and bounded below. So

for n large enough, we have two consecutive edges with region X as a common

face, i.e.

vect�.en/ D .X; Y I Z0 �! Z/

and

vect�.enC1/ D .X; ZI Y �! Y 0/;

and with jzj � jz0j � jzjC�. We can furthermore assume that jyj > 2 and jzj > 2.

So we have easily

jxzj D jy C y0 � qj � 2jyj C jqjI

jxyj D jz C z0 � r j � 2jz0j C jr j � 2jzj C jr j C 2�:

Multiplying both inequalities, we get

jxj2 � jyzj � 4jyzj C 2jyj � jr j C 2jzj � jqj C jqr j C �.2jqj C 4jyj/;
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So

jxj2 � 4 C 2
jr j
jzj C 2

jqj
jyj C jqr j

jyzj C �
� 4

jzj C 2jqj
jyzj

�

;

� .2 C ˛/2 C �.2 C ˛/:

Hence, we have that, for all � > 0, there exists a region X adjacent to ˇ such

that j�.X/j < 2 C ˛ C �.

� Next, suppose that for all neighboring regions of the in�nite ray, the values are

always greater than .2 C ˛/. By the above argument, for all � > 0 there exists a

region X such that �.X/ < 2 C ˛ C �. So either �.X/ � 2 C ˛, or, for all �, there

exists an edge en in the ray such that

vect�.en/ D .Y; ZI X �! X 0/

with

jxj C jx0j � 2.2 C ˛/ C �:

Now the edge relation gives

jxj C jx0j � jx C x0j � jyz � pj � jyzj � jpj:

On the other hand, we have

jyzj � jpj > .2 C ˛/2 � jpj
> 2.2 C ˛/ C 2˛ � jpj C ˛2

> 2.2 C ˛/ C ˛2:

Hence we have

jxj C jx0j > 2.2 C ˛/ C ˛2:

Hence, if ˛ ¤ 0, and � is small enough, this gives a contradiction.

To conclude, we need to settle the case ˛ D 0, which is equivalent to the case

p D q D r D 0. In this case the triple .�x; �y; �z/ is a s-Marko� triple in

the sense of Tan, Wong, and Zhang, and the map is a Marko� map in their sense.

So Lemma 3.11 of [28] gives the argument in this case, that is, there exists a region

with j�.X/j < 2.
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� For the second part of the statement, assume that there is only a �nite number

of regions meeting the ray such that j�.X/j < 2 C ˛. �en, as the ray is decreas-

ing, it means that one of the sequences .Xi /, .Yj / or .Zk/ that meet the in�nite

ray contains only a �nite number of elements. Without loss of generality we can

assume that it is the sequence .Xi /. Hence there exists n0 such that for all n � n0,

the regions Yn and Zn are the neighbors of Xn0
. But we know that .jyj j/ and .jzkj/

are decreasing and bounded below, and from Lemma 3.8, the only possibility is

that Xn0
2 ��1.S�/.

In addition, in the case where Xn0
2 ��1.S�/, the sequences .yn; zn/ con-

verges to the center of the degenerate conic whose coordinates are strictly smaller

than L.�/. Hence, there is an in�nite number of n such that jynj and jznj are

smaller than L.�/.

Example 3.11. We give an explicit example of an in�nite descending ray which

intersects only a �nite number of regions with values less than 2 C ˛. When

� D .0I 0I 1I 20/, take a Marko� map � such that around a vertex v.X; Y0; Z0/,

x D �.X/ D �
q

3.4 �
p

7/ � �2:016 � �2 � ˛;

y0 D �.Y /; z0 D �.Z0/ 2 R; y0; z0 > 33;

and .x; y0; z0/ satisfy the vertex equation (such y0 and z0 will always exist). �en

the neighboring sequences yn and zn around X (as n ! 1) are both decreas-

ing and converging towards a �xed point .16 C 6
p

7; .8 C 3
p

7/

q

3.4 �
p

7// �
.32; 32/. So this gives an in�nite descending ray with only one neighboring region

with value below 2 C ˛.

We are now able to prove �eorem 3.1.

Proof of �eorem 3.1. �e proof follows the arguments of [28], using Lem-

mata 3.3, 3.5 and 3.10, with details below.

(1) Let l D l.�/ D max¹m.�/; 2 C ˛º. Suppose ��.2 C ˛/ is empty, then

Lemmas 3.3 and 3.10 tell us that there exists a sink. �en Lemma 3.5 states

that around a sink, one of the region is such that j�.X/j < m.�/.

(2) Suppose the statement is false, then choose a minimal path on † joining two

di�erent connected components. We will use induction on the number of

edges of this path.
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Suppose the path has one edge e. Without loss of generality we can assume

e 2 E3.†/ and suppose Ee D .X; Y I Z ! W /. �en we have

.2 C ˛/2 < jxyj � jr j C jzj C jwj � 2.˛/ C 2.2 C ˛/;

so ˛2 < 0, which is absurd.

Suppose now that the path has more than one edge, then the two ends of

the path are directed outwards and we derive a contradiction by a simple

induction argument on the length of the path using Lemma 3.3, as discussed

in detail in the proof of �eorem 1 (2) of Bowditch [6].

4. Domain of discontinuity

�e aim of this section is to prove �eorem A from the Introduction. In particular,

we will prove that the set .ˆ�/Q of maps satisfying the BQ-conditions (where

the constant K is taken to be L.�/, equivalently K.�/ given by De�nition 3.9)

is an open subset of ˆ� in �eorem 4.19, and that the mapping class group acts

properly discontinuously on it in �eorem 4.20. To do so, we will use the notion of

Fibonacci growth, already used by Bowditch [6] and Tan, Wong and Zhang [28].

4.1. Fibonacci functions. In this section we recall the de�nition, given in [6],

of Fibonacci function Fe associated to an edge e 2 E.†/, and of upper or lower

Fibonacci bound for a function f W � ! Œ0; 1/.

Suppose Ee 2 EE.†/, and set �0 to be ¹X; Y º, where e D X \ Y . Let †˙ be

the two disjoint subtrees obtained by removing the interior of e (such that †C is

at the head of Ee), and let �˙ be the set of regions whose boundaries lie in †˙.

We also denote

�0˙ D �0 [ �˙:

First, we recall the notion of distance. Given Ee 2 EE.†/ with underlying edge

e, we describe the function

d W �0�.Ee/ �! N:

For X 2 �0�.Ee/ we de�ne

d.X/ D dEe.X/

to be the number of edges in the shortest path joining the head of Ee to X (see

Figure 3). Given any Z 2 ��.Ee/, there are precisely two regions X; Y 2 �0�.Ee/

meeting Z and satisfying d.X/ < d.Z/ and d.Y / < d.Z/. Note that X; Y; Z all

meet in a vertex.
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Now we can de�ne the Fibonacci function

Fe W � �! N

with respect to an edge e as follows. We orient e arbitrarily as Ee, and use �Ee to

denote the opposite orientation on e, and de�ne

FEe W �0�.Ee/ �! N

by

FEe.Z/ D

8

<

:

1 if Z 2 �0.e/;

FEe.X/ C FEe.Y / if Z 2 ��.Ee/;

and X; Y 2 �0�.Ee/ are the two regions described above: X \ Y \ Z ¤ ¿ and

d.X/ < d.Z/; d.Y / < d.Z/. Now we de�ne Fe by

Fe.X/ D

8

<

:

FEe.X/ if X 2 �0�.Ee/;

F�Ee.X/ if X 2 �C.Ee/:

Figure 3. Distance function. Figure 4. Fibonacci function FEe.

�e functions Fe do not depend on the initial choice of the orientation Ee and

provide a means for measuring the growth rates of functions de�ned on subsets

of �. �e following lemma can be easily proved by induction. Its corollary shows

that the concept of upper and lower Fibonacci bound is independent of the edge e

used.
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Lemma 4.1 (Lemma 2.1.1 in [6]). Suppose

f W �0�.Ee/ �! Œ0; 1/;

where �0.e/ D ¹X1; X2º.
(i) If f satis�es f .Z/ � f .X/Cf .Y /Cc for some �xed constant c and arbitrary

X; Y; Z 2 �0�.Ee/ meeting at a vertex and satisfying d.X/ < d.Z/ and

d.Y / < d.Z/, then

f .X/ � .M C c/Fe.X/ � c

for all X 2 �0�.Ee/, where M D max¹f .X1/; f .X2/º.
(ii) If f satis�es f .Z/ � f .X/ C f .Y / � c for some �xed constant c, where

0 < c < m D min¹f .X1/; f .X2/º and arbitrary X; Y; Z as in part (i), then

f .X/ � .m � c/Fe.X/ C c

for all X 2 �0�.Ee/.

Corollary 4.2 (Corollary 2.1.2 in [6]). Suppose f W � ! Œ0; 1/ satis�es an in-

equality of the form f .Z/ � f .X/Cf .Y /Cc for some �xed constant c, whenever

X; Y; Z 2 � meet at a vertex. �en for any given edge e 2 E.†/, there is a con-

stant K > 0, such that

f .X/ � KFe.X/

for all X 2 �.

Now we can de�ne what it means for a function f W � ! Œ0; 1/ to have an

upper or lower Fibonacci bound.

De�nition 4.3. Suppose f W � ! Œ0; 1/, and �0 � �. We say that:

� f has an upper Fibonacci bound on �0 if there is some constant � > 0 such

that f .X/ � � Fe.X/ for all X 2 �0;

� f has a lower Fibonacci bound on �0 if there is some constant � > 0 such

that f .X/ � � Fe.X/ for all but �nitely many X 2 �0;

� f has Fibonacci growth on �0 if it has both upper and lower Fibonacci

bounds on �0;

� f has Fibonacci growth if f has Fibonacci growth on all of �.
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�e following lemma tells us that, given an arbitrary �-Marko� map �, the

function logC j�j WD max¹log j�j; 0º always has an upper Fibonacci bound on �.

Hence we will only need to consider criteria for it to have a lower Fibonacci bound

on certain branches of the binary tree † in order to determine if it has Fibonacci

growth.

Lemma 4.4. If � 2 ˆ�, then logC j�j has an upper Fibonacci bound on �.

Proof. We will follow the arguments of [28]. By Corollary 4.2 we only need to

show that for an arbitrary �-Marko� map .x; y; z/ we have

logC jzj � logC jxj C logC jyj C log 10

C logC jpj C logC jqj C logC jr j C logC jsj:
(12)

If jzj � 2jxj or jzj � 2jyj, then (12) holds already. So we suppose jzj � 2jxj
and jzj � 2jyj. �en, since px C qy C rz C s � xyz D x2 C y2 C z2, we have

jpxj C jqyj C jrzj C jsj C jxyzj � jzj2 � jxj2 � jyj2

D jzj2=2 C .jzj2=4 � jxj2/ C .jzj2=4 � jyj2/

� jzj2=2:

Hence jzj2 � 10 max¹jpxj; jqyj; jrzj; jsj; jxyzjº, that is, according to the value of

max¹jpxj; jqyj; jrzj; jsj; jxyzjº, we have, respectively,

(1) jzj2 � 10jpxj;
(2) jzj2 � 10jqyj;
(3) jzj2 � 10jrzj;
(4) jzj2 � 10jsj; or

(5) jzj2 � 10jxyzj.
�us, since we may assume jzj � 1, we have, respectively,

(1) jzj � jzj2 � 10jpxj;
(2) jzj � jzj2 � 10jqyj;
(3) jzj � 10jr j;
(4) jzj � jzj2 � 10jsj; or

(5) jzj � 10jxyj.
From this, Equation (12) follows easily.
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�e lower Fibonacci bounds are more interesting since, as the following propo-

sition shows, they give the convergence of certain series, as the following propo-

sition shows, see [6].

Proposition 4.5 (Proposition 2.1.4 in [6]). If f W � ! Œ0; 1/ has a lower

Fibonacci bound, then
P

X2�f .X/�s converges for all s > 2 (after excluding

a �nite subset of � on which f takes the value 0).

�e following lemma and corollary hold with proofs similar to the ones given

in [6], giving a criterion for logC j�j to have a lower Fibonacci bound on certain

branches of †.

Lemma 4.6. (i) Suppose Ee 2 EE.†/ is such that we have vect�.e/ D Ee and that

�0.e/ \ ��.2 C ˛/ D ;. �en

�0�.Ee/ \ ��.2 C ˛/ D ;
and the arrow on each edge of †� is directed towards e.

(ii) Furthermore,

log j�.X/j � .m � log 2/Fe.X/

for all X 2 �0�.Ee/, where m D min¹log j�.X/j W X 2 �0.e/º > log.2 C ˛/.

Corollary 4.7. If ��.2 C ˛/ D ;, then there exists a unique sink, and logC j�j
has a lower Fibonacci bound.

Proof of Lemma 4.6. We will follow Bowditch’s discussion [6]. Suppose that

Ee 2 EE.†/ satis�es vectˆ.e/ D Ee. Since ��.2 C ˛/ is connected, we must have

either ��.2 C ˛/ � �C.Ee/ or ��.2 C ˛/ � ��.Ee/ (possibly ��.2 C ˛/ D ;).

If ��.2 C ˛/ � ��.Ee/ and ��.2 C ˛/ ¤ ;, then ˛.e/ D �Ee (using an argu-

ment similar to the proof of �eorem 3.1 (ii)). �is proves the �rst part of (i).

For proving that arrows are directed towards e one should use Lemma 3.3.

For the second part of the lemma, let X; Y; Z 2 �0�.Ee/ meeting at a vertex

and satisfying d.X/ < d.Z/ and d.Y / < d.Z/, as in Lemma 4.1. Without loss of

generality suppose e 2 E3.†/. By (i) we know that the arrow on X \ Y points

away from Z. We know also that jr j � 2˛ � jzj˛. So we have that

jxyj � 2jzj C jr j � .2 C ˛/jzj:
�us

logC j�.Z/j � logC j�.X/j C logC j�.Y /j � log.2 C ˛/:

We can now apply Lemma 4.1 (ii).
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Proof of Corollary 4.7. Again, following Bowditch’s ideas, we recall that the ex-

istence comes from Lemma 3.10, the uniqueness from Lemma 3.3, while the upper

Fibonacci bound comes from Lemma 4.4 and the lower one from Lemma 4.6.

Recall the de�nition of .ˆ�/Q given in Section 2.4. We are ready to complete

the aim of this subsection which is to prove the following result.

�eorem 4.8. Suppose � 2 .ˆ�/Q, then logCj�j has Fibonacci growth.

In order to prove it, we expand the discussion of Lemma 4.6 and we consider

the case where ��.Ee/ \ ��.2/ D ; and exactly one of the two regions in �0.e/

has norm no greater than 2 C ˛.

Lemma 4.9. Suppose that Ee 2 EE.†/ satis�es both the condition vect�.e/ D Ee and

the condition �0�.Ee/ \ ��.2 C ˛/ D ¹X0º, where X0 2 �0.Ee/ with x0 … Œ�2; 2�.

�en logC j�j has a Fibonacci bound on �0�.Ee/.

Proof. Our proof slightly modi�es Bowditch’s proof of Lemma 3.8 in [6]. Let

.Een; Efn/1
nD0 be the sequence of directed edges lying in the boundary of X0 and in

�0�.Ee/ so that Ee0 D Ee and Een is directed away from EfnC1 and towards Efn, and Efn

is directed away from Een and towards Een�1. For n � 1, let vn be the vertex incident

on both en and fn and un be the vertex incident on both en and fnC1; let aso E"n

be the third edge (distinct from en and fn) incident on vn and directed towards

vn, and, similarly, let E�n be the third edge (distinct from en and fnC1) incident on

un and directed towards un. For n � 0, let Yn and Zn be the regions such that

Yn \ X0 D en and Zn \ X0 D fn. (See Figure 5 for clarity.)

Figure 5. Neighbors around a region X0.

�us �0�.Ee/ D ¹X0º [ S1
nD1.�0�.E"n/ [ �0�.E�n//. We recall that, in this

context, Bowditch noticed that, using Lemma 4.1(ii), a map f W �0�.Ee/ ! Œ0; 1/

has a lower Fibonacci bound on �0�.Ee/ if and only if there is some constant k > 0

such that for all n � 1 and for all X 2 �0�.E"n/ we have f .X/ � knFE"n
.X/ and,

similarly, for all X 2 �0�.E�n/ we have f .X/ � knFE�n
.X/.
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By Lemma 3.8, jynj and jznj grow exponentially as n ! 1, and so

log jynj � cn and log jznj � c0n for some constants c; c0 > 0. Hence we have,

for all n � 1, that logC j�.X/j � cnFE"n
.X/, for all X 2 �0�.E"n/, and that

logC j�.X/j � cnFE�n
.X/, for all X 2 �0�.E�n/. �us, using the characterisation

above, it follows that logC j�j has a lower Fibonacci bound on �0�.Ee/.

Since the upper Fibonacci bound was proved in Lemma 4.4, the proof is done.

We can now prove �eorem 4.8. We �rst recall from [6] that the circular set

C.T / of a �nite subtree T � † consists of the set of directed edges Ee such that

the intersection Ee \ T is the head of Ee.

Proof. �e proof of �eorem 4.8 is the same as that of �eorem 2 in [6].

We sketch it as follows. By Lemma 4.4, we only need to show that logC j�j has

a lower Fibonacci bound on �. If ��.2 C ˛/ has at most one element, the con-

clusion follows easily by Corollary 4.7 and Lemma 4.9. Hence we can suppose

��.2 C ˛/ has at least two elements.

Recall that ��.2C ˛/ � � is �nite and ��.k/ is connected for any k � 2C ˛,

see �eorem 3.1. Let T be the (�nite) subtree of † spanned by the set of edges

e such that �0.e/ � ��.2 C ˛/. Let C D C.T / be the circular set of directed

edges given by T . Note that ��.2 C ˛/ D S

Ee2C �0�.Ee/. Hence it su�ces to

show that logC j�j has a lower Fibonacci bound on �0�.Ee/ for every Ee 2 C . �en

the conclusion of �eorem 4.8 follows by the following lemma, Lemma 4.6 and

Lemma 4.9.

Lemma 4.10. For each Ee 2 C , we have

Ee D vect�.e/;

��.Ee/ \ ��.2 C ˛/ D ;

and �0.e/ \ ��.2 C ˛/ has at most one element.

Proof. Let Ee D .X; Y I Z ! W / 2 C.T /. If one of X and Y , say X , is in

��.2 C ˛/, then Y; Z … ��.2 C ˛/ and W 2 ��.2 C ˛/ by the de�nition of T .

Hence in this case Ee D vect�.e/, ��.Ee/ \ ��.2 C ˛/ D ; and �0.e/ \ ��.2 C ˛/

has one element, X .

Now suppose neither X nor Y is in ��.2 C ˛/, then W 2 ��.2 C ˛/ and

Z … ��.2 C ˛/ since ��.2 C ˛/ is connected. �us in this case Ee D vect�.e/,

�0�.Ee/ \ ��.2 C ˛/ D ;. �is proves the lemma, completing the proof of the

theorem.
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With �eorem 4.8 established, the following result becomes an easy corollary

of Proposition 4.5.

Corollary 4.11. If � 2 .ˆ�/Q, then for any t > 0, the series
P

X2� j�.X/jt
converges absolutely.

4.2. Openness and properly discontinuous action. In this section we will prove

�eorem A, using the de�nition of an attracting tree T .t/ for t � 0. In particular,

�rst, we will de�ne the attracting subtree T .0/, then we will use the existence of

a certain map H�, proved in Lemma 4.15, to de�ne the attracting subtree T .t/.

4.2.1. Attracting tree T.0/. From Lemma 3.8, we see that, when x D �.X/ …
Œ�2; 2� [ S�, the sequences jynj and jznj are monotonic for su�ciently large and

su�ciently small n. (�e set S� was de�ned at page 757.) From this observation,

the following result follows easily.

Lemma 4.12. If X 2 � and �.X/ … Œ�2; 2� [ S�, then there is a non-empty

�nite subarc J.X/ � @X with the property that, if e is any edge in @X not lying

in J.X/, then the arrow on e points towards J.X/. Moreover, we can assume that

Y \ X � J.X/ for all Y 2 ��.2 C ˛/.

When x D �.X/ 2 Œ�2; 2� [ S�, we shall set J.X/ D @X .

Now, given � 2 ˆ� with ��.2 C ˛/ ¤ ; (where ˛ was introduced in Nota-

tion 3.2), we de�ne

T .0/ WD
[

X2��.2C˛/

J.X/:

If ��.2 C ˛/ D ;, then, applying Corollary 4.7, we de�ne T .0/ as the unique

sink.

Lemma 4.13. T .0/ is connected, and the arrow on each edge not in T .0/ points

towards T .0/.

Proof. �e proof is elementary from Lemma 3.3. �e arrows on every edge on

the circular boundary of a connected component T 0 of T .0/ points towards T 0.

Hence if we suppose there exists an arc outside T .0/ with its two endpoints on the

boundary of T .0/, there is a vertex v with two edges that point away from v, and

hence the vertex v would belong to ��.2C˛/, which gives rise to a contradiction.

�e same applies if an arrow outside T .0/ does not points toward T .0/.
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We say that T .0/ is an attracting subtree.

Corollary 4.14. If � 2 .ˆ�/Q, then there is a �nite attracting subtree T .0/.

Proof. If ��.2 C ˛/ ¤ ;, then the tree T .0/ given by Lemma 4.13 is �nite. In-

deed, as � 2 .ˆ�/Q, there cannot be an in�nite descending sequence (or bounded

sequence) of regions and hence ��1.Œ�2; 2� [ S�/ D ;. If ��.2 C ˛/ D ;, then

the result is true by de�nition.

4.2.2. Function H�. Recalling the de�nition of S� given at page 757, we can

state the following result.

Lemma 4.15. �ere exists a function

H� W C n .Œ�2; 2� [ S�/ �! R>0

so that for any � 2 ˆ� and X 2 �, if .Yn/ and .Zn/ are the bi-in�nite sequence

of regions meeting X , then there are integers n1 � n2 such that

jynj � H�.x/ and jznj � H�.x/ () n1 � n � n2

and jynj and jznj are monotomically decreasing for n 2 .�1; n1/ and monotoni-

cally increasing for n 2 Œn2; 1/. Moreover, H�.x/ � 2 C ˛.

Proof. From the formulae for yn and zn found at the end of the discussion of

Case 3 in Section 3.2, it is an easy exercise, since jynj and jznj are asymptotic to

exponentials in jnj as jnj ! 1.

Remark 4.16. A formula for H�.x/ would be quite hard to write explicitly.

As there is no ambiguity, we will use H.x/ in place of H�.x/ for the rest of

the section.

4.2.3. Attracting tree T.t/. For x 2 Œ�2; 2� [ S�, we set

H�.x/ D H.x/ D 1:

Now for X 2 � with x D �.X/ … Œ�2; 2� [ S� and for r � H.x/, we set

Jr .X/ D
[

¹.X \ Yn/ [ .X \ Zn/ W jynj � r and jznj � rº:

Jr .X/ is a subarc of @X with the property that, if e is any edge on @X n Jr .X/,

then the arrow on e points towards Jr .X/.
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We now de�ne an attracting subtree. Let

T .t/ WD
[

X2�� .2C˛Ct/

JH.x/Ct .X/:

Lemma 4.17. For all t � 0, the subtree T .t/ is connected and attracting. More-

over, if t � m.�/ � 2 � ˛, then T .t/ ¤ ;.

We can describe T .t/ directly in terms of its edges. Suppose e D X \ Y is an

edge. �en

e 2 T .t/ () either jxj � 2 C ˛ C t and jyj � H.x/ C t

or jyj � 2 C ˛ C t and jxj � H.y/ C t:

We can now prove the following lemma.

Lemma 4.18. For all t � 0, � 2 .ˆ�/Q if and only if T .t/ is �nite.

Proof. Let � 2 .ˆ�/Q, then for each X 2 ��.2 C ˛ C t / and t � 0, the arc

JH.x/Ct .X/ has a �nite number of edges as x … Œ�2; 2� [ S�. On the other hand,

the lower Fibonacci bound proves that ��.2C ˛ C t / is �nite, hence T .t/ is �nite.

Reciprocally, suppose T .t/ is �nite. �en it is clear that ��1.Œ�2; 2�[S�/ D ;.

Now, for all X 2 ��.2 C ˛ C t /, the arc JH.x/Ct .X/ contains at least one edge.

Hence we infer that ��.2 C ˛ C t / is �nite, so � 2 .ˆ�/Q.

�eorem 4.19. �e set .ˆ�/Q of maps satisfying the BQ-conditions is an open

MCG-invariant subset of ˆ�.

Proof. �e invariance is easy. In fact, the conditions de�ning .ˆ�/Q only depend

on the set of lengths of the simple closed curves, and the mapping class group

does not change it.

Now, let � 2 .ˆ�/Q, and t1 > t0 > m.�/ � 2 � ˛. By Lemma 4.18,

T .t1/ is a �nite subtree of †, so we may choose t2 > t1 large enough so that

T .t2/ contains T .t1/ in its interior, that is, it contains T .t1/ together with all the

edges of the circular set C.T .t1//. Note that T .t2/ is also a �nite subtree of †.

For any �0 2 ˆ�, we write T 0.t / for T�0.t /.

Claim If �0 is su�ciently close to �, then T 0.t1/ \ T .t2/ � T .t1/.
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To prove the claim, choose an edge e 2 T .t2/nT .t1/ with neighboring regions

X and Y , so e D X \ Y . Since e 2 T .t2/, we may assume j�.X/j � 2 C t2 C ˛

and j�.Y /j � H.x/ C t2. �en, as e … T .t1/, we have (j�.X/j > 2 C t1 C ˛ or

j�.Y /j > H.x/ C t1) and (j�.Y /j > 2 C t1 C ˛ or j�.X/j > H.y/ C t1). �us, if

�0 is su�ciently close to �, the same inequalities hold when we replace � with �0.

Hence e … T 0.t1/. �is proves the claim, since there are only �nitely many edges

in T .t2/ n T .t1/.

We know that T .m.�/ � 2 � ˛/ is a non-empty subtree of T .t2/ and

t1 > m.�/ � 2 � ˛, it follows that, for �0 su�ciently close to �, we have

T 0.t1/ \ T .t2/ � T .m.�/ � 2 � ˛/ ¤ ;.

Since T 0.t1/ \ T .t2/ � T .t1/ and T .t1/ is contained in the interior of T .t2/,

we know that T .t2/ contains a connected component of T 0.t1/. Since T 0.t1/ is

connected, we must have T 0.t1/ � T .t2/. �erefore T 0.t1/ is �nite, and so we

conclude �0 2 .ˆ�/Q.

�eorem 4.20. �e mapping class group acts properly discontinuously on the

set .ˆ�/Q.

Proof. �e statement is equivalent to the fact that PSL.2;Z/ acts properly discon-

tinuously on that set, that is, for any compact subset K of .ˆ�/Q, the set

¹H 2 PSL.2;Z/ W HK \ K ¤ ;º

is �nite. Suppose not, then there exists a sequence of distinct Hi 2 PSL.2;Z/

and �i 2 K such that Hi .�i / 2 K. Passing to a subsequence, by the compactness

of K, we may assume that �i ! � 2 K, Hi ! 1, and Hi .�i/ ! �0 2 K.

(Note that in a discrete group, for example PSL.2;Z/, an in�nite sequence of

distinct elements Hi tends to 1.)

Now, as in the proof of �eorem 4.19, we have the tree T�.t1/ of � is �nite

for some t1 > 0, and that T�i
.t1/ is contained in the �nite tree T�.t2/, for some

t2 > t1 and for all i su�ciently large. �is implies that the same constant � can

be used in the lower Fibonacci bound for all �i for i su�ciently large, and hence

Hi .�i / ! 1 as i ! 1. (Note that, in order to make sense of � ! 1, we use

the identi�cation of ˆ� with X� , where � D GT.�/, and hence with the char-

acter variety V D ¹.x; y; z/ 2 C3 W x2 C y2 C z2 C xyz D px C qy C rz C sº;
see the discussion in the Introduction and in Remark 2.2.) �is contradicts

Hi .�i / ! �0 2 K.
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5. �e real case

In this section we focus on the subset XR
� � X� of real characters .x; y; z/ 2 R3

with boundary data � D .a; b; c; d/ 2 R4. We will call this space the real character

variety. �e points of this space correspond to the real points of the complex

relative character variety. �e representations corresponding to these characters

are representations of �1.S/ into one of the two real forms of SL.2;C/, namely

SL.2;R/ and SU.2/. In particular, we will prove �eorem B from the Introduction,

see �eorem 5.3 and Corollary 5.4.

5.1. Topology of the real character variety. In [3], Benedetto and Goldman

completely described the topology of the set XR
� , when � 2 R4. �ere are six

di�erent cases depending on the number n of boundary traces in Œ�2; 2�, that can

vary from 0 to 4:

(1) a quadruply punctured sphere, if n D 0 and abcd < 0;

(2) a disjoint union of a triply punctured torus and a disc, if n D 0 and abcd > 0;

(3) a disjoint union of a triply punctured sphere and a disc, if n D 1;

(4) a disjoint union of an annulus and two discs, if n D 2;

(5) a disjoint union of four discs, if n D 3;

(6) a disjoint union of four discs and a sphere, if n D 4.

Representations in SU.2/ are such that n D 4 and correspond to the compact

connected component of XR
� . However, when the parameters � D .a; b; c; d/ 2

Œ�2; 2� satisfy certain inequalities (see Proposition 1.4 of [3]), the compact com-

ponent consists of representations in SL.2;R/. �e action of the mapping class

group on the SU.2/-character variety is ergodic by the work of Goldman [11].

�e non-compact components always correspond to representations into

SL.2;R/, and in this case the dynamics of the action is richer. When n D 0 the

representations send boundary curves to hyperbolic elements of SL.2;R/. In this

case, a classic result of Goldman [10] states that the components are indexed by

the relative Euler class which, according to Milnor-Wood inequality, is an element

of ¹�2; �1; 0; 1; 2º.
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So, in the case n D 0, we have the following identi�cations.

� �e disc component when abcd > 0 corresponds to hyperbolic structures on

S with geodesic boundary or equivalently to representations with maximal

relative Euler class 2 or �2; see [3].

� �e component in the case abcd < 0 corresponds to representations with

relative Euler class 1 or �1. Indeed, using the additivity of the relative Euler

class, when we cut S into two pairs of pants, the relative Euler class of one

of them is 0 and the other is ˙1. Since the product of the three boundary

traces is positive in the �rst pair of pants and negative in the other, we have

abcd < 0.

� �e triply punctured torus component corresponds to representations with

relative Euler class 0. For the same reason, when cutting S into two pairs of

pants the two relative Euler class are C1 and �1, and hence both products of

boundary traces are negative.

In the next section we will prove that the action of the mapping class group on

the components corresponding to non-maximal Euler class are never ergodic on

the whole component, except for a compact subset of dimension 1 of parameters

� D .a; b; c; d/ 2 R4 corresponding to the equations

p.a; b; c; d/ D q.a; b; c; d/ D r.a; b; c; d/ D 0

and s 2 Œ4; 20�. �is is rather surprising as one could have expected that when

.p; q; r/ are small enough, the dynamics of the action would be very close to the

dynamics on the one-holed torus, which is known to be ergodic. In fact, domains

of discontinuity will appear as soon as these parameters are non-zero; see �eo-

rem 5.3 and Corollary 5.4.

5.2. Construction of a Marko�-map with BQ-conditions. We will prove in

this section that, if the parameters p, q and r are not all zero, then the set of

characters in XR
� satisfying the BQ-condition is non-empty.

Lemma 5.1. Let � D .p; q; r; s/ and suppose .p; q; r/ ¤ .0; 0; 0/. For all " > 0

and K > 0, there exists a real �-Marko� triple .x1; x2; x3/ such that one of

the values is �.2 C "/ < xi < �2 and the other two satisfy xj xk > 0 and

jxj j; jxk j > K.
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Proof. As .p; q; r/ ¤ .0; 0; 0/, we may assume, without loss of generality, that

.q; r/ ¤ .0; 0/ with qr � 0 (so q and r have the same sign). In this case, we

search a �-Marko� triple of the form .�.2 C �/; y; y/ with � > 0 and y is such

that y.q C r/ < 0 (so y and q are of opposite sign).

Such a point satis�es the equation

.2 C �/2 C 2y2 � .2 C �/y2 C p.2 C �/ � .q C r/y � s D 0:

�is equation is quadratic in � so we can express � as a function of y:

�˙.y/ D 1

2
..y2 � p � 4/ ˙

p

y4 � 8y2 � 2py2 C 4.q C r/y C .p2 C 4s//:

When y gets large and we choose the solution with the minus sign, we have

the following Taylor series:

�.y/ D
y!1

1

2

�

.y2 � p � 4/ � y2

s

1 C
��8 � 2p

y2
C 4

q C r

y3
C p2 C 4s

y4

��

D
y!1

1

2

�

.y2 � p � 4/ � y2
�

1 C 1

2

��8 � 2p

y2
C 4

q C r

y3

�

C o
� 1

y3

���

D
y!1

�q C r

y
C o

� 1

y

�

:

So taking y large enough (in particular larger than K), we have 0 < �.y/ < " and

jyj > K. Hence the triple .�2 � �.y/; y; y/ is a �-Marko� triple satisfying the

conditions.

Lemma 5.2. Let � D .p; q; r; s/ and suppose .p; q; r/ ¤ .0; 0; 0/. �en there

exists a �-Marko� map � 2 ˆ� such that j��.2 C ˛/j is �nite.

Proof. As the three numbers p, q and r are not all zero, there are two of them

that are of the same sign and not both zero. Without loss of generality, we can

assume that .q; r/ ¤ .0; 0/ and q � 0 and r � 0 (the positive case can be treated

the same way). We know from the previous lemma that we can �nd a �-Marko�

triple .�2��.y/; y; y/, with y > 0 large, and �.y/ is a function of y whose Taylor

series is �.y/ D �qCr
y

Co
�

1
y

�

. Let � be the corresponding �-Marko� map. Let’s

call X0; Y0 and Z0 the regions corresponding to this triple. �e neighbors around

X0 are denoted by the two sequences Yn and Zn.

�e values of the neighbors of X0 are of the form:

ynC1 D q C .2 C �/zn � ynI

znC1 D r C .2 C �/ynC1 � zn:
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� First assume that q and r are both non-zero so that �.q C r/ > max¹�q; �rº.
Hence, we can choose y0 D z0 D y large enough so that

� D �.y/ >
max¹�q; �rº

y
> 0:

In this case, we can prove by recurrence that for all n > 0 we have

ynC1 > zn > yn > y:

Indeed for n D 1 we have

y1 D q C .2 C �/y � y

D y C �y C q > yI

z1 D r C .2 C �/y1 � y

D y1 C .y1 � y/ C r C y1� > y1I

y2 D q C .2 C �/z1 � y1

> z1 C .z1 � y1/ C �z1 C q > z1:

�e induction follows the same steps:

znC1 D r C .2 C �/ynC1 � zn

D ynC1 C .ynC1 � zn/ C ynC1� C r

> ynC1 C y� C r

> ynC1I

ynC2 D q C .2 C �/znC1 � yn

> znC1 C .znC1 � ynC1/ C znC1� C q

> znC1:

A similar treatment can be applied to n < 0, in which case we have

zn�1 > yn > zn > y:

�is proves that all neighbors of X0 have value greater than y. As we can

choose y to be greater than 2 C ˛, and the set ��.2 C ˛/ is connected, it is clear

that X0 is the only region in ��.2 C ˛/.
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� Now assume one of q or r is zero, for example r D 0. We can choose y large

enough so that � D �.y/ > �3
4

q
y

and � < 1
4
. In this case we can prove that for all

n � 2 we have

ynC1 > zn > yn � 3

4
q and yn � y:

Indeed for the �rst terms of the sequence, we have

y1 D q C .2 C �/y � y D y C .q C �y/

> y C q

4
I

z1 D .2 C �/y1 � y

> y1 C .y1 � y/ C y1�

> y1 C q

4
� 3q

4
C �

q

4

> y1 � q

2
I

y2 D q C .2 C �/z1 � y1

> z1 C .z1 � y1/ C �.y/z1 > z1I

z2 D .2 C �/y2 � z1

D y2 C .y2 � z1/ C �y2 > y2 � 3q

4
I

y3 D q C .2 C �/z2 � y2

> z2 � q

2
:

�e induction follows the same steps:

znC1 D .2 C �/ynC1 � zn

D ynC1 C .ynC1 � zn/ C ynC1�

> ynC1 C y�

> ynC1 � 3q

4
I
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ynC2 D q C .2 C �/znC1 � yn

> znC1 C .znC1 � ynC1/ C znC1� C q

> znC1 � 3q

4
� 3q

4
C q

> znC1:

Similarly for n � �2, we have the same results. In conclusion in all cases, the set

��.2 C ˛/ is �nite.

To conclude, it remains to show that the Marko� map � constructed in the

previous lemma satis�es the BQ-conditions. First, note that ��.2/ is empty, as

we constructed an attracting subtree such that the value of all regions adjacent to

this tree are greater than 2. Now, using the proof of �eorem 4.8, we see that,

if ��.2 C ˛/ is �nite and ��1.Œ�2; 2� [ S�/ D ;, then logC j�j has Fibonacci

growth, and hence ��.L/ is �nite. In addition, since in the construction of � we

can choose any y > 0 large enough as a starting point, and since S� is �nite, we

can see that we can choose � such that ��1.S�/ D ;.

We can now state the theorem.

�eorem 5.3. Let � D .p; q; r; s/ and suppose .p; q; r/ ¤ .0; 0; 0/. �en the set

.ˆ�/RQ is non-empty.

We will use this in the next section.

5.3. Domain of discontinuity. �e result of the previous section and the argu-

ments discussed before for the (complex) character variety (adapted to this setting)

implies the following result.

Corollary 5.4. Let � D .a; b; c; d/ 2 R4. We have the following cases depending

on .a; b; c; d/ for the dynamics of the action of the mapping class group on XR
� .

(1) if jaj D jbj D jcj D jd j with abcd � 0 and 2 < jaj �
q

2.1 C
p

5/, then the

action is ergodic on the whole real relative character variety XR
� .

(2) If jaj D jbj D jcj D jd j with abcd � 0 and jaj D 0 or jaj D 2, then

the action is ergodic on the invariant subset K D XR
� \ Œ�2; 2�3 and is also

ergodic on each of the four components of XR
� n K.

(3) In all other cases, .XR
� /Q is a non-empty open domain of discontinuity for

the action of the mapping class group on XR
� .
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Remark 5.5. A MCG-invariant measure � can be constructed using the natural

symplectic structure on the relative character variety, de�ned by Goldman [11],

and ergodicity can be stated with respect to this measure. However, note that for

ergodicity results only the class of the measure is relevant, and the measure � is

in the usual Lebesgue class.

Proof. In the case .p; q; r/ D .0; 0; 0/, the set of .0; 0; 0; s/-Marko� maps is iden-

ti�ed with the set of s-Marko� maps in the sense of Tan-Wong-Zhang. �ese maps

correspond to real characters of the one-holed torus. �e action of the mapping

class group on the set of real characters ˆR
s is completely described by Gold-

man [12], and can be stated as follows.

� If s < 0, there are four contractible connected components in the character

variety and the action is properly discontinuous on each one.

� If s 2 Œ0; 4Œ, there are four contractible connected components on which

the action is properly discontinuous, and one compact component where the

action is ergodic.

� If s D 4, the set of real characters is connected but contains the invariant

subset of characters of reducible SU.2/-representations as a proper subset K,

which corresponds to characters in Œ�2; 2�3, and the action is ergodic on K.

�e complementary set consists of four connected components, and the ac-

tion is ergodic on each of these components.

� If s 2 .4; 20�, there is a unique connected component and the action of the

mapping class group is ergodic.

� If s > 20, there is a unique connected component. �ere is an open domain

D which is a domain of discontinuity for the action, and the action is ergodic

on the complement of D.

When .p; q; r/ is non-zero, there is a non-empty open domain of discontinuity by

�eorem 5.3. So the only case we need to settle is the case of .p; q; r/ D .0; 0; 0/.

�e case (2) corresponds exactly to the situation when s D 4. Also we note

that if .p; q; r/ D .0; 0; 0/, the domain of discontinuity is non-empty as soon as

s … Œ4; 20�, and that when s 2 .4; 20�, the action is ergodic on the whole character

variety.

From Goldman and Toledo [13], we have .p; q; r/ D .0; 0; 0/ if and only if one

of the following is satis�ed:

(1) jaj D jbj D jcj D jd j with abcd � 0;

(2) three of a; b; c; d are zero.
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In the �rst case s D 4 � a2 � b2 � c2 � d 2 � abcd D 4 � 4a2 C a4. Solving

the system 4 < 4 � 4a2 C a4 � 20 gives

2 < jaj �
q

2.1 C
p

5/

Else, the equation s D 4 implies that jaj D 0 or jaj D 2.

In the second case, without loss of generalities, we can assume that b D c D
d D 0, which gives s D 4 � a2 � 4. Hence s … .4; 20� if and only if jaj ¤ 0,

which ends the proof.

6. Concluding remarks

�is paper was mostly concerned with describing a domain of discontinuity for

the action of MCG.S/ on the (relative) character variety of the four-holed sphere

S . We expect that it would be possible to implement this on a program to draw

various slices of the domain of discontinuity, and we expect that, in general, these

slices would have highly fractal boundary, as in the case of the character variety for

the free group F2 on two generators analysed by Series, Tan and Yamashita [26].

Restriction to the real case may also be of interest. It is not clear at this point if the

domains of discontinuity for the real case would have relatively smooth boundary

as in the case analysed by Goldman in [12] for F2, or if they would exhibit fractal

type boundary.

�ere are also other group actions on the character variety which are of interest.

In particular, we can consider the action of Out.F3/ as studied by Minsky [22]

(this is a bigger group action than what we consider). In this case, it is somewhat

di�cult to give easily (computer) veri�able conditions to describe the domain

of discontinuity like the BQ-conditions, nonetheless, our methods may provide a

starting point towards this end.

Finally we note that, as pointed out in the beginning of the Introduction, much

of the original motivation for the paper came from McShane’s identity and the

proof provided by Bowditch. A new generalization to the identity from the point

of view of Coxeter group actions on quartic varieties was given by Hu, Tan and

Zhang in [14], and we plan to pursue this direction in a future paper and explore

possible generalizations of the McShane’s identity in our context.
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