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1. Introduction

Fundamental class constructions and Bloch invariants are by now a classical theme
in the topological study of hyperbolic 3-manifolds, going back to the work of
Dupont and Sah on scissors congruences and more recently the work of Neu-
mann, Yang and Zickert on Bloch invariants. (See also the recent preprints [13]
and [19].) For a hyperbolic 3-manifold M = T'\H?® with ' C PSL(2, C) one
can on the one hand consider its PSL(2, C)-fundamental class [M |psL(2,¢), that is
the image of the fundamental class [M] € H3(M) =~ H3(I') in H3(PSL(2, C)),
and on the other hand one can use ideal triangulations or more generally degree
one ideal triangulations to define an invariant S(M) in the Bloch group B(C).
In [33] it was shown that one can recover the volume and the Chern—Simons
invariant mod Q from B(M). (In later work Neumann constructed an invariant
in an extended Bloch group, from which one can recover the Chern—Simons in-
variant mod Z.)

The approach via ideal triangulations is better suited for doing practical calcu-
lations, see for example [33]. On the other hand the fundamental class approach
is useful for theoretical considerations, e.g. to study the behaviour of hyperbolic
volume under cut and paste in [29]. By the Bloch—-Wigner Theorem (proved in
more generality by Dupont and Sah in [14, Appendix A]) there is an isomorphism

H3(PSL(2, C), Z)/torsion = B(C),

and this isomorphism sends [M [psi.(2,¢) to B(M ). (One may pictorially think of a
triangulation whose vertices are moved to infinity to produce an ideal triangula-
tion. In some weak sense this picture can be made precise, see [28].) In particular
the Bloch invariant is determined by the PSL(2, C)-fundamental class.

The construction of the Bloch invariant was generalized to higher-dimensional
hyperbolic manifolds in [33, Section 8]. On the other hand Goncharov [21, Sec-
tion 2] generalised the fundamental class construction to get — associated
to an odd-dimensional hyperbolic manifold M2*¥~! and a spinor representation
SO(2k — 1,1) — GL(n,C) — an element in Hyx_,(GL(n, C)) such that appli-
cation of the Borel class recovers (a fixed multiple of) the volume. In [21, Sec-
tion 3] he also used ideal triangulations to construct an extension m(M?*~1) ¢
Ext, Q (Q(0); Q(k)) in the category of mixed Tate motives over ) and thus an el-
ement in K,;_; (Q) ® Q according to Beilinson’s description of K-theory of fields.
(In degree 3 one has K i;‘d (CO)®Q = B(C)®Q and one recovers the Bloch invariant
from this K-theoretic approach.)
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In [27] the third-named author generalized Goncharov’s fundamental class
construction to finite-volume locally symmetric spaces of noncompact type
M = T'\G/K which are either closed or of R-rank one. To each representation
p: G — SL(n, C) the construction yields an element in H,(SL(n, Q)) or, after a
suitable projection, an element in

PH.(GLQ) = K«(Q) ® Q

such that application of the Borel class (to either the element in H,(SL(n, Q)) or
its projection in PH.(GL(Q))) yields a multiple ¢, Vol(M) of the volume Vol(M).
The factor ¢, depends only on p, in particular one can recover the volume if ¢, # 0.
Moreover, [27, Section 3] provides a complete list of fundamentals representations
p: G — SL(n,C) with ¢, # 0. In the noncompact case, the only R-rank one
examples with ¢, # 0 were (odd-dimensional) real-hyperbolic manifolds. On the
other hand, for higher R-rank there are many examples with ¢, # 0.

In this paper we further generalize Goncharov’s construction to Q-rank one
locally symmetric spaces. That means, for a Q-rank one locally symmetric space
of noncompact type M = I'\G/K we construct elements

(M) € H(SL(n. Q)

and
y(M) € K.(Q) ® Q

such that application of the Borel class yields again ¢, Vol(M). Compare Propo-
sition 7.1 and Theorem 7.2 for the precise statements. Thus one can get many
non-compact non-hyperbolic examples with nontrivial invariants. (Note that the
universal cover of a Q-rank one locally symmetric space can be a symmetric space
of higher R-rank. For example, Hilbert modular varieties are examples of Q-rank
one locally symmetric spaces with higher rank. In general, an irreducible non-
uniform lattice in a semisimple algebraic Lie group without compact factor has
()-rank one if and only if it does not contain a subgroup isomorphic to a finite in-
dex subgroup of SL(3,Z) or SO(2, 3)z, see [34, Section 9H]. We refer the reader
to [5, Part III] for more information about @-rank one locally symmetric spaces.)
The arguments needed for the Q-rank one case are an adaptation of those used
in the R-rank one case. The main difference between these cases is that in the
RR-rank one case a horoball’s boundary at infinity consists of only one point and
therefore? a straightening map Cro M) — ctmo (M) is well-defined and more-
over one has an isomorphism C5™P(BT®mP) ~ C5T*0(Af). Both is not true for

2The notions BT™P, CX0 (M) and C{"*° (M) are defined in Section 5.2, Definition 5.3
and Definition 6.2, respectively.
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the higher R-rank case, but in Section 6 (using Section 5) we show that nonethe-
less one has an isomorphism H; (M, M) = H;imp(B ['c°mP) and therefore can
define our invariant from the relative fundamental class.

The fundamental class approach is most natural for closed manifolds, whereas
the Bloch group approach is most natural for cusped manifolds. The relative fun-
damental class unifies the two approaches.

The relative fundamental class construction shall be useful for deriving gen-
eral results about the relation of topology and volume. For practical computations
however the Bloch group approach appears to be more feasible, not only in 3-di-
mensional hyperbolic geometry [33] but also in the study of CR-structures [17] or
flag structures [1].

In the 3-dimensional hyperbolic case, Neumann—Yang constructed the Bloch
invariant [33, Definition 2.5] in the so-called pre-Bloch group P(C) and then
proved in [33, Theorem 6] that it actually belongs to the Bloch group B(C) C
P(C). The pre-Bloch group P(C) satisfies a natural isomorphism

P(C) = H3(Cx(000G/K) ®2z6 Z)

for G/K = SL(2,C)/ SU(2) = H3. Thus it is natural to define a Bloch invariant of
higher-dimensional locally symmetric spaces M¢ = I'\G/K (and representations
p: G — SL(n,C)) as an element in

H4(Cy (0o SL(n, €)/ SU(n)) ®zSL(n,0) Z)-

In [28] this was done for R-rank one symmetric spaces and it was shown that the
Bloch invariant is the image of the Goncharov invariant y(M) under a naturally
defined evaluation homomorphism which generalizes the homomorphism from
the Bloch—Wigner Theorem. The construction of the generalized Bloch invariant
uses proper ideal fundamental cycles since the existence of ideal triangulations
is unclear in general. The proof of well-definedness of the Bloch invariant (i.e.
independence from the chosen proper ideal fundamental cycle, [28, Lemma 3.4.1])
was building on the equality H;(Cx(000G/K) ®zr 7Z) =~ Z for lattices I' C G,
which in the R-rank one case can be proved by an immediate generalization of
the results of Neumann—Yang (who proved this equality in [33] for hyperbolic
3-space). However it is unclear how to generalize this argument to the higher rank
case. Therefore we avoid this point in Section 8 by directly defining the Bloch
invariant
B(M) € Hg(Cu(Boo SL(n. C)/ SUM)) ®z5Len,c) Z)

for locally symmetric spaces (either closed or of Q-rank one) as the image of
the Goncharov invariant y (M) under the evaluation homomorphism. As far as
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we know, this is the first construction of invariants in algebraic K-theory and in
the Bloch group for higher rank locally symmetric spaces. As is well known,
higher rank symmetric spaces have different geometry from R-rank one symmet-
ric spaces. For instance, the Tits metric on the ideal boundary of a symmetric
space has completely different properties depending on its R-rank (See [15, Chap-
ter 3]). Such difference makes it difficult to extend the construction of the Bloch in-
variant to higher rank locally symmetric spaces. However, it turns out that Q-rank
one locally symmetric spaces it is possible to generalize the fundamental class
construction.

In Section 9 we consider a similar construction for convex projective mani-
folds. We hope to further exploit this in other papers.

In Section 10 we prove that also the Bloch invariants of CR structures (as de-
fined by Falbel and Wang in [17]) and of flag structures (as defined by Bergeron,
Falbel, and Guilloux in [1]) can be recovered from a fundamental class construc-
tion. (Compare also [13] and [19].) We apply this to prove that these Bloch invari-
ants are preserved under certain cut-and-paste operations.

2. Basics on Group (co)homology

2.1. Group homology. For a topological group G, let G® denote the group with
discrete topology. Let BG® denote the simplicial set whose k-simplices are
k-tuples (g1, ..., gx) with the boundary operator 0:

k-1
0(g1-- o 8k) = (g2, 8k) + ) (=1 (g1, -, &igit1,- - &)

i=1

+ (=D*(g1, .., gk-1).

It forms a chain complex Cﬁimp(B G?%) whose homology with a coefficient ring R
yields the group homology

Hy(G,R) = HS™(BG?, R) = HY™ (C.(BG® ®2 R), 0 ® 1).

Throughout the paper, BG will be understood as BG®.

Let M be a Riemannian manifold of nonpositive sectional curvature and
xo € M, alift 5o € M of xq be fixed. Any ordered tuple of vertices in M de-
termines a unique straight simplex. A singular simplex o € Cx(M) is straight if
some (hence any) lift & € C (M) is straight. Let C5™*° (M) be the chain complex
of straight simplices with all vertices xp.



922 I. Kim, S. Kim, and Th. Kuessner
Set I' = m1(M, xo). Then there are two canonical homomorphisms
: CIMP(BT) —s C3¥%0 (M)
defined by

Y(g1,...,8) = m(str(Xo, g1X0, g182%0, - - ., &1 """ &kX0))

and 4
®: CY (M) — C;"P(BT)

defined by
(o) = ([olg,].- .- [olg ]

where ey, ..., ey are the vertices of the standard simplex AX, ¢; is the standard
sub-1-simplex with
i = e; —ei—1,

each [o|¢;] € m (M, xo) = I is the homotopy class of o|;, and m: M > M
is the universal covering map of M. It is easy to show that ¥ and & are chain
isomorphisms inverse to each other.
The inclusion
i CI (M) C Cu(M)

and the straightening ([27, Section 2.1], which is the composition of some homo-
topy moving all vertices of a chain into x¢ with the usual straightening operator)

str: Co(M) — C*0(M)

are chain homotopy inverses. Hence we have a chain homotopy equivalence,
called the Eilenberg—MacLane map

EM: CS™(BT) —> Ci(M).
We will frequently use the induced isomorphism
EM;! = &, ostry: Hy(M,Z) — HI™ (BT, 7).
The geometric realization |BT'| is a K(T', 1), thus there is a classifying map
WM. M —> |BT|
which induces an isomorphism on 7 level. The inclusion map of simplices

i: CS™(BT) —s C4(|BT)).
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induces an isomorphism
ix: HY™ (BT, Z) — Hy(|BT|,Z)
such that
WM =i, o EM;!

if M is aspherical and of the homotopy type of a CW complex (which is always
the case for Riemannian manifolds of nonpositive sectional curvature).
For a commutative ring A C C with unit, let

GL(4) = | J GL(n. 4)

n=1

be the increasing union, and | B GL(A)| its classifying space as above.
Let
p: T —> GL(A)

be a representation. This induces
Bp: BT —> B GL(A)

and
|Bp|: |BT'| —> |B GL(A4)]|.

The composition

EM; S *
Ho(M, Q) —— HI™ (BT, Q) —22

HY"™ (B GL(4), Q)
induces a map
(Hp)x: He(M,Q) — Hy™ (B GL(4), Q).

If M is a closed, oriented and connected d-dimensional manifold, (Hp)s[M]
will play an important role for us where [M] is the fundamental class in

Hq(M.Q) = Q.

2.2. Volume class and Borel class. Let G be a noncompact semisimple con-
nected Lie group. Let X = G/ K be the associated symmetric space of dimension
d with a maximal compact subgroup K of G. Let us denote by H} (G, R) the
continuous cohomology of G. The comparison map

comp: HX(G,R) — H,,,(BG,R)

simp
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is defined by the cochain map

Comp(f)(gls---vgk) = f(l’gl’glgL---7g1g2"'gk)

for a G-invariant cochain f: G¥*! — R. Fix a point x € X. The volume class
vg € H4(G,R) is defined by the cocycle

va(go, ..., gq) = algvol(str(gox, ..., gax)) := / dvoly,

Str(goXx,....,g€q X)
where dvoly is the G-invariant Riemannian volume form on X, and str is the
geodesic straightening of a simplex with those vertices. (That is str(gox, ..., ggx)
is the unique straight simplex with the given ordered set of vertices.) Under the
comparison map

comp(vg)(g1,...,8q4) = algvol(str(x, g1x,...,81 - 84X)).

Then it is not difficult to show that if N = '\ X is a closed locally symmetric
space, with j : ' — G the inclusion, then (see [23][Lemma 3.1])

Vol(N) = (comp(vg), Bj o EM;'[N]).

For a detailed proof of this, see [27, Theorem 1].
Let g and £ be the Lie algebra of G and K respectively. If g = £ @ p is a Cartan
decomposition, then the Lie algebra of the compact dual G, of G is

gu =tDip.

Note that the relative Lie algebra cohomology H *(g, £) is the cohomology of the
complex of G-invariant differential forms on G/K and there is the van Est iso-
morphism

J: HX(G,R) — H"(g,?).

There is a well-known ([9, Section 5]) construction of a Borel class
bak—1 = @a(R(Tix)) € H* ' (U(n), R) = H* 7' (u(n), R),

see [27, Section 2.4.3] for the details of the construction. Since (GL(n, C)), =
U(n) x U(n) and via the van Est isomorphism

HC*(GL(n, C),R) = H*(gl(n, C),u(n))
= H*(u(n) ® u(n), u(n))
= H*(u(n),R)

we may consider
byk—1 € H2*7Y(GL(n, C), R).
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2.3. Volume for compact locally symmetric manifolds. It is a standard fact
that for d = dim(G/K), H?(G,R) = R via Van Est isomorphism. If T is a
uniform lattice in G, then

HY('\G/K.R) =~ H*(I''R) = HY(G.R) = R,

where the second isomorphism is explicitly realised by integrating I'-invariant
cochains over a compact fundamental domain, see the proof of [23, Lemma 3.1].
Hence the volume class v; as defined in Section 2.2 can be viewed as a generator
of H?(I", R). For the proof of the following proposition see [27, Theorem 2].

Proposition 2.1. For a symmetric space G/K of noncompact type with odd di-
mension d = 2m — 1, and a representation p: I' — GL(n, C) with a closed
manifold N = I'\G/ K, there exists a constant c, € R such that

(comp(ba). (Hp)+[N]) = ¢, VOI(N).

If p: T' — GL(n, C) factors over a representation po: G — GL(n, C), then c,
depends only on py.

3. Q-rank 1 locally symmetric spaces

In this section, we consider only Q-rank 1 lattices I' C G. We first collect some
definitions and results about Q-rank 1 lattices.

3.1. Arithmetic lattices. Let G be a noncompact, semisimple Lie group with
trivial center and no compact factors. Then one may define arithmetic lattices in
the following way.

Definition 3.1. A lattice I" in G is called arithmetic if there are

(1) asemisimple algebraic group G C GL(n, C) defined over Q and
(2) anisomorphism ¢: G(R)? — G

such that ¢(G(Z) N G(R)?) and I'" are commensurable.

It is well-known due to Margulis [31] that all irreducible lattices in higher rank
Lie groups are arithmetic. The Q-rank of a semisimple algebraic group G is de-
fined as the dimension of a maximal Q-split torus of G. For an arithmetic lattice
I' in G, Q-rank(I") is defined by the Q-rank of G where G is an algebraic group
as in Definition 3.1.
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A closed subgroup P C G defined over Q) is called rational parabolic subgroup
if P contains a maximal, connected solvable subgroup of G. For any rational
parabolic subgroup P of G, one obtains the rational Langlands decomposition of
P =P(R):

P = NP X AP X MP,
where Np is the real locus of the unipotent radical Np of P, Ap is a stable lift of the
identity component of the real locus of the maximal Q-torus in the Levi quotient
P/Np and Mp is a stable lift of the real locus of the complement of the maximal
Q-torus in P/Np.

Let X = G/K be the associated symmetric space of noncompact type with a
maximal compact subgroup K of G. Write

Xp = Mp/(K N Mp).
Let us denote by
T: MP —> XP
the canonical projection. Fix a base point xo € X whose stabilizer group is K.
Then we have an analytic diffeomorphism
w:Npx Apx Xp — X, (n,a,t(m)) —> nam - xy,

which is called the rational horocyclic decomposition of X. For more detail,
see [5, Section II1.2].

3.2. Precise reduction theory. Let g and ap denote the Lie algebras of the Lie
groups G and Ap defined above. Then the adjoint action of ap on g gives a root

space decomposition:
g=00+ Y O

aed(g,ap)
where
9o ={Z €g|ad(A)(Z) = a(A)Z for all A € ap},
and (g, ap) consists of those nontrivial characters « such that g, # 0. Itis known
that ®(g, ap) is a root system. Fix an order on ®(g, ap) and denote by ®* (g, ap)
the corresponding set of positive roots. Define

pp = Z (dim gg )cr.
acdt (g,ap)

Let @11 (g, ap) be the set of simple positive roots. Since we consider only
Q-rank 1 arithmetic lattices, we restrict ourselves from now on to the case

Q-rank(G) = 1.
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Then the followings hold:
(1) All proper rational parabolic subgroups of G are minimal.
(2) For any proper rational parabolic subgroup P of G, dim Ap = 1.
(3) The set ®** (g, ap) of simple positive Q-roots contains only a single element.
For any proper rational parabolic subgroup P of G and any ¢ > 1, define
Ap; ={a € Ap | a(a) > t},

where « is the unique root in ®** (g, ap). For bounded sets U C Npand V C Xp,
the set
SP,U,V,t =U x APJ x V C Np x AP X Xp

is identified with the subset u(U x Ap; x V) of X = G/K by the horospherical
decomposition of X and called a Siegel set in X associated with the rational par-
abolic subgroup P. Given a Q-rank 1 lattice I" in G, it is a well-known result due
to A. Borel and Harish and Chandra that there are only finitely many I"-conjugacy
classes of rational parabolic subgroups. Recall the precise reduction theory in
Q-rank 1 case as follows (see [5, Proposition II1.2.21]).

Theorem 3.2. Let ' be a Q-rank 1 lattice in G. Let G denote a semisimple alge-
braic group defined over Q with Q-rank(G) = 1 as in Definition 3.1. Denote by
Py, ..., P, representatives of the I'-conjugacy classes of all proper rational par-
abolic subgroups of G. Then there exist a bounded set Q¢ in T'\G/K and Siegel
sets

U; xApl.,,l. xVi, i=1,...,s,
in X = G/K such that

(1) each Siegel set U; x Ap, ;; x V; is mapped injectively into I'\X under the
projection w: X — '\ X,

(2) the image of U; x V; in (I' N P;)\Np, x Xp, is compact,
(3) '\ X admits the following disjoint decomposition

S
MX=xQyU ]_[ m(Ui x Ap, 1, X Vi).
i=1

Geometrically Bp(t) = 1 (Npx Apx Xp) is a horoball for any proper minimal
rational parabolic subgroup P of G. Hence each j(U; x Ap, ;; X V;) is a fundamen-
tal domain of the cusp group I'; = I' N P(RR) acting on the horoball Bp, (#;) and
each u(U; x V;) is a bounded domain in the horosphere that bounds the horoball
Bp, (;). Furthermore, each set n(U; x Ap, ;, x V;) corresponds to a cusp of the
locally symmetric space I'\ X. We refer the reader to [5] for more details.
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3.3. Rational horocyclic coordinates. Let P be a proper minimal rational par-
abolic subgroup of G with Q-rank(G) = 1. The pullback u*g of the metric g on
X to Np x Ap x Xp is given by

AStyanemy = D ¢ % Dhy © da® @ d(z(m))’,

acdt (g,ap)

where g is some metric on g, that smoothly depends on t(m) but is independent
of a. Choosing orthonormal bases { N, ..., N} of np, {Z;, ..., Z;} of some tan-
gent space Tr(,) Xp and A € ap with ||A]| = 1, one can obtain rational horocyclic
coordinates : Np x Ap X Xp — R” x R x R’ defined by

n(exp(Xr:xiN,-),exp(yA),exp(iziZ,-)) = (X1,....Xr, Vs 21,4+, Z]).

i=1 i=1

We abbreviate (x1,...,Xr,¥,21,...,2;) as (x,y,z). Then the G-invariant Rie-
mannian volume form dvoly on X = Np x Ap x Xp with respect to the rational
horocyclic coordinates is given by

dvoly = h(x,z)exp 21°®1Y gxdyd:z,

where /(x, z) is a smooth function that is independent of y. See [4, Corollary 4.4].

Note that all proper rational minimal parabolic subgroups are conjugate un-
der G(Q). Hence the respective root systems are canonically isomorphic [3] and
moreover, one can conclude ||pp| = ||pp|| for any two proper minimal rational
parabolic subgroups P, P’ of Q-rank 1 algebraic group G.

4. Straight simplices

Let X be a simply connected complete Riemannian manifold with nonpositive
sectional curvature and d., X be the ideal boundary of X. For x¢,...,x; € X,
the straight simplex str(xo, .. ., x) is defined inductively as follows: First, str(xg)
is the point x¢ € X, and str(xg, x1) is the unique geodesic arc from x; to xp. In
general, str(xo, . . ., Xx) is the geodesic cone on str(xo, . . ., Xx;—1 ) with the top point
Xxk. Since there is the unique geodesic connecting two points in X, each ordered
(k + 1)-tuple (xo, ..., xx) determines the unique straight simplex.

If the sectional curvature of X is strictly negative, one can define the notion
of straight simplex in X U doo X . For any ordered tuple (uog, ..., ux) € X UdxoX,
the straight simplex str(uo, ..., ug) is well defined as above. A straight simplex
str(uo, . .., uy) is called an ideal straight simplex if at least one of ug, ..., uy is
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in d0oX. In general, however, an ideal straight simplex is not well defined for a
simply connected Riemannian manifold with nonpositive sectional curvature. For
example, let X be a higher rank symmetric space and consider two points 61, 6, in
doo X which cannot be connected by any geodesic in X. Then, one cannot define
a straight simplex str(6;, 6,) with ideal vertices 6, 8. However, in the particular
case that xg, ..., xx—1 € X and 6 € d X, we can define an ideal straight simplex
str(xg, ..., Xx—1,0) as usual. This is because there is the unique geodesic from a
point in X to a point in d, X . Hence, the geodesic cone on str(xy, . .., xg—1) with
the top point 6 is well defined. We only need such kind of ideal straight simplex
to construct our invariant in K-theory for a Q-rank 1 locally symmetric space.

Setup. We will stick to the following notations from now on. Let G be a non-
compact, semisimple Lie group with trivial center and no compact factors and
X = G/K be the associated symmetric space with a maximal compact subgroup
K of G. Given a Q-rank 1 arithmetic lattice I" in G, we denote by G a Q-rank
1 semisimple algebraic group defined over Q) as in Definition 3.1. Let Py,..., Ps
be the representatives of the I"-conjugacy classes of all proper rational parabolic
subgroups of G. According to the precise reduction theory, we fix a fundamental
domain F C X as in Theorem 3.2 as follows:

N
F=QoU[[Ui x4y, xV
i=1
Each half-geodesic Ap, ;; uniquely determines a point in doc X, denoted by c;.
Write I'; = ' N P;(R) and N = T'\ X. Note that each I; is the stabilizer of ¢; in
I'. Since N is tame, N is homeomorphic to the interior of a compact manifold M
with boundary. Let d; M, ..., ;M be the connected components of the boundary
oM of M. 'Then there is a one-to-one correspondence between I'q,..., s and
01M,...,0sM. Indeed, we can assume that each 0; M is homeomorphic to the
quotient space of a horosphere based at ¢; by the action of I';.

Lemma 4.1. For any ¢ € {c1,...,cs}, the volume of the ideal straight simplex
str(xo, ..., X4—1,C) is finite for any xo,...,x4-1 € X.

Proof. Let P be the proper minimal rational parabolic subgroup associated with c.
Letg: A1 — X be a parametrization of str(xo, . .., x4—; ). Choose a coordinate
system s = (s1,...,54—1) in A9~!. In the rational horocyclic coordinates of

X =NpxApx Xp=R xRxR,

we can write

p(s) = (x(s), y(s), 2(5)).
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Define a map
v AT %[0, 00) — X

by
Y(s,1) = (x(5), y(s) +1,2(5)).

A line x(s) x RT x z(s) is a geodesic representing ¢ for any s € A?~!. Hence, it
is easy to see that ¥ is a parametrization of str(xg, ..., Xg—1,C).

Denote by G(wy, ..., wg) the Gram determinant of wy,..., wg € Re. Ttis a
standard fact that /G (w1, ..., wg) is the k-dimensional volume of the parallelo-
gram with edges wy, ..., Wg. We abbreviate as‘” ey as‘l‘”l as 8s Then

Y™ dvoly (s, 1)

= h(x(s), z(s))e 2NeplC )+ \/G( (s, 1), —(s 1)) dsy - dsg_dt

— ]’l(.X(S), Z(s))e—2||PP”(Y(S)+I) \/G(aa_(f(s)’ %(w(s’ l‘))) dSl e dsd—ldt

< h(x(s), z(s))e—z“PP"@(S)“),/G( (s))ds1 cdsg_y dt

The last inequality follows from

0
| Zwo] =1
y
Hence, we have
Vol(str(xg, ..., X4-1,¢))

= / Y*dvoly dsy---dsg_idt
Ad=1x[0,00)

< / h(x(s), z(s))e—z“f’l’“y@\/c;( S(8)) dsy - dsgy - /Ooe_zllpl’”’dt
Ad— 0

1

= Vol(str(xo, ..., xg-1)) - W

< .

This completes the proof. O
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5. Cuspidal completion

In this section, we will define the notion of disjoint cone for M and the cuspidal
completion of the classifying space BI', following [27, Section 4.2.1].

As we mentioned before, one can identify each component d; M with the quo-
tient I';\ H; where H; is the horosphere that bounds a horoball

B,' = Npi X APiJi X Xpi.

Note that such B/s are disjoint in Q-rank 1 case. Hence we have a homeomorphism
of tuples

(M, M, ..., 0M) —> (r\(x —_ O FB,-), T\Hi, ..., FS\HS).
i=1

5.1. Disjoint cone of topological spaces. For a topological space Y and sub-
spaces A, ..., As one can define a disjoint cone

S
Dcone(UA,- — Y)
i=1

by coning each A; to a point ¢;. In other words, Dcone(Uf=1 A;j — Y) is the
space obtained by gluing Y and | J;_, Cone(4;) along | J;_, A;. The following
lemma is an elementary exercise in algebraic topology. It applies in particular
to smooth manifolds with boundary because these have the homotopy type of
CW-complexes.

Lemma 5.1. Let (Y, A) be a pair of finite CW-complexes with Y connected and
A = Ay U ---U Ay the union of its connected components. Then there is an
isomorphism

Ho(Y, A) = H*(Dcone ( U A —> Y))
i=1

in degrees x > 2.

5.2. Disjoint cone of simplicial sets. For a simplicial set (S, ds) and a symbol
¢, the cone over S with the cone point c is the quasisimplicial set Cone(S) whose
k-simplicies are either k-simplices in .S or cones over (k — 1)-simplices in S with
the cone point ¢. The boundary operator d in Cone(S) is defined by do = dgo
and

9 Cone(o) = Cone(dso) + (—1)4im@+14

foro € S.
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If {T; | i € I} is afamily of simplicial subsets of S indexed over a set /, then
define the quasisimplicial set Dcone(| J;<; Ti — S) as the pushout

U;'el Tl S

| |

U;e; Cone(T;) Dcone (U;.el T, —> S).

Recall that in Section 2.1 we defined the simplicial set BG for a group G. Now
let us consider X = G/K a symmetric space of noncompact type and ' C G a
lattice. We define the cuspidal completion BG°™P of BG to be

Dcone( U BG—)BG).

C€Ico X

In addition, define the cuspidal completion BT'°°™P of BT to be

Dcone ( O BT —> BF),

i=1

where I'; are parabolic groups. More precisely, BI'°™P is the quasisimplicial set
whose k-simplices o are either of the form

o= 1,2 Yk)

with y1,...,yr € T or for some i € {l,..., s} of the form

o= (p1,--s Pk—=1-Ci)

with pq,..., pr—1 € I}.

Lemma 5.2. Let M be a compact, connected, smooth, oriented manifold with
boundary OM. Then there is an isomorphism

N
Ho(M, M) =~ Hilmp(Dcone (@ C.(0; M) —> C, (M)))
i=1
in degrees > 2. In particular

Hjmp(Dcone ( @_, Co(d: M) —> Co(M); ]R)) ~R

ifd = dim(M) > 2.
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Proof. For a simplicial set S, we denote by |S| the geometric realisation of S.
One can think of C«(d; M), C«(M) as simplicial sets. Note that we have a nat-
ural isomorphism between the simplicial homology of the simplicial set and the
singular homology of its geometric realisation. Thus to derive Lemma 5.2 from
Lemma 5.1 it is sufficient to provide an isomorphism

H*(Dcone ( LSJ M —> M)) ~ Hy(| Dcone(éC*(aiM) N C*(M))|).

i=1 i=1

There is a natural Mayer-Vietoris sequence for CW-complexes (see the remark
after [6, Proposition A.5]), hence the canonical continuous map

‘Dcone(lGjC*(BiM) — C*(M)>‘ — Dcone(U oM — M)

i=1

yields the following commutative diagram

| |

H(IC+(M)]) & €D Hx (| Cone(C (8 M))|) —— Ha(M) & D) Hx(Cone(d; M)

i=1 i=1

| |

Dcone(éc*(aiM) — C*(M))D — H*(Dcone( O oM — M))

i=1 i=1

| |

@D Hemr (1€ @i M)) D Hemr@iM)

i=1 i=1

| |

.
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We note that | Cone(C«(d; M))| and Cone(d; M) are contractible, hence their ho-
mology vanishes in degrees > 1. Moreover

Hy(|C«(M)|) — Hx(M)

and
Hy(|Cx(3: M)]) —> Hy(3; M)

are isomorphisms: this follows from [24, Theorem 2.27] together with the fact that
H..(X) is by definition the same as H, " (C« (X)) for any topological space X.
Thus the five lemma implies the wanted isomorphism

i

—>H*(Dcone(oa,-M—>M)). O
i=1

Dcone (éC*(aiM) — C*(M))D
i=1

In the sequel we will consider the situation that two points x;, x in

X = Dcone(é Ci(0i M) — C*(M))

i=1

are connected by a 1-simplex e; with
de; = x — X;.
For a 1-simplex o with both vertices in x; we can define "conjugation with e;" by
C,(0):=¢;x0 *e;.
In particular, for x; € 9; M and if
1 (0; M, x;) —> (M, x;)

is injective, then C,, realizes an isomorphism of m;(d; M, x;) to a subgroup
I'i C m1(M, x). For a 1-simplex o with

00 = ¢; — X;

we define
Ce;(0) :==¢; x 0.
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Definition 5.3. Let (M, dM) be a pair of topological spaces, d{M,---,dsM be
the path components of dM . Denote by

¢ € Dcone(o oM — M)
i=1

the vertex of Cone(d; M) fori = 1,...,s. Letx € M, x1 € 04/M, ..., x5 € ;M.
Fori € {l,...,s} we define

CXi(9; M) C Cone(Cx(3; M)) C C*(Dcone ( U oM —> M))
i=1

to be the subcomplex freely generated by those simplices in Cone(d; M) for which
e cither all vertices are in x; ,

e or all but the last vertex is in x; and the last vertex is in ¢;.

Fori =1,...,s fix a path ¢; from x to x; and the corresponding C,,. Define
N
CX(M) C C*<Dc0ne ( U oM — M))
i=1

to be the subcomplex freely generated by those simplices o for which
e cither all vertices are in x,

e or for some i € {l,...,s} there exists a simplex o/ C Cy (0; M) such that
C,, maps the 1-skeleton of ¢’ to the 1-skeleton of o (up to homotopy fixing
the 0-skeleton).

We remark that in the last case the homotopy classes (rel. {0, 1}) of all edges
between all but the last vertices belong to I'; C m1(M, x).
For the statement of the following lemma we will denote by

j1: CX(M) — C*(Dcone(o oM — M))
i=1

and

J2: DCOHG(@ Ci(0i M) — C*(M)> — C*(Dcone(o M — M))

i=1 i=1

the inclusions.
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Lemma 5.4. Let M be a compact, connected, smooth, oriented manifold with
boundary OM. Let x € M. Then there exists a chain map

F: C*(Dcone(é Cu(d; M) —> C*(M))) = CX(M)
i=1

such that ji o F is chain homotopic to j,.

Proof. To write out the claim of the theorem: we want to show that there exist
sequences of chain maps

Fy: Cy(Deone(@®;_,Cx(d; M) — Cx(M))) — CX(M)

and of chain homotopies

K, Cn<Dcone<éC*(3iM) — C*(M)>>

i=1

— Cn+1(Dc0ne(O oM — M))

i=1

forn =0,1,2,...such that
0K (0) + Ky—1(d0) = Fy(0) — o
for all o € C,,(Dcone(®{_,C«(0; M) — Cix(M))).

We will use the procedure for dividing A" into (n + 1)-simplices which is de-
scribed in [24, page 112]. Soforeachn € Nweletv, 0,..., Vpnand wy 0, ..., Wnn
be the vertices of A" x {0} and A" x {1}, respectively, and for 0 < j < n,
we denote by

Knj: A" — A" x [0, 1]

the affine (74 1)-simplex with vertices vg. ..., v;, w;, ..., w,. We will inductively
prove a slightly stronger statement as above, namely we will show that for each
n-simplex o in Dcone(®;_,C«(3; M) — C«(M)) one can define a continuous
map

S
Lo: A" x [0,1] —> Dcone(U M —> M)
i=1

such that K, (o) is given by
n
Ky(o) = Z Lo o kn,j
j=0

(and of course that the so defined K, satisfies the above properties).
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Suppose n = 0. A 0-simplex o in Dcone(®{_, C«(3; M) — C«(M)) is either
a 0-simplex in M or a cone point ¢;.
If 0 = ¢;, then we define
Fo(ci) = ¢
and Ko(c;) is the I-simplex mapped constantly to c;.
If the 0-simplex o belongs to M — dM, then we define

Fo(o) =x

and Ko(o) is some (arbitrarily chosen) 1-simplex in M C Dcone(|J;_, 3; M — M)
with

aoKo(O') =X
and

81K0(0) = 0.

If the 0-simplex o belongs to d; M, then we first choose some 1-simplex e, in
0; M with

does = X;, 01e5 = O.

(If o = x;, we let e, be the constant 1-simplex.) Recall from Definition 2.3
that we have fixed a path e; from x; to x which yields the isomorphism between
m1(0; M, x;) and I'; by conjugation. Define then Fp(o) = x and Ky(0) is the
1-simplex obtained as concatenation of e, and e;. In particular dg Ko(0) = x and
81 K() (U) =0.

Suppose n = 1. A 1-simplex o in Dcone(®;_,C«(3; M) — C«(M)) is ei-
ther a 1-simplex in M or the cone (with cone point ¢;) over a 0-simplex in d; M.

We have defined Ko(d;0) and K((dg0). Inclusion dA! — Al is a cofibration,
hence we have a continuous map

S
Lo: A' % [0,1] —> Dcone(U M —> M)

i=1
such that

Ls(x,0) =x, forxeao,

and
Ls(djo.t) = Ko(d;0)(t) forj =0,]1.
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Then define
Ki(0) :=Lsoki,0+ Lsoki,1

and F; (o) by
Fi(0)(x) := Lo(x.1)

for x € AL.
It is clear that
0K1(0) + Ko(do) = Fi(0) — o

and that
Fo(do) = 0F;(0).

We still have to check that F (o) € 61" (M). If o is the cone over a simplex in
0; M, then dgo = ¢; and ;0 € 0; M C M, hence Fy(dpo) = ¢; and Fy(010) = x,
thus F;(0) € C¥(M). If o0 € C;(M), then

0jFi(0) = Fo(dj0) =x forj =0,1,

thus Fi(o) € élx (M). Moreover (this will be needed in the next steps) if 0 €
C1(9; M), then the homotopy class (rel. {0, 1}) of F (o) belongsto I'; C 71 (M, x).
Indeed, Fj (o) is in the homotopy class (rel. {0, 1}) of

Ko(010) *x 0 % Kg(000) =€ * €3, * 0 * ey,5 * €;,

where the bar means the 1-simplex with opposite orientation. Now ej 5 * o *
ej,o represents an element in 1 (9; M, x;) and by assumption conjugation with e;
provides to isomorphism to [';, hence Fj (o) represents an element in 5.

We now proceed to prove the theorem by induction. Assume that F; and Ky
have been defined for k < n. We will assume as part of the inductive hypothe-
sis (and prove as part of the induction claim) that F; (o) has all vertices in x if
0 € C«(M) and that F, (o) has its last vertex in ¢; if ¢ has its last vertex in ;.
(This is satisfied for n < 1 by the above construction.)

Let

o: A1 —>Dcone<08iM — M)
i=1

be an (n + 1)-simplex in Dcone(®;_,C+«(0; M) — C«(M)). By the inductive
hypothesis we have for j = 0,...,n + 1 a continuous map

S
La;o: A" x [0, 1] —> Dcone ( oM — M)

i=1
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such that K,,(d;0) is given by
n
Kn(9j0) = Z Lyo 0kn,-
1=0

(In particular Lajg(x, 0) = x for x € d;A".) Since the inclusion A" — A" isa
cofibration by [6, VIL. Corollary 1.4] we have a continuous map

Lo: A" x[0,1] — Dcone(o oM — M)

i=1

such that Ly | an+14(o) agrees with o (after the obvious identification of A" with
A1 {0}) and for j = 0,...,n + 1 Loy, ant1xg0,17 agrees with Ly ;. Then
define

n+1
Ky41(0) = Z Lo oknt,j
Jj=0
and
Fut1(0) := L o 1y,
where
Tpar: AP — APTL 0, 1]
is defined by

Tht+1(x) = (x, 1).

It is clear by construction that
0Kp41(0) + Kn(d0) = Fy41(0) —0

and that
Fp+1(0) = Fy(d0).

We have to check that F, (o) € é,j‘H(M). If o is an (n + 1)-simplex in M,
then all 0,0 are n-simplices in M, hence by induction all vertices of all F;,(d;) are
in x. Because of d; F,+1(0) = F,(d;0) this implies that all vertices of F;,11(0)
are in x, hence Fy41(0) € CX, [ (M).

If o is the cone (with cone point ¢;) over an n-simplex t = d,0, then we have
by inductive hypothesis that F},(d,+0) has all its vertices in x and moreover that
all F,(dj0) with 0 < j < n have their last vertex in ¢;. Because of

dj Fnt1(0) = Fu(9;0)
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this implies that F;,+; (o) has its last vertex in ¢; and the remaining vertices in x.
Moreover, if n +1 = 2, then d,0 € C;(0; M) and it follows (from the construction
for n = 1) that the homotopy class (rel. {0, 1}) of 9, F>(0) = F;(d,0) belongs to
I € mi(M,x). If n + 1 > 3, then, since each edge of o is an edge of some
d;0 and since F,(d;0) € é,f (M), it follows that the homotopy classes (rel. {0, 1})
of all edges between all but the last vertices belong to I'; C 71(M, x). Thus
Fuy1(0) € G (M). O

Corollary 5.5. Let M be a compact, connected, smooth, oriented, aspherical
manifold with aspherical mi-injective boundary OM = ;M U ... U dsM. Let
x € M. AssumeT'; NT; =0 fori # j, whereI'; C mi(M,x) fori =1,...,sis
defined by Definition 5.3. Then the chain map

F : Dcone (éC*(BiM) s Cu(M)) —> CX(M)
i=1

induces an isomorphism of homology groups.

Proof. Lemma 5.4 implies that j;«Fx = jo» and Lemma 5.2 implies that j,, is
an isomorphism. Hence F is injective. It remains to show that F is surjective,
i.e., that every cycle in Cf (M) is homologous to some cycle of the form F,z with
z acycle in Dcone(@{_,C«(0; M) — C«(M)).

Let Y7_, aj0; € CX(M) be acycle. Let

J9€ = {;: o; has an edge representing 0 € 71 (M, x)}.

The same argument as in the proof of [27, Lemma 5.15] shows that } ;¢ yaez a;0; is
a 0O-homologous cycle, thus } ;g ajo; is homologous to Z;=1 a;oj.
We can and will therefore without loss of generality assume that no o; has an
edge representing 0 € w1 (M, x).

Letcy,...,cs be the cone points and for i € {1,...,s} let

Ji = {J: oj hasits last vertex in ¢; }.

We note that for i # [ a simplex in J; can not have a face in common with a

simplex in J;. Indeed such a face would have edges representing elements in

It ¢ my(M, x) and I'; C 7r1(M, x) which is impossible because of I'; N I'; = @.
Now let K be the simplicial complex defined as a union

K=AU...UA;
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of homeomorphic images of the d-dimensional standard simplex with identifica-
tions 0; A; = dxA; if and only if 0;0; = dx0;. Let

S
o: K—>Dcone(U8,~M — M)
i=1
be defined by
0|Aj :Ujs

where the homeomorphism from A; to the standard simplex is understood. By

construction,
r r
E ajoj :0*[ E ajAj].
j=1 j=1

We will now homotope o such that its image becomes a chain in the complex
Dcone(®;_,Cx(d; M) — Ci(M)). First, if j € J;, then we homotope all but the
last vertex of A; from x to x; along the path e; from Definition 5.3. Since fori # [
simplices in J; and J; have no face in common this can be done simultaneously
for all A; with j € J; U...U Js. By successive application of the cofibration
property this homotopy can be extended to all of K. For j € J; it follows from
the definition of I'; in Definition 5.3 that after this homotopy the edges of A;
opposite to the cone point are all mapped to loops at x; homotopic rel. {0, 1} into
d; M. We may thus (using again the cofibration property to successively extend the
homotopy from the 1-skeleton to K) further homotope o to have all these edges in
d; M, and the remaining edges of A; mapped to Cone(d; M). Finally, since M and
d; M are aspherical we have m.>>(M, dM) = 0, thus we can successively further
homotope o such that

e for j € J; all higher-dimensional subsimplices and finally A; are mapped
to d; M (if they don’t contain the cone point) or to Cone(d; M) (if they do
contain the cone point),

e for j & J; U...U J; all higher-dimensional subsimplices and finally A; are
mapped to M.

Thus we obtain a cycle ¢ in Dcone(®]_, C«(d; M) — C«(M)). By construction
Fc is homotopic, hence homologous, to Z;=1 a;joj. O

Corollary 5.6. Under the assumptions of Corollary 5.5 we have
Hy(CX(M):R) = R

ford =dim(M) >2and x € M.
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6. Eilenberg—-MacLane map

Recall the homeomorphism of tuples as we describe in Section 5,
S
(M, M, ..., 0;M) —> (r\(x - FB,~), T\Hi, ..., FS\HS).
i=1

Let ¢; denote the cone point of Cone(d; M). Identifying each Cone(d; M) —c; with
I';\ B;, we have a homeomorphism

rNx —>Dcone(08iM — M) —{c1,...,¢s}

i=1

extending the homeomorphism of tuples above. Composition of the universal cov-
ering X — '\ X with this homeomorphism yields a covering map

S
X —>Dcone(U8l~M — M) —{c1,....cs}.
i=1
Then we finally have a projection map

Ay N
T: XU UI‘BOOB,- —>Dcone(U8,~M—>M)

i=1 i=1

such that

Ty : X—>Dc0ne(OBiM—>M>—{c1,...,cs}

i=1
is a covering,

7|rp; : I'Bi — Cone(d; M) — C;

is a covering with deck group I'" and 7 maps 'deoB; to ¢; fori = 1,...,s.
Due to this projection map, we can define the notion of (ideal) straight simplex in
Dcone(|J;—, ;: M — M).

Definition 6.1. We say that a k-simplex o in Dcone(| J;_, 9; M — M) is straight
if o is of the form

m(str(uo, ..., ug))

for Ug, ..., U € XU Uf=l I‘aooB,-.
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Remark. In the R-rank 1 case, every doo B; consists of a point in do, X and for
any ordered pair (ug, ..., ug) € X U Ule Moo B, str(uo, . . ., ug) is well defined.
In contrast, in the higher rank case, each d B; is not a point. More precisely,
if B; is any horoball centered at z;, then

Do Bi = {w € Do X ‘ Td(zi, w) < %n}

where Td is the Tits metric on de X (see [25]). Furthermore, str(ug, ..., ug) may
not be defined for some ordered pair (uy, . .., ug).
We denote

@(M) = C*(DCOne(O oM — M))

i=1

Recall from Definition 5.3 that we choose base points xg, x1,...,xs of M,
01M,...,0sM respectively and identify m(d; M, x;) with a subgroup I; of
11(M, x¢) by choosing a path connecting x¢ and x; fori =1,...,s.

The assumptions of Corollary 5.6 are satisfied for Q-rank 1 spaces, thus we
have

Ha(CP(M). Q) = Ha(Cu(M). Q)
= H;(M, oM, Q)
= Q.
Definition 6.2. We define a chain complex
CSm*0 (M) := Z[{o € CX(M) | o is straight}],

and for the s-tuple (c1,...,cs) with ¢; € 0.0B; (see the setup in Section 4),
str,xg,C

we define the subcomplex Cs (M) of CS™™ (M) freely generated by those
simplices that are either of the form

o = m(str(Xo, Y1X0, ..., Y1 ViX0))
where X is a lift of xg and y1, ..., yx € T or of the form
o = n(str(Xo, p1Xo,..., P1+* Pk—1X0,Ci))

for p1,...,pr—1 € andi € {1,...,s}.
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Lemma 6.3. The following hold.

(a) There is an isomorphism of chain complexes

®: G350 (M) —> CMP(BTCOM),

(b) The inclusion
Cio ¢ (M) —> Cu(M)

induces an isomorphism

Hy(CSro¢ (M), Q) —> Hd(Dcone ( U oM —> M), Q).

i=1
(c) The composition of ®~! with the inclusion
Csm0¢ (M) — Cu(M)

induces an isomorphism

EM,: HS™(BTO™, Q) —> Hd(Dcone ( U M —> M), Q).

i=1

Proof. The proof of (a) is exactly the same as the proof of [27, Lemma 8a].
To prove (b) note that one can extend the domain of ® (see Section 2.1) to éf (M)
in the following way. Let o be a k-simplex in C;°(M) and ey, ..., e be the ver-
tices of the standard simplex Ak Fori = 1,...,k, let ¢; be the standard sub-1-
simplex with

i =e; —ej—1.
Define
®(0) = ([ol¢,], - - [oleDs

where each [o|¢;] € I' = m1(M, xo¢) is the homotopy class of o, if all vertices of
o are in xo and

®(0) = ([olg ). - - [olgey ] i),

if the last vertex of o is ¢;. Then consider the composition of maps as follows:

éjtr’XO’c(M) i C\:o (M) i) C:imp(Brcomp) _‘IJ> 6:tr,x0,c(M) )
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Obviously, ¥ o ® o = id and thus we have an injective homomorphism
ix: Ha(CI¥0C (M), Q) — Ha(CJ0(M). Q).
From Corollary 5.6 we obtain

Hy(CFO(M),Q) = Q,

thus Hy (CS™ °(M), Q) as a vector space over @ is at most one dimensional.
On the other hand Lemma 6.4 below shows that EM;I[M ,dM] is a nontrivial
element in

Hy(BT™,R) = Hq(C}™° (M), R),

because evaluation of some cocycle is not zero. Hence, i, is actually an isomor-
phism. Furthermore, considering that by Corollary 5.5 the inclusion

CXo (M) — Cu(M)
is a homology equivalence, one can conclude that the inclusion
CIX0C(M) —> Cu(M)
induces an isomorphism

Hy (G350 (M), Q) —> Hd(Dcone ( O M —> M), Q).

i=1

Finally, (c) follows from (a) and (b). O

Remark. In the R-rank 1 case, the geodesic straightening map
stre: CJO(M) — C3"(M)

that is a left-inverse to the inclusion 3™ (M) c Cy°(M) is well defined and
CS™P (BT e0mP) is jsomorphic to CS7*0 (M) = CS™*0 (M). (See [27]). However,
in the higher rank case, the straightening map str, : Ci®(M) — CS™* (M) is not
well defined as we mentioned in Section 4. Hence Cﬁimp(B ['€°™P) is not isomor-
phic to C{™*° (M) but is isomorphic to its subcomplex C5**° (M. Despite such
differences with R-rank 1 case, we obtained the homology class

EM'[M,dM] € H™ (BT, Q)

as in the R-rank 1 case. This will enable us in Section 7 to define an invariant in
K-theory for a Q-rank 1 locally symmetric space.
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Recall that the volume cocycle comp(vy) = cvy € CZ4 (BG) is defined by

simp

cvg(g1,...,84) :/ dvoly,

Str(X0,81X05-+--81°°8d X0)

where dvoly is the G-invariant Riemannian volume formon X = G/K.If X isa
R-rank 1 symmetric space, one can extend this volume cocycle cv; to a cocycle

vy € Cs(fmp(B G™P). In the higher rank case, one cannot obtain an extended
d

simp

(BT) to at least a cocycle in C

volume cocycle in C
- od
1n Csimp
Cs‘fmp(BI‘C"mp) as follows. For a d-simplex (y1,...,yq) with y1,...,y4 € T,
define

(BG*°™P), However, we can extend the volume cocycle

S‘fmp(B [¢°™P). Define a cocycle cv, €

Hd(’ylﬁsyd) :CVd(VI’---sVd)-

For a d-simplex (p1,..., pa—1,¢i) with p1,...,ps—1 € T andi € {1,...,s},
define

Vg (p1y...s Pd—1,Ci) = / dvoly .
str(X0,P1X05--P1-*Pad—1%0,Ci)
It follows from Lemma 4.1 that cv; is well defined. An application of Stokes’
Theorem (to compact submanifolds with boundary of every ideal simplex exactly
as in the proof of Lemma 6.4 below) shows that cv; is a cocycle in Cs(fmp(B [reemp),

Hence, the cocycle ¢v; determines a cohomology class in Hs‘fmp(BI‘C"mp),
denoted by v,.

Lemma 6.4. If N = int(M) is a Q-rank 1 locally symmetric space of dimension
at least 3, then
(04, EM7'[M, dM]) = Vol(N).

Proof. Let z be a relative fundamental cycle in C;(M, M) representing the
relative fundamental class [M, dM]. We think of M as a submanifold of N via
the homeomorphism of tuples

(M, M, ..., 0;M) —> (r\(x - O I‘B,-), T\Hi, ..., FS\HS)
i=1

and z as a chain in C4(N).
Since dz represents [dM ], we can write

0z =01z + -+ 2z,
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where 9,z is a cycle representing [0; M] fori = 1,...,s. Make z a chain z° in
6;0 (M) via the chain homotopy Cx(M) — C°(M) in the proof of [27, Lemma
8]. Note that z° is obtained by adding several 1-dimensional paths to z and hence

algvol(z®) = algvol(z) = Vol(M).

Now, consider a geodesic cone Coneg (d;z) over 0;z with the top point ¢; for
i =1,...,5.Duetodim Ap, = 1, it is not difficult to see that

algvol(Cone, (3;2)) = (—1)?! Vol(I';\ B;).

Since Coneg (9;z°) is obtained by adding two dimensional objects of N to the
cone Coneyg (0;2), its algebraic volume is not changed, that is,

algvol(Cone, (9,2°)) = algvol(Conegz (d;2)) = (—1)4 ! Vol(I';\ B;).
Now, define
¢(z%) = 2% + (=1)4*! Cone, (32°).
Then it can be checked that ¢(z°) is a cycle in C (M) by
dc(z%) = 3z° + (—1)?+19 Cone, (32°)
= 9z° + (=1)¥*! Cone, (39z°) + (—1)4+1(=1)982°
= 0.

Furthermore, we have

algvol(c(z®)) = Vol(M) + _ Vol(T;\ B)
i=1

= Vol(M) + Vol(N — M)

= Vol(N).
Note that we can straighten ¢(z°) because all vertices of every ideal simplex in
¢(z%) are in x¢ except for the last vertex with ¢; for some i € {1,...,s}. Further-

more, str(c(z?)) is in C;tr’x 0:¢(M) and represents W o EM ' [M, M. To prove the
lemma, it is sufficient to show that

algvol(str(c(z%))) = Vol(N).
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Let
S
Ho Hy: K —> Dcone(U M —> M)

i=1

be the simplicial maps realising the cycles
¢(z%) + Coneg (0z%) and  str(c(z°) + Coneg (92°)),
respectively. (See the construction in the proof of Corollary 5.5.) Let
H:Kx[0,1] —>Dcone(U8iM —>M)
i=1
be the straight line homotopy between
c(z°%) + Coneg (0z°) and  str(c(z%) + Cone, (92°)),

such that
Hy=H(.,0) and H; = H(,1).

The homotopy H yields a chain homotopy
Ly: C3mX0¢ (M) — CIp0¢ (M)

from the straightening map str to the identity. (See the construction in the proof
of Lemma 5.4.) This satisfies

Ly + Lg—10 = str—id.
Then
str(c(z%)) — ¢(2°)
= str(z%) — 2% + (—1)%*! (Cone, (str(9z°)) — Cone, (3z°))
= 0Ly(z%) 4 Lg_1(02°) 4+ (=1)¢ ! Cone, (0L 41 (32°) + Ly_(302°))
= 0L4(z%) + Lq_1(3z°) + (=1)?*18 Cone, (Ly_1(32°)) — Lg_1(3z°)
= I(Lq(z°) + (=1)?*" Coneg (Lg—1(32°)))

In order to conclude algvol(str(c(z?))) = algvol(c(z%)) we want to apply Stokes’
Theorem to show that the integral of the volume form over

ALy (z° + (=1)?*! Coneg (Ly—1(3z°)))
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vanishes. It is clear that the integral of the closed form dvol over dL 4 (z°) vanishes
and thus it remains to look at simplices in d Coneg (L 4—1(32°)).

Since the volume form is defined on the complement of the cone points we can
apply Stokes’ Theorem to compact submanifolds with boundary of every (ideal)
simplex in Let H;; be a sequence of horospheres converging towards c¢; for
k — oo. In the following we will call simplices in Cone, (0;z) proper ideal sim-
plices if they have a vertex in ¢;, i.e. if they are not contained in 0;z.
For a proper ideal simplex in Cone, (0;z) its edges are either edges of a simplex
in d;z or otherwise they are geodesics ending in ¢;, which therefore are trans-
verse to the horospheres I, ;. Moreover all higher-dimensional proper ideal sim-
plices in Coneg(9;z°%) and their straightenings are a union of geodesic lines end-
ing in ¢;. In particular all proper ideal simplices occurring in Cone, (9;z°) and
str(Coneg (9;2°)) are transverse to the H;’s.

The Relative Transversality Theorem (see [22]) yields that any map

H:KX[O,]]—)DCO%(OE%M—)M)

i=1

whose restriction to K x {0, 1} is transverse to | J;  H;x can be homotoped (by an

arbitrarily small homotopy, keeping K x {0, 1} fixed) to a map which is transverse

on all of K x [0, 1]. The homotopy can be chosen to fix subsimplices which are

already transverse. Thus we can homotope (keeping ¢(z°) and str(c(z°)) as well

as L4 (z°) fixed) the simplices in Coneg (L4—1(92°)) to be transverse to the H;’s.
Then, for any (d + 1)-dimensional simplex

S
Kk AT Dcone(U M — M) =~ N U {cusps}
i=1
occurring in Coneg(Ly—1(9z°)), and for each k € IN, we conclude from
transversality that k~!(3{;;) is a d-dimensional submanifold K;; bounding a
(d + 1)-dimensional submanifold Q,; ¢ A4*! which does not contain the preim-
age of ¢;. Thus we can apply Stokes” Theorem to 2;; and obtain

/ H*dvolx+/ H*dvolX:/ dH* dvoly =0
AIFTINQ Ki Qi

because H* dvoly is a closed form. We note that H maps the d-dimensional
submanifold K;; to the (d — 1)-dimensional submanifold H;; C N and therefore

H*dvoly = 0.
Kik



950 I. Kim, S. Kim, and Th. Kuessner

Thus

/ H* dVOlX =0
aAd+1mQ,-k

for all k € IN. Then, since the countable union | J, oy 0AYT! N Qi equals
A?+1\ k~1(¢;) and since dvoly is defined to be zero on ¢;, we conclude that

/ H*dvoly = 0.
IAd+1

Summing up over all

K AT Dcone(O M —> M)

i=1

occurring in Coneg (L4—1(9z°)) we obtain

/ dvoly = 0.
dConeg (Lg—1(329))

Then, we have

algvol(str(c(z?))) = /

str(c(z9))

dvoly = / dvoly = Vol(N),
c(z9)
which completes the proof. O

Assume that d is odd. Let by be the Borel class in HZ(SL(n,C),R).
(It is obtained by restriction of the Borel class b; € Hcd (GL(n, C), R) defined
in Section 2.2.) According to the Van Est isomorphism, a representative 8, of by
is given by

Ba(go.-...8ga) :/ dbol

str(go0,...,€40)

where dbol is an SL(n, C)-invariant differential d-form on SL(n, C)/ SU(n) and
0 is a point in SL(n, C)/ SU(n). Recall that a comparison map

comp: C}(SL(n,C),R) — Cg

simp

(BSL(n,C),R)
is defined by

comp(f)(g1,....8k) = f(1,81.8182.---. 81" &k)-
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As in [27, Section 4.2.3] define B SL(n, C)gb as the set consisting of d-sim-
plices in B SL(n,C);"™" which are either d-simplices in B SL(n, C)4 or of the
form

(P1,--.s Pa-1.0)
satisfying
dbol

< 0.

We define B SL(n, C)™ to be the quasisimplicial set generated by B SL(n, C)g’
under face maps. Then consider a cocycle

cBy: C™(BSL(n, ) R) — R

defined by
cBal(grs. . 84) =/ dbol
str(0,£10,...,81-+84—10)
for (g1,....g4) € BSL(n,C)™, and
cBy(pr.....pa—1.¢) =/ dbol
Str(0,p10,..., D1 Pid—10,C)
for (p1,..., pa—1,¢) € BSL(n, (D)fib. By the construction of c¢f, it is obvious
that

(Bi)*(cBy4) = comp(Ba)

and hence, (Bi)*(cB,) is a cocycle representing comp(bz), where

Bi: BSL(n,C) — B SL(n, C)®
is the natural inclusion map. The following lemma can be shown by the arguments
in the proof of [27, Lemma 7].
Lemma 6.5. Let

p: (G, K) — (SL(n, C),SU(n))
be a representation. Let

j:I'—G
be the natural inclusion map. Then we have
(Bp o Bj)«(CJ™(BT™)) ¢ C3™ (B SL(n, C©)™),
where
Bp: BG®°™ — BSL(n,C)*°™ and Bj: BI*°™ — BG®™

are the induced maps from p and j respectively. Furthermore, there exists a con-
stant ¢, € R such that (Bp o Bj)*(cf,) represents c,0g.
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7. Invariants in group homology and K-theory

In this section we state the construction of y(N) € K4(Q) ® Q from [27], which
with the results proven so far can now be extended to a Q-rank 1 locally symmet-
ric space N = I'\G/K. The following proposition has exactly the same proof
as [27, Proposition 1].

Proposition 7.1. Let T' C G(Q) be a Q-rank 1 lattice. Let N = T'\G/K be the
interior of the manifold with boundary M. Let

p: G(Q) — SL(n,Q)
be a representation. Suppose that p(T';) is unipotent for all i € {1, ...,s}. Then
(B, o B;)«EM7'[M,3M] € H™ (B SL(n, @)™, Q)

has a preimage .
y(N) € Hy™(BSL(n.Q). Q)

where
j: T — G(Q)

is the natural inclusion map.

Let A be a subring with unit of the ring of complex numbers. One can regard
an element in H,"" (B SL(4), Q) as an element in H,(]B SL(4)|", Q) due to the
canonical identifications

H™ (B SL(A), Q) = H.(|BSL(4)|,Q) = H.(|BSL(A)|*, Q).
By the Milnor-Moore theorem, the Hurewicz homomorphism
Ky (4) = m:(|B GL(A)|F) — H.(|BGL(A)|", Z)
gives, after tensoring with @, an injective homomorphism
Lt K+(4) ® Q = (/B GL(4)|") ® Q — Hy(|BGL(A)|". Q).

Its image consists of primitive elements, denoted by PH.(|B GL(A4)|*, Q).
By Quillen, inclusion | B GL(A)| C | B GL(A)|" induces an isomorphism

0.: PH.(|BGL(4)|,Q) — PH.(|BGL(A)|T,Q) =~ K.(4) ® Q.
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Once the projection
pr,: HY™ (B GL(A4), Q) — PH™ (B GL(4), Q) =~ PH,(|B GL(4)|, Q)

is fixed, we can define an element I7' o Quopry(a) € Ki(A) ® Q for each
o € Hy"P(BGL(A), Q). For h € Kapm—1(A) ® Q, define

(ham—-1,h) = (comp(bam—1), O35, © Iam—1(h)).

In particular, when A = Q, note that by [27, Corollary 2] the projection pr,, can
be chosen such that

(comp(bam—1), pram—1(a)) = (comp(bzm—1), a)

for all m € IN. We refer the reader to [27, Section 2.5] for more details about this.
By a proof analogous to [27, Theorem 4] we obtain the following theorem.

Theorem 7.2. Let G/K be a symmetric space of noncompact type with odd
dimension d and N = T'\G/K be a Q-rank 1 locally symmetric space. Let

0: G — GL(#n,C)

be a representation with pibg # 0. Suppose that p(I;) is unipotent for all
i €{l,...,s}. Then there is an element

Y(N) € Ka(Q ®Q
such that the application of the Borel class by yields
{ba,y(N)) = ¢, VOI(N)
for some constant c, # 0.

Due to (bg, y(N)) = ¢, Vol(N) # 0, it can be checked that y(N) is a non-
trivial element in K4(Q) ® Q if p*by # 0. Kuessner [27, Theorem 3] char-
acterizes a complete list of irreducible symmetric spaces G/K of noncompact
type and fundamental representation p: G — GL(n, C) with p*by;—1 # 0 for
d =2m — 1 = dim(G/K). In the noncompact case, he only gets invariants for
hyperbolic manifolds since there exist no such fundamental representations for the
other R-rank 1 semisimple Lie groups. However, in the list, there are a lot of fun-
damental representations for higher rank semisimple Lie groups. Theorem 7.2
enables us to get invariants for Q-rank 1 locally symmetric spaces, including
hyperbolic manifolds, by using the fundamental representations in the list.
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8. Relation to classical Bloch group

In [33], Neumann and Yang constructed an invariant of finite volume hyperbolic
3-manifolds which lie in the Bloch group B(C). In [28] their construction was
generalised to R-rank 1-spaces. Here we choose another approach (via the funda-
mental class) to give an invariant of a Q-rank 1 locally symmetric space, which
coincides with the classical Bloch invariant of cusped hyperbolic 3-manifolds.

Let X be a symmetric space of noncompact type and Cy (doo X ) the free abelian
group generated by (k + 1)-tuples of points of do, X modulo the relations

(1) (B, ..., 0k) = sign(t)(O(0). - - -, Or(x)) for any permutation r,
(2) (6o, ...,0k) = 0whenever 6; = 6; for some i # j,
(3) 3(Bo.....00) = X F_o(=Di(0o..... 0. ....00)
As in [28] the generalized pre-Bloch group of X is
Pu(X) = Hu(Cx(000X) ®26 Z,0 Q76 id)
and the generalized pre-Bloch group of C as
PL(C) = P«(SL(n, C)/ SU(n)).

Note that P; (Hf{) = P2(C) is the classical pre-Bloch group P(C). (Frequently
the pre-Bloch group is defined by using the complex of nondegenerate tuples
CM(3o0X), that is, tuples consisting of pairwise distinct elements. Since doo X
has infinite cardinality, barycentric subdivision as in [20, Proposition 5.4] shows
that the inclusion

CM00X) @26 Z —> Cy(900X) ®276 Z

yields an isomorphism of homology groups.)

Remark. One may wonder what happens if condition (1) is omitted. Let Cy(000X)
be the chain complex analogously defined without condition (1) and

71 Cx(300X) —> Cx(900X)

the projection, then (because of condition (ii)) each element of C,(dxX) has
(n 4+ 1)! preimages and we may define a right-inverse to the projection = by send-
ing each ¢ € C,(do0X) to the formal sum of its preimages divided by (n + 1)!.
One checks that this defines a chain map. Thus one obtains an injection

Hi(Ci(300X) ®26 Z) —> Hu(Ci(000X) @26 7).
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Therefore, each G-equivariant cocycle on C+ (300 X) also defines a G-equivariant
cocycle on Cy(do0X). (One may think of this new cocycle as taking the signed
average of the evaluations of the old cocycle on the (n 4+ 1)! simplices obtained
by permuting the vertices.) In particular, for R-rank one spaces, the algebraic
volume algvol yields a well-defined cocycle on Cx(dooX) ®z¢ Z. (This was not
made explicit in [28].)

If p: G — SL(n, C) is a nontrivial (hence reductive) representation, then it
induces a smooth map

X =G/K — SL(n,C)/SU(n)
and its extension to the ideal boundary
Poo: 000X —> 000 (SL(n, C)/ SU(n)).

Using this one can define a generalized Bloch invariant of a Q-rank 1 locally sym-
metric space N = I'\G/K as follows. Fix a point ¢y € 00X and define

€VT co.cqsncs - Cx(BTOMP) — Ci (000X ) ®z6 Z
on generators by
€VT,co,e1,mmes (V15007 s Vk) = (€0, V1€0,*+ Y1+ VkCo) ® 1
for y1,...,yr €T, and
VT co,c1smmmes (P1s -+ Pk—1.€i) = (Co, P1€os - .. P1 ... Pk—1€0,¢i) @ 1

for pi1,.... pr—1 € I}. Itis straightforward to check that evr, ¢;,....c, €xtends
linearly to a chain map and thus, it induces a homomorphism

(€VTscoersmcs)x: HE P (BT Z) —5 P, (X).
In addition, one can define a map
Poo: Cx(000X) ®726 Z —> Cx(doo(SL(n, €)/ SU(n))) ®zsL(n,¢) Z
defined by
Poo((Bo. ... k) ® 1) = (poo(bb). - - -, Poo(bk)) ® 1.
Hence, it yields a homomorphism

(Poo)x = Pu(X) —> PL(C).
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To obtain an element of 7% (C) for a Q-rank 1 locally symmetric space
N =T\G/K,
we need an integer homology class in H;imp(B reemp 7). Note that
EMZ'[M,dM] € H{™ (BT, Q)

is a rational homology class. However, it can be easily checked that we can obtain
an integer homology class EM(}1 [M,0M ]z € H;lmp(B reemp 7) from the rela-
tive fundamental class [M,0M]z € H¢(M,dM,Z) with integer coefficients as
follows. Given a relative fundamental cycle z with integer coefficients,

¢(z%) = 2% + (=1)¢*! Cone, (32°)

defined in the proof of Lemma 6.4 is also a cycle with integer coefficients.
For another relative fundamental cycle z with integer coefficients, there are chains
we Cygyr1(M,Z) and y € Cz(0M, Z) with all vertices in xo and such that

20— 2% = quw® + »°.
Then
¢(z%) — (2% = 2% — 2% + (—1)4*!(Coneg (3z°) — Coneg (32°))
= dw® 4 y° 4+ (=1)¢*! Cone, (3y°)
= 9w’ + y° + (=1)?*1(3 Coneg (»°) + (=1)?)°)
= d(w® + (=1)? T Cone, (»°)).

It is obvious that ®(w® 4 (—1)4*! Cone,z(y?)) is a chain in C;iff(BFcomp, 7).

Hence ¢(z°) determines a homology class in H;imp (BTc°™P_7) independent of
the choice of relative fundamental cycle z, denoted by EM;1 M, oM]z.

Definition 8.1. For a Q-rank 1 locally symmetric space N of dimension d, define
an element B,(N) in the generalized pre-Bloch group 7 (C) by

ﬂp(N) ‘= (Poo)d © (eVF,co,cl ..... cs)d © EMJI [M’ aM]Z

Suppose that every p(I';) is unipotent. Then the proof of Proposition 7.1 works
for (B, o B;)« EMy'[M,0M]7 € H,;™ (B SL(n, Q)™, Z). Thus, it has a preimage
y(N)z € H;imp(B SL(n,Q), Z). In the case that N is a R-rank 1 locally symmet-
ric space, Kuessner [28] showed that

(eVsL(,c))d (VY (N)z) = Bp(N)
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where the evaluation map
evSL(n,0): Ca (B SL(n.C). Z) —> Ca(3oo(SL(n. ©)/ SU(n)) ®zsLin.c) Z
is defined on generators by

ev(gi,...,gx) = (co, g1€0,...,81...8kC0) ® 1.

In the same way, this holds for Q-rank 1 locally symmetric spaces. Specially
it recovers the classical Bloch invariant of cusped hyperbolic 3-manifolds. For
this reason we will call B,(N) the generalized Bloch invariant for either a com-
pact locally symmetric manifold or a finite volume Q-rank 1 locally symmetric
space N.

One advantage of our approach is that one can define the Bloch invariant with-
out the notion of degree one ideal triangulation. Neumann and Yang used the
fact that cusped hyperbolic 3-manifolds admit a degree one ideal triangulation to
define the classical Bloch invariant of cusped hyperbolic 3-manifolds. Since it is
not known whether general locally symmetric spaces admit such a triangulation,
it seems to be difficult to extend the definition of the classical Bloch invariant
from hyperbolic 3-manifolds to general locally symmetric spaces in the same way
that Neumann and Yang constructed it. However, we here use only the relative
fundamental cycle [M, dM ]z to define B,(N) and moreover, this agrees with the
classical Bloch invariant for cusped hyperbolic 3-manifolds [28]. Hence our ap-
proach makes it possible to generalize the Bloch invariant for cusped hyperbolic
3-manifolds without the existence of a degree one ideal triangulation. Further-
more, even if one defines an invariant by using a degree one ideal triangulation of
N, the invariant should agree with B,(N). (This is shown for R-rank 1 spaces in
[28, Theorem 4.0.2].)

9. Bloch group for convex projective manifolds

Given a strictly convex real projective manifold N, up to taking a double cover,
there is a holonomy map

p: 11(N) =T — SL(n, R)

where I' acts on a strictly convex projective domain 2 equipped with a Hilbert
metric. If Q is conic, then the image of p is in SO(n — 1, 1) and the manifold is a
real hyperbolic manifold.
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Let’s assume that dim(N') = 3. For a given hyperbolic representation
po: I' — SL(2,C) C SL(4,R) C SL(4,C),
assume there is a deformation of py to convex projective structures. The inclusion
i: SL(2,C) =S0O(@3,1) Cc SL(4,R) Cc SL(4,C)

is not the standard one but by [27, Corollary 5] we have i *b3 # 0.

There is a canonical invariant called Bloch invariant developed by Dupont-Sah
and others. We want to generalize this notion to projective manifolds.

When I acts on the strictly convex domain Q C R?3, in general Aut($2) does not
have a Lie group structure and we do not have a volume form naturally induced
from the Lie group. On the other hands, €2 has a Finsler metric, called Hilbert
metric invariant under Aut(€2). Q2 with a Hilbert metric behaves like a hyperbolic
space, hence one can define a straight simplex. Fix a base point x € Q. The
volume class vy € H? (T, R) is defined by the cocycle

va (Yo, ---,Yd) :/ dvolg, €))
Str(YoX,...,Yaq X)

where dvolg, is a signed Finsler volume form on €2, and str is a geodesic straighten-

ing. One can check that it is a cocycle since str(ypx, . . ., ygx) is a top dimensional

simplex. We have the following lemma similar to Lemma 4.1.

Lemma 9.1. The volume of the ideal straight simplex str(xo, ..., Xq—1, ) is finite
for any xq,...,xq—1 € Q and c is a cuspidal point.
Proof. 'This follows from the Proposition 11.2 of [11]. O

This lemma allows us to carry out the similar constructions as in previous sec-
tions. Hence we can define a cocycle vy € Cs‘fmp(B [reemp) extending comp(vy).
Let ©4 denote the element represented by iy in HZ (BT'°™ R). By Lemma 6.3,

simp
Hy (BT R) = Hy(M,0M,R) =R
where M is a compact manifold with boundary whose interior is homeomorphic
to N. It is known that for a cusped hyperbolic 3-manifold, there exists a degree

one ideal triangulation. We can use the same ideal triangulation to obtain a trian-
gulation of M by Hilbert metric ideal tetrahedra to obtain

(04, EM7'[M, dM]) = Volgingter(N).
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For the Borel class b3 € H2(GL(C),R), it is known that p*b3 # 0 for any
nontrivial representation p: SL(2,C) — GL(C). Then for any finite volume hy-
perbolic manifold N = I'\ H33, the induced representation

po: I' — GL(C)
gives rise to a nontrivial Borel class
Pob3 = Cpyipg

by Lemma 6.5. Since a strictly convex projective structure p: I' — SL(4,R)
lies in the same component containing pg in the character variety y(I", SL(4, C)),
(Hp)«[M, dM]is nontrivial, indeed equal to (Hpo)+[M, dM] € Hs(B GL(C)%, Z).
Hence

(b3, (Bp)x o EM™'[M,0M]) = (b3, (Bpo)« c EM™'[M, dM])

= (psbs, EM ™' [M, 0M])

= Cpo VOlpyp(M)
= ¢p Volginsier(M).
Since
HE (BT™ R) = Hy(BI" R)* =R
we get

« _
P bz = cpv,.

If > a;7; is a proper ideal fundamental cycle (i.e. each simplex is a proper
ideal straight simplex) of M, the sum of the cross-ratios

BM) = " aifer(n)] € Pa(Q) := H3(C(3Q)r)

defines a generalized Neumann—Yang invariant. Note that if Q is not conic, the
cross-ratio is not a complex number as in Hp. It is a question how to interpret this
invariant in terms of a volume and the Chern—Simon invariant.

10. Bloch invariant in SU(2, 1) and SL(3, C)

10.1. Falbel-Wang invariant. CR structures on 3-manifolds correspond to dis-
crete representations of their fundamental group into SU(2,1). For example,
Falbel constructed a discrete representation

p: m1(S®\ K) — SU(2,1) ¢ SL(3,0)
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which is faithful and parabolic on the torus boundary where K is a figure 8 knot.

In [17], Falbel and Wang constructed a Bloch invariant for such representations.

Here we prove that their invariant can be computed from (Bp)« EM ™' [M, 0M].
Following [1, Section 3.8] we identify the complex hyperbolic space

HE = SU(@2,1)/S(U2) x U(1))
with 7(V_) C CP2, where
Vo ={(x,y,z) € C®: xZ + yj + zx < 0}

and
7:C*—{0}) — CP?

is the canonical projection. The ideal boundary 3OOH(§ ~ S3 is then identified
with 7 (Vy), where

Vo :={(x,y,2) € C3: xZ + yy + zx = 0}.

The following construction involves an identification of C P! with the set of
complex lines through a given point in C P2. There is some arbitrariness in choos-
ing such an identification, a specific choice is given in [17, Section 2.5] with a
derived explicit formula in [17, Definition 2.24].

Definition 10.1 (Falbel-Wang construction, [17, Section 2.5]). a) Using the canon-
ical identification 0o, H = CP' we define a homomorphism

FWor: C34(B0o HE) — C3 (900 Hi)
on generators (po, p1, p2, p3) of C1%(3d0 HZ) by

FWo1(po. p1. p2, p3) = (to, t1. 12, t3),

where we definety € CP! = 8OOH]§ to be the complex line through p, tangent to
dooHE C CP?andfori =1,2,3wedefines; € CP' = doo HJ to be the complex
line in C P2 passing through po and p;.
b) Fora # b € {0,1,2, 3} there are unique k,! € {0, 1,2, 3} such that the
ordered set (a, b, k, /) is an even permutation of (0, 1, 2, 3) and we define
FW,p: CHM(9ooHZ) — CM (000 HP)
on generators (po, p1, p2, p3) of C14(3d0 HZ) by

FWap(po. p1. p2. p3) = FWo1(pa. b, Pk P1)-
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We will use the abbreviation
FW := FWy + FWio + FWas + FWay: CM(00HE) — CI (o HY).
Recall that the cross ratio
X: PR(HR) — P(C)

is well defined and yields an isomorphism between fP‘3‘d (H1131) and P(C). Itis proved
in [17, Lemma 3.2] that X(FW(0u)) = 0 € P(C) for all u € C}d(BOOHé)G.
(Following [16, Theorem 5.2], which shows that

X(FW(IC (0o HE)G)) C Z[C — {0, 1}]

is in the subgroup generated by the 5-term relations.) Therefore FW induces a
well-defined map

FW: Hy(CM(ooHE) ) — H3(CM (3o H)G) = P(C).

Together with the isomorphism H3(C!(do H3)G) = H3(Cx(0soHE)c), given
by barycentric subdivision, we obtain a well-defined map

FW: H3(Cx(dso HE) ) — P(C).

One may think of the FW,; as maps which send (SU(2, 1)-orbits of) ideal
simplices in H& to (SO(3, 1)-orbits of) ideal simplices in Hy. For degenerate
simplices the F W, are given by performing barycentric subdivision (to produce
nondegenerate simplices) and applying the maps to the simplices of the subdivi-
sion.

If M is a hyperbolic 3-manifold and p: 7; M — SU(2, 1) is a reductive repre-
sentation (that means p(7; M) C SU(2, 1) is a reductive subgroup), then by [12]
and [30] we obtain a p-equivariant developing map

D:Hf =M — HZ
and by [8] a measurable boundary map
dooD: oo Hp —> oo HE.

In particular, if 7" is an ideal simplex in M (that is a 7y M -orbit of some ideal
simplex T with vertices Vg, U1, U3, U3 € 8mH§), then we can define D(T) to be
the 71 M -orbit of the (possibly degenerate) ideal simplex in H2, whose vertices
are doo D(v;) fori =0,1,2,3.
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Definition 10.2 (Falbel-Wang invariant). Let

-
M=JT
i=1
be an ideal triangulation of a hyperbolic 3-manifold and
p: M — SU(2,1)
be a reductive representation; then the invariant
pew (M) € B(C) C P(C)

is defined by

Bew(M) := Y " X(FW(cr(D(T))))).

i=1
(It is proved in [17, Theorem 1.1] that Spw (M) lies in B(C) and does not depend
on the ideal triangulation. The latter fact will also follow from our Lemma 10.3.)

Lemma 10.3. Let M be a finite-volume hyperbolic 3-manifold and
p: M — SUQ2,1)
a reductive representation. Then

Brw(M) = X(FW((ev)«((Bp)«(EM™'[M, 3M])))).

Proof. Let
X0 € M,
o € oM = oo HE

and
bo = aooD(Co) (S aooHé

Lemma 3.3.4 in [28] constructs a chain map
C: Cv¥o(M) — Cimo(M).
Let
G =SU(2,1),
K = SU(Q2) x U(1)),
I'=mM,
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and
Fi = HlaiM

for the path components d; M of dM, c; the cusps associated to I'; and
bi = aooD(C,').

We use the commutative diagram

evbo

C,(BGmp) C+(050G/K)g
Bp BOODT
eveg ~
Cy(BLMP) Ci(dooM)r
& ch
é:tr,xo (M) é é:tr,co (M)

str
C*(M U {rcl, . .,rCs})

~

Z«(M, M) — C*(Dcone(o M —> M))

i=1

whose derivation (except for the first square) is explained in the proof of [28,
Theorem 4.0.2]. In the first square we have

eVpo(g1.---.&n) = (bo.g1bo,....&1...8nbo) ® 1
for (g1,...,gn) € BG and
€Vpy (81, .-+ 8n—1.b) = (bo,g1bo,.... &1 ...8n-1b0. D) ® 1

for b € 0oG/K, (g1.-...8n—1.b) € Conep(BG), similarly for ev,.
The diagram shows that

(eVpy)«((Bp)«(EM™'[M, dM]))

is represented by
doo D (cr(C (str(z + Cone(dz)))))

whenever z € Z,(M,dM) is a relative fundamental cycle.
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If z € Z«(M,dM) is a relative fundamental cycle, then
str(z 4+ Cone(dz)) € CSH¥0 (M)

is an ideal fundamental cycle in the sense of [28, Definition 3.1.4]. By [28, Lemma
3.3.4] this implies that ¢ (str(z + Cone(0z))) is an ideal fundamental cycle.
On the other hand, let M = U;=1 T; be an ideal triangulation. Let

Pos P P D5 € doM = o HR
be the ideal vertices of 7;. Then
FW(@sD(pp)).  FW(@eD(p1). FW(@eD(p3)). FW(dooD(p3))
are the ideal vertices of F W(D(T;)). By definition we have

Bew(M) = Y X(FW(D(T))).

i=1
We have proved in the proof of [28, Lemma 3.4.1] that the homology classes of
cr(C (str(z + Cone(dz)))) and of Y i cr(T;) are the same in Hy(Cyx(dooM)r).
Thus there is some w € Ci (800M )r with

ow = cr(C (str(z + Cone(d2)))) — > cr(T).

i=1
doo D is a chain map by construction. By the remark before Definition 10.2 (fol-
lowing [16, Theorem 5.2]), we have that

X(FW(du)) = 0 € B(C), forallu € C4(dooHE)G-

Hence we obtain

X(FW(3oo D (cr(C (str(z + Cone(dz2))))))) — Z X(FW(00oD(cr(T3))))
i=1
= X(FW (390 D(w)))
= 0.
Hence the cycle

> X(FW(doo D(cr(T3))))
i=1

represents the homology class
X(FW(H (evp,)(H(p)(EM ™' [M, IM])))).
Because of do, D(cr(T;)) = cr(D(T;)) this implies the claim. O
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For Corollary 10.4 and Corollary 10.8 we will consider the situation that a
3-manifold M* is obtained from another 3-manifold M by cutting along some
m1-injective surface ¥ C M and regluing via r: ¥ — X. If in this situation for a
representation p: w1y M — G we have some A € G with p(t«h) = Ap(h)A~! for
all h € 1%, then we get an induced representation p*: w1 M* — G by a standard
application of the Seifert—van Kampen Theorem as in [29, Section 2]. This repre-
sentation p® will be used in the statements of Corollary 10.4 and Corollary 10.8.
We say that the representation is parabolics-preserving if it sends 7190M to para-
bolic elements. (It is easy to see from the explicit description in the proof of [29,
Proposition 3.1] that p® is reductive and parabolics-preserving if p is.)

Corollary 10.4. Let M be a compact, orientable 3-manifold, ¥ C M a properly
embedded, incompressible, boundary-incompressible, 2-sided surface,

X — X

an orientation-preserving diffeomorphism of finite order and M* the manifold
obtained by cutting M along ¥ and regluing via t.

If M and M* are hyperbolic and if the reductive, parabolics-preserving rep-
resentation

p: M — SUQ2,1)
satisfies
o(150) = Ap(0)A™Y  for some A € SUQ2, 1) and all o € m, X,

then
Brw(M) ® 1 = Bpw(M™) ® 1 € B(C) ® Q

with respect to the representations p and p*.

Proof. The proof is essentially the same as the one of Corollary 10.8 below, which
in turn is essentially the same as that for [29, Theorem 1]. Therefore we omit the
proof at this point and just mention that literally the same argument (just replacing
SL(3, C) by SU(2, 1)) as given below in the proof of Corollary 10.8 shows that

(Bp)«(EM™'[M, 3M]q) = (Bp®)«(EM™'[M™, M "]q)

and in view of Lemma 10.3 this implies frpw(M) ® 1 = frpw(MT) ® 1. U
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10.2. Tetrahedra of flags
Definition 10.5 ([1, Section 2]). Let

FIC) = {(Ix]. [f]D € P(C?) x P(C*): f(x) = 0}

where P (V') denotes the projectivization of V', be the configuration space of flags
and let

C,(FI(C)) C C«(F1(0))
be the subcomplex generated by generic configurations
((xol. LfoD). - - - (Txal. [fa]))

(see [1]), that is, those with the x; in general position and with fj(x;) # 0 for
i # j.For

T = ((Ixol. LfoD). ([x1]. [f1D. ([x2]. [ f2D). ([x3]. [ f3])) € C3(FI(C))

and a # b € {0, 1,2,3} we define z,; € C as follows: choose k,[ € {0, 1,2, 3}
such that (a, b, k, 1) is a positive permutation of (0, 1, 2, 3) and let

 Jalxp) det(ra, x5 x7)

“ab = (1) det(Xa. Xp. 3%)
Then define
B: C3(F1) — P(C)
by
B(T) = [zo1] + [z10] + [223] + [232].
Let

H3(F1) := H3(C(F1(C))g) = H3(C[(F1(C)q))

for the canonical action of
G :=SL(3,0)

on F/(C). (The isomorphism is again by barycentric subdivision.) Then [1, Propo-
sition 3.3] implies that 8 yields a well-defined map

Ba: H3(F1) —s P(C).
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Moreover, if M = T'\ H is a hyperbolic 3-manifold and
h: CP' — FI(C)
a map equivariant with respect to some homomorphism
I' — SL(3,0),
then one obtains a well-defined chain map
hat Co(CPYr —> Co(FUC)sLe.0).
The following definition is due to Bergeron, Falbel, and Guilloux ([1]).

Definition 10.6. If M = | J;_, 7; is an ideal triangulation of a hyperbolic 3-man-
ifold, p: myM — SL(3, C) a representation and

h: CP' — FI(C)
a p-equivariant map, then define
r . . . .
Br(M) :=") " Bu(h«(P§. P{, P}, P})) € P(O),
i=1

where P}, P}, Pi, Pi are the vertices of 7;.

We remark (compare [7, Proposition 10.79]) that F1(C) corresponds to the set
SL(3, C)/ P of Weyl chambers in do,(SL(3, C)/ SU(3)) where P is a minimal par-
abolic subgroup. If p: 1M — SL(3, C) is a reductive representation, then there
exists a p-equivariant harmonic map

H3 = M — SL(3,C)/ SU(3)

(see [12],[30]). Butit is not easy to prove the existence of a p-equivariant boundary
map
CP! — 95(SL(3,C)/ SU(3)).

It should be easier to show the existence of the boundary map
h: CP' — SL(3,C)/P = FI(C)

instead. We will not deal with that issue in this paper, we always assume the
existence of such a map.
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Relation to hyperbolic Bloch invariant, [1, Section 3.7]. If M is an orientable
hyperbolic manifold, then by Culler’s Theorem its monodromy representation
I' — PSL(2, Q) lifts to SL(2,C). Composition with the (unique) irreducible
representation SL(2,C) — SL(3, C) yields representations p: I' — SL(3, C).
In this case there is a canonically (independent of I') defined p-equivariant map
CP' — FI(C) as follows.

Recall that the irreducible 3-dimensional representation of SL(2, C) can be
defined as follows. Consider the C-vector space of complex homogeneous poly-
nomials of degree 2 in two variables. This is a 3-dimensional vector space V
generated by x2, xy and y2. SL(2, C) acts by

(AP)(x,y) := P(A7}(x, ).

We may consider its projectivization P (V') and the projectivization of the dual
space P(V*), whose elements we will write as homogeneous column vectors.
Then a p-equivariant map

h: CP! — FI(C) C P(V) x P(V*)

is given by

T
h(fx, y]) = ([xz,xy,yz], [%yz, —XY, %xz] )

([1] gives an apparently different construction which however — after computa-

tion — this yields the same map 4.) It turns out that the so-defined 85, (M) coin-

cides with 4 times the usual Bloch invariant (M) of the hyperbolic 3-manifold M .

Indeed, if T = (Py, Py, P», P3) € C3(CP!) is an ideal simplex of cross ratio ¢,

then explicit computation shows that the simplex

M(T) = (h(Po), h(P1), h(P2), h(P3)) € C3(J1)

satisfies

z01(A(T)) = z10(W(T)) = z23((T)) = z32(A(T)) = 1.

Relation to CR Bloch invariant, [1, Section 3.8]. If D is the developing map
of a reductive representation 7; M — SU(2, 1) and /4 is the composition of 0, D
with the map S3 — FI(C) given in [1, Section 3.8], then B, (M) coincides with
Brw (M).
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Lemma 10.7. Let M be a finite-volume hyperbolic 3-manifold, and let
h: CP! — FI(C)

equivariant with respect to some homomorphism
mM — SL(3, C).

Then
,Bh(M) = ,B*h* €V« El\/[_1 [M, 8M]

Proof. Letcy € BOOH]?{. The commutative diagram in the proof of Lemma 10.3
shows that (evco)*EM_l[M, dM] is represented by cr(C (str(z + Cone(dz))))
whenever z € Z,(M,dM) is a relative fundamental cycle.

In the proof of Lemma 10.3 we have seen that the homology classes of
cr(C (str(z + Cone(dz)))) and of Yy cr(T;) are the same in H,(Cx(3scM)T),
whenever M = (J/_, T; is an ideal triangulation. Thus we deduce that there is
some w € c*(aooM')p with

.
dw = cr(C (str(z + Cone(d2)))) — > _ er(T).
i=1
h« is a chain map by construction. Moreover, by [1, Proposition 3.3] (following
from [16, Theorem 5.2]) we have that 8 maps boundaries to zero, thus

lB(ah*(w)) =0,

which implies
B(hx(cr(C (str(z + Cone(d2))))) — Y Blhs(cr(Ti)) = B(dhx(w)) = 0.
i=1

Thus the cycle Y I_, B(h«(cr(T;))) represents the homology class
Bihs(evey)« EMT' M, M),

which implies the claim.
O

For the following corollary we will use the notations introduced before
in Corollary 10.4. The following corollary applies for example when MF is a
(generalized) mutation of M and p: 1M — SL(3,C) is the composition of
the inclusion 7; M C SL(2, C) with some representation SL(2, C) — SL(3, C).
In this case p? is obtained from the composition of the inclusion 71 M* C SL(2, C)
(see [29, Section 2]) with the same representation SL(2, C) — SL(3, C) and we
have h = h*.
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Corollary 10.8. Let M be a compact, orientable 3-manifold, ¥ C M a properly
embedded, incompressible, boundary-incompressible, 2-sided surface,

T X — X

an orientation-preserving diffeomorphism of finite order and M* the manifold
obtained by cutting M along ¥ and regluing via t.
If M and M* are hyperbolic and if the parabolics-preserving representation

o: 1M — SL(3,0)

satisfies

p(tx0) = Ap(0)A~!
fJor some A € SL(3,C) and all 0 € m %, then
Br(M) ® 1= Ppe (M) ® 1 € B(C) ® Q

when h and h* are p- resp. p*-equivariant maps from doo Hp 10 1.

Proof. The proof is essentially the same as for [29, Theorem 1]. Since X is a
2-sided, properly embedded surface, it has a neighborhood N ~ ¥ x [0, 1] in M,
and a neighborhood N* ~ ¥ x [0, 1] in M*. The complements M — int(N) and
MT —int(N7) are diffeomorphic and we let X be the union of M and M7 along
this identification of M —int(N) and M * —int(N*). The union of N and N° yields
a copy of the mapping torus 77 in X. We have

i« [M,OM] —ippe[MT,0MT) = ir<[T7,0T7] € H3(X, 0X,Z). 2)
The made assumption implies that p and p* extend to a representation
px : 11X — SL(3, 0).
As in tPe proof of [29, Theorem 1] we have a finite cyclic coveriEg )A? — )£
such that X contains a copy of £ x S finitely covering 7% € X. Let M, M* C X

be the preimages of M and M*. Application of the transfer map yields

i IMOM) — i, [MT0M™] = ig,g1,[Z xS', 9% x S']. (3)
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Again as in the proof of [29, Theorem 1] we obtain a representation
pg: 11X — SL(3,C)

and — because the lift X is chosen such that Pz (ma)? ) consists of parabolics — a
continuous map

Bpg: (Bmi X)®™ —s B SL(3,C)™.
The classifying map W ¢ : X — |Bm X| extends to
S
W : Dcone ( U i X — X) — [(Bm1 X)O™P]
i=1

and the same argument as in [29] shows that (|Bpg|V¢isys1)« factors over
H3 (X, %) = 0 and is therefore 0. Thus Equation 3 implies

(1Bpg|Wgiy)«[M.0M] = ((1Bpg|V¥gig)«[M*. 0M7]

€ H3(|B SL(3,C)*™)).
Again following the same argument from [29] we conclude

(Bp)«(EM™'[M,0M]q) = (Bp*)+«(EM™'[M",3M"]g).

The p-equivariance of 4 implies that
h o evsy(2,c) = €VSL(3,C) ©P-

hence

and thus

Br(M) ® 1 = Bih.evi. EM™'[M, 0M]q
= Bxevi(Bp)«(EM ' [M, 0M]q)
= Bxeva(Bp")«(EM ™ [MT,0M"]q)
= Buhxev  EM ' [MT,0M"]q
=Br(M") ® 1

in view of Lemma 10.7. O
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The so-called Bloch regulator map

p: B(C) — C/Q

is known to send the Bloch invariant (M) of hyperbolic 3-manifolds to

L (Vol(M) + i CS(M)) mod Q.
272

as was proved in [33, Theorem 1.3]. In other words, the imaginary part of p(8(M))
determines the volume (and the real part determines the Chern—Simons invariant
mod Q). Thus it is natural to define the volume of flag structures as (a multiple of)
the imaginary part of p(8,(M)). Bergeron, Falbel, and Guilloux in fact define in
[1, Section 3.6] the volume of a flag structure to be # Im(p(B8,(M)). The analo-
gously defined volume of CR structures is always zero by [17, Theorem 3.12] but
the volume of flag structures is a nontrivial and potentially interesting invariant.
Corollary 10.4 of course implies its invariance under the cut-and-paste operation
described in the statement of the corollary.
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