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Abstract. LetG be a locally compact group. A random closed subgroup with conjugation-

invariant law is called an invariant random subgroup or IRS for short. We show that each

nonabelian free group has a large “zoo” of IRS’s. �is contrasts with results of Stuck and

Zimmer which show that there are no non-obvious IRS’s of higher rank semisimple Lie

groups with property (T).
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1. Introduction

Let G be a locally compact group. A random closed subgroup with conjugation-

invariant law is called an invariant random subgroup or IRS for short. �ese

objects arise naturally from the study of group actions. Indeed, supposeG acts on

a standard Borel space X . For x 2 X , let Stab.x/ D ¹g 2 G W gx D xº. If � is a

G-invariant probability measure on X and x 2 X is chosen at random with law �

then Stab.x/ is an IRS. By [2, Proposition 13] every IRS occurs from this type of

construction.

�ere has been a recent increase in studies of the action of G on its space of

subgroups [2, 26, 1, 25, 22, 11, 24, 3, 4, 6, 12, 23]. Perhaps the deepest result in

the subject is the Stuck-Zimmer �eorem [23]: there are no non-obvious IRS’s

of higher rank simple Lie groups. More precisely, every ergodic IRS is induced

from a lattice subgroup. Another nice result in this area is a complete classi�cation

IRS’s of the in�nite symmetric group due to A. Vershik [25]. Our main goal is

1 Supported in part by NSF grant DMS-0968762, NSF CAREER Award DMS-0954606 and

BSF grant 2008274.
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to show that, by contrast, there is a large zoo of IRS’s of any �nitely generated

nonabelian free group.

�ere are four main results of this paper: (1) the space of laws of totally non-

free IRS’s is residual in the space of all laws of IRS’s, (2) the space of laws of

ergodic in�nite index IRS’s of the free group is homeomorphic to Hilbert space,

(3) every ergodic aperiodic pmp equivalence relation of cost < r is represented

by the action of Fr on its space of subgroups and (4) that every symbolic action

of Fr can be encoded as a sub-action of Fr on its space of subgroups.

To state these results precisely, we need to introduce some notation. Let Sub.G/

denote the space of all closed subgroups of a locally compact group G with the

topology of uniform convergence on compact sets. G acts on Sub.G/ by

g �H WD gHg�1

and IRS.G/ denotes the space of all conjugation-invariant Borel probability mea-

sures on Sub.G/. We always consider IRS.G/ with the weak* topology. We let

IRSi .G/ denote those measures � 2 IRS.G/ such that �-a.e. K 2 Sub.G/ has

in�nite index.

1.1. Totally non-free actions. Let GÕ.X;B; �/ be a probability-measure-pre-

serving (pmp) action. For any Borel set H � G, let

Fix.H/ D ¹x 2 X W hx D x for all h 2 H º:

A probability measure preserving action GÕ.X;B; �/ is totally non-free if the

collection ¹Fix.H/ W H a Borel subset of Gº � B generates the Borel sigma-

algebra B (up to sets of measure zero). �e study of such actions was initiated

in [25] where a classi�cation of such actions is called for. Our �rst result:

Corollary 3.4. �e set of measures � 2 IRSi .Fr / such that FrÕ.Sub.Fr /; �/ is

totally non-free is residual in IRSi .Fr /.

1.2. �e simplex IRSi .G/. Recall that a convex closed metrizable subset K of

a locally convex linear space is a simplex if each point in K is the barycenter of a

unique probability measure supported on the subset @eK of extreme points of K.

In this case, K is called a Poulsen simplex if @eK is dense in K. It is called a

Bauer simplex if @eK is closed.

For example, an old result states that the space of all shift-invariant Borel prob-

ability measures on ¹0; 1ºZ is a Poulsen simplex [21, page 45]. By [20] there is a

unique Poulsen simplex up to a�ne homeomorphism and its set of extreme points
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is homeomorphic to the Hilbert space l2. On the other hand, there are uncount-

ably many non-isomorphic Bauer simplices. For example, let X be any compact

metrizable space. �en the space P.X/ of all Borel probability measures on X is

a Bauer simplex and @eP.X/ is homeomorphic to X .

Let IRSe.G/ � IRS.G/ denote the ergodic measures and IRSf i .G/ � IRSe.G/

those measures which are supported on the conjugacy class of a single �nite-index

subgroup. If G is �nitely generated, then each of its �nite-index subgroups are

�nitely generated and because of this, each �nite-index subgroup is isolated in

the space of subgroups. �is implies each element of IRSf i .G/ is isolated in

IRSe.G/. In particular, IRSe.G/ cannot be connected if G has proper �nite-index

subgroups.

Let

IRSie.G/ WD IRSe.G/ n IRSf i .G/

and IRSi .G/ denote the closed convex hull of IRSie.G/ (this agrees with our pre-

vious de�nition). Our second result:

�eorem 4.1. If G is a nonabelian free group, then IRSi .G/ is a Poulsen sim-

plex. In particular, IRSie.G/ is a dense Gı subset of IRSi .G/ and IRSie.G/ is

homeomorphic to the Hilbert space l2.

Remark 1. In order to discuss the case of locally compact groups, let IRSc.G/ �

IRSe.G/ be the set of measures which are supported on the conjugacy class of a

single cocompact subgroup. Let IRSnce D IRSe.G/ n IRSc.G/ and IRSnc.G/ be

the closed convex hull of IRSnce.G/. Using the ideas of the proof of �eorem 4.1,

it can be shown that IRSnc.PSL2.R// is also a Poulsen simplex. By constract, the

main results of [13] imply that if G has property (T) then IRSnc.G/ and IRS.G/

are Bauer simplices.

Remark 2. Grigorchuk’s space of r-generated marked groups [10] is (canoni-

cally isomorphic with) the space of normal subgroups of the free group of rank r

with the topology of uniform convergence on compact subsets (also known as the

Chabauty topology). It can be viewed as a subspace of IRSe.Fr / (where Fr de-

notes the free group of rank r). Namely, for each normal subgroupN , let ıN be the

Dirac probability measure supported on ¹N º. �en ¹ıN W N C Frº � IRSe.Fr/

is a copy of the space of r-generated marked groups. It is known that the space

of marked groups contains interesting isolated points [5]. In particular, there are

in�nite index normal subgroups which are isolated in the space of all normal sub-

groups. However, these points are not isolated in IRSe.Fr/ because IRSie.Fr / is

pathwise connected by �eorem 4.1.



894 L. Bowen

1.3. Measured equivalence relations. To explain the next result, we need to

recall some notions from the theory of measured equivalence relations. So let

.X; �/ be a standard Borel probability space and E � X �X be a discrete Borel

equivalence relation such that � is E-invariant (i.e., if � W X ! X is a Borel

automorphism whose graph is contained in E then ��� D �). We refer to the

triple .X; �; E/ as a discrete probability-measure-preserving (pmp) equivalence

relation. Two discrete pmp equivalence relations .Xi ; �i ; Ei/ (for i D 1; 2) are

isomorphic if there exist conull sets X 0
i � Xi and a measure-space isomorphism

� W .X 0
1; �1/ ! .X 0

2; �2/ such that

.x; y/ 2 E1 () .�.x/; �.y// 2 E2:

In particular, we only require that � is de�ned on a set of full measure.

Let EG denote the orbit equivalence relation on Sub.G/,

EG WD ¹.K; gKg�1/ W K 2 Sub.G/; g 2 Gº:

Our third main result:

Corollary 5.4. IfG is a free group of rank r and .X; �; E/ is an ergodic aperiodic

discrete pmp equivalence relation with cost.E/ < r then there exists an invari-

ant measure � 2 IRS.G/ such that .Sub.G/; �; EG/ is isomorphic to .X; �; E/.

Moreover, there is an action GÕX such that E D ¹.x; gx/ W x 2 X; g 2 Gº is

the orbit-equivalence relation and if Stab W X ! Sub.G/ is the stabilizer map

Stab.x/ D ¹g 2 G W gx D xº then Stab is a measure-conjugacy from GÕ.X; �/

to GÕ.Sub.G/; �/.

Remark 3. �e authors of [15] and I. Epstein proved that ifG is any nonamenable

group then it is impossible to classify up to countable structures the free mixing

probability measure-preserving actions of G up to orbit-equivalence. Note that if

G has a generating set with less than r generators then all of its orbit equivalence

relations have cost < r .

Remark 4. A well-known result of [7] states that any discrete pmp equivalence

relation .X; �; E/ can be realized as the orbit-equivalence relation for the action

of a countable groupG. In other words, given .X; �; E/ there is a countable group

G and a measure-preserving action GÕ.X; �/ such that

.x; y/ 2 E () there exists g 2 G such that gx D y.

�e authors then asked whether there exists a group G and an essentially free

actionGÕ.X; �/ generatingE. �e negative answer to this question was obtained
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by Furman [8]. By contrast, Corollary 5.4 implies that if cost.E/ < r then there is

a totally non-free action of Fr , the free group of rank r , generating the equivalence

relation.

1.4. Symbolic dynamics. Finally, we provide a general method for constructing

invariant subspaces and measures on Sub.Fr / from symbolic actions of Fr (where

Fr is the rank r free group). Brie�y the result states the following. Let F0
r be the

subgroup of Fr generated by ¹s2
1 ; s2; : : : ; srº. If K is any �nite set and X � KFr

any shift-invariant closed subset then there exists an Fr -invariant closed subset

Y � Sub.Fr/ and an F
0
r -invariant closed subset Z � Y such that FrÕX is topo-

logically conjugate to F
0
rÕZ via the obvious isomorphism from Fr to F

0
r . More-

over, Y is covered by �nitely many translates of Z. In this sense, we can embed

the dynamics of any symbolic action into the dynamics of the conjugation-action

on a space of subgroups. See �eorem 6.1 for complete details.

Acknowledgements. �anks to Miklos Abert, Yair Glasner, Eli Glasner and Ana-

toly Vershik for stimulating questions on this topic and to Rostislav Grigorchuk

for helpful comments. �anks to Benjy Weiss for pointing out errors in a previ-

ous version. I am grateful to the anonymous reviewers for catching several errors.

Also thanks to Alessandro Carderi for catching a mistake in a previous version.

2. Preliminaries

2.1. Schreier coset graphs. Let L be a �nite set. A rooted L-labeled digraph

consists of a graph whose edges are labeled with labels in L and a distinguished

vertex called the root. Some of the edges may be directed while others may be

undirected. We allow loops and multiple edges. Two rooted L-labeled digraphs

�; � 0 are isomorphic if there exists a graph isomorphism between them which

preserves directions and labels. If such an isomorphism also preserves roots then

we say � and � 0 are root-isomorphic.

Let RG.L; d/ denote the set of all root-isomorphism classes of connected

rooted L-labeled digraphs such that every vertex has degree at most d . �is is

a compact metrizable space: indeed, given �; � 0 2 RG.L; d/ we let

d.�; � 0/ D
1

nC 1

where n is the smallest nonnegative integer such that the ball of radius n centered

at the root in � is root-isomorphic to the ball of radius n centered at the root in
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� 0 (as rooted labeled digraphs). �is distance function makes RG.L; d/ into a

compact metric space.

Our main application of the construction above is to Schreier coset graphs of

Fr , the free group of rank r . So let S D ¹s1; : : : ; srº be a free generating set

for Fr . Given a subgroup K < Fr , let Sch.K; S/ 2 RG.S; 2r/ be the rooted la-

beled digraph with vertex setKnFr , directed s-labeled edges .Kg;Kgs/ (for every

Kg 2 KnFr and s 2 S ) and root vertex K. By abuse of language, we will not

distinguish between Sch.K; S/ and its root-isomorphism class. Let SC.Fr ; S/ �

RG.S; 2r/ be the set of all Schreier coset graphs of subgroups of Fr . �e map

K 2 Sub.Fr/ 7! Sch.K; S/ 2 SC.Fr ; S/ is a homeomorphism. Also Fr acts

on SC.Fr ; S/ by g Sch.K; S/ WD Sch.gKg�1; S/ and the homeomorphism be-

tween Sub.Fr/ and SC.Fr ; S/ is equivariant with respect to this action. More-

over, Sch.gKg�1; S/ is isomorphic to Sch.K; S/ even though they are typically

not root-isomorphic. Precisely, Sch.gKg�1; S/ is root-isomorphic to Sch.K; S/

after moving the root in Sch.K; S/ from K to Kg�1. �e paper [2] further devel-

ops this correspondence between Sub.Fr / and SC.Fr ; S/.

2.2. Measured equivalence relations. Let .X; �/ be a standard Borel probabil-

ity space and E � X � X be a Borel equivalence relation. �en E is discrete if

every E-class is countable. We use [16] as a general reference.

De�ne measures �L; �R on E by

�L.F / D

Z

jF \ ��1
L .x/j d�.x/; �R.F / D

Z

jF \ ��1
R .x/j d�.x/

where �L W E ! X and �R W E ! X are the left and right projection maps,

respectively. �e measure � is E-invariant if

�L D �R:

�e full group of E, denoted ŒE�, is the group of all (equivalence classes of)

invertible Borel transformations f such that

graph.f / D ¹.x; f x/ W x 2 Xº � E:

Two transformations are equivalent if they agree on a conull subset. By [16, Propo-

sition 3.2], ŒE� with the uniform metric, de�ned by

du.�;  / D �.¹x 2 X W �.x/ ¤  .x/º/;

is a Polish group. It is a standard exercise to show that � is E-invariant if and only

if ��� D � for every � 2 ŒE�.
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A subset Y � X is E-saturated if Y is a union of E-classes. We say � is

E-ergodic if �.Y / 2 ¹0; 1º for every measurable E-saturated set Y .

Measured equivalence relations arise from actions of groups: if G is a count-

able group and GÕ.X; �/ a measure-class-preserving action then

E D ¹.x; gx/ W x 2 X; g 2 Gº

is a discrete Borel equivalence relation. Moreover, the action of G is measure-

preserving if and only if � is E-invariant and the action of G is ergodic if and

only if � is E-ergodic.

3. Totally non-free actions

For K < G let

NG.K/ WD ¹g 2 G W gKg�1 D Kº

denote the normalizer of K and IRSn.G/ be the set of all measures � 2 IRS.G/

such that �.¹K 2 Sub.G/ W NG.K/ D Kº/ D 1.

Lemma 3.1. For any� 2 IRSn.G/, the actionGÕ.Sub.G/; �/ is totally non-free.

Proof. Assuming � 2 IRSn.G/, for any Borel set H � G,

�.Fix.H/ M ¹K 2 Sub.G/ W H � Kº/ D 0;

where M denotes symmetric di�erence. �erefore, for any Borel set H � G,

¹K 2 Sub.G/ W H � Kº is contained in the sigma-algebra generated by the sets

¹Fix.H/ W H a Borel subset of Gº (up to measure zero). �is clearly generates the

Borel sigma-algebra.

Recall that Fr denotes the free group of rank r .

Lemma 3.2. For any r � 2, IRSn.Fr / \ IRSi .Fr / is dense in IRSi .Fr /.

Proof. Let � 2 IRSi .Fr /. We will construct measures �p 2 IRSi .Fr /\ IRSn.Fr/

for p 2 .0; 1/ such that �p ! � as p & 0.

LetK 2 Sub.Fr / be random with law �. Let up be the probability measure on

¹0; 1; : : : ; rº given by

up.¹iº/ D

8

<

:

1� p if i D 0;

p=r if i > 0:
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Choose a function

x W KnFr �! ¹0; 1 : : : ; rº

by: x.K/ is random with law uq where q D 3p
1C2p

and x.Kg/ is random with law

up if Kg ¤ K. We require that the random variables ¹x.Kg/ W Kg 2 KnFrº are

independent.

We construct a random rooted labeled digraph �p from the Schreier coset

graph Sch.K; S/ as follows. �e vertex set of �p is equal to the disjoint union

of x�1.0/ with x�1.i/ � ¹0; 1; 2º for i D 1; : : : ; r . Let i 2 ¹1; : : : ; rº. �en there

is an si -labeled edge in �p from

� Kg to Kgsi whenever x.Kg/ D x.Kgsi / D 0,

� Kg to .Kgsi ; 0/ whenever x.Kg/ D 0 and x.Kgsi / > 0,

� .Kg; 2/ to Kgsi whenever x.Kg/ > 0 and x.Kgsi / D 0,

� .Kg; 2/ to .Kgsi ; 0/ whenever x.Kg/ > 0 and x.Kgsi / > 0,

� .Kg; 0/ to .Kg; 2/ whenever x.Kg/ D i ,

� .Kg; 1/ to .Kg; 1/ whenever x.Kg/ D i ,

� .Kg; 0/ to .Kg; 1/ whenever x.Kg/ ¤ i and x.Kg/ > 0,

� .Kg; 1/ to .Kg; 2/ whenever x.Kg/ ¤ i and x.Kg/ > 0.

See Figure 1. We determine the root of �p as follows. If x.K/ D 0 then let K be

the root of �p . If x.K/ > 0 then let .K; i/ be the root of � where i 2 ¹0; 1; 2º is

random with the uniform distribution.

Figure 1. �e element x is depicted on the left as a function on the vertices of the Schreier

coset graphKnF2. �e Schreier coset graphKpnFr is depicted on the right. Black arrows

represent s1 and white arrows represent s2.
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We claim that �p is the Schreier coset graph of a subgroup of Fr . It su�ces to

show that for every vertex v of �p and every s 2 S there is exactly one s-labeled

edge directed into v and one directed out of v. We leave this easy veri�cation to

the reader.

LetKp be the subgroup of Fr with Sch.Kp; S/ ' �p. Let �p be the law ofKp.

Because �p limits on Sch.K; S/ in law as p & 0, it follows that limp!0C �p D �.

Because Sch.K; S/ is in�nite a.s., �p is also in�nite a.s. So it su�ces to show that

�p is invariant and NFr
.Kp/ D Kp a.s.

Self-normalizing. Here we show that NFr
.Kp/ D Kp a.s. In general, if T is

a labeled digraph let Aut.T / denote the group of all automorphisms of T . If T

is also rooted, then we ignore the root (so an element of Aut.T / is not required

to preserve the root). Observe that for any subgroup K < Fr , KnNFr
.K/ is

isomorphic to Aut.Sch.K; S// by the map Kn 7! .Kg 7! nKg D Kng/. So it

su�ces to show that Aut.�p/ is trivial a.s.

Let Aut�.�p/ be the set of all graph-automorphisms of �p that are required to

preserve all edge-labels and directions except for the edge-labels on edges of the

form ..Kg; i/; .Kg; j // for some i; j 2 ¹0; 1; 2º. We consider two such automor-

phisms to be equivalent if they induce the same map on the vertex set. �ere are

only countably many equivalence classes of automorphisms in Aut�.�p/ because

each one is completely determined by where it sends the root vertex. For example,

if such an automorphism � maps .Kg; 0/ to .Kf; 0/ then it must map .Kg; j / to

.Kf; j / for all j 2 ¹0; 1; 2º.

So it su�ces to show that any nontrivial � 2 Aut�.�p/ is not in Aut.�p/ a.s. To

see this, let U be the set of all vertices of �p of the form .Kg; 1/ and let U 0 be the

set of all vertices of �p that have a single loop. �en U � U 0 and � preserves U 0.

In particular, if u 2 U then the unique loop based at �.u/must have the same label

as the loop at u. But this occurs with probability at most max.p=r; 3p
r.1C2p/

/ < 1.

Because p > 0, U is in�nite. So the event that the loops at �.u/ has the same

label as u for all u 2 U occurs with probability zero. So Aut.�p/ is trivial a.s.

which implies NFr
.Kp/ D Kp a.s.

Invariance. We claim that �p is invariant. To see this, let SC0 be the set of all

pairs .� 0; x0/ where � 0 2 SC.Fr ; S/ is a Schreier coset graph and x0 is a map

from the vertices of � 0 to ¹0; 1; : : : ; rº. Let E 0 be the equivalence relation on

SC0 determined by: .� 0; x0/E 0.� 00; x00/ if there is a graph isomorphism � from

� 0 to � 00 preserving all directions, labels on the edges and taking x0 to x00 (so

x00.�.v// D x0.v/). In other words, .� 0; x0/ and .� 00; x00/ are isomorphic after



900 L. Bowen

forgetting about their roots. �is is a discrete Borel equivalence relation and if �p

is the law of .Sch.K; S/; x/ (with K; x as above) then �p is E-invariant.

Now let Y be the set of all .� 0; x0/ 2 SC0 such that x0.v/ > 0 where v is the

root of � 0. Let Z be the disjoint union of SC0 nY with Y � ¹0; 1; 2º. Let

� W Z �! SC0

be the projection map:

�.z/ D

8

<

:

z if z 2 SC0 nY;

y if z D .y; i/ 2 Y � ¹0; 1; 2º:

Let E 00 be the equivalence relation on Z given by

z1E
00z2 () �.z1/E

0�.z2/:

Let �0
p be the measure on Z given by

�0
p � SC0 nY D �p � SC0 nY

and

�0
p � Y � ¹0; 1; 2º D .�p � Y / � �;

where � denotes the uniform probability measure on ¹0; 1; 2º. �en 1
1C2p

�0
p is an

E 00-invariant probability measure.

Let � W Z ! Sub.Fr / be the map constructed above. More precisely, an

element z 2 Z corresponds to a point .� 0; x0/ 2 SC0 and possibly an index

i 2 ¹0; 1; 2º. �en �.z/ is the subgroup whose Schreier coset graph is obtained

from .� 0; x0/ in the manner depicted by Figure 1 (so ���
0
p D �p). �e index i (if

it is present) corresponds to a choice of one of the three “new” vertices.

Observe that � is class-bijective: for every E 00-equivalence class Œz�, the re-

striction of � to Œz� is bijective onto the conjugacy class of � (for a.e. z). �is uses

the fact that NFr
.Kp/ D Kp a.s. Because �0

p is E 00-invariant, it now follows that

���
0
p D �p is Fr -invariant.

Lemma 3.3. �e subset IRSn.Fr / is a Gı-subset of IRS.Fr /.

Proof. Given a �nite set F � Fr and an element g 2 Fr , let X.F; g/ be the set of

K 2 Sub.Fr/ such that g.F \K/g�1 � K. Let

Y.g/ D ¹K 2 Sub.Fr / W g … Kº:
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Both X.F; g/ and Y.g/ are clopen sets. Let

Z.g/ D Y.g/ \
\

F

X.F; g/:

�en Z.g/ is a closed set. Note that K 2 Z.g/ if and only if g 2 NFr
.K/ nK.

Let O.g; �/ be the set of all measures � in IRS.Fr/ such that �.Z.g// < �.

�en O.g; �/ is open and

IRSn.Fr / D
\

g2Fr

1
\

mD1

O.g; 1=m/:

Corollary 3.4. �e set of measures � 2 IRSi .Fr / such that FrÕ.Sub.Fr /; �/ is

totally non-free is residual in IRSi .Fr /.

4. �e simplex of invariant measures

�eorem 4.1. If Fr is a nonabelian free group, then IRSi .Fr/ is a Poulsen sim-

plex. In particular, IRSie.Fr / is a dense Gı subset of IRSi .Fr / and IRSie.Fr / is

homeomorphic to the Hilbert space l2.

Proof. Let � 2 IRSi .Fr/. It su�ces to construct measures �p 2 IRSie.Fr/ for

p 2 .0; 1/ such that �p limits on � as p & 0. First, we construct a random rooted

digraph � with edge-labels in S [ ¹�º where S D ¹s1; : : : ; srº is a free generating

set of Fr . We will prove that the law of � is invariant under root-changes and

is ergodic with respect to a natural equivalence relation. �en we construct a

Schreier coset graph �.�/ directly from �. We denote the law of the subgroup

corresponding to �.�/ by �p. From properties of �, we verify that �p is invariant,

ergodic and limp!0C �p D �.

Construction of � . �e random rooted graph � will be constructed as a union

� D

1
[

nD0

�n

of increasing subgraphs. �e de�nition of �n is recursive. Let K < Fr be a

random subgroup with law �. Let

�0 D Sch.K; S/

denote the Schreier coset graph of K. Let X0 � V.�0/ be a p-Bernoulli percola-

tion. Precisely, X0 is a random subset satisfying:
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� for each v 2 V.�0/, the probability that v 2 X0 equals p,

� the events ¹v 2 X0 W v 2 V.�0/º are independent.

For each x 2 X0, let Kx < Fr be a random subgroup with law �. We require

that the random variables ¹Kx W x 2 X0º are independent. Let �1 be the rooted

labeled di-graph obtained from the disjoint union of �0 and
F

x2X0
Sch.Kx; S/ by

adding an edge from x 2 X0 to Kx 2 V.Sch.Kx; S// for every x 2 X0. Each new

edge is labeled � and is undirected. �e root of �1 is the same as the root of �0,

namely K. See Figure 2.

Assuming �n has been constructed (for some n � 1), let Xn be a Bernoulli

p-percolation on V.�n/nV.�n�1/. For each x 2 Xn, letKx 2 Sub.Fr / be random

with law � so that the variables ¹Kx W x 2 Xnº are independent and independent of

all other variables of the construction. Construct �nC1 from the disjoint union of

�n and
F

x2Xn
Sch.Kx; S/ by adding an undirected �-labeled edge from x 2 Xn

to Kx 2 V.Sch.Kx; S// for each x 2 Xn. Finally, let

� D
[

n�0

�n:

Figure 2. �e bottom ellipse represents �0. �e circles in the bottom ellipse represent X0.

All the edges shown are �-labeled edges. �e other ellipses represent other Fr -orbits of

the vertex set of � in the sense explained below.

Construction of �.�/. Observe that there is a natural right-action of Fr on the

vertex set of �: if v 2 V.�/ and s 2 S then there is a unique vertex w 2 V.�/

such that the edge .v; w/ is s-labeled. So we de�ne

vs WD w:

�is determines a right-action of Fr on V.�/.
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Let �.�/ be the Schreier coset graph obtained from � as follows. For every

�-labeled edge e D ¹v; wº of �, we remove e, the edge .v; vs1/ and the edge

.w; ws1/ and add in the directed s1-labeled edges .v; ws1/; .w; vs1/. See Figure 3.

�e root of �.�/ is the same as the root of �, namely K. It is clear that � is a

Schreier coset graph (that is, every vertex has exactly one outgoing s-labeled edge

and one incoming s-labeled edge for every s 2 S ).

Figure 3. On the left is shown a �-labeled edge of � from v to w and s1-labeled edges

.v; vs1/ and .w;ws1/. On the right, the corresponding subgraph of �.�/ is shown.

Invariance and ergodicity. Let �p be the law of the subgroup corresponding to

�.�/. It now su�ces to show that �p is invariant, ergodic and limp!0C �p D �.

To simplify notation, let RG denote RG.S[¹�º; 2rC1/where RG.S[¹�º; 2rC1/

is as de�ned in §2.1. Observe that� is a random element of RG. So its law, denoted

�, is a probability measure on RG.

Let ERG � RG � RG be the isomorphism equivalence relation. Precisely,

.ƒ;ƒ0/ 2 ERG if ƒ and ƒ0 are isomorphic but not necessarily root-isomorphic.

Also � is ERG-invariant because the construction of � is independent of the root.

�e reader might wonder why we use
S

n �n instead of simply �1. �e answer

is that the law of �1 is not ERG-invariant. Indeed V.�0/ is the unique G-orbit of

V.�1/ that is incident to in�nitely many �-labeled edges of �1. So if every vertex

of �1 sends one unit of mass to the closest vertex in �0 then every vertex of X0

receives in�nite mass, in violation of the mass transport principle.

Next, we show that � is ERG-ergodic. For ƒ in the support of �, let �.ƒ/ 2

Sub.Fr / be the subgroup whose Schreier coset graph is the same as the con-

nected component of the root in the graph obtained fromƒ by removing all of the

�-labeled edges. �en ��� D �. We claim that if f is any bounded Borel

ERG-invariant function on RG then there exists a bounded BorelFr -invariant func-

tion f 0 on Sub.Fr / such that f D f 0 ı � �-a.e. Indeed, this holds because the
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construction of � is Bernoulli conditioned on K 2 Sub.Fr/. �at is to say, the

random variables X0, ¹Kx W x 2 X0º, X1, etc are all independent.

Now let f and f 0 be as above. Because f isERG-invariant, if �x is isomorphic

to � rooted at Kx (for some x 2 X0) then f .�x/ D f .�/ a.s. �us f 0.Kx/ D

f 0.K/ for every x 2 X0 a.s. Because X0 is in�nite a.s. and ¹Kx W x 2 X0º are iid

with law �, it follows that f 0 is constant on Sub.Fr / �-a.e. �erefore f is constant

on RG �-a.e. Because f is arbitrary, � is ERG-ergodic.

Given ƒ in the support of �, let �.ƒ/ 2 SC.Fr ; S/ be the associated Schreier

coset graph as in the de�nition of �.�/. �e construction of �.�/ from � shows

that for any g 2 Fr , there exists g� 2 ŒERG� such that �.g�ƒ/ D g�.ƒ/ for �-a.e.

ƒ. Because � is ERG-invariant this shows that ��� is Fr -invariant. Moreover,

if A � SC.Fr ; S/ in the image of � is any Fr -invariant Borel set then ��1.A/ is

ERG-invariant. Because � is ERG-ergodic, ���.A/ D �.��1.A// 2 ¹0; 1º. Since

A is arbitrary, ��� is Fr -ergodic.

Because �p is the image of ��� under the canonical map from SC.Fr ; S/ to

Sub.Fr /, it follows that �p is also Fr -invariant and ergodic.

Continuity. It now su�ces to show that

lim
p!0C

�p D �:

Let F � Fr and r > 0. Let

C.F; r/ D ¹H 2 Sub.Fr / W H \ B.r/ D F º

where B.r/ is the ball of radius r centered at the identity in Fr . �e span of the

characteristic functions of sets of the form C.F; r/ is dense in the Banach space

of continuous functions on Sub.Fr/. So it su�ces to show that

lim
p!0C

�p.C.F; r// D �.C.F; r//

for all F; r .

Let � > 0. If p > 0 is su�ciently small then with probability > 1 � � the ball

of radius r centered at the root of � has trivial intersection with X0. Conditioned

on this event, the ball of radius r centered at the root of �.�/ is isomorphic to

the ball of radius r centered at the root of Sch.K; S/. Because K is �-random, it

follows that for any F � Fr ,

j�p.C.F; r//� �.C.F; r//j � 2�:

Because �; F; r are arbitrary, limp!0C �p D �.
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5. Generic graphings

Let .X; �/ be a standard Borel probability space and E � X � X be a discrete

probability-measure-preserving (pmp) Borel equivalence relation. We assume

that E is ergodic and aperiodic (which means that a.e. equivalence class is in-

�nite).

To set notation, let Hom.Fr ; ŒE�/ denote the set of all homomorphisms from

the rank r free group Fr D hs1; : : : ; sri to ŒE�. We identify Hom.Fr ; ŒE�/ with the

product space ŒE�r in the obvious way and endow it with the product of uniform

topologies. �us it is a Polish space. For latter purposes it will be useful to have

the following explicit metric on Hom.Fr ; ŒE�/:

du.˛; ˇ/ WD

r
X

iD1

du.˛.si /; ˇ.si//

for ˛; ˇ 2 Hom.Fr ; ŒE�/. Also let Eˇ � E be the subequivalence relation gener-

ated by ˇ. Precisely, .x; y/ 2 Eˇ if there exists w 2 Fr such that ˇ.w/x D y.

De�nition 1. Let ŒŒE�� be the set of all Borel isomorphisms � W A ! B such that

A;B � X are Borel and the graph of � is contained in E. A subset � � ŒŒE��

is a graphing if for a.e. x 2 X and every y with .x; y/ 2 E there is a sequence


1; : : : ; 
n 2 � and �1; : : : ; �n 2 ¹�1; 1º such that 

�1

1 � � � 

�n
n x D y. �e cost of �

is de�ned by

cost.�/ D
X


2�

�.domain.
//:

�e cost of E is the in�mum of cost.�/ over all graphings � of E. �e notion of

cost was introduced by Levitt [19] and further developed by Gaboriau [9] into a

most important tool for studying measured equivalence relations.

Lemma 5.1. Let Homg.Fr ; ŒE�/ � Hom.Fr ; ŒE�/ be the set of all homomor-

phisms ˛ such that ¹˛.si/ W 1 � i � rº is a graphing of E (i.e., E˛ D E up to

measure zero). If either r > cost.E/ or (r D cost.E/ and E is treeable) then

Homg.Fr ; ŒE�/ is a non-empty Gı -subset of Hom.Fr ; ŒE�/.

Proof. By [14, Proposition 1.1], Homg.Fr ; ŒE�/ is nonempty. So let us take

ˇ 2 Homg.Fr ; ŒE�/. For w 2 Fr and � > 0, let O.w; �/ be the set of all


 2 Hom.Fr ; ŒE�/ such that

�.¹x 2 X W .x; ˇ.w/x/ 2 E
º/ > �:
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�is set is open and

Homg.Fr ; ŒE�/ D
\

w2Fr

1
\

nD1

O.w; 1� 1=n/:

�is shows Homg.Fr ; ŒE�/ is a Gı .

An element f 2 ŒE� is aperiodic if a.e. f -orbit in X is in�nite. For somewhat

technical reasons (�eorem 5.3), we will be interested in the set Hom0
g.Fr ; ŒE�/ of

all homomorphisms ˛ 2 Homg.Fr ; ŒE�/ such that ˛.s1/ is ergodic and aperiodic.

Lemma 5.2. If E is ergodic, aperiodic and cost.E/ < r then Hom0
g .Fr ; ŒE�/ is a

nonempty Gı subset of Hom.Fr ; ŒE�/.

Proof. �e fact that Hom0
g.Fr ; ŒE�/ is nonempty can be seen from the proof of [17,

Lemma 27.7] (just choose '1 to be ergodic). �at lemma is attributed to Hjorth

and Kechris. By Lemma 5.1, Homg.Fr ; ŒE�/ is a Gı . Because E is aperiodic,

every ergodic element f 2 ŒE� is aperiodic. So it su�ces to show that the set of

ergodic elements in ŒE� is a Gı subset. �is is part of [16, �eorem 3.6].

For ˇ 2 Hom.Fr ; ŒE�/ let

Stabˇ W X �! Sub.Fr /

be the stabilizer map,

Stabˇ .x/ D ¹g 2 Fr W ˇ.g/x D xº:

Observe that for any g 2 Fr and x 2 X , Stabˇ .ˇ.g/x/ D g Stabˇ .x/g�1: In other

words, Stabˇ is Fr -equivariant. Let �ˇ 2 IRS.Fr / be the pushforward measure,

�ˇ WD Stabˇ
� �:

�erefore, Stabˇ de�nes a factor map from FrÕˇ .X; �/ to FrÕ.Sub.Fr /; �ˇ /.

�eorem 5.3. Let .X; �; E/ be an ergodic aperiodic discrete pmp equivalence

relation. Let Homisom.Fr ; ŒE�/ be the set of homomorphisms ˇ 2 Hom.Fr ; ŒE�/

such that Stabˇ is an isomorphism from .X; �/ to .Sub.Fr/; �ˇ /. If r > cost.E/

then

Homisom.Fr ; ŒE�/ \ Hom0
g.Fr ; ŒE�/

is a dense Gı subset of Hom0
g.Fr ; ŒE�/. In particular, it is nonempty.

To prove �eorem 5.3 we need some preliminary results.
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Claim 1. Homisom.Fr ; ŒE�/ is a Gı .

Proof of Claim 1. Let ¹�iº
1
iD1 be an increasing sequence of �nite Borel partitions

of X such that
W1

iD1 �i is the partition into points; i.e. for every x ¤ y 2 X there

exists i such that x and y are in di�erent partition elements of �i .

For W � Fr , let

�W W Sub.Fr / �! 2W

be the projection map

�W .H/ D H \W

(where 2W denote the set of all subsets of W ). For every n 2 N; � > 0 and �nite

W � Fr , let O.W; n; �/ be the set of all ˇ 2 Hom.Fr ; ŒE�/ such that for every

A;B 2 �n with A ¤ B there exist sets A0 � A;B 0 � B with

� �.A n A0/C �.B n B 0/ < �,

� �W .Stabˇ .A0// \ �W .Stabˇ .B 0// D ;.

Each O.W; n; �/ is open in Hom.Fr ; ŒE�/ because for any ˇ 2 Hom.Fr ; ŒE�/

the set of ˇ0 2 Hom.Fr ; ŒE�/which agrees with ˇ onW except for a set of measure

< � is open. Also observe that if W � V then O.W; n; �/ � O.V; n; �/. �us,

O.n; �/ WD
[

W �Fr

O.W; n; �/

is open.

We claim that

Homisom.Fr ; ŒE�/ D

1
\

nD1

1
\

kD1

O.n; 1=k/:

�e inclusion � is obvious. To see the other direction, let

ˇ 2

1
\

nD1

1
\

kD1

O.n; 1=k/

and

�ˇ D Stabˇ
� �:

Observe that

�ˇ .Stabˇ .A/ \ Stabˇ .B// D 0

for any A ¤ B in �n for any n. Since

�ˇ .Stabˇ .A// D �..Stabˇ /�1.Stabˇ .A///
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this implies�ˇ .Stabˇ .A// D �.A/ for everyA 2 �n for any n. �erefore ˇ induces

a measure-algebra isomorphism from the measure-algebra of � to the measure-

algebra of �ˇ . �is implies that ˇ is a measure-space isomorphism (see e.g. [27,

Corollary B.7]). So ˇ 2 Homisom.Fr ; ŒE�/ which proves the equality above. So

Homisom.Fr ; ŒE�/ is a Gı .

For 2 � i � r , consider the map

ˆi W Hom0
g.Fr ; ŒE�/ �! Hom0

g.Fr ; ŒE�/

de�ned by

ˆi .˛/.sj / D

8

<

:

˛.sj / if j ¤ i;

˛.s1si / if j D i:

Because ˆi .˛/.Fr/ < ŒE� is the same subgroup as ˛.Fr / < ŒE� it follows that

¹ˆi .˛/.sj /º
r
j D1 is a graphing of E if and only if ¹˛.sj /º

r
j D1 is a graphing. It is

easy to check that ˆi is a homeomorphism and ˆi preserves Homisom.Fr ; ŒE�/.

Let ˛ 2 Hom0
g.Fr ; ŒE�/. For any measurable subset Y � X and g 2 Fr ,

let ˛.g/Y W Y ! Y denote the �rst return time map. So ˛.g/Y .y/ D ˛.g/n.y/

where n � 1 is the smallest positive integer such that ˛.g/ny 2 Y . By Poincaré’s

Recurrence �eorem, such an n exists for a.e. y 2 Y .

Claim 2. After replacing ˛ with ˆi .˛/ (for some 2 � i � r) if necessary the

following is true. For every � > 0 there exists a subset Y � X with 1 � � <

�.Y / < 1 and a generator si with 2 � i � r such that ¹˛.sj / W j ¤ iº [ ¹˛.si /Y º

is a graphing of E.

Proof of Claim 2. Forw 2 Fr , letXw be the set of all x 2 X such that ˛.w/x D x

and if w D t1 � � � tn is the reduced form then there does not exist 2 � j � n such

that ˛.tj � � � tn/x D x.

Case 1. Suppose there exists w 2 Fr such that �.Xw/ > 0 and if w D t1 � � � tn is

in reduced form then tn D si for some 2 � i � r and t1 … ¹tn; t
�1
n º.

We claim that there is a subset X 0
w � Xw with positive measure such that for

every 2 � j � n,

˛.tj � � � tn/X
0
w \X 0

w D ;:

To prove this, let F be the set of all pairs .x; y/ such that x; y 2 Xw and y D

˛.tj � � � tn/x for some 2 � j � n. We interpret F as the set of edges of a Borel

graph with vertex set Xw . �is Borel graph has bounded degree (indeed, the de-

grees are all bounded by 2n). Also .x; x/ … F for a.e. x 2 X by de�nition of Xw .
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By [18, Proposition 4.6], there exists a proper coloring of this graph with only a

�nite set of colors. �is means there is a measurable map � W Xw ! � (where

� is a �nite set) such that for every .x; y/ 2 F , �.x/ ¤ �.y/. Let ! 2 � be an

element in the essential range of � and set X 0
w WD ��1.!/. �en X 0

w satis�es the

claim.

Now let Y � X be any measurable set with 1 � � < �.Y / < 1 such that

Y [ X 0
w D X . Let G D ¹˛.sj / W j ¤ iº [ ¹˛.si/Y º and RG � X � X be the

equivalence relation generated by G. Because ˛ 2 Homg.Fr ; ŒE�/, in order to

prove that RG D E (up to a measure zero set) it su�ces to show that for any

y 2 Y and x 2 X n Y , .y; ˛.si/y/ and .x; ˛.si /x/ are in RG.

If ˛.si /y 2 Y then it is immediate that .y; ˛.si/y/ 2 RG . If not, then let

m � 1 be the smallest number such that ˛.si /
my 2 Y . Because ˛.si/y … Y ,

˛.si /y 2 X 0
w . So ˛.si /

2y D ˛.tn/˛.si /y … X 0
w . So ˛.si /

2y 2 Y and m D 2.

In particular, .y; ˛.si/
2y/ 2 RG since ˛.si /

2y D ˛.si /Y y. By choice of X 0
w ,

˛.tj � � � tn�1/˛.si /
2y D ˛.tj � � � tn/˛.si /y 2 Y

for every 2 � j � n. Note

.˛.tj � � � tn/˛.si /y; ˛.tj �1tj � � � tn/˛.si /y/ 2 G

for all 2 � j � n. �e case j D 2 holds because t1 … ¹tn; t
�1
n º D ¹si ; s

�1
i º.

Because ˛.t1 � � � tn/˛.si /y D ˛.si /y, we have shown that .y; ˛.si/y/ 2 RG as

required.

Now let x 2 X n Y . Because x 2 X 0
w , ˛.tj � � � tn/x … X 0

w for 2 � j � n. So

.˛.tj � � � tn/x; ˛.tj �1tj � � � tn/x/ 2 G

for all 2 � j � n. �e case j D 2 holds because t1 … ¹tn; t
�1
n º D ¹si ; s

�1
i º.

�is implies .˛.t1 � � � tn/x; ˛.tn/x/ 2 RG . Because ˛.t1 � � � tn/x D x and ˛.tnx/ D

˛.si /x, this �nishes Case 1.

Case 2. Suppose there does not exist an element w 2 Fr as in Case 1. For

the sake of clarity, let X˛
w denote the set we previously denoted by Xw . Because

cost.E/ < r , and ¹˛.si /º
r
iD1 is a graphing, there exists a non-identity element

w 2 Fr such that �.X˛
w/ > 0. Observe that if w0 is a cyclic conjugate of w then

�.X˛
w 0/ > 0 since X˛

w 0 D ˛.g/X˛
w for some g 2 Fr .

Observe that w is not a power of s1 because ˛.s1/ is aperiodic. Suppose w D

t1 � � � tn is in reduced form. Because no cyclic conjugate of w can be as in Case 1,

we must have that tj D tj C1 for all j . So w D sn
i for some 2 � i � r and n ¤ 0.

Without loss of generality we may assume n is the smallest positive integer such
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that if w D sn
i then �.X˛

w/ > 0. Let v D .s�1
1 si /

n. Observe that X
ˆi .˛/
v � X˛

w .

If these sets are not essentially equal then there is a positive measure set of x’s

such that ˆ.˛/..s�1
1 si /

ms�1
1 /x D x for some 0 � m < n. Suppose this is the case

and let u D .s�1
1 si /

ms�1
1 . �en �.X

ˆi .˛/
u / > 0. Let t D sm

i s
�1
1 . Observe that

X˛
t � X

ˆi .˛/
u . So �.X˛

t / > 0 and we are back in Case 1 with t in place of w.

On the other hand if X
ˆi .˛/
v D X˛

w (up to a measure zero set), then we get

�.X
ˆi .˛/
v / > 0. By replacing ˛ with ˆi .˛/ and w with v we are back in Case 1.

Proof of �eorem 5.3. Let � > 0 and let Y � X be as in Claim 2 (after replac-

ing ˛ with ˆi .˛/ if necessary). Without loss of generality, we may assume that

the number i from Claim 2 equals r . Let Yj be the set of all y 2 Y such that

˛.sr /
j
Y .y/ D y and 1 � j < 1 is the smallest positive number with this property.

So Y D
S1

j D1 Yj is a partition of Y . Moreover there exists an N > 0 such that if

Z D
S

j �N Yj then �.Z/ < �.

By [16, Lemma 8.5] there exists a hyper�nite aperiodic subequivalence relation

F < E � Z such that ˛.sr /Y 2 ŒF �. Let f1 2 ŒF � be a generator. �is means

that F D ¹.z; f n
1z/ W z 2 Z; n 2 Zº.

Because ˛.s1/ is ergodic, ˛.s1/XnY is also ergodic. By Rohlin’s �eorem,

there exists a countable Borel partition 
 of X n Y such that if B is the small-

est ˛.s1/XnY -invariant sigma-algebra containing 
 , then B is the sigma-algebra of

all measurable sets of X n Y (up to sets of measure zero).

Let 
 D ¹Piº
1
iD1 and choose elements fi 2 ŒE � Pi � such that fi has period

i CN . To be precise, we require that

f iCN
i x D x for a.e. x 2 Pi ,

and

f
j

i x ¤ x if 1 � j < i CN .

Such an element fi exists by [16, �eorem 3.3].

De�ne  2 ŒE� by

 .x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

˛.sr /Y .x/ if x 2 Y n Z;

f1.x/ if x 2 Z;

fi .x/ if x 2 Pi :
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De�ne a homomorphism

ˇ W Fr �! ŒE�

by

ˇ.si / D ˛.si / if 1 � i < r and ˇ.sr/ D  .

We claim that

(1) du.˛; ˇ/ WD
Pr

iD1 du.˛.si /; ˇ.si// � 4�,

(2) ˇ 2 Hom0
g.Fr ; ŒE�/,

(3) ˇ 2 Homisom.Fr ; ŒE�/.

Observe that because ˛ 2 Hom0
g.Fr ; ŒE�/ and � > 0 are arbitrary (up to replacing

˛ with ˆi .˛/ for some i), this claim implies the theorem.

To see the �rst statement, note that

du.˛; ˇ/ D du.˛.sr/;  / D �.¹x 2 X W ˛.sr /x ¤  .x/º/:

Observe that

¹x 2 X W ˛.sr/x ¤  .x/º � .X n Y / [ Z [ ¹x 2 Y nZ W ˛.sr/x … Y nZº:

Since ˛.sr/ is measure-preserving,

�.¹x 2 Y nZ W ˛.sr /x … Y nZº/ � �.X n .Y nZ//

D �.X n Y /C �.Z/

� 2�:

�is implies (1) above.

For the second statement, note that the equivalence relation generated by

¹ˇ.s1/; : : : ; ˇ.sr/º contains the graph of ˛.s1/; : : : ; ˛.sr�1/ and ˛.sr /Y . �e latter

is true because ˛.sr/Y � Y nZ D  � Y nZ and f1 is a generator for the equiv-

alence relation generated by ˛.sr/Y � Z. Because ¹˛.s1/; : : : ; ˛.sr�1/; ˛.sr/Y º is

a graphing of E it follows that ˇ is a graphing of E. So ˇ 2 Hom0
g.Fr ; ŒE�/.

For k � 1, let Ak be the set of all subgroups H 2 Sub.Fr / such that

sk
r 2 H and if 1 � j < k then s

j
r … H . Observe that Pi D .Stabˇ /�1.AiCN / for

every i � 1. BecauseX nY D
S1

iD1 Pi , it follows that X nY and 
 are contained

in .Stabˇ /�1.F/where F is the Borel sigma-algebra of Sub.Fr/. Because 
 is gen-

erating for ˛.s1/XnY , it follows that .Stabˇ /�1.F/ contains every Borel subset of

X nY (modulo sets of measure zero). Because ˛.s1/ is ergodic and �.X nY / > 0,

this implies that .Stabˇ /�1.F/ is the sigma-algebra of all measurable sets of X ,

(up to sets of measure zero). �erefore, ˇ 2 Homisom.Fr ; ŒE�/ as claimed.
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�e following is an immediate consequence.

Corollary 5.4. IfG is a free group of rank r and .X; �; E/ is an ergodic aperiodic

discrete pmp equivalence relation with cost.E/ < r then there exists an invari-

ant measure � 2 IRS.G/ such that .Sub.G/; �; EG/ is isomorphic to .X; �; E/.

Moreover, there is an action GÕX such that E D ¹.x; gx/ W x 2 X; g 2 Gº is

the orbit-equivalence relation and if Stab W X ! Sub.G/ is the stabilizer map

Stab.x/ D ¹g 2 G W gx D xº then Stab is a measure-conjugacy from GÕ.X; �/

to GÕ.Sub.G/; �/.

6. Encoding via sub-actions

�eorem 6.1. Let Fr D hs1; : : : ; sri be the free group of rank r � 2, F0
r < Fr

be the (in�nite-index) subgroup generated by hs2
1 ; s2; : : : ; sri, K be a �nite set,

FrÕKFr be the usual action gx.f / WD x.g�1f /. Let X � KFr be a closed

invariant subspace. �en there exist subspaces Z � Y � Sub.Fr / satisfying the

following conditions.

(1) Z is F0
r -invariant, Y is Fr -invariant.

(2) �ere is a �nite set L � Fr (depending only on K) such that

Y D
[

f 2L

fZ:

(3) �e action FrÕX is topologically conjugate to the conjugation-action

F
0
rÕZ. More precisely, if

� W Fr �! F
0
r

is the isomorphism determined by

�.s1/ D s2
1 ; �.si / D si ; for 2 � i � r ,

then there is a homeomorphism

‰ W X �! Z

such that

‰.f x/ D �.f / � ‰.x/

for all x 2 X and f 2 Fr .

(4) If � is an Fr -invariant Borel measure on X then there exists an Fr -invariant

Borel measure � on Y such that ‰�� D � � Z (in particular, �.Z/ > 0).

Moreover, if � is �nite then � is also �nite.
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Proof. Without loss of generality, K D ¹1; : : : ; nº for some integer n � 1. Given

x 2 KFr , we will de�ne a subgroup ‰.x/ < Fr . �e easiest way to understand

‰.x/ is through its Schreier coset graph‰.x/nFr which is constructed as follows.

Start with the Cayley graph of Fr . For every element g 2 Fr , subdivide the edge

.g; gs1/ and attach a cycle of length x.g/ to the new vertex. Every edge of this

cycle is labeled s2. For every 3 � i � r , place a loop labeled si at all the new

vertices. Also, place a loop labeled s1 at all the new vertices other than the one

subdividing the edge .g; gs1/. An example of x and ‰.x/nFr for r D 2 is shown

in Figure 4.

More formally, ‰.x/ is the subgroup generated by all elements of the form

(1) gs1s
t
2s

�1
1 g�1 if g 2 F

0
r and x.��1.g// D 1 (for any t 2 Z);

(2) gs1s
t
2s

˙1
i su

2 s
�1
1 g�1 if g 2 F

0
r and x.��1.g// D k > 1where i ¤ 2, tCu D 0

mod k, and u; t ¤ 0 mod k;

(3) gs1si s
�1
1 g�1 if g 2 F

0
r and 3 � i � r .

Figure 4. �e element x is depicted on the left as a function on the vertices of the Cayley

graph of F2. �e Schreier coset graph ‰.x/nF2 is depicted on the right. Black arrows

represent s1 and white arrows represent s2.
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Clearly,

‰.f x/ D �.f / �‰.x/ for all x 2 X and f 2 Fr .

Note that

‰ W KFr �! Sub.Fr /

is a homeomorphism onto its image. Let

Z D ‰.X/;

so that ‰ gives a homeomorphism from X to Z and let Y be the union of all Fr -

orbits in Z. From the construction, it is clear that if L is the radius n ball centered

at the identity (with respect to the word metric) then

Y D
[

f 2L

f � Z:

�is, and the fact that Z is closed, implies Y is closed.

Now suppose � is an Fr -invariant Borel measure on X . Let L D ¹f1; : : : ; fj º

be an ordering of L with f1 D e. De�ne

‡ W Y ! Z

by

‡.K/ D fi �K;

where i is the smallest number such that fi �K 2 Z. De�ne a measure � on Y by

�.E/ D

Z

j‡�1.K/ \Ej d‰��.K/:

Clearly, � � Z D ‰�� and � is Fr -invariant if and only if � is Fr -invariant.

Moreover, since ‡ is �nite-to-1, � is �nite if and only if � is �nite.
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