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1. Introduction

�e results of this paper are motivated by orbit-equivalence theory and weak

equivalence of group actions. Let us �rst recall some terminology before delv-

ing into background material.

Let .X; �/ be a standard non-atomic probability space and Aut.X; �/ the group

of all measure-preserving automorphisms of .X; �/ in which we identify two

automorphisms if they agree on a conull subset. Let G be a countable group.

By an action of G we will mean a homomorphism a W G ! Aut.X; �/. In partic-

ular, all actions in this paper are probability-measure-preserving. Let A.G;X; �/

denote the set of all such actions. It admits a natural topology as follows. First,

let us recall that Aut.X; �/ is a Polish group with the weak topology (see §2 for

details). We endow the product space Aut.X; �/G with the product topology and

view A.G;X; �/ as a subspace A.G;X; �/ � Aut.X; �/G with the induced topol-

ogy. It is well-known that A.G;X; �/ is a Polish space [18].

1.0.1. Weak containment. If a 2 A.G;X; �/ and T 2 Aut.X; �/, de�ne aT 2

A.G;X; �/ by

aT .g/ D Ta.g/T �1:

Let

Œa�MC D ¹aT W T 2 Aut.X; �/º � A.G;X; �/

be the measure-conjugacy class of a.
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Given two actions a; b 2 A.G;X; �/we say a is weakly contained in b (denoted

a � b) if a is contained in the closure of the measure-conjugacy class of b (i.e.,

a 2 Œb�MC ). We say a is weakly equivalent to b if a � b and b � a. �ese notions

were introduced by A. Kechris [18] as an analog of weak containment of unitary

representations.

We can also think of weak equivalence as describing the manner in which

the Rohlin Lemma fails for non-amenable groups. Recall that the Rohlin Lemma

states that any pmp Z-action is approximately periodic. �is fundamental fact

is critically important in much classical ergodic theory. It has been extended to

amenable groups [24]. Moreover, the Rohlin Lemma is essentially equivalent

to the statement that if G is in�nite and amenable then any essentially free ac-

tion a 2 A.G;X; �/ weakly contains all actions of G (i.e., Œa�MC is dense in

A.G;X; �/) [19]. By contrast, any non-amenable group admits an essentially free

strongly ergodic action (e.g., Bernoulli shift actions) [27, 21]. By de�nition, the

closure of the measure-conjugacy class of a strongly ergodic action cannot con-

tain any non-ergodic action. So each non-amenable group admits at least two

non-weakly-equivalent essentially free actions. It is an open problem whether any

non-amenable group admits at least two ergodic non-weakly-equivalent actions.

However M. Abert and G. Elek [1] made use of pro�nite actions to show that

there is an explicit large family of residually �nite groups G that admit an un-

countable family of ergodic non-weakly-equivalent actions. �is family includes

non-abelian free groups.

1.0.2. Orbit-equivalence. We say two actions a; b 2 A.G;X; �/ are orbit-equiv-
alent if there exists T 2 Aut.X; �/ which takes orbits to orbits: T .a.G/x/ D

b.G/T .x/ for a.e. x 2 X . We say that a 2 A.G;X; �/ is essentially free if for a.e.

x 2 X the stabilizer of x in G is trivial: ¹g 2 G W a.g/x D xº D ¹eGº.

If G is amenable then every two essentially free ergodic actions of G are orbit

equivalent [24]. On the other hand, I. Epstein proved that if G is non-amenable

then G admits an uncountable family of essentially free non-orbit-equivalent er-

godic pmp actions [10, 16]. �is followed a series of earlier results that dealt with

various important classes of non-amenable groups [13, 15, 17, 22, 23, 25]. In [16]

it shown that essentially free mixing actions of any non-amenable groupG cannot

be classi�ed by orbit-equivalence up to countable structures.

�e main result of this paper shows that, although there are uncountably many

essentially free non-orbit-equivalent ergodic pmp actions of any non-abelian free

group, the orbit-equivalence class of any such action is dense in the space of all

actions.
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1.0.3. Results. Our main result is:

�eorem 1.1. Let G be a free group with at most countably many generators. Let
Afree.G;X; �/ � A.G;X; �/ denote the subset of all essentially free actions. For
any a 2 A.G;X; �/, let Œa�OE denote the set of all actions b 2 A.G;X; �/ which
are orbit-equivalent to a. �en for any a 2 Afree.G;X; �/, Œa�OE \Afree.G;X; �/

is dense in A.G;X; �/.

By contrast we can use deep rigidity results due to S. Popa [25, 26] and

Y. Kida [22] to show that many groups do not satisfy �eorem 1.1. For this pur-

pose, let us recall that if .K; �/ is a probability space then any countable group G

acts on the product space .K; �/G by

.gx/.f / D x.g�1f /; x 2 KG ; g; f 2 G:

�is action is called the Bernoulli shift over G with base space .K; �/.

�eorem 1.2. Let G be any countably in�nite group satisfying at least one of the
following conditions:

(1) G D G1 �G2 where G1; G2 are both in�nite, G1 is nonamenable and G has
no nontrivial �nite normal subgroups;

(2) G is the mapping class group of the genus g n-holed surface for some .g; n/
with 3g C n � 4 > 0 and .g; n/ … ¹.1; 2/; .2; 0/º;

(3) G has property (T) and every nontrivial conjugacy class of G is in�nite.

Let .X; �/ be a standard non-atomic probability space and let a 2 A.�;X; �/

be isomorphic to the Bernoulli action GÕ.Œ0; 1�; �/G where � is the Lebesgue
measure on the unit interval Œ0; 1�. �en Œa�OE \ Afree.G;X; �/ is not dense in
A.G;X; �/.

Before proving this, we need a lemma.

De�nition 1. Let a 2 A.G;X; �/ and ˛ 2 Aut.G/. Observe that the composition

a ı ˛ 2 A.G;X; �/. We say that two actions a; b 2 A.G;X; �/ are conjugate
up to automorphisms if there exists ˛ 2 Aut.G/ and T 2 Aut.X; �/ such that

b D .a ı ˛/T .

Lemma 1.3. Let G be any countable group, .K; �/ a standard probability space
andGÕa.K; �/G the Bernoulli shift action. (So .gx/.f / D x.g�1f / for x 2 KG

and g; f 2 G). �en any action ofG which is conjugate to a up to automorphisms
is measurably conjugate to a.
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Proof. Suppose ˛ 2 Aut.G/. It su�ces to show that a is measurably conjugate to

a ı ˛. For this purpose, de�ne

T W KG �! KG

by

T .x/.g/ D x.˛�1.g//:

�en for any g; f 2 G and x 2 KG ,

T .f x/.g/ D .f x/.˛�1.g//

D x.f �1˛�1.g//

D x.˛�1.˛.f �1/g//

D .T x/.˛.f �1/g/

D ˛.f /.T x/.g/:

�is shows that T intertwines a and a ı ˛ as required.

Proof of �eorem 1.2. Using the previous lemma and [26, Corollary 1.3], [22,

�eorem 1.4] and [25, Corollary 0.2] we obtain that if G and a are as above then

Œa�OE \ Afree.G;X; �/ D Œa�MC . Moreover a is strongly ergodic [21]. So there

does not exist any non-ergodic actions in the closure of its measure-conjugacy

class. In particular Œa�MC is not dense in A.G;X; �/.

Remark 1. �eorem 1.1 and the upper semi-continuity of cost [18, �eorem 10.12]

imply that �nitely generated free groups have �xed price, a fact originally obtained

by Gaboriau [12].

Remark 2. Because free groups are residually �nite and therefore so�c, �eo-

rem 1.1 implies that the orbit-equivalence relation of every essentially free a 2

A.�;X; �/ is so�c. �is fact was �rst obtained in [9] (it can also be obtained as a

consequence of property MD for free groups [19] which was discovered earlier in

a di�erent context in [4]). A new proof of this appears in [3].

Question 1. Which groups � satisfy the conclusion of �eorem 1.1? For example,
do all strongly treeable groups satisfy this conclusion? Does PSL.2;R/ satisfy
the conclusion?
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Question 2. Are orbit-equivalence classes meager? �at is, is the set Œa�OE from
�eorem 1.1 meager in A.G;X; �/? If so, then combined with ideas and results of
[16] it should be possible to prove that if G is a nonabelian free group then for
any comeager subset Y � A.G;X; �/ it is not possible to classify actions in Y by
orbit-equivalence up to countable structures.

1.1. A special case. To give the reader a feeling for the proof of �eorem 1.1, we

show how to quickly prove a special case.

�eorem 1.4. Let G be a �nitely generated free group and a 2 A.G;X; �/ be
essentially free. Let S � G be a free generating set. Suppose that for every s 2 S ,
the automorphism a.s/ 2 Aut.X; �/ is ergodic. �en Œa�OE \ Afree.G;X; �/ is
dense in A.G;X; �/.

We need two lemmas �rst.

Lemma 1.5. Suppose that T 2 Aut.X; �/ is ergodic, � > 0 and ¹Ciºi<k; ¹Diºi<k
are two measurable partitions of X such that for each i < k, Ci and Di have the
same measure. �en there is a T 0 2 Aut.X; �/with the same orbits as T such that
for all i the measure of T 0.Ci / M Di is less than �.

Proof. �is is [11, Lemma 8].

Lemma 1.6. LetH1; : : : ; Hn be countable groups andG D H1� � � ��Hn be their
free product. Let a 2 Afree.G;X; �/, a0 2 A.G;X; �/ and suppose that for every
i , .a0 � Hi / is essentially free and .a � Hi / and .a0 � Hi/ have essentially the
same orbits. �en a0 is essentially free.

Proof. If g 2 G is nontrivial then g D t1 � � � tn for some ti 2 Hji
n ¹eº with

ji ¤ jiC1 for i < n. For a.e. x 2 X , a0
gx D ahx for some h 2 G of the form

h D s1 � � � sn with si 2 Hji
. Since .a0 � Hi / is essentially free, si is nontrivial

for each i . Since a is essentially free, ahx ¤ x almost surely, so a0
gx ¤ x almost

surely. Since g is arbitrary, a0 is essentially free.

Proof of �eorem 1.4. Let b 2 A.G;X; �/. We will show that b 2 Œa�OE .

By Lemma 2.3 below, it su�ces to show that if ¹Ciºi<k is a measurable parti-

tion of X and � > 0 then there exists a measurable partition ¹Diºi<k of X and an

action a0 2 Œa�OE such that

j�.Ci \ bsCj / � �.Di \ a0
sDj /j < � (1)

for every s 2 S and 1 � i; j < k (where for example bs D b.s/).
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By Lemma 1.5 for every s 2 S there is an automorphism a0
s 2 Aut.X; �/ with

the same orbits as as such that

�.a0
s.Ci / M bs.Ci // < �:

�erefore, equation (1) holds with Di D Ci for all i . It is easy to verify that

a0 is orbit-equivalent to a (indeed a0 has the same orbits as a). By Lemma 1.6,

a0 2 Afree.G;X; �/.

�e conclusion of Lemma 1.5 does not hold in general if T is non-ergodic.

In order to prove �eorem 1.1 we will show instead that if the sets ¹Ciºi<k are

su�ciently equidistributed with respect to the ergodic decomposition of T then

we can �nd an automorphism T 0 with the same orbits as T such that the numbers

�.Ci \ T 0Cj / are close to any pre-speci�ed set of numbers satisfying the obvious

restrictions.

Acknowledgements. �anks to Robin Tucker-Drob for pointing me to the refer-

ence [11, Lemma 8]. I am partially supported by NSF grant DMS-0968762 and

NSF CAREER Award DMS-0954606.

2. �e weak topology

Here we review the weak topology and obtain some general results regarding weak

containment. So let .X; �/ be a standard non-atomic probability space. �e mea-
sure algebra of �, denoted MALG.�/, is the collection of all measurable subsets

of X modulo sets of measure zero. �ere is a natural distance function on the

measure-algebra de�ned by

d.A; B/ D �.A M B/

for any A;B 2 MALG.�/. Because � is standard, there exists a dense sequence

¹Aiº
1
iD1 � MALG.�/. Using this sequence we de�ne the weak-distance between

elements T; S 2 Aut.X; �/ by

dw.T; S/ D

1
X

iD1

2�i�.TAi M SAi/:

�e topology induced by this distance is called the weak topology. While dw

depends on the choice of ¹Aiº
1
iD1, the topology on Aut.X; �/ does not depend on

this choice.
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Let G be a countable group. Recall that A.G;X; �/ denotes the set of all ho-

momorphisms a W G ! Aut.X; �/. We may view A.G;X; �/ as a subset of the

product space Aut.X; �/G from which it inherits a Polish topology [18].

Notation 1. If v 2 A.G;X; �/ and g 2 G then we write vg D v.g/.

Lemma 2.1. LetG be a countable group. Let v 2A.G;X; �/andW �A.G;X; �/.
�en v is in the closure xW if and only if, for every � > 0, for every �nite Borel
partition P D ¹P1; : : : ; Pnº of X and every �nite set F � G there exists w 2 W

and a �nite Borel partition Q D ¹Q1; : : : ; Qnº of X such that

j�.Pi \ vgPj / � �.Qi \ wgQj /j < �

for every g 2 F and 1 � i; j � n.

Proof. �is is essentially the same as [18, Proposition 10.1]. It also follows from

[5, �eorem 1].

Corollary 2.2. In order to prove �eorem 1.1, it su�ces to prove the special case
in which G is �nitely generated.

Proof. Let G be a countably generated free group with free generating set

S D ¹s1; s2; : : :º � G. Let a; b 2 A.G;X; �/ and suppose a is essentially free.

Let � > 0, P D ¹P1; : : : ; Pnº be a Borel partition of X and F � G be �nite.

By Lemma 2.1 it su�ces to show there exists a0 2 Œa�OE \ Afree.G;X; �/ and a

�nite Borel partition Q D ¹Q1; : : : ; Qnº of X such that

j�.Pi \ bgPj / � �.Qi \ a0
gQj /j < � (2)

for every g 2 F and 1 � i; j � n. Let Gn < G be the subgroup generated by

¹s1; : : : ; snº. Choose n large enough so that F � Gn. Because we are assuming

�eorem 1.1 is true for �nitely generated free groups, there exists an action a00 2

Afree.Gn; X; �/ orbit-equivalent to ajGn
such that

j�.Pi \ bgPj / � �.Qi \ a00
gQj /j < � (3)

for every g 2 F and 1 � i; j � n. By de�nition of orbit-equivalence, there exists

an automorphism T 2 Aut.X; �/ such that a00 and .ajGn
/T have the same orbits.
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De�ne a0 2 A.G;X; �/ by

a0.si / D

8

<

:

a00.si / if 1 � i � n,

Ta.si /T
�1 for i > n.

�en clearly a0 is orbit-equivalent to a and a0 satis�es (2) because of (3).

By Lemma 1.6, a0 is essentially free.

�e next result implies that we can replace the �nite set F � G appearing in

the lemma above with a �xed generating set S � G. �is is crucial to the whole

approach because it allows us to reduce �eorem 1.1 from a problem about actions

of the free group to a problem about actions of the integers.

Lemma 2.3. Let G be a group with a �nite symmetric generating set S . Let v 2

A.G;X; �/ and W � A.G;X; �/. Suppose that for every � > 0 for every �nite
Borel partition P D ¹P1; : : : ; Pnº of X there exists w 2 W and a �nite Borel
partition Q D ¹Q1; : : : ; Qnº of X such that

j�.Pi \ vsPj / � �.Qi \ wsQj /j < �

for every s 2 S and 1 � i; j � n. �en v 2 xW .

Proof. Let � > 0, P D ¹P1; : : : ; Pnº be a Borel partition of X and F � G be a

�nite set. By Lemma 2.1 it su�ces to show that there exists w 2 W and a �nite

Borel partition Q D ¹Q1; : : : ; Qnº of X such that

j�.Pi \ vgPj / � �.Qi \ wgQj /j < � (4)

for every g 2 F and 1 � i; j � n.

In order to do this, we may assume that for some integer r � 0, F D B.e; r/

is the ball of radius r centered at the identity in G with respect to the word metric

dS .�; �/ induced by the generating set S .

Let P0 D
W

g2F gP be the common re�nement of the partitions ¹gP W g 2 F º.

By hypothesis, there exists a partition Q0 of X , a bijection ˇ W P0 ! Q0 and an

action w 2 W such that

j�.P 0 \ vsP
00/ � �.ˇ.P 0/ \wsˇ.P

00//j < �jP0j�2jF j�1=4 (5)

for every P 0; P 00 2 P0 and s 2 S .
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Let †.P0/ denote the sigma-algebra generated by P0 (and de�ne †.Q0/ sim-

ilarly). �ere is a unique boolean-algebra homomorphism from †.P0/ to †.Q0/

extending ˇ. We also let ˇ denote this homomorphism.

Let Q D ¹ˇ.P / W P 2 Pº. It is immediate that Q is a �nite Borel partition ofX .

We will show that it satis�es (4).

Claim 1. j�.ˇ.P //� �.P /j < �=2 for every P 2 †.P0/.

Proof of Claim 1. Let s 2 S . By (5)

j�.ˇ.P // � �.P /j �
X

P 0;P 00

j�.P 0 \ vsP
00/ � �.ˇ.P 0/ \wsˇ.P

00//j < �=2

where the sum is over all P 0; P 00 2 P0 with P 0 � P .

Claim 2. �.ˇ.vgP / M wgˇ.P // � �jgj=.2jF j/ for all P 2 P and g 2 F where
jgj denotes the word length of g. Moreover equality holds only in the case jgj D 0.

Proof of Claim 2. We prove this by induction on the word length jgj. It is obvi-

ously true when jgj D 0. So we assume there is an integer m � 0 such that the

statement is true for all g with jgj � m. Now suppose that jgj D mC1 and g 2 F .

�en g D sh for some h 2 F and s 2 S such that jhj D m. By induction,

�.ˇ.vgP / M wgˇ.P //

D �.ˇ.vshP / M wshˇ.P //

D �.ˇ.vshP / M wsˇ.vhP //C �.wsˇ.vhP / M wshˇ.P //

D �.ˇ.vshP / M wsˇ.vhP //C �.ˇ.vhP / M whˇ.P //

D �.ˇ.vshP / M wsˇ.vhP //C �jhj=.2jF j/:

Next we observe that

�.ˇ.vshP / M wsˇ.vhP //

D
X

P1;P2

�.ˇ.P1/ \ wsˇ.P2//C
X

P3;P4

ˇ.P3 \ wsˇ.P4//

where the �rst sum is over all P1; P2 2 P0 such that P1 � vshP and P2\vhP D ;

while the second sum is over all P3; P4 2 P0 such that P3 \ vshP D ; and

P4 � vhP .
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By (5) if .i; j / D .1; 2/ or .i; j / D .3; 4/ as above then

�.ˇ.Pi/ \wsˇ.Pj // < �.Pi \ vsPj /C �jP0j�2=.4jF j/ D �jP0j�2=.4jF j/:

�erefore,

�.ˇ.vshP / M wsˇ.vhP // < �=.2jF j/:

�is implies the claim.

Next we verify (4) with Qi D ˇ.Pi /:

j�.Pi \ vgPj / � �.Qi \ wgQj /j

D j�.Pi \ vgPj / � �.ˇ.Pi/ \wgˇ.Pj //j

< j�.Pi \ vgPj / � �.ˇ.Pi/ \ ˇ.vgPj //j C �jgj=.2jF j/

D j�.Pi \ vgPj / � �.ˇ.Pi \ vgPj //j C �jgj=.2jF j/

< �=2C �jgj=.2jF j/

� �:

�e �rst inequality follows from Claim 1 and the second inequality from Claim 2.

3. A combinatorial lemma

�e next lemma will be used to rearrange partial orbits of a single transformation.

Roughly speaking it states that any partial orbit which is roughly equidistributed

with respect to some partition can be rearranged so as to approximate the local

statistics of any given Markov chain on the partition.

Lemma 3.1. Let A be a �nite set, � be a probability distribution on A and J be
a self-coupling of � (so J is a probability distribution on A � A such that the
projection of J to either factor is �). Let 0 < � < 1 and N > 0 be an integer and
� W ¹1; : : : ; N º ! A a map such that if � 0 is the empirical distribution of � then
k� 0 � �k1 < �. (By de�nition, � 0 D ��uN where uN is the uniform probability
distribution on ¹1; : : : ; N º). We assume mina;b2A J.a; b/ > 2jAj� C jAj2=N .

�en there exists a bijection

� D �� W ¹1; : : : ; N � 1º �! ¹2; : : : ; N º

such that if �.�/ is the graph with vertices ¹1; : : : ; N º and edges ¹.i; �.i//:

1 � i � N � 1º then
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� �.�/ is connected (so it is isomorphic to a line graph)

� if ˆ� W ¹1; : : : ; N � 1º ! A � A is the map ˆ� .i/ D .�.i/; �.�.i/// and
J� D .ˆ� /�uN�1 is the empirical distribution of ˆ� then

kJ� � Jk1 < 2jAj� C 3jAj2=N:

To prove Lemma 3.1 we need some preliminary results.

Claim 1. �ere exists a self-coupling J0 of � 0 such that

kJ0 � Jk1 < 2jAj� C jAj2=N

and J0 takes values only in ZŒ1=N �.

Proof of Claim 1. Let a 2 A. For b; c 2 A n ¹aº, let J0.b; c/ be the closest number

in ZŒ1=N � to J.b; c/. De�ne

J0.a; c/ D � 0.c/ �
X

t2An¹aº

J0.t; c/;

J
0.b; a/ D � 0.b/ �

X

t2An¹aº

J
0.b; t /;

J0.a; a/ D � 0.a/ �
X

t2An¹aº

J0.a; t / D � 0.a/ �
X

t2An¹aº

J0.t; a/:

It is straightforward to check that

kJ0 � Jk1 < � C jAj.� C jAj=N/ � 2jAj� C jAj2=N:

Because mina;b2A J.a; b/ > 2jAj� C jAj2�=N , this implies J0 is positive every-

where. So it is a self-coupling of � 0.

Claim 2. �ere exists a bijection

� W ¹1; : : : ; N � 1º �! ¹2; : : : ; N º

such that if ˆ� W ¹1; : : : ; N º ! A � A is the map ˆ� .i/ D .�.i/; �.�.i/// and
J� D .ˆ� /�uN is the empirical distribution of ˆ� then

kJ� � J
0k1 � 1=N:
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Proof of Claim 2. Because J0 is a self-coupling of � 0 taking values in ZŒ1=N �

there exist partitions P D ¹Pa;bºa;b2A;Q D ¹Qa;bºa;b2A of ¹1; : : : ; N º such that

� jPa;bj D jQa;b j D NJ0.a; b/ for every a; b 2 A;

� Pa;b � ��1.a/ and Qa;b � ��1.b/ for every a; b 2 A.

Next we choose bijections ˇa;b W Pa;b ! Qa;b for all a; b 2 A. De�ne

� W ¹1; : : : ; N � 1º �! ¹2; : : : ; N º

by

�.i/ D

8

<

:

ˇa;b.i/ if i 2 Pa;b and ˇa;b.i/ ¤ 1,

N if i 2 Pa;b (for some a; b) and ˇa;b.i/ D 1.

�is satis�es the claim.

Let � W ¹1; : : : ; N �1º ! ¹2; : : : ; N º be a bijection satisfying the conclusion of

Claim 2 with the property that the number of connected components of the graph

�.�/ is as small as possible given that � satis�es Claim 2.

Claim 3. �.�/ has at most jAj2 connected components.

Proof of Claim 3. To obtain a contradiction, suppose �.�/ has more than jAj2

connected components. �en there exists 1 � i < j � N �1 such that i and j are

in di�erent connected components of �.�/, �.i/ D �.j / and �.�.i// D �.�.j //.

Let us de�ne

� 0 W ¹1; : : : ; N � 1º �! ¹2; : : : ; N º

by

� 0.k/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�.k/ if k … ¹i; j º;

�.j / if k D i;

�.i/ if k D j:

Observe that � 0 also satis�es Claim 2 and �.� 0/ has one fewer connected compo-

nent than �.�/ contradicting the choice of �.�/.

Proof of Lemma 3.1. Let 1 � i1 < i2 < : : : < ik � N be a maximal set of indices

such that for t ¤ s, it and is are in di�erent connected components of�.�/. De�ne

the bijection

� W ¹1; : : : ; N � 1º �! ¹2; : : : ; N º
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by

�.t/ D

8

<

:

�.t/ if t … ¹i1; : : : ; ikº;

�.isC1/ if t D is (indices mod k).

Observe that �.�/ is connected and, since k � jAj2,

jJ� .a; b/� J� .a; b/j D

ˇ

ˇ

ˇ

ˇ

#¹1 � i � N � 1 W �.i/ D a; �.�.i// D bº

N
� J� .a; b/

ˇ

ˇ

ˇ

ˇ

� jAj2=N:

�is implies the lemma.

4. Proof of �eorem 1.1

From here on, it will be convenient to work with observables instead of partitions.

So instead of considering partitions P of a spaceX we consider measurable maps

� W X ! A where A is a �nite set. Of course, ¹��1.¹aº/ W a 2 Aº is the partition

of X represented by �.

Lemma 4.1. Let .X; �/ be a standard probability space and T 2 Aut.X; �/

be aperiodic. Let  W X ! A be a measurable map into a �nite set. Let � D
R

� d!.�/ be the ergodic decomposition of � with respect to T (so ! is a prob-
ability measure on the space of T -invariant ergodic Borel probability measures
on X). Suppose that for some 1=6 > � > 0,

!.¹� W k �� �  ��k1 > �º/ < �:

Suppose also that J is a self-coupling of  �� (i.e. J is a probability measure on
A � A whose projections are both equal to  ��) and

min
a;b2A

J.a; b/ > 2jAj�:

�en there exists T 0 2 Aut.X; �/ such that T and T 0 have the same orbits (a.e.)
and if ˆ W X ! A � A is the map ˆ.x/ D . .x/;  .T 0x// then

kˆ�� � Jk1 � 9jAj�:
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Proof. By the pointwise ergodic theorem, there exists a Borel set X 0 � X and an

integer M > 0 such that

� �.X 0/ > 1 � �,

� for every x 2 X 0, every a 2 A and every K1; K2 � M ,

ˇ

ˇ

ˇ

ˇ

#¹�K1 � j � K2 W  .T jx/ D aº

K1 CK2 C 1
�  ��.a/

ˇ

ˇ

ˇ

ˇ

< �:

Without loss of generality, we may assumeM is large enough so that

min
a;b2A

J.a; b/ > 2jAj� C jAj2=.2M C 1/

and 3jAj2=.2M C 1/ < �.

Let Y � X be a complete section with �.Y / � �=.2M C 1/. By a complete

section we mean that for �-a.e. x 2 X the orbit of x intersects Y nontrivially. �e

existence of such a complete section is proved in [20, Chapter II, Lemma 6.7].

Without loss of generality, we will assume that if y 2 Y then Ty … Y .

For any integer N � 1 let us say that a map � W ¹1; : : : ; N º ! A is �-good if

k��uN �  ��k1 < �

and

min
a;b2A

J.a; b/ > 2jAj� C jAj2=N

where uN is the uniform probability measure on ¹1; : : : ; N º. For each �-good map

� W ¹1; : : : ; N º �! A

choose a map

�� W ¹1; : : : ; N � 1º �! ¹2; : : : ; N º

as in Lemma 3.1.

For x 2 X , let ˛.x/ be the smallest nonnegative integer such that T �˛.x/x 2 Y ,

let ˇ.x/ be the smallest nonnegative integer such that T ˇ.x/x 2 Y and let

 x W ¹1; : : : ; ˛.x/C ˇ.x/C 1º �! A

be the map

 x.j / D  .T j�˛.x/�1x/:

So

 x D . .T �˛.x/x/;  .T �˛.x/C1x/; : : : ;  .T ˇ.x/x//:
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Note that  x is �-good if x 2 X 0, ˛.x/ � M and ˇ.x/ � M . In this case, let

�x D � x
and Jx D J�x

(with notation as in Lemma 3.1).

Now we can de�ne T 0 as follows:

T 0x D

8

<

:

T x if either x 2 Y or  x is not �-good,

T �x.˛.x/C1/�˛.x/�1.x/ otherwise.

Because each �x is a bijection and the graph �.�x/ is connected it immediately

follows that T 0 and T have the same orbits.

By Kac’s �eorem (see for example [6, �eorem 4.3.4]),

Z

Y

ˇ.T x/C 1 d�.x/ D 1:

�erefore the set Y 0 of all x 2 Y such that ˇ.T x/C 1 � 2M C 1 satis�es
Z

Y 0

ˇ.T x/C 1 d�.x/ D 1�

Z

Y nY 0

ˇ.T x/C 1 d�.x/

� 1 � �.Y /.2M C 1/

� 1 � �:

Let X 00 be the set of all T jx for x 2 Y 0 and M � j � ˇ.T x/ �M . �en

�.X 00/ D

Z

Y 0

.ˇ.T x/ � 2M C 1/ d�.x/

� 1 � � � �.Y 0/.2M/

� 1 � 2�:

Let

X 000 D X 0 \ X 00:

So �.X 000/ � 1 � 3�. Observe that if x 2 X 000 then ˛.x/ � M and ˇ.x/ � M

so  x is �-good. Finally, let Y 00 be the set of all y 2 Y 0 such that T jy 2 X 000 for

some 1 � j � ˇ.T x/C 1. �en

Z

Y 00

ˇ.T x/C 1 d�.x/ � �.X 000/ � 1 � 3�:

If y 2 Y 00, then  Ty is �-good (this uses our hypothesis that if y 2 Y 00 � Y then

Ty … Y ). Let Z be the set of all T jy for y 2 Y 00 and 0 � j � ˇ.Ty/. So

�.Z/ D

Z

Y 00

ˇ.T x/C 1 d�.x/ � 1� 3�:
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Recall that ˆ W X ! A � A is de�ned by ˆ.x/ D . .x/;  .T 0x//. Let �Z

denote the unnormalized restriction of � to Z. �en

kˆ�� � Jk1 � kˆ�� �ˆ��Zk1 C kˆ��Z � Jk1

� 3� C kˆ��Z � Jk1:

Next observe that

ˆ��Z D

Z

Y 00

Œˇ.T x/C 1�JTx d�.x/:

By Lemma 3.1, for x 2 Y 00

kJTx � Jk1 � 2jAj� C 3jAj2=.2M C 1/ � 3jAj�:

So

kˆ��Z � Jk1 � .3jAj�/=.1� 3�/ � 6jAj�

(because � < 1=6) and therefore,

kˆ�� � Jk1 � 3� C 6jAj� � 9jAj�:

In the next lemma, we prove the existence of a “good observable”  .

Lemma 4.2. Let G be a countable group and S � G a �nite set of elements of
in�nite order. Let T 2 A.G;X; �/ be an essentially free action of G. For each
s 2 S let � D

R

� d!s.�/ be the ergodic decomposition of � with respect to Ts
(so !s is a Borel probability measure on the space of all Ts-invariant ergodic
Borel probability measures).

Let � be a probability measure on a �nite set A. Also let 0 < � < 1=2. �en
there exists a measurable map  W X ! A such that for every s 2 S ,

!s.¹� W k �� � �k1 > 3�º/ < �:

Proof. Given a measurable map  W X ! A, an element s 2 S and an integer

N � 1 let  s;N W X ! AN be the map

 s;N .x/ D . .Tsx/;  .T
2
s x/; : : : ;  .T

N
s x//:

According to Abert-Weiss [2], the action T weakly contains the Bernoulli shift

action GÕ.A; �/G. �is immediately implies that for any integer N � 1 there

exists a measurable map  W X ! A such that for every s 2 S

k. s;N /�� � �N k1 <
�2

2
:
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Given a sequence y 2 AN , let EŒy� denote its empirical distribution. To be pre-

cise, EŒy� is the probability measure on A de�ned by

EŒy�.a/ D #¹1 � i � N W y.i/ D aº=N:

By the law of large numbers we may choose N large enough so that

�N .¹y 2 A
N W kEŒy� � �k1 > �º/ < �2=2:

�erefore,

�.¹x 2 X W kEŒ s;N .x/� � �k1 > �º/

D . s;N /��.¹y 2 A
N W kEŒy� � �k1 > �º/

< �2

for every s 2 S . Let

Z D ¹x 2 X W kEŒ s;N .x/� � �k1 > �º:

So
Z

�.Z/ d!s.�/ D �.Z/ < �2:

�is implies !s.¹� W �.Z/ > �º/ < �.

Next we claim that if a probability measure � satis�es �.Z/ � � then

k �� � �k1 � 3�:

Indeed,

 �� D E�. s;N /��:

So if �.Z/ � � then

k �� � E�. s;N /�.� � Zc/k1 � �

(where Zc D X nZ is the complement of Z) and

k� � E�. s;N /�.� � Zc/k1 �
�

1 � �

by de�nition of Z. So k �� � �k1 � 3� (since we assume � < 1=2).

Since !s.¹� W �.Z/ > �º/ < �, we now have

!s.¹� W k �� � �k1 > 3�º/ < �:
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Proof of �eorem 1.1. LetG be a �nitely generated free group with free generating

set S � G. Let a; b 2 A.G;X; �/ and assume a is essentially free. It su�ces to

show that b 2 Œa�OE . By Lemma 2.3 it su�ces to show that for every �nite set A,

measurable map � W X ! A and � > 0 there exists a measurable map  W X ! A

and a0 2 Œa�OE such that

k. _  ı a0
s/�� � .� _ � ı bs/��k1 � 10jAj� 8s 2 S

where, for example, � _ � ı bs W X ! A � A is the map

� _ � ı bs.x/ D .�.x/; �.bsx//:

After replacing A with the essential range of � if necessary, we may assume

that ���.c/ > 0 for every c 2 A. We claim that there exists a self-coupling Js of

��� such that Js.c; d/ > 0 for all c; d 2 A and

k.� _ � ı bs/�� � Jsk1 < �:

Indeed, the self-coupling

Js D .1� �/.� _ � ı bs/��C �.� � �/�.� � �/

has this property. After choosing � smaller if necessary we may assume that

� < 1=6 and

min
s2S

min
c;d2A

Js.c; d/ > 2jAj�:

Let � D
R

� d!s be the ergodic decomposition of � with respect to as . By

Lemma 4.2 there exists a measurable map  W X ! A such that

!s.¹� W k��� �  ��k1 > �º/ < �

for every s 2 S . By Lemma 4.1 for every s 2 S there exists a0
s 2 Aut.X; �/ such

that a0
s and as have the same orbits and

k. _  ı a0
s/�� � Jsk1 � 9jAj�:

Because a0
s and as have the same orbits for every s 2 S it follows that the ho-

momorphism a0 W G ! Aut.X; �/ de�ned by ¹a0
sºs2S is orbit-equivalent to a. In

other words, a0 2 Œa�OE . Also

k. _  ı a0
s/�� � .� _ � ı bs/��k1

� k. _  ı a0
s/�� � Jsk1 C kJs � .� _ � ı bs/��k1

� 10jAj�:

By Lemma 1.6, a0 2 Afree.G;X; �/. �is �nishes the special case in which G is

�nitely generated. �e general case follows from Corollary 2.2.
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