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Abstract. We prove that the boundary action of a so�c random subgroup of a �nitely gen-

erated free group is conservative (there are no wandering sets). �is addresses a question

asked by Grigorchuk, Kaimanovich, and Nagnibeda, who studied the boundary actions of

individual subgroups of the free group. We also investigate the cogrowth and various limit

sets associated to so�c random subgroups. We make heavy use of the correspondence be-

tween subgroups and their Schreier graphs, and central to our approach is an investigation

of the asymptotic density of a given set inside of large neighborhoods of the root of a so�c

random Schreier graph.
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1. Introduction

�e study of invariant random subgroups, meaning subgroups of a given group

whose distribution is conjugation-invariant, has recently attracted a lot of atten-

tion. Vershik has called for a description of all nonatomic conjugation-invariant

measures on the lattice of subgroups of a given countable group [19] and pro-

vided such a description in the case of the in�nite symmetric group [20]. Such

measures naturally arise from the boundary actions of self-similar groups, such as

1 I am very grateful to my advisor, Vadim Kaimanovich, for his advice and support, and for

encouraging me to work on the subject of this paper. I thank the anonymous referee for suggesting

several improvements.
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the Basilica group (see the treatment of D’Angeli, Donno, Matter, and Nagnibeda

[4]), or the famous Grigorchuk group (see [21]), and progress has recently been

made in understanding the spaces of invariant random subgroups of free groups

[6] and lamplighter groups [7]. Abért, Glasner, and Virág recently generalized

Kesten’s theorem to invariant random subgroups [3]. Moreover, invariant random

subgroups are closely connected with the theory of so�c groups (see, for example,

the survey [16]) and so�c equivalence relations [10].

�ere is a fruitful interplay between groups and graphs, as is evidenced, for in-

stance, in the classic paper of Stallings [18]. Central to our approach is the fact that

it is possible to switch back and forth between subgroups and their Schreier graphs
(objects which generalize Cayley graphs), allowing one to think about subgroups

in geometric terms. Accordingly, the study of invariant random subgroups is tan-

tamount to the study of invariant random Schreier graphs (which in turn belongs

to the theory of discrete measured equivalence relations established by Feldman

and Moore [11]).

Intuitively speaking, invariant random Schreier graphs behave rather like Cayley

graphs, the analogy being that, whereas a Cayley graph is spatially homogenous,

insofar as it is vertex-transitive, i.e. invariant upon shifting the root, an invariant

random Schreier graph is stochastically homogenous (see [15] for the origin of the

term), insofar as its distribution is invariant upon shifting the root. Grigorchuk,

Kaimanovich, and Nagnibeda [12] recently studied the ergodic properties of the

action of a subgroup H 6 Fn of a �nitely generated free group on the boundary

@Fn equipped with the uniform measure (a situation which is analogous to the

action of a Fuchsian group on the boundary of the hyperbolic plane equipped with

Lebesgue measure). In particular, they used Schreier graphs to describe the Hopf
decomposition (into conservative and dissipative parts) of this action. Although

the boundary action of an arbitrary subgroup may be conservative, dissipative, or

such that both its conservative and dissipative parts have positive measure [12],

the boundary action of a normal subgroup is necessarily conservative, as follows

from [14]. Our main result is an extension of this result to so�c random subgroups.
�at is, we show that the boundary action of a so�c random subgroup of a �nitely
generated free group is conservative (�eorem 6.4), addressing a question asked

in [12].

Before proving our main result, we undertake an investigation of the asymptotic

density of a given set inside of a random invariant Schreier graph. Our main

question of interest (Question 3.1) can be formulated as follows: given a nontrivial

subset A of the space of Schreier graphs, must the density of A inside of large
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neighborhoods of the root of an invariant random Schreier graph be bounded away

from zero? If so, then we say the invariant random Schreier graph has property
D. A positive answer to the question would amount to a new ergodic theorem
for invariant random graphs (see [8] for an overview of many ergodic theorems).

Unfortunately, we are unable to answer Question 3.1, but by introducing a notion

which we call relative thinness and assuming that our invariant random Schreier

graph � is so�c, we are able to show that � fails to satisfy the aforementioned

property only if its geometry is quite peculiar (Proposition 5.6), a fact which allows

us to prove �eorem 6.4.

�e paper is organized as follows: In Section 2, we give an introduction to Schreier

graphs and invariant random Schreier graphs, making plain their connection with

subgroups. Section 3 is devoted to making precise the question of whether a given

set is asymptotically dense inside of large neighborhods of the root of an invariant

random Schreier graphs. In Section 4, we introduce so�c invariant subgroups and

thereafter, in Section 5, the notion of relative thinness, which allows us to shed

some light on Question 3.1. In Section 6, we prove our main result, showing that

the boundary action of a so�c random subgroup is conservative (�eorem 6.4).

Finally, in Section 7, we tease out several consequences of �eorem 6.4, namely

a bound on the cogrowth of a so�c random subgroup (Corollary 7.1) and a theo-

rem on the size of various limit sets associated to so�c random subgroups of Fn

(�eorem 7.2). We also give examples showing that the radial limit set may have

full or zero measure, thus completely characterizing the possible measures of the

limit sets of a so�c invariant subgroup.

2. �e space of Schreier graphs of a countable group

Given a countable group G with generating set A D ¹aiºi2I and a subgroup H 6

G, consider the natural action of G on the space of (right) cosets G=H . �is

action is transitive and determines a graph � D .�; H/ as follows. �e vertex set

of � is identi�ed with G=H , and two vertices Hg and Hg0 are connected with

an edge directed from Hg to Hg0 and labeled with the generator ai if and only if

Hgai D Hg0. �e graph � (which is rooted at H , meaning that we distinguish the

vertex H ) is called a (right) Schreier graph, and we denote by ƒ.G/ the space of

(isomorphism classes) of (right) Schreier graphs of G, where two Schreier graphs

are said to be isomorphic if there exists a graph isomorphism between them which

preserves the edge-labeling and root. Note that Schreier graphs are necessarily
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2jAj-regular, meaning that each of their vertices has degree 2jAj (the degree of a

vertex may be de�ned as the sum of the number of incoming edges and the number

of outgoing edges attached to it). Schreier graphs may have both loops (cycles of

length one) and multi-edges (multiple edges that join the same pair of vertices).

Note also that Schreier graphs naturally generalize Cayley graphs, which arise

whenever the subgroup H is normal, i.e. when the cosets Hg correspond to the

elements of a group.

Let us immediately turn our attention to the space of Schreier graphs of the �nitely

generated free group of rank n with a �xed set of generators, i.e.

Fn D ha1; : : : ; ani:

�is is natural since, as we will presently make clear, every Schreier graph is a

Schreier graph of a free group. Our �rst observation is this: Given a Schreier

graph .�; H/ 2 ƒ.Fn/, the subgroup H 6 Fn can be recovered from � in a very

natural way. Namely, H is precisely the fundamental group �1.�; H/, i.e. the set

of words read upon traversing closed paths that begin and end at the coset H .

Note that we thereby identify �1.�; H/ with a speci�c subgroup of Fn and are not

interested merely in its isomorphism class. By the above discussion, it follows that

ƒ.G/ � ƒ.Fn/ whenever G is a group with generating set A D ¹a1; : : : ; anº. It

also follows that we could de�ne Schreier graphs “abstractly,” without appealing

to the coset structure determined by a subgroup of Fn. �at is, we could de�ne a

Schreier graph to be a (connected and rooted) 2n-regular graph whose edges come

in n di�erent colors and are colored so that every vertex is attached to precisely

one incoming edge of a given color and one outgoing edge of that color.

�ere is a natural one-to-one correspondence between the lattice of subgroups of

Fn, denoted L.Fn/, and the space of Schreier graphs ƒ.Fn/. Every subgroup

H 2 L.Fn/ determines a Schreier graph, and every Schreier graph � 2 ƒ.Fn/

determines a subgroup of Fn (by passing to the fundamental group):

L.Fn/ ƒ.Fn/ :

 !
.�;H/

 !

�1.�/

�e space of Schreier graphs ƒ.Fn/ has a natural projective structure. Denote by

ƒr .Fn/ the set of (isomorphism classes of) r-neighborhoods centered at the roots

of elements of ƒ.Fn/, where by an r-neighborhood we mean the subgraph of a

Schreier graph induced by the set of vertices at distance less than or equal to r
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from the root. �en ƒ.Fn/ may be realized as the projective limit

ƒ.Fn/ D lim �ƒr .Fn/;

where the connecting morphisms �r W ƒrC1.Fn/ ! ƒr.Fn/ are restriction maps

that send an .rC1/-neighborhood V to the r-neighborhood U of its root. (Looking

at things the other way around, �r .V / D U only if there exists an embedding

U ,! V that sends the root of U to the root of V .) By endowing each of the sets

ƒr .Fn/ with the discrete topology, we turn ƒ.Fn/ into a compact Polish space.

�roughout this paper, we will think of an r-neighborhood U 2 ƒr.Fn/ both as a

rooted graph and as the cylinder set

U D ¹.�; x/ 2 ƒ.Fn/ j Ur .x/ Š U º;

where Ur .x/ denotes the r-neighborhood of the vertex x. Note that a �nite Borel

measure � on ƒ.Fn/ is the same thing as a family of measures �r W ƒr .Fn/! R

that satis�es

�r.U / D
X

V 2��1
r .U /

�rC1.V /

for all U 2 ƒr.Fn/ and for all r . As is customary when working with measure

spaces, all statements regarding measurable sets will be understood to be valid

modulo zero, i.e. up to the inclusion or exclusion of null sets (in particular, we

will avoid use of qualifying expressions such as “almost every.”)

By an invariant random subgroup of a countable group G, we will mean a proba-

bility measure on L.G/ that is conjugation-invariant, i.e. invariant under the action

G ˚ L.G/ given by .g; H/ 7! gHg�1. Via the correspondence between L.G/

and ƒ.G/ (indeed, it is via this correspondence that we endow L.G/ with its Borel

structure), this determines a continuous action on ƒ.G/ which is easily visualized

as follows. Given a Schreier graph .�; H/ and an element g 2 G, where we as-

sume that g has a �xed presentation in terms of the generators of G, it is possible

to read the element g starting from the root H (or, indeed, from any other ver-

tex). �is is accomplished by following, in the proper order, edges labeled with

the generators that comprise g (note that following a generator a�1
i is tantamount

to traversing a directed edge labeled with ai in the direction opposite to which

the edge is pointing). Applying the group element g to the graph .�; H/ then

amounts simply to “shifting the root" of .�; H/ in the way just described. �at is,

one begins at the vertex H , then follows the path corresponding to the element g,

and then declares its endpoint to be the new root. Note that if G has generators

of order two, then a path corresponding to an element g 2 G may not be unique;
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nevertheless, the endpoint of any path which represents g is uniquely determined

by g.

: : :: : :

:::

:::

Figure 1. A Schreier graph of the free group F2 D ha; bi, with red edges representing the

generator a and blue edges the generator b. Shown here is conjugation by the element

ba2 2 F2, which entails starting at the root (the gray vertex), then following the edges cor-

responding to the generators b, a, and a again (in that order), and declaring their endpoint

to be the new root (the black vertex).

�e image of a G-invariant measure under the identi�cation H 7! .�; H/ is a

G-invariant measure on ƒ.G/ (and hence, via the inclusion ƒ.G/ ,! ƒ.Fn/,

an Fn-invariant measure on ƒ.Fn/). We may thus speak of an invariant random
Schreier graph. In fact, throughout the remainder of the paper we will treat invari-

ant random subgroups and invariant random Schreier graphs as the same objects,

using whichever terminology is more appropriate to the context.

�e most basic examples of invariant random Schreier graphs are Dirac measures

supported on Cayley graphs: indeed, Cayley graphs (equivalently, Schreier graphs

of normal subgroups of Fn) are invariant under conjugation essentially by de�-

nition and may be regarded as 1-periodic points in ƒ.Fn/. More generally, the

uniform measure supported on a �nite Schreier graph (of cardinality k, say) is an

invariant measure, thus giving rise to k-periodic points, and it is not di�cult to

construct examples of in�nite periodic Schreier graphs. Of greater interest is the



�e boundary action of a so�c random subgroup of the free group 689

space of nonatomic invariant measures, typically supported on aperiodic Schreier

graphs. Such measures have recently been the focus of a great deal of research

(see [3], [4], [6], [7], [19], [20], and [21]), but much remains unknown.

3. A question regarding the density of sets inside of large neighborhoods

Our main result is that the boundary action of a so�c random subgroup is con-

servative. By a theorem of Grigorchuk, Kaimanovich, and Nagnibeda [12], this

assertion is equivalent to the assertion that

lim
r!1

jUr.�; H/j
jUr .Fn; e/j D 0; (3.1)

where the numerator of the above fraction is the size of the r-neighborhood of

the root of our random Schreier graph and the denominator is the size of the r-

neighborhood of the identity of the Cayley graph of Fn. In proving this result, our

focus will �rst be on a considerably more general question regarding the asymp-

totic density of a given set inside of neighborhoods centered at the root of a random

graph. �is latter question can be formulated as follows: if A � .ƒ.Fn/; �/ is a

measurable subset of the space of Schreier graphs and � is an invariant measure,

then how dense is A inside of �-random r-neighborhoods Ur .x/ 2 ƒr .Fn/? An

informal – and imprecise – way to say what we mean by the density of A in Ur .x/

is in terms the function

�A;r W ƒ.Fn/ �! Q

given by

�A;r.�; x/ WD jA \ Ur.x/j
jUr .x/j :

To make this rigorous, note that for any A � ƒ.Fn/ there is an induced Borel

embedding

‚A W ƒ.Fn/ �!
[

�2ƒ.Fn/

¹0; 1º� DW ¹0; 1ºƒ.Fn/

which sends a Schreier graph � to the binary �eld

F W � �! ¹0; 1º
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given by

F.x/ D

8

<

:

1; .�; x/ 2 A;

0; .�; x/ … A;
(3.2)

where .�; x/ is the Schreier graph obtained from � by rerooting � at the vertex

x. �e resulting space of binary con�gurations over elements of ƒ.Fn/ (namely,

the image of ‚A) serves to “highlight” the set A, and the corresponding functions

�A;r may now be written as

�r.F/ D 1

jUr .x/j
X

y2Ur .x/

F.y/: (3.3)

Note that if � is an invariant measure on ƒ.Fn/, then .‚A/�� is an invariant

measure on ¹0; 1ºƒ.Fn/. From now on, when talking about the density of a given

set A inside of r-neighborhoods, we will refer to the functions �A;r de�ned over

the binary �eld constructed as per (3.2), without necessarily making mention of

the map ‚A. We are now ready to formulate our question:

Question 3.1. Let � be an invariant random Schreier graph and A � ƒ.Fn/ a
Borel set, and consider the average densities

E.�A;r/ D
Z

�A;r d�:

�en supposing E.�A;0/ > 0, what can be said of the averages E.�A;r/? Do they
converge? Are they bounded away from zero?

More generally, consider an Fn-invariant measure � on ¹0; 1ºƒ.Fn/ (which needn’t

necessarily come from a Borel set A � ƒ.Fn/ as above). �e following exam-

ple shows that if such an invariant random binary �eld has a “�xed geometry,”

meaning that it is supported on a common underlying graph, then it must answer

Question 3.1 in the positive.

Example 3.2. Let � 2 ƒ.Fn/ be a Cayley graph, i.e. the Schreier graph of a

normal subgroup of Fn, and � an invariant measure on ¹0; 1º�. �en one readily

veri�es that the average densities E.�r/ are all the same. Indeed, we have
Z

�r d� D
Z

� 1

jUr.x/j
X

y2Ur .x/

F.y/
�

d�

D 1

jUr .x/j
X

y2Ur .x/

�

Z

F.y/ d�
�
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D 1

jUr .x/j
X

y2Ur .x/

E.�0/

D E.�0/:

If, however, our random invariant Schreier graph ceases to be so nice (e.g. if it

ceases to be vertex-transitive), then the averages E.�r/ can be expected to vary

considerably from E.�0/. Our question is: how much? Can they be arbitrarily

close to zero if E.�0/ is not zero?

Question 3.1 asks whether invariance implies that, given a subset of the space of

Schreier of positive measure (in other words, a nontrivial property of the root of

our random graph), it will be asymptotically dense inside of large r-neighbor-

hoods. For the sake of brevity, let us give this property a name.

De�nition 3.3 (property D). We say that an invariant random Schreier graph

� has property D if it answers Question 3.1 in the positive, in the sense that, if

A � ƒ.Fn/ is any subset with �.A/ > 0, then the average densities E.�A;r/ of A

inside of r-neighborhoods are bounded away from zero.

We will show that, upon placing a mild condition on our random invariant Schreier

graph � – namely so�city – the averages E.�A;r/ can get arbitrarily small only if �

exhibits a rather “wild” geometry. To be a little more precise, we will introduce a

notion which we call relative thinness and show that the average densities E.�A;r/

can get arbitrarily small only if � is arbitrarily relatively thin at di�erent scales.

We are then able to deduce the conservativity of the boundary action of a so�c

random subgroup via the following argument.

i. If � satis�es property D (and is not the Dirac measure concentrated on the

Cayley graph of Fn, a case which is easily dealt with), then there exists a

number k 2 N such that the set of Schreier graphs whose roots belong

to a cycle of length k has positive measure, and whose density inside of

r-neighborhoods is therefore bounded away from zero. �e fact that cycles

of bounded length are su�ciently dense inside of � is in turn enough for us

to show that � must satisfy (3.1).

ii. If � does not satisfy property D, then its geometry is such that it cannot grow

too quickly; in particular, we are again able to show that � must satisfy the

condition (3.1).
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It is worth pointing out that, if our property D held for all invariant random

Schreier graphs, then the argument of �eorem 6.4 would imply that the boundary

action of any invariant random subgroup (so�c or not) of Fn is conservative.

4. So�c invariant subgroups

�e class of so�c groups, �rst de�ned by Gromov [13] and given their name by

Weiss [22], is a large class of groups which has recently received a great deal of

attention. Roughly speaking, a �nitely generated group is so�c if its Cayley graph

can be approximated by a sequence of �nite Schreier graphs. Amenable groups

(for which Følner sequences determine approximating sequences) and residually

�nite groups (for which �nite quotients serve as approximating sequences) are

immediate examples of so�c groups. In fact, so large is the class of so�c groups

that it is unknown whether all groups are so�c. For more on so�c groups, we refer

the reader to the survey of Pestov [16].

�e notion of so�city, which can be formulated in terms of the weak convergence

of measures, naturally generalizes to objects other than groups, such as unimod-
ular random graphs – see, for instance, [2]. In another context, Elek and Lipp-

ner [10] have recently de�ned so�city for discrete measured equivalence relations,
a setting which subsumes invariant random Schreier graphs. To make sense of the

de�nition, observe that the uniform probability measure on a �nite Schreier graph

� determines an invariant measure on ƒ.Fn/, namely the uniform measure sup-

ported on the conjugacy class of the associated subgroup �1.�/. �e de�nition

now goes as follows:

De�nition 4.1 (so�c random Schreier graph). An invariant random Schreier graph

� is so�c if there exists a sequence of �nite Schreier graphs ¹�iºi2N such that

�i ! � weakly, where �i is the invariant measure on ƒ.Fn/ determined by �i .

�e convergence of which we speak also goes under the name of Benjamini-
Schramm convergence, after the paper [5]. We note that (as is also done in [5]) the

weak convergence of measures in De�nition 4.1 can be thought of in more geo-

metric terms as follows. Suppose �rst that � is a Cayley graph (which becomes

an invariant random Schreier graph when identi�ed with the Dirac measure con-

centrated on itself). We say that a �nite graph .� 0; �/ equipped with the uniform

probability measure is an .r; "/-approximation to � if there exists a set A � � 0
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of measure �.A/ > 1 � " such that for all x 2 A, the r-neighborhood of x in

� 0 is isomorphic (in the category of edge-labeled graphs) to the r-neighborhood

of the identity (or, indeed, of any other vertex) in �. �e graph � is so�c pre-

cisely if it admits an .r; "/-approximation for any pair .r; "/, where r 2 N and

" > 0. A group G is thus so�c if, given any Cayley graph � of G, it is possible

to construct �nite graphs which locally look like � at almost all of their points.

More generally, suppose that � is a random invariant Schreier graph. �e distri-

bution of � naturally determines a probability measure �r on ƒr .Fn/, the set of

r-neighborhoods of Schreier graphs of Fn, and we again say that a �nite graph

.�; �/ equipped with the uniform probability measure is an .r; "/-approximation

to � if for all U 2 ƒr .Fn/ we have j�.U /��r.U /j < ". �en, as before, a random

invariant Schreier graph is so�c precisely if it admits �nite .r; "/-approximations

for any pair .r; "/.

Our de�nition does not take exactly the same form as the ones given, for instance,

in [10] or [13]. �e main di�erence is that we require our approximating sequence

to consist of bona �de Schreier graphs, and not, as is usually the case, of graphs

which need not have the structure of a Schreier graph at all of their points. Let us

therefore quickly show that our de�nition – which we feel is a bit cleaner – is in

fact equivalent to the usual one.

�eorem 4.2. If there exist �nite graphs .�i ; �i/ which are a so�c approximation
to �, then they may be modi�ed to create �nite Schreier graphs .� 0

i ; �0
i/ which are

a so�c approximation to �.

Remark 4.3. Here the graphs �i need not have the structure of a Schreier graph at

each of their points, i.e. there may exist points whose degree is not 2n or are such

that the edges attached to them do not have a Schreier labeling. Another caveat

that should be pointed out is that a Schreier graph is by de�nition connected and

rooted, although we do not actually impose these conditions in De�nition 4.1 or

the above proposition: there is no sense in assigning a root to the graphs of a

so�c approximation (as every vertex is e�ectively treated as a root), and it is often

natural for such graphs to have several connected components (e.g. if the measure

they approximate is supported on a set of several distinct Cayley graphs).

Proof. Let �i be an .r; "/-approximation to � and A � �i the set of points at

which �i does not have the structure of a Schreier graph. Let � 0
i be the subgraph

of �i induced by the set �inA and A0 � � 0
i the set of points at which � 0

i does

not have the structure of a Schreier graph. Note that A0 is a subset of the set of

neighbors of the removed set A, and that therefore �i .A [ A0/ < " (since the
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r-neighborhood Ur.x/ � �i of any point x 2 A does not approximate �, neither

does the r-neighborhood of any neighbor of x, provided r > 1).

Now, the edges attached to points x 2 A0 are properly labeled with the generators

a1; : : : ; an of Fn – the only problem is that some generators may be missing, i.e.

it may be that deg.x/ < 2n. We thus “stitch up” the graph � 0
i as follows: for every

generator ai which does not label any of the edges (neither incoming nor outgoing)

attached to a given point x 2 A0, add a loop to x and label it with ai . If, on the

other hand, there exists precisely one edge (assume without loss of generality that

it is outgoing) attached to x and labeled with a generator ai , then consider the

longest path  whose edges are labeled only with ai and which is attached to x.

�e endpoint of  will be a vertex y 2 A0 distinct from x; to “complete the cycle,”

we thus need only join x and y with an edge and label this edge with ai in the

obvious way. By repeating this procedure for every vertex in A0, we ensure that � 0
i

has the structure of a Schreier graph at every point while modifying it only on a

set of very small measure. It follows that the sequence of Schreier graphs .� 0
i ; �0

i/

is a so�c approximation to �.

Note that De�nition 4.1 readily generalizes to invariant random �elds: one must

simply de�ne convergence with respect to �nite ¹0; 1º-labeled Schreier graphs.

We will make use of the following lemma later.

Lemma 4.4. Let � be a so�c random Schreier graph and A � ƒ.Fn/ a Borel set.
�en the invariant random �eld .‚A/�� is also so�c.

Proof. Denote by Ar the collection of cylinder sets U 2 ƒr.Fn/ such that

�.A \ U / > 0. Clearly, A � Ar , and moreover �.ArnA/ DW "r ! 0, i.e. the

sets Ar approximate A. Let � be a �nite .r; "/-approximation to �, and construct

a binary �eld F W � ! ¹0; 1º by assigning to a given vertex x 2 � the value 1 if

the cylinder set corresponding to its r-neighborhood Ur.x/ belongs to Ar and the

value 0 otherwise. �en F is an .r; "/-approximation to �r and hence an .r; "C"r/-

approximation to �. By constructing �elds Fi in this way for a sequence of �nite

graphs �i which are .ri ; "i/-approximations to �, with ri ! 1 and "i ! 0,

we obtain a so�c approximation to .‚A/��.

Morally speaking, Lemma 4.4 allows us to phrase Question 3.1 in terms of �nite

graphs, namely those which come from a so�c approximation. Working with �nite

graphs in turn has several advantages, as we show in the next section.
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5. Relative thinness

In order to investigate Question 3.1, we would like to introduce a notion which we

call relative thinness. To be more precise, let � be a Schreier graph, and consider

the functions �r W � ! Q de�ned by

�r.x/ WD
X

y2Ur .x/

1

jUr .y/j :

Note that if, say, all of the r-neighborhoods of � have the same size (as is the case,

for instance, when � is a Cayley graph), then �r � 1. If, on the other hand, the r-

neighborhood of a point x 2 � is small compared to the r-neighborhoods near it,

then one will have �r .x/ < 1 (and if it is large compared to the r-neighborhoods

near it, then one will have �r .x/ > 1). We thus say that a Schreier graph � is

relatively thin at scale r at a point x 2 � if �r .x/ < 1 (if a piece of cloth is worn

down at a particular spot, then the regions surrounding that spot will have more

mass than is to be found at the spot itself).

One feature of relative thinness is that it is “tempered,” meaning that if � is very

thin at x and y is a neighbor of x, then � will be thin at y as well. To be more

precise, let us say that a function f W � ! R is C -Lipschitz if whenever x; y 2 �

are neighbors,

f .x/ 6 Cf .y/

for some constant C > 1. Likewise, we say that a family of functions

¹fi W �i �! Rºi2I

is uniformly C -Lipschitz over the family of graphs ¹�iºi2N if each fi is C -Lipschitz

for some constant C > 1 that does not depend on i . We now have the following

lemma.

Lemma 5.1. Let � 2 ƒ be a Schreier graph of Fn. �en there exists a constant
C > 1 such that the family of functions ¹�rºr2N is uniformly C -Lipschitz over �.

Proof. Note �rst that if x and y are neighbors in �, then we have the bound

jUr.x/j > 1

2n� 1
jUr .y/j: (5.1)

Put

S WD Ur .y/nUr.x/;
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and let S 0 denote a choice, for each vertex z 2 S , of a neighbor z0 which belongs

to Ur.x/. �en

�r .y/ � �r.x/ 6

X

z2S

1

jUr .z/j

6 .2n� 1/2
X

z2S 0

1

jUr .z/j

6 .2n� 1/2�r .x/:

Here the second line is obtained by applying the inequality (5.1) and using the fact

that points in S 0 may have at most 2n � 1 neighbors in S . It follows that each �r

is C -Lipschitz with C D .2n� 1/2 C 1.

Moreover, it turns out that, at least in the model case of a �nite Schreier graph

(which carries a unique invariant probability measure), thinness and the densities

�A;r given by (3.3) are directly related to one another.

Proposition 5.2. Let .�; A; �/ be a �nite Schreier graph � equipped with the
uniform probability measure, together with a subset A � �. �en

Z

�

�A;r d� D
Z

A

�r d�;

where �A;r is the r-neighborhood density of the set A.

Proof. One must simply observe that, whether summing �A;r over � or �r over A,

for a given point x 2 � the quantity 1=jUr .x/j is summed exactly once for every

point y 2 A such that x 2 Ur .y/.

As a corollary, we obtain:

Corollary 5.3. Given a �nite Schreier graph .�; �/ equipped with the uniform
probability measure, �r integrates to one over �.

Proof. Simply choose A D � in the hypotheses of Proposition 5.2. �en �A;r � 1,

so that we have

Z

�

�r d� D
Z

�

�A;r d� D
Z

�

1 d� D 1:
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We thus �nd that the “average thinness” of a �nite Schreier graph is always one.

Proposition 5.2 can therefore be interpreted as saying that, if the average of �A;r

over a �nite Schreier graph � is small relative to E.�A;0/ D �.A/, then the set A

must be concentrated at points where � is relatively thin (at scale r).

Corollary 5.3 tells us that, if � is a �nite Schreier graph, then by integrating the

functions �r against the uniform probability measure on �, we obtain a new prob-

ability measure �r . Suppose now that � is a so�c random Schreier graph, and let

¹�iºi2N be a so�c approximation to �. �en one readily veri�es that the sequence

of probability measures �r;i – those obtained by integrating �r against the uniform

measures �i – converges weakly to a probability measure �r on ƒ.Fn/. �at is,

so�city implies that �r is a density with respect to �.

Proposition 5.4. Let � be a so�c random Schreier graph which is ergodic and
does not satisfy Property D. �en there exist �nite Schreier graphs .�i ; �i / to-
gether with subsets Ai � �i such that the �i are a so�c approximation to �,

�i .Ai /! 1;

and

E.�i j Ai /! 0:

Proof. If � does not satisfy property D, then there exists a set A � ƒ.Fn/ with

�.A/ > 0 such that E.�A;r/ ! 0 along some subsequence of radii r 2 N, and

hence such that E.�r j A/ ! 0. Let ¹giºi2N be an enumeration of Fn (e.g. the

lexicographic order), and put

Ak WD A [ g1A [ : : :[ gkA:

It follows from the fact that the �r are uniformly C -Lipschitz (Proposition 5.1) that

E.�r j Ak/! 0 for any k. Indeed, putting

m WD max
16i6k

jgi j;

we have E.�r j Ak/ 6 C mE.�r j A/ ! 0. Moreover, by ergodicity, �.Ak/ ! 1.

By Lemma 4.4, there exists a so�c approximation ¹Fi;kºi2N for each invariant

random �eld .‚Ak
/�, which is the same thing as a sequence of �nite Schreier

graphs .�i;k; Ai;k; �i;k/ such that the Ai;k approximate Ak (just take Ai;k D ¹x 2
�i;k j Fi;k.x/ D 1º). By choosing an appropriate diagonal sequence, we prove

our claim.
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Suppose again that � is a so�c random Schreier graph which is ergodic and does

not satisfy property D. Our next goal is to show that the geometry of � must be

quite peculiar. To do so, we will look at the so�c approximation to � guaranteed

by Proposition 5.4, i.e. the sequence of �nite Schreier graphs .�i ; Ai ; �i/, with

�i .Ai /! 1 and E.�i j Ai /! 0. A trick we will employ is the following: instead

of working with the functions �r and letting r vary, we may instead modify the

structure of our Schreier graphs and work only with the function �1. �us if �i is

one of our Schreier graphs (constructed, by default, with respect to the standard

generating set A D ¹a1; : : : ; anº), denote by �
.r/
i what we call the r-contraction

of �i obtained by regarding it as a Schreier graph of Fn constructed with respect

to the generating set consisting of all group elements of length less than or equal

to r . One readily veri�es that �r over � agrees with �1 over �.r/, in the sense that

the diagram

�i �
.r/
i

Q

 - !

 

!�r

 ! �1

commutes (here the upper arrow is the obvious identi�cation between the vertices

of �i and the vertices of �
.r/
i ). By modifying the structure of our graphs in this

way (for ever larger values of r) and choosing an appropriate diagonal sequence,

our so�c approximation now takes the form of a sequence of �nite Schreier graphs

.�i ; Ai ; �i/ such that �i .Ai /! 1 and E.�1 j Ai /! 0.

We do not know of any invariant random Schreier graph which fails to have prop-

erty D. In order to get a sense of what a sequence of graphs satisfying the afore-

mentioned conditions might look like, however, consider the following example.

Example 5.5. Let XN be a set of 2N points and YN a set of N points, and let

�N denote the complete bipartite graph between XN and YN , i.e. the graph ob-

tained by adding to the set XN t YN all possible edges .x; y/ such that x 2 XN

and y 2 YN . �en the sequence of graphs .�N ; XN ; �N / has the property that

E.�1 j XN /! 0. Indeed, it is easy to see that for �xed N , �1 is constant over each

of XN and YN , and that �1jXN
! 0 whereas �1jYN

!1. At the same time, we

have �N .XN /! 1.

Note, however, that the graphs constructed in Example 5.5 cannot be realized as

a sequence of contracted Schreier graphs. Indeed, suppose that, possibly upon

adding loops to the vertices of the bipartite graphs of Example 5.5 and turning
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some of their edges into multi-edges, we were able to label their edges with gen-

erators of Fn. �en for each vertex x 2 XN , it must be the case that one of

its “external edges,” meaning an edge .x; y/ with y 2 YN , is labeled with one

of the standard generators a1; : : : ; an (or one of their inverses) – were this not

the case, x would be �xed by every ai and hence by Fn itself, a contradiction,

since x has Fn-labeled external edges attached to it. By the pigeonhole princi-

ple, there must thus exist a generator a˙1
i and a subset X 0

N � XN of measure

�N .X 0
N / > �N .XN /=2n such that a˙1

i X 0
N � YN . But this is again a contradic-

tion, since �N .YN /! 0 and �N is an invariant measure. Alternatively, note that

there is an ever widening gap between the values of �1 over XN and YN , which

violates the fact that �1 is C -Lipschitz (Proposition 5.1).

�e family of graphs constructed in Example 5.5 has what one might call a “lop-

sided structure.” �at is to say, graphs in the family split into a set of large measure

and a set of small measure in such a way that all of the neighbors of a given vertex

in the large set belong to the small set. �e next proposition shows that, despite

the fact that the bipartite graphs considered above cannot be realized as Schreier

graphs, a version of this phenomenon must occur whenever � is a so�c random

Schreier graph which is ergodic and does not satisfy property D (see also Fig-

ure 2).

Proposition 5.6. Let � be a so�c random Schreier graph which is ergodic and
does not satisfy property D. �en there exists a sequence of �nite (contracted)
Schreier graphs .�i ; Ai ; �i / such that the �i are a so�c approximation to �,
�i .Ai /! 1, and

lim
i!1

E

 

degAi
.x/

deg�i nAi
.x/

ˇ

ˇ

ˇ

ˇ

ˇ

Ai

!

D 0;

where degA.x/ denotes the number of neighbors of x in the set A.

Proof. Let .�i ; Ai ; �i/ be �nite contracted Schreier graphs that are a so�c approx-

imation to � and such that �i .Ai/! 1 and E.�1 j Ai/! 0. We have

E.�1 j Ai / D
1

jAi j
X

x2Ai

1C degAi
.x/

1C deg.x/

D 1

jAi j
X

x2Ai

1C degAi
.x/

1C degAi
.x/C deg�i nAi

.x/

< "i ;
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A

�nA

x

Figure 2. Finite (contracted) Schreier graphs � that approximate invariant random sub-

groups which do not satisfy property D have a subset A � � of large measure such that,

for a random point x 2 A, the large majority of its neighbors belong to the complement

�nA.

with "i ! 0. It follows that, for any K > 0, the subsets Ai;K � Ai over which

deg�i nAi
.x/ 6 K degAi

.x/ satisfy �i .Ai;K/ ! 0. Indeed, were this not the case,

we would have

E.�1 j Ai / > E.�1 j Ai;K/�i .Ai;K/

>
1

jAi;Kj
X

x2Ai;K

1C degAi
.x/

1C .K C 1/ degAi
.x/

�i .Ai;K/

>
ı

K C 1

for all i 2 N, where ı > 0 is a �xed lower bound of the values �i .Ai;K/.

We therefore �nd that the ratio of the expected number of internal neighbors to

external neighbors of points in Ai tends to zero, as desired.

6. Conservativity of the boundary action

�ere is a natural boundary, denoted @Fn, associated to the free group Fn D
ha1; : : : ; ani, and it admits a number of interpretations. Viewing elements of Fn
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as �nite reduced words in the alphabetA˙ D ¹a˙1
1 ; : : : ; a˙1

n º, the boundary @Fn is

the space of in�nite reduced words in the alphabet A˙ endowed with the topology

of pointwise convergence. Equivalently, @Fn is the projective limit of the spheres

@Ur .Fn; e/, i.e. the sets of words in Fn of length r , where each such set is given

the discrete topology and the connecting maps serve to delete the last symbol of

a given word (the space @Fn is thus a Cantor set provided n > 1). Taking a more

geometric view, @Fn is naturally homeomorphic to the space of ends of the Cay-

ley graph of Fn. �e latter object being a Gromov hyperbolic space, @Fn may be

viewed as the hyperbolic boundary of Fn (so that Fn[ @Fn is its hyperbolic com-
pacti�cation). And when equipped with the uniform measure m (which we will

de�ne in a moment), (@Fn;m/ is naturally isomorphic to the Poisson boundary of

the simple random walk onFn, a fact �rst established by Dynkin and Malyutov [9].

Grigorchuk, Kaimanovich, and Nagnibeda [12] recently studied the ergodic prop-

erties of the action of a subgroup H 6 Fn on the boundary of Fn equipped with

the uniform measure m. To be explicit, m is the probability measure given by

m.g/ D 1

2n.2n� 1/jgj�1
; (6.1)

where we again allow g to represent both an element of Fn (here jgj is the length

of g) and the cylinder set consisting of those in�nite words whose truncations to

their �rst jgj symbols are equal to g. Of course, the denominator of (6.1) is just

the cardinality of the sphere @Ujgj.Fn; e/.

�e aforementioned boundary action, which we denote by H ˚ .@Fn;m/, is anal-

ogous to the action of a Fuchsian group on the boundary of the hyperbolic plane

@H2 Š S1 equipped with Lebesgue measure: both actions, the latter being a clas-

sical object of study, are boundary actions of discrete groups of isometries of a

Gromov hyperbolic space. In [12], the combinatorial structure of the space Fn,

and especially the Schreier graphs corresponding to its subgroups, are exploited

in order to investigate the action H ˚ .@Fn;m/. In particular, �eorem 2.12 of [12]

gives a combinatorial characterization of the Hopf decomposition of this action.

Let us review this result.

Let G ˚ .X; �/ be a quasi-invariant action of a countable group on a Lebesgue

space, i.e. a measure space whose nonatomic part is isomorphic to the unit interval

equipped with Lebesgue measure. Recall that such an action is conservative if

every measurable subset E � X is recurrent, meaning that it is contained in the

union of its g-translates, where g 2 Gn¹eº. �e action is dissipative if .X; �/ is the

union of the translates of a wandering set, i.e. a subset E � X whose G-translates
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are pairwise disjoint. Every quasi-invariant action G ˚ .X; �/ admits a unique

Hopf decomposition
X D C tD

into conservative and dissipative parts (see [1] and the references therein), so that

the action of G restricted to C is conservative and the action of G restricted to D

is dissipative.

Turning our attention to the action H ˚ .@Fn;m/, consider the Schreier graph

.�; H/ of H , and let T � � be a geodesic spanning tree, i.e. a spanning tree such

that dT .H; Hg/ D d�.H; Hg/ for all vertices (cosets) Hg. Such a spanning tree

always exists. Let �H � @Fn denote the Schreier limit set. It is the set of in�nite

words (which of course correspond to in�nite paths in �) that pass through edges

not in T in�nitely often. Let �H � Fn denote the Schreier fundamental domain.

It is the set of in�nite words that remain in T . We then have the following boundary

decomposition:

@Fn D �H t
G

h2H

h�H : (6.2)

�at is, @Fn is the disjoint union of the Schreier limit set and the H -translates

of the Schreier fundamental domain. It is shown in [12] (see �eorem 2.12) that

the decomposition (6.2) is in fact the Hopf decomposition of the action H ˚

.@Fn;m/.

�eorem 6.1. (Grigorchuk, Kaimanovich, and Nagnibeda) �e conservative part
of the boundary action H ˚ .@Fn;m/ coincides with the Schreier limit set �H .
�e dissipative part coincides with the H -translates of the Schreier fundamental
domain �H .

Moreover, �eorem 4.10 of [12] shows that the measure of the Schreier fundamen-

tal domain is related to the growth of the Schreier graph .�; H/ of H .

�eorem 6.2. (Grigorchuk, Kaimanovich, and Nagnibeda) �e measure of the
Schreier fundamental domain determined by a proper subgroup H 2 L.Fn/ is
equal to

m.�H / D lim
r!1

j@Ur.�; H/j
j@Ur.Fn; e/j ;

and the above sequence of ratios is nonincreasing.

Remark 6.3. Note that �eorem 6.2 remains valid if one replaces the spheres @Ur

with neighborhoods Ur .
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�e action H ˚ .@Fn;m/ may be conservative. �is is the case, for example,

whenever H is of �nite index, or when H is a normal subgroup of Fn. �e action

may also be dissipative, which is the case, for instance, whenever H is �nitely

generated and of in�nite index. It may also be the case that both the conservative

and dissipative parts of the action have positive measure: see, for instance, Exam-

ple 4.27 of [12]. It is our aim, however, to show that the boundary action of an

invariant random subgroup is necessarily conservative. To this end, let us under-

stand a k-cycle to be a closed path which is isomorphic to a k-sided polygon. Our

main idea is that an invariant random Schreier graph which satis�es property D

must have a certain “density of k-cycles,” i.e. that there exists a k such that a given

vertex of an invariant random Schreier graph belongs to a k-cycle with positive

probability, and that this in turn restricts the growth of our random graph enough

to render �H a null set.

�eorem 6.4. �e boundary action H ˚ .@Fn;m/ of a so�c random subgroup of
the free group is conservative.

Proof. Suppose �rst that � is an invariant random Schreier graph that satis�es

property D. It is not di�cult to see that, with the exception of one trivial case,

there must always exist a number k such that the Borel set A of Schreier graphs

whose roots belong to a k-cycle has positive measure. Indeed, if this were not

the case, then � would be the Dirac measure concentrated on the Cayley graph of

Fn (whose boundary action is of course conservative). By assumption, there thus

exists an " > 0 such that E.�A;r/ > " for all r . Put f .r/ WD 2n.2n� 1/r�1, let Xr

denote the size of the radius-r sphere centered at the root of a �-random Schreier

graph, let ` D bk=2c, and let r > 1 be an initial radius. Trivially, E.Xr / 6 f .r/.

We are then able to bound E.XrC`/ as

E.XrC`/ 6 f .r C `/ � "f .r/

and, continuing inductively, to obtain the general bound

E.XrC.mC1/`/ 6 .2n� 1/`E.XrCm`/ � ".E.XrCm`/ � "E.XrC.m�1/`//

D ..2n� 1/` � "/E.XrCm`/C "2E.XrC.m�1/`/;
(6.3)

since each k-cycle that passes through the boundary of an .rCm`/-neighborhood

allows us to decrease the trivial bound on the size of the boundary of an

.r C .m C 1/`/-neighborhood by one. Note that (6.3) is a linear homogenous

recurrence relation with characteristic polynomial

�.t/ D t2 � ..2n� 1/` � "/t � "2:
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It is easy to see that � has distinct real roots. �e general solution of the recurrence

relation (6.3) thus yields the bound

E.XrCm`/ 6 C0

�

.2n � 1/` � "C
q

�

.2n� 1/` � "
�2 C 4"2

�m

C C1

�

.2n� 1/` � " �
q

�

.2n� 1/` � "
�2 C 4"2

�m

;

(6.4)

whereupon applying initial conditions readily gives C0 D C1 D f .r/=2 (in order

to simplify notation, we have doubled the roots of �). By �eorem 6.2, we have

E.m.�H // D
Z

m.�H / d�

D
Z

lim
r!1

j@Ur.�; H/j
j@Ur.Fn; e/j d�

D lim
r!1

1

f .r/

Z

j@Ur .�; H/j d�

D lim
r!1

1

f .r/
E.Xr /:

Passing to the subsequence ¹r C m`ºm2N and replacing the second (and clearly

smaller) term of (6.4) with the �rst, we see that

lim
r!1

E.Xr /

f .r/
6 lim

m!1

f .r/

f .r Cm`/

�

.2n� 1/` � "C
q

�

.2n� 1/` � "
�2 C 4"2

�m

D lim
m!1

 

1� "

.2n � 1/`
C

s

1 � 2"

.2n� 1/`
C 5"2

.2n� 1/2`

!m

:

But a simple calculation shows that what is inside the parentheses is less than one,

so that the above limit is zero. It follows that E.�H / D 0 and therefore that the

boundary action of our invariant random subgroup is conservative.

Suppose next that � is a so�c random subgroup which is ergodic and does not

satisfy property D. �en by Proposition 5.6, it has a lopsided so�c approximation,

i.e. a so�c approximation consisting of contracted Schreier graphs .�i ; Ai ; �i/

such that �i .Ai/ ! 1 and the average external degree of vertices in Ai is much

smaller than their average external degree, in the sense that their ratio tends to

zero. Since �i .�inAi/! 0, this implies that

E.deg.x/ j Ai /� E.deg.x/ j �inAi/;
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again in the sense that the ratio of these two quantities tends to zero. But the

vertex degree of a point in a contracted Schreier graph �.r/ is precisely one less

than the size of the r-neighborhood of the corresponding uncontracted graph �.

We thus �nd that, over a set of arbitrarily large measure, the ratio of the average

size of (arbitrarily large) r-neighborhoods in our Schreier graphs to jUr .Fn; e/j is
arbitrarily small, which proves our claim.

To conclude this section, let us remark that, although �eorem 6.4 says, in ef-

fect, that so�c random subgroups cannot grow as quickly as the free group, it is

reasonable to expect that they can still grow very quickly: it is proved in [3] (see

�eorem 40) that there exists a (nonatomic) regular unimodular random graph

whose exponential growth rate is maximal.

7. Cogrowth and limit sets

It is interesting to examine other questions considered in [12] for so�c random

subgroups. Note, for example, that �eorem 6.4 immediately implies that, unless

it is the Dirac measure concentrated on the 2n-regular tree, a so�c random Schreier

graph � 2 ƒ.Fn/ cannot contain a branch of Fn, i.e. a subgraph isomorphic to the

unique tree one of whose vertices has degree one and all of whose other vertices

have degree 2n, since the presence of a branch implies the existence of a nontrivial

wandering set (another way to say this is that every edge of an invariant random

Schreier graph must belong to a cycle). Recall, moreover, that the cogrowth of a

subgroup H 6 Fn (i.e. the “growth of H inside of Fn”) is de�ned to be

vH WD lim sup
r!1

r
p

jH \ Ur.Fn; e/j 6 2n� 1:

By �eorem 4.2 of [12], if vH <
p

2n � 1, then the action H ˚ .@Fn;m/ is

dissipative. We therefore have the following corollary of �eorem 6.4.

Corollary 7.1. �e cogrowth of a so�c random subgroup H 2 L.Fn/ must satisfy
vH >

p
2n � 1.

Alternatively, a Schreier graph is Ramanujan if and only if its cogrowth does not

exceed
p

2n� 1, and it is proved in [3] (see �eorem 5) that random unimodular

d -regular graphs are Ramanujan if and only if they are trees, which shows that an

invariant random subgroup H satis�es vH >
p

2n� 1.
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�ere are various limit sets associated to a subgroup H 6 Fn (most of which de-

scend from the general theory of discrete groups of isometries of Gromov

hyperbolic spaces). �e radial limit set, denoted ƒrad
H , is the set of limit points

(in @Fn) of sequences of elements of H which are contained within a tubular

neighborhood of a certain geodesic ray in Fn. �ere are the small horospheric
limit set, denoted ƒ

hor;s
H , which is the set of boundary points ! 2 @Fn such that

any horosphere centered at ! contains in�nitely elements of H , the Schreier limit

set �H , and the big horospheric limit set, denoted ƒ
hor;b
H , which is the set of

boundary points ! 2 @Fn such that a certain horosphere centered at ! contains

in�nitely elements of H . �ere are also the divergence set of the Poincaré se-
ries of H , denoted †H , and the full limit set, denoted ƒH , which is the set of all

limit points (in @Fn) of elements of H . We refer the reader to [12] for the precise

de�nitions of these sets.

As is shown in [12], there is a certain amount of �exibility in the m-measures of

the aforementioned limit sets for arbitrary subgroups H 6 Fn: although several of

these sets necessarily have the same measure, the measure of the full limit set ƒH

may take on a range of values (and may well be a null set). Once again, however,

the situation for so�c random subgroups is more rigid, as the following theorem

shows.

�eorem 7.2. Let H be a so�c random subgroup. �en the limit sets ƒ
hor;s
H , �H ,

ƒ
hor;b
H , †H , and ƒH all have full m-measure.

Proof. By �eorems 3.20 and 3.21 of [12], the aforementioned limit sets are con-

tained in one another in the order in which we have listed them, i.e.

ƒrad
H � ƒ

hor;s
H � �H � ƒ

hor;b
H � †H � ƒH ;

and the middle four of these have the same m-measure. By �eorem 6.4, we have

m.�H / D 1. �ese facts taken together imply the claim.

By �eorem 3.35 of [12] (which is an analogue of the Hopf–Tsuji–Sullivan theo-
rem, valid for discrete groups of isometries of n-dimensional hyperbolic space),

either m.ƒrad
H / D 1 or m.ƒrad

H / D 0, the former occurring when the simple random

walk on .�; H/ is recurrent and the latter when the simple random walk on .�; H/

is transient. �e following examples show that the m-measure of the radial limit

set of a nonatomic invariant random subgroup may be either zero or one.
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Example 7.3 (an invariant random subgroup with the property that m.ƒrad
H / D 1).

Consider the Cayley graph � of the group Z2 constructed with respect to the stan-

dard generators a D .1; 0/ and b D .0; 1/. It is a classical result that the sim-

ple random walk on Z2 is recurrent [17], so �eorem 3.35 of [12] implies that

m.ƒrad
H / D 1, where H is the fundamental group of �. �e graph � contains

in�nitely many “a-chains,” i.e. bi-in�nite geodesics labeled with the generator a,

and by independently reversing the orientations of these a-chains or leaving their

orientations �xed, we generate a large space of Schreier graphs each of whose

underlying unlabeled graphs is isomorphic to the two-dimensional integer lattice

(in particular, the simple random walk on these graphs remains recurrent). �ere

is natural uniform measure on this space (the uniform measure on its projective

structure), and it is not di�cult to see that this measure is invariant.

Example 7.4 (an invariant random subgroup with the property that m.ƒrad
H / D 0).

Consider the Cayley graph � of the group Z3 constructed with respect to the stan-

dard generators a D .1; 0; 0/, b D .0; 1; 0/, and c D .0; 0; 1/. It is again a classical

result that the simple random walk onZ3 (or, indeed, on Zn for n > 3) is transient,

so that m.ƒrad
H / D 0, where H is the fundamental group of �. By employing the

same trick as in the previous example, we again generate a large space of Schreier

graphs for which the uniform measure is a nonatomic invariant probability mea-

sure.
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