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Abstract. We prove the following �nite generator theorem. Let G be a countable group

acting ergodically on a standard probability space. Suppose this action admits a generating

partition having �nite Shannon entropy. �en the action admits a �nite generating parti-

tion. We also discuss relationships between generating partitions and f-invariant and so�c

entropies.
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1. Introduction

LetG be a countable group acting by measure preserving bijections on a probabil-
ity space .X; �/. For a partition ˛ of X , we denote by G �˛ the smallest �-algebra
containing the sets g � A for g 2 G and A 2 ˛. �e partition ˛ is generating

(or a generator) if for every measurable set B � X there is some B 0 2 G � ˛ with
�.B4B 0/ D 0. �e Shannon entropy of a partition ˛ is

H.˛/ D
X

A2˛�

��.A/ � log.�.A//:

if there is a countable subcollection ˛� � ˛ with �.[˛�/ D 1, and otherwise
H.˛/ D 1.

1 �is research was supported by a National Science Foundation Graduate Research Fellow-
ship.
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A classical theorem of ergodic theory is Krieger’s �nite generator theorem [10].
�is theorem states that if k is an integer and Z Õ .X; �/ is an essentially free
ergodic action with Kolmogorov–Sinai entropy less than log.k/, then the action
Z Õ .X; �/ admits a �nite generating partition of size k. Less known is a similar
but earlier result of Rohlin [13]. Rohlin proved that for any essentially free ergodic
action Z Õ .X; �/, the Kolmogorov–Sinai entropy of this action is equal to the
in�mum of the Shannon entropies of the generating partitions. A result stronger
than both Rohlin’s theorem and Krieger’s theorem was obtained by Denker in [5].

Krieger’s �nite generator theorem extends to essentially free ergodic actions
of general countable amenable groups. �is more general version of Krieger’s
theorem was stated by Šujan in [18] and proved by Danilenko and Park in [4]
with the more restrictive requirement that the Kolmogorov–Sinai entropy be less
than log.k � 1/ (Rosenthal [14] proved this using log.k � 2/ and �ouvenot [19]
proved this for actions of Zn using log.k � 2/). Similarly, Rohlin’s theorem also
extends to essentially free ergodic actions of amenable groups [17]. So in the
setting of actions of amenable groups, the behavior of generating partitions is
well understood.

Entropy theory recently has been extended beyond the realm of actions of
amenable groups. In 2008, Lewis Bowen de�ned (f-invariant) entropy for ac-
tions of �nitely generated free groups [1] and (so�c) entropy for actions of so�c
groups [2]. �e de�nition of so�c entropy was later expanded by Kerr and Li [8]
(see also [7]). So�c entropy and f-invariant entropy have strong similarities with
Kolmogorov–Sinai entropy, and in fact when the acting group is amenable these
entropies agree with Kolmogorov–Sinai entropy. Furthermore, f-invariant entropy
is essentially a special case of so�c entropy. �e theories of so�c entropy and f-
invariant entropy, being quite new, are currently poorly understood. In particular,
it is not clear what relationships so�c entropy and f-invariant entropy have with
generating partitions. As with Kolmogorov–Sinai entropy, so�c entropy and f-
invariant entropy are easier to use, de�ne, and compute when there are generating
partitions with �nite Shannon entropy (in fact, the de�nition of f-invariant entropy
still requires a generating partition having �nite Shannon entropy). So theorems
along the lines of Krieger’s theorem and Rohlin’s theorem mentioned above would
certainly bene�t the theories of so�c entropy and f-invariant entropy. �us the
question arises as to what can be said about generating partitions outside of the
realm of actions of amenable groups.

Although we draw motivation from so�c entropy and f-invariant entropy
(which deal with actions of so�c groups and �nitely generated free groups,
respectively), our main theorem deals with actions of general countable groups.
We prove the following �nite generator theorem.
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�eorem 1.1. Let G be a countable group acting ergodically by measure pre-

serving bijections on a standard probability space .X; �/. If this action admits a

generating partition having �nite Shannon entropy, then it admits a �nite gener-

ating partition.

We mention that although our proof is constructive, it does not immediately
imply any relationship between the Shannon entropy of the original partition and
the size of the �nite partition constructed.

We obtained the above theorem while trying to establish a Krieger �nite gen-
erator theorem for f-invariant entropy. However, we found that Krieger’s theorem
and Rohlin’s theorem fail in this setting.

For an actionG Õ .X; �/we let��
G.X; �/ denote the in�mum of the Shannon

entropies of the generating partitions (this is C1 if there are no such partitions)
and we let�G.X; �/ denote the smallest size of a �nite generating partition (again
this is C1 if there are no such partitions). If G is a �nitely generated free group
then we denote the f-invariant entropy of the action G Õ .X; �/ by fG.X; �/.
We remark that fG.X; �/ is only de�ned when there is a generating partition hav-
ing �nite Shannon entropy. When fG.X; �/ is de�ned it takes values in R[¹�1º.

Proposition 1.2. Let G be a �nitely generated non-cyclic free group. For every

h 2 R,

sup
GÕ.X;�/

��
G.X; �/ D sup

GÕ.X;�/

�G.X; �/ D C1;

where the supremums are taken over all essentially free ergodic probability mea-

sure preserving actions G Õ .X; �/ with fG.X; �/ de�ned and fG.X; �/ D h.

Since f-invariant entropy is currently only de�ned when there is a generating
partition having �nite Shannon entropy, it follows from our main theorem that
��

G.X; �/ and �G.X; �/ are �nite for any ergodic action G Õ .X; �/ in which
fG.X; �/ is de�ned (so in particular for the actions considered in the proposition
above).

We wish to emphasize that this proposition only says that the most obvious

translations of Krieger’s theorem and Rohlin’s theorem to the setting of f-invariant
entropy are false. �ere is still opportunity for subtle modi�cations of Krieger’s
theorem and Rohlin’s theorem to be true for f-invariant entropy (we will mention
such a possible modi�cation).

We obtain a similar but much weaker result for so�c entropy. With so�c en-
tropy the situation is much di�erent though because the so�c entropy of a so�c
group action G Õ .X; �/ is not a single number but a collection of numbers.
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�ese numbers are indexed by so�c approximation sequences to the group. It is
known that di�erent so�c approximation sequences can give di�erent so�c en-
tropy values, however it is not yet understood how widespread this phenomena
is. For a so�c group G, a so�c approximation sequence † to G, and an action
G Õ .X; �/, we denote the corresponding so�c entropy by h†

G.X; �/. We remark
that h†

G.X; �/ is always de�ned and takes values in ¹�1º [ Œ0;C1�.

Proposition 1.3. �ere exists a so�c group G, a so�c approximation sequence†

to G, and an essentially free ergodic action G Õ .X; �/ such that

h†
G.X; �/ D �1

but

��
G.X; �/ D �G.X; �/ D C1:

We do not view the above corollary as su�cient grounds to say that Krieger’s
theorem and Rohlin’s theorem fail for so�c entropy. �e fact is that having
h†

G.X; �/ D �1 re�ects almost nothing about the action; it only means that † is
inadequate for modeling the action G Õ .X; �/. We do not know if Rohlin’s the-
orem and Krieger’s theorem hold for actions whose so�c entropy is not negative
in�nity.

Organization. In Section 2 below, we prove �eorem 1.1. �en in Section 3 we
prove Propositions 1.2 and 1.3. �ese two sections are written independently of
one another.

Acknowledgments. �is material is based upon work supported by the National
Science Foundation Graduate Student Research Fellowship under Grant No. DGE
0718128. �e author would like to thank his advisor, Ralf Spatzier, for helpful
conversations. �e author would also like to thank Benjamin Weiss for some ref-
erences and for information on Rohlin’s theorem.

2. Construction of �nite generators

We begin with an equivalent characterization of generating partitions. For a parti-
tion ˛ of X and a point x 2 X , we write ˛.x/ to denote the unique member A 2 ˛

with x 2 A.
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Lemma 2.1. Let X be a standard Borel space, let � be a Borel probability mea-

sure onX , and letG be a countable group acting by measure preserving bijections

on X . �e following are equivalent for a countable measurable partition ˛ of X

(i) ˛ is a generating partition;

(ii) for every Borel set B � X there is a set B 0 2 G � ˛ with �.B4B 0/ D 0;

(iii) there is X 0 � X such that �.X 0/ D 1 and for all x ¤ y 2 X 0 there is g 2 G

with ˛.g � x/ ¤ ˛.g � y/.

Proof. �e equivalence of (i) and (ii) is by de�nition.

(ii) H) (iii). SinceX is a standard Borel space, there is a countable collection
.Bn/n2N of Borel subsets ofX such that the �-algebra generated by ¹Bn W n 2 Nº is
precisely the collection of all Borel subsets of X and such that .Bn/n2N separates
points, meaning that for x ¤ y 2 X there is n 2 N with either x 2 Bn and y 62 Bn

or x 62 Bn and y 2 Bn [6, Proposition 12.1]. For each n 2 N let Cn 2 G �˛ be such
that �.Bn4Cn/ D 0. Set

X 0 D X n
[

n2N

.Bn4Cn/:

�en �.X 0/ D 1. Now �x x; y 2 X 0 with x ¤ y. �en there is n 2 N with Bn

containing either x or y but not containing both. Since x; y 2 X 0 we have x 2 Bn

if and only if x 2 Cn, and similarly y 2 Bn if and only if y 2 Cn. �erefore Cn

contains either x or y, but it does not contain both. Since Cn lies in the �-algebra
generated by the sets ¹g �A W g 2 G; A 2 ˛º, there must be g 2 G and A 2 ˛ with
g � A containing either x or y but not both. �en ˛.g�1 � x/ ¤ ˛.g�1 � y/.

(iii) ) (ii). Let X 0 � X be such that �.X 0/ D 1 and for all x ¤ y 2 X 0 there
is g 2 G with ˛.g � x/ ¤ ˛.g � y/. By replacing X 0 with

T

g2G g �X 0 if necessary,
we may suppose that g � X 0 D X 0 for every g 2 G. Let ˇ be the partition of X 0

induced by ˛. Since �.X n X 0/ D 0, it su�ces to show that for every Borel set
B � X we have B \ X 0 2 G � ˇ. Consider the space ˇG of all functions from
G to ˇ. We give ˇG the topology of point-wise convergence (under the discrete
topology on ˇ). �en ˇG is a Polish space since ˇ is countable. We let G act on
ˇG by the rule .h �z/.g/ D z.h�1g/ for h; g 2 G and z 2 ˇG . De�ne � W X 0 ! ˇG

by �.x/.g/ D ˇ.g�1 � x/. Notice that

�.h � x/.g/ D ˇ.g�1h � x/ D �.x/.h�1g/ D Œh � �.x/�.g/:

So �.h � x/ D h � �.x/. If x ¤ y 2 X 0 then by assumption there is g 2 G with
ˇ.g � x/ ¤ ˇ.g � y/ and thus �.x/ ¤ �.y/. So � is injective. �e function �
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is Borel since the inverse image of any open set in ˇG is Borel. Consider the
partition � D ¹CA W A 2 ˇº of ˇG , where CA D ¹z 2 ˇG W z.1G/ D Aº. It is
readily seen that the G-translates of the members of � generate the open subsets
of ˇG . �erefore G � � is precisely the collection of Borel subsets of ˇG . Notice
that A � ��1.CA/ for A 2 ˇ and thus A D ��1.CA/ for A 2 ˇ (since ��1.�/ and
ˇ are both partitions of X 0). Consider the collection C of subsets C � ˇG such
that ��1.C / 2 G � ˇ. Clearly C is a �-algebra and g � CA 2 C for every g 2 G

and CA 2 �. �us ��1.C / 2 G � ˇ for every Borel set C � ˇG . Now consider
a Borel set B � X . Since � is injective and Borel, �.B \ X 0/ is a Borel subset
of ˇG , see [6, Corollary 15.2]. �erefore B \ X 0 D ��1.�.B \ X 0// 2 G � ˇ.
So there is B 0 2 G � ˛ with B 0 \ X 0 D B \ X 0 and thus �.B4B 0/ D 0 since
�.X n X 0/ D 0.

For a �nite set S we let S<! denote the set of all �nite words with letters in S
(the ! in the superscript denotes the �rst in�nite ordinal). For z 2 S<! we let jzj

denote the length of the word z. In the �rst step of the proof of [10, �eorem 2.1],
Krieger proves the following.

Lemma 2.2 (Krieger). Let .X; �/ be a probability space. If ˛ is a countable

measurable partition of X with H.˛/ < 1 then there exists an injection

L W ˛ �! ¹1; 2; 3º<!

such that
X

A2˛

jL.A/j � �.A/ < 1:

As a convenience to the reader, we include the proof below.

Proof. �is is clear if ˛ is �nite. So suppose that ˛ is countably in�nite and enu-
merate ˛ as ˛ D ¹A1; A2; : : :º, where �.AmC1/ � �.Am/ for all m. For m � 1

choose t .m/ 2 N so that � log.�.Am// � 1 < t.m/ � � log.�.Am//. �en

3�t.m/ � e�t.m/ � elog.�.Am//C1 D e � �.Am/:

�us
P1

mD1 3
�t.m/ � e. Notice that the sequence .t .m//1mD1 is non-decreasing.

Set N1 D 1 and for m > 1 de�ne

Nm D min¹k > Nm�1 W t .k/ > t.Nm�1/º:

�en
1

X

mD1

.NmC1 �Nm/ � 3�t.Nm/ D

1
X

mD1

3�t.m/ � e:
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So there is m0 � 1 such that NmC1 � Nm < 3t.Nm/ for all m � m0. �ere-
fore it is possible to choose L.Am/ 2 ¹1; 2; 3ºt.m/ for every m � m0 so that
L W ¹Am0

; Am0C1; : : :º ! ¹1; 2; 3º<! is injective. Moreover, since the inequal-
ity NmC1 � Nm < 3t.Nm/ (which holds for m � m0) is strict, L can be extended
to an injective function L W ˛ ! ¹1; 2; 3º<!. Finally, it su�ces to show that

1
X

mDm0

jL.Am/j � �.A/ < 1:

�is follows from the fact that jL.Am/j D t .m/ � � log.�.Am// for m � m0 and
P1

mDm0
� log.�.Am// � �.Am/ � H.˛/ < 1.

�e function L above can be extended to X by setting L.x/ D L.˛.x//. �e
above lemma then says that the labeling L W X ! ¹1; 2; 3º<! has �nite length on
average. �e idea behind the proof of �eorem 1.1 is to rearrange the L “data”
within each orbit to obtain a new function (a relabeling) R W X ! ¹1; 2; 3; 4º<!

which has uniformly bounded length. �e functionRwould then have �nite image
and thus induce a �nite partition of X . In order for this partition to be generating,
one must ensure that the function L can be recovered from R. In [10], Krieger
carried out this argument in the case of Z actions, obtaining a weak form of his
�nite generator theorem which did not specify the smallest possible size of a �nite
generator. While our proof is inspired by his argument, our proof is quite distinct
as Krieger’s argument relied heavily on properties of Z.

�e following lemma is essential for the task of rearranging the L data within
each orbit.

If G acts on .X; �/ and A � X , then we say that x; y 2 X are A-symmetric if
for every g 2 G g � x 2 A () g � y 2 A.

Lemma 2.3. Let G be a countable group acting ergodically by measure preserv-

ing bijections on a probability space .X; �/. For every pair of measurable sets

A;B � X there exist measurable sets P1.A; B/; P2.A; B/ � X and a measurable

bijection  .A;B/ W P1.A; B/ ! P2.A; B/ satisfying the following:

(i) P1.A; B/ � A and P2.A; B/ � B;

(ii) either �.A n P1.A; B// D 0 or �.B n P2.A; B// D 0;

(iii) if x; y 2 X are both A-symmetric and B-symmetric, then x and y are both

P1.A; B/-symmetric and P2.A; B/-symmetric;

(iv)  .A;B/.x/ 2 G � x for every x 2 P1.A; B/;

(v) if x; y 2 P1.A; B/ are both A-symmetric and B-symmetric, then there is

h 2 G with  .A;B/.x/ D h � x and  .A;B/.y/ D h � y.



800 B. Seward

Proof. We �rst de�ne auxiliary functions Q1, Q2, and � which will play roles
similar to P1, P2, and  , respectively. �e idea is to de�ne Q1, Q2, and � to
achieve clauses (i), (iii), (iv), and (v) and then use these functions repeatedly to
perform a type of exhaustion argument and achieve clause (ii).

Fix any well ordering, �, ofG. If A;B � X are measurable and .G �A/\B D

¿ then we set Q1.A; B/ D Q2.A; B/ D �.A; B/ D ¿. If .G � A/ \ B ¤ ¿ then
we let h 2 G be the �-least element of G satisfying .h �A/\B ¤ ¿. In this case
we set

Q1.A; B/ D A \ h�1 � B

Q2.A; B/ D .h � A/ \ B

�.A; B/.x/ D h � x .for x 2 Q1.A; B//:

Notice that Q1.A; B/ and Q2.A; B/ are measurable subsets of X and �.A; B/ is
a measurable function. If P1, P2, and  are replaced with Q1, Q2, and � , respec-
tively, then clauses (i), (iv), and (v) are clearly satis�ed (clause (v) immediately
follows from the simple de�nition of �.A; B/). Clause (iii) is also satis�ed, for
if we assume Q1.A; B/ and Q2.A; B/ are non-empty (clause (iii) is trivial other-
wise) and let h be as above, then for any x 2 X and g 2 G we have

g � x 2 Q1.A; B/ () .g � x 2 A ^ hg � x 2 B/

and

g � x 2 Q2.A; B/ () .g � x 2 B ^ h�1g � x 2 A/:

We haveQ1.A; B/ � A andQ2.A; B/ � B . By repeatedly using the functions
Q1 and Q2 we seek to exhaust (in measure) either A or B . We recursively de�ne

P 1
i .A; B/ D Qi .A; B/;

P n
i .A; B/ D Qi .A n P n�1

1 .A; B/; B n P n�1
2 .A; B//[ P n�1

i .A; B/;

 n.A; B/ D �.A n P n�1
1 .A; B/; B n P n�1

2 .A; B//:

We set Pi.A; B/ D
S

n�1P
n
i .A; B/ and  .A;B/ D

S

n�1 
n.A; B/. Clearly

Pi .A; B/ is a measurable subset of X and  .A;B/ is a measurable function. We
remark that  .A;B/ is a well de�ned function since the domains of the  n’s are
pairwise disjoint.

Clauses (i) and (iv) are clearly satis�ed. We now check clauses (ii), (iii),
and (v).



Ergodic actions and �nite generators 801

(ii). Let h1 be the �-least element of G with .h1 � A/ \ B ¤ ¿ and for n > 1

let hn be the �-least element of G with

.hn � .A n P n�1
1 .A; B///\ .B n P n�1

2 .A; B// ¤ ¿:

If for some n no such hn exists then by ergodicity either �.A n P n�1
1 .A; B// D 0

or �.B n P n�1
2 .A; B// D 0 and thus clause (ii) is satis�ed since P n�1

i .A; B/ �

Pi .A; B/. So we may suppose the hn’s are de�ned. We must have hn � hnC1

since P n�1
i .A; B/ � P n

i .A; B/. So if g 2 G is �xed then

.g � .A n P n�1
1 .A; B///\ .B n P n�1

2 .A; B// D ¿

for all but �nitely many n � 1. �us

.g � .A n P1.A; B///\ .B n P2.A; B// D ¿

for every g 2 G. By ergodicity it follows that either �.A n P1.A; B// D 0 or
�.B n P2.A; B// D 0.

(iii). Fix x; y 2 X which are bothA-symmetric andB-symmetric. For i D 1; 2

we have that x and y are P 1
i .A; B/-symmetric, since P 1

i .A; B/ D Qi .A; B/. Now
suppose that x and y are P n�1

i .A; B/-symmetric for i D 1; 2. �en x and y
are .A n P n�1

1 .A; B//-symmetric and .B n P n�1
2 .A; B//-symmetric. It follows

from the de�nition of P n
i and the properties of Qi that x and y are P n

i .A; B/

symmetric for i D 1; 2. By induction, this holds for all n � 1. �us x and y are
Pi .A; B/-symmetric for i D 1; 2.

(v). Fix x; y 2 P1.A; B/ which are both A-symmetric and B-symmetric. Let
n � 1 be such that x lies in the domain of  n.A; B/. Notice that the domain
of  n.A; B/ is P n

1 .A; B/ n P n�1
1 .A; B/. �e argument in the previous paragraph

shows that x and y are P k
1 .A; B/-symmetric for every k � 1. �erefore y lies in

the domain of  n.A; B/ as well. So

x; y 2 P n
1 .A; B/ n P n�1

1 .A; B/ D Q1.A n P n�1
1 .A; B/; B n P n�1

2 .A; B//

and x and y are both .A n P n�1
1 .A; B//-symmetric and .B n P n�1

2 .A; B//-sym-
metric, so from the properties of Q1, Q2, and � , it follows that there is h 2 G

with

 .A;B/.x/ D  n.A; B/.x/ D �.A n P n�1
1 .A; B/; B n P n�1

2 .A; B//.x/ D h � x

and

 .A;B/.y/ D  n.A; B/.y/ D �.A n P n�1
1 .A; B/; B n P n�1

2 .A; B//.y/ D h � y:

�is completes the proof.
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We are now ready to prove the main theorem.

�eorem 2.4. Let G be a countable group acting ergodically by measure pre-

serving bijections on a standard probability space .X; �/. If this action admits a

generating partition having �nite Shannon entropy, then it admits a �nite gener-

ating partition.

Proof. Let ˛ be a generating partition with H.˛/ < 1. By combining the classes
of ˛ having measure 0 into a single class, we may suppose that ˛ is countable.
By Lemma 2.2, there is an injective function L W ˛ ! ¹1; 2; 3º<! satisfying

X

A2˛

jL.A/j � �.A/ < 1:

For x 2 X de�ne L.x/ D L.˛.x//.
�e function L W X ! ¹1; 2; 3º<! on average has �nite length, so the idea

now is to rearrange the L-data within each orbit so that in the end every point
of X has a word of uniformly �nite length associated to it. In doing this, one
must take care not to lose data, and more importantly one must rearrange the data
in such a way that the original function L can be decoded from the new data.
�e functions appearing in the previous lemma play the critical role of achieving
these requirements.

First we need to determine how long the new words we create should be. Since
jL.x/j is integer valued, we have

X

n�1

n � �.¹x 2 X W jL.x/j D nº/ D
X

A2˛

jL.A/j � �.A/ < 1:

So there is C � 1 such that

X

n>C

n � �.¹x 2 X W jL.x/j D nº/ <
1

4
:

After rearranging theL-data, the new words we construct will have length bounded
above by C C 3.

We now use the previous lemma to determine how to rearrange the L-data.
For n � 1 de�ne Bn D ¹x 2 X W jL.x/j � C C nº. �en BnC1 � Bn. Since
jL.x/j � C D j¹n � 1 W x 2 Bnºj when jL.x/j > C , we have

�.B1/ �
X

n�1

�.Bn/ D
X

n�1

n � �.¹x 2 X W jL.x/j D C C nº/ <
1

4
:
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Set T1 D P2.B1; X n B1/ and �1 D  .B1; X n B1/. In general, for n > 1 de�ne

Tn D P2.Bn; X n .B1 [ T1 [ � � � [ Tn�1//;

�n D  .Bn; X n .B1 [ T1 [ � � � [ Tn�1//:

By clause (iv) of Lemma 2.3, the function �n can be described by partitioning
P1.Bn; Xn.B1[T1[� � �[Tn�1// into a countable number of pieces and translating
each piece by an element of G. Since �n is bijective, it follows that �.Tn/ D

�.��1
n .Tn//. �erefore by clause (i) of Lemma 2.3

�.Tn/ D �.��1
n .Tn// D �.P1.Bn; X n .B1 [ T1 [ � � � [ Tn�1/// � �.Bn/:

So

�.B1 [ T1 [ � � � [ Tn�1/ � �.B1/C �.B1/C �.B2/C � � � C �.Bn�1/ <
1

2

and hence �.Bn/ <
1
2
< �.X n .B1 [ T1 [ � � � [ Tn�1//. Applying clause (ii) of

Lemma 2.3, we �nd that

�.Bn n P1.Bn; X n .B1 [ T1 [ � � � [ Tn�1/// D 0:

Set En D Bn n P1.Bn; X n .B1 [ T1 [ � � � [ Tn�1//.
We now de�ne a new labeling function

R W X �! ¹1; 2; 3; 4º<!

by the rule (below the symbol _ denotes concatenation of words and � denotes
restriction)

R.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

L.x/ � Œ1; C � if x 2 B1

L.x/ _ 4 _ L.��1
n .x//.C C n/ if x 2 Tn and ��1

n .x/ 2 BnC1

L.x/ _ 4 _ L.��1
n .x//.C C n/ _ 4 if x 2 Tn and ��1

n .x/ 62 BnC1

L.x/ _ 4 otherwise:

Notice that in the second and third cases in the de�nition ofR.x/we automatically
have ��1

n .x/ 2 Bn since x 2 Tn. Clearly jR.x/j � C C 3 for every x 2 X . So the
image of R is �nite. Let ˇ be the partition of X obtained from R, i.e. de�ne the
classes of ˇ so that x; y 2 X lie in the same class of ˇ if and only ifR.x/ D R.y/.
�en ˇ is a �nite measurable partition of X . We claim that ˇ is a generating
partition.
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By Lemma 2.1 and the de�nition of ˇ, we have that ˇ is a generating partition
if and only if there is a setX 0 � X with �.X 0/ D 1 such that for every x ¤ y 2 X 0

there is g 2 G withR.g �x/ ¤ R.g �y/. Since ˛ is a countable generating partition,
there is a setX 00 � X with �.X 00/ D 1 such that for all x ¤ y 2 X 00 there is g 2 G

with ˛.g � x/ ¤ ˛.g � y/. Set

X 0 D X 00 n
�

G �
[

n�1

En

�

:

�en �.X 0/ D 1. Fix x ¤ y 2 X 0. We proceed by cases to show that there is
g 2 G with R.g � x/ ¤ R.g � y/.

Case 1 . �ere is n � 1 such that x and y are not Bn-symmetric. Let n � 1 be
least such that there is u 2 G with Bn containing precisely one of u � x and u � y.
To be speci�c, say u � x 2 Bn and u � y 62 Bn (the other case is nearly identical).
If n D 1 then the letter 4 appears in R.u � y/ but not R.u � x/ and thus R.u � x/ ¤

R.u �y/. So suppose that n > 1. Since n was chosen to be minimal, we must have
that x and y are Bk-symmetric for all k < n. So by clause (iii) of Lemma 2.3
x and y are T1-symmetric. It readily follows from a simple induction argument
that x and y are both Bk-symmetric and Tk-symmetric for every 1 � k < n.
So u � x 2 Bn � Bn�1 implies u � y 2 Bn�1 and clause (v) of Lemma 2.3 implies
that there is h 2 G with �n�1.u � x/ D hu � x and �n�1.u � y/ D hu � y (we use
here the fact that x; y 2 X 0 implies u � x; u � y 62 En�1 and thus �n�1.u � x/ and
�n�1.u�y/ are de�ned). �en the letter 4 appears once inR.hu�x/ D R.�n�1.u�x//

(since u � x 2 Bn�1 \Bn) but appears twice in R.hu � y/ D R.�n�1.u � y// (since
u � y 2 Bn�1 n Bn). �us R.hu � x/ ¤ R.hu � y/.

Case 2. For every n � 1 x and y are Bn-symmetric. Fix u 2 G with ˛.u � x/ ¤

˛.u � y/ (such a u exists since x; y 2 X 0 � X 00). If u � x is not in B1 then neither is
u � y, and we have that L.u � x/ and L.u � y/ are pre�xes of R.u � x/ and R.u � y/,
respectively. �us R.u � x/ ¤ R.u � y/ if u � x 62 B1. So suppose that u � x 2 B1.
We have jL.u � x/j D C C n, where n is maximal with u � x 2 Bn. Since x
and y are Bk-symmetric for every k � 1, we must have jL.u � x/j D jL.u � y/j.
Since L.u � x/ ¤ L.u � y/ and jL.u � x/j D jL.u � y/j, there is k � 1 with
L.u � x/.k/ ¤ L.u � y/.k/. If k � C then from the �rst case in the de�nition of R
it follows that R.u � x/.k/ ¤ R.u � y/.k/ and thus R.u � x/ ¤ R.u � y/. If k > C

then u � x; u � y 2 Bk�C . Our symmetry assumption and clause (v) of Lemma 2.3
imply that there is h 2 G with �k�C .u � x/ D hu � x and �k�C .u � y/ D hu � y

(as in Case 1, we again use the fact that u � x; u � y 62 Ek�C since x; y 2 X 0).
�en L.u � x/.k/ is the letter in R.hu � x/ which follows the �rst occurrence of 4,
and L.u � y/.k/ is the letter in R.hu � y/ which follows the �rst occurrence of 4.
�erefore R.hu � x/ ¤ R.hu � y/.



Ergodic actions and �nite generators 805

3. Counter-examples for f-invariant and so�c entropies

In this section we prove Propositions 1.2 and 1.3. We handle f-invariant entropy
�rst.

We remind the reader the de�nition of an induced action. LetG be a countable
group and let H � G be a subgroup of �nite index. Let G=H denote the set of
left H -cosets ¹gH W g 2 Gº, and let � be the uniform probability measure on
G=H . We let G act on .G=H; �/ by de�ning g � .aH/ D gaH . Fix any function
� W G=H ! G with �.H/ D 1G and �.gH/ 2 gH for all g 2 G. We abuse
notation and let �.g/ denote �.gH/ for g 2 G. Let  W .G=H/ � G ! H be the
cocycle de�ned by

.aH; g/ D �.ga/�1 � g � �.a/:

If H acts by measure preserving bijections on a probability space .Y; �/, then we
de�ne a measure preserving action ofG on the probability space ..G=H/�Y; ���/
by

g � .aH; y/ D .gaH; .aH; g/ � y/:

One can check that this is a well de�ned action of G. It is called the action of G
induced fromH Õ .Y; �/. It is well known that the induced action ofG is ergodic
if and only if H Õ .Y; �/ is ergodic [20].

Proposition 3.1. Let G be a �nitely generated non-cyclic free group. For every

h 2 R,

sup
GÕ.X;�/

��
G.X; �/ D sup

GÕ.X;�/

�G.X; �/ D C1;

where the supremums are taken over all essentially free ergodic probability mea-

sure preserving actions G Õ .X; �/ with fG.X; �/ de�ned and fG.X; �/ D h.

Proof. We will use the notations and de�nitions of [16]. Fix a �nitely gener-
ated non-cyclic free group G, �x h 2 R, and let M > 0. We will construct
an essentially free ergodic action G Õ .X; �/ such that fG.X; �/ is de�ned,
fG.X; �/ D h, and log.�G.X; �// � ��

G.X; �/ > M .
Let r > 1 be the rank ofG. Fix n > exp.M �h

r�1
/. Let � be a probability measure

on N satisfying

H.�/ D
X

k2N

��.k/ � log.�.k// D n � hC n.r � 1/ � log.n/:

Notice that the right hand side is positive since n > exp. �h
r�1

/ and thus such a
probability measure � exists. LetK be a normal subgroup ofG with jG W Kj D n.
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Consider the Bernoulli shift K Õ .NK ; �K/. By [1] we have that fK.N
K ; �K/ is

de�ned and

fK.N
K ; �K/ D H.�/ D n � hC n.r � 1/ � log.n/:

Let � be the uniform probability measure on G=K, set

.X; �/ D ..G=K/� N
K ; � � �K/;

and let G Õ .X; �/ be the action of G induced from K Õ .NK ; �K/. Since
K Õ .NK ; �K/ is ergodic, G Õ .X; �/ is ergodic as well. It is easy to see that
K Õ .X; �/ has n ergodic components, namely ¹gKº � N

K for gK 2 G=K,
and the action of K on any of its ergodic components is measurably conjugate to
K Õ .NK ; �K/. �e sets ¹.aK; y/ 2 .G=K/ � N

K W aK D gK; y.1K/ D tº for
gK 2 G=K and t 2 N form a generating partition forK Õ .X; �/, and it is readily
checked that this partition has Shannon entropy H.�/ C log.n/ < 1. �erefore
fK.X; �/ is de�ned. �e rank of K, rK , is related to its index, n, by the formula
rK D n � .r � 1/ C 1 [Proposition I.3.9 [11]]. So by the ergodic decomposition
formula [16]

fK.X; �/ D fK.N
K ; �K/�.rK�1/ log.n/ D fK.N

K ; �K/�n.r�1/ log.n/ D n�h:

Now by the subgroup formula [15] we have

fG.X; �/ D
1

n
� fK.X; �/ D h:

Since � has no atoms, it follows from the main theorem of [16] that G Õ .X; �/

is essentially free.
Now suppose that ˛ is a generating partition for G Õ .X; �/ with H.˛/ <

1. Fix g1; g2; : : : ; gn 2 G with g1 D 1G and G=K D ¹giK W 1 � i � nº.
Enumerate the K-ergodic measures in the support of � as �1; �2; : : : ; �n so that
�i .¹giKº � N

K/ D 1 for each 1 � i � n. Notice that �1 D g�1
i � �i . By [16,

Lemma 4.2 (ii)] we have

1

n
�

n
X

iD1

H�i
.˛/ � H�.˛/:

Let ˇ be the restriction of
Wn

iD1 g
�1
i � ˛ to ¹Kº � N

K . �en

H�1
.ˇ/ �

n
X

iD1

H�1
.g�1

i � ˛/ D

n
X

iD1

H�i
.˛/ � n � H.˛/:
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Since K is normal we have

G � ˛ D K � ¹g1; g2; : : : ; gnº � ˛

and hence ˇ is a generating partition for K Õ .¹Kº � N
K ; �1/. It follows that

fK.¹Kº � N
K ; �1/ � H�1

.ˇ/ [1]. However, K Õ .¹Kº � N
K ; �1/ is measurably

conjugate to K Õ .NK ; �K/ and therefore

n �hCn.r�1/ � log.n/ D fK.N
K ; �K/ D fK.¹Kº�N

K; �1/ � H�1
.ˇ/ � n �H.˛/:

Since ˛ was an arbitrary �nite Shannon entropy generating partition for G Õ

.X; �/ it follows that

��
G.X; �/ � hC .r � 1/ � log.n/ > M:

Finally, we of course always have the inequality log.�G.X; �// � ��
G.X; �/.

We point out that the actionG Õ .X; �/ constructed in the above proof factors
onto G Õ .G=K; �/ which has f-invariant entropy fG.G=K; �/ D �.r � 1/ �

log.n/ < 0 ([16, Lemma 2.3]). We do not know if the above proposition is still
true if in addition to picking h 2 R one picks a constant c > 0 and considers
essentially free ergodic actions G Õ .X; �/ which not only satisfy fG.X; �/ D h

but also satisfy fG.Y; �/ � �c for every factor .Y; �/ of .X; �/. �is additional
requirement could potentially lead to a result similar to Krieger’s �nite generator
theorem.

Now we consider the case of so�c entropy.

Lemma 3.2. �ere is a so�c group G, a so�c approximation sequence † to G,

and a normal subgroup K C G of �nite index such that h†
G.G=K; �/ D �1,

where � is the uniform probability measure on G=K.

Proof. For the sake of brevity we give a simple example of such a group. However
the situation described in the lemma should occur wheneverG has a subgroup of
�nite index and admits a so�c approximation sequence coming from a sequence
of expander graphs.

We will use some of the notation and de�nitions from [3]. Let G be a �nitely
generated non-cyclic free group. It is well known that such groups are so�c. Fix
a normal subgroup K of G of index 2. Let � be the uniform probability measure
on G=K. By [16, Lemma 2.3], the f-invariant entropy of this action is

fG.G=K; �/ D �.r � 1/ � log.2/ < 0;
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where r > 1 is the rank of G. Let � W G=K ! ¹0; 1º be a bijection. In [3],
Bowen proved that f-invariant entropy can be obtained by considering random
homomorphisms into �nite symmetric groups and then performing computations
similar to those used in de�ning so�c entropy. In particular, his theorem implies
that we can �nd a so�c approximation sequence† D ¹�i W i 2 Nº to G consisting
of homomorphisms �i W G ! Sym.mi / such that

j W ¹1; 2; : : : ; miº �! ¹0; 1º W dH
�i
.�;  / � �ºj D 0

for su�ciently small � > 0, su�ciently large �nite sets H � G, and su�ciently
large i 2 N. Using the de�nition of so�c entropy given in [2], it immediately
follows from the previous sentence that h†

G.G=K; �/ D �1.

Proposition 3.3. �ere exists a so�c group G, a so�c approximation sequence†

to G, and an essentially free ergodic action G Õ .X; �/ such that h†
G.X; �/ D

�1 but ��
G.X; �/ D �G.X; �/ D C1.

Proof. Take any so�c group G and so�c approximation sequence † to G with
the properties that there is a normal subgroup K C G of �nite index such that
h†

G.G=K; �/ D �1, where � is the uniform probability measure on G=K. Con-
sider the Bernoulli shift K Õ .Œ0; 1�K ; �K/, where � is Lebesgue measure on the
interval Œ0; 1�. Let G Õ .X; �/ be the induced action of G, where X D .G=K/ �

Œ0; 1�K and � D � � �K . Since K Õ .Œ0; 1�K ; �K/ is ergodic, so is G Õ .X; �/.
If g 2 G has a non-trivial power gn lying in K, then the set of points in X �xed
by g must have measure 0 since the action of K is essentially free. On the other
hand, if g has no non-trivial power lying in K, then g acts freely on G=K (since
K is normal) and thus acts freely on X . So the action G Õ .X; �/ is essentially
free. Clearly G Õ .X; �/ factors onto G Õ .G=K; �/. Let � be the �nite partition
of X associated to this factor map. Using Kerr’s de�nition of so�c entropy [7],
we can work with partitions �ner than � and use the fact that h†

G.G=K; �/ D �1

to quickly obtain h†
G.X; �/ D �1. As was shown in the proof of Proposition

3.1, any �nite Shannon entropy generator for G Õ .X; �/ would provide a �nite
Shannon entropy generator for K Õ .Œ0; 1�K ; �K/ (see the role of ˛ and ˇ in that
proof). However, Kerr and Li [9] proved that K Õ .Œ0; 1�K ; �K/ does not admit
any generating partition having �nite Shannon entropy (we use here the fact that a
subgroup of a so�c group is so�c [12]). �us��

G.X; �/ D �G.X; �/ D C1.

It is unknown to the author if Krieger’s theorem and Rohlin’s theorem hold
for actions of so�c groups for which the so�c entropy is not negative in�nity.
We mention that the potential dependence of so�c entropy on the choice of a so�c
approximation sequence clearly poses a potential obstruction to Rohlin’s theorem.
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