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1. Introduction

In the 1960’s, Richard J. �ompson introduced three in�nite groups F , T , and V .
Each of these groups consists of piecewise-linear homeomorphisms, withF acting
on the unit interval, T acting on the unit circle, and V acting on the Cantor set.



976 J. Belk and B. Forrest

Because of their simple de�nitions and unique array of properties, these groups
have attracted signi�cant attention from geometric group theorists.

One of the puzzling aspects of �ompson’s groups is the fact that there are
precisely three of them. Most groups of interest in geometric group theory arise
in large in�nite families, so it is natural to ask whether the �ompson groups �t
into any larger framework. For this reason, many generalizations of the �ompson
groups have been proposed, including Higman’s groups Gn;r , see [12], Brown’s
groups Fn;r and Tn;r , see [5], the piecewise-linear groups of Bieri and Strebel [2]
and Stein [14], the braided version of V studied independently by Brin [4] and
Dehornoy [7], the two-dimensional version of V described by Brin [3], and the
diagram groups of Guba and Sapir [11].

�e de�nitions of the three �ompson groups depend heavily on the self-
similar structure of the spaces on which these groups act. For example, each half
of the unit interval is similar to the whole interval, as is each quarter or eighth. For
this reason, it is natural to ask whether there are �ompson-like groups associated
with other self-similar structures, such as fractals.

In this paper we de�ne a �ompson-like group TB that acts by homeomor-
phisms on the Basilica Julia set (the Julia set for the quadratic polynomial z2� 1).
Each element of this group can be described as a piecewise-linear homeomor-
phism of the unit circle that preserves the invariant lamination for the Basilica, as
de�ned in [15]. �is group is �nitely generated, and it possesses an analogue of
tree-pair diagrams which we refer to as “arc pair diagrams.”

For simplicity, we have restricted our investigation to the Basilica. We expect
that most of our results generalize easily to other Julia sets with similar structure
to the Basilica, such as the Douady rabbit. Unfortunately, it is not clear how to
best generalize the de�nition of TB to quadratic Julia sets whose laminations have
a more complicated structure. We would ultimately like to associate a �ompson
group to every quadratic Julia set, in such a way that T is associated with the
circle (the Julia set for z2), F is associated with the line segment (the Julia set
for z2 � 2), and V is associated with disconnected quadratic Julia sets (which are
always homeomorphic to the Cantor set).

Finally, we should point out that our group TB is di�erent from the “Basilica
group” introduced by R. Grigorchuk and A. Żuk [10]. �e latter is the same as
the iterated monodromy group [13] of the Basilica polynomial, and does not act
on the Julia set itself. It is not clear what, if any, relationship exists between the
Basilica group and our group TB .
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�is paper is organized as follows. In Section 2 we brie�y review the de�ni-
tion and properties of �ompson’s group T . In Section 3 we give the necessary
background on the Basilica Julia set and its corresponding invariant lamination.
In Section 4 we de�ne the elements of the group TB using arc pair diagrams.
In Section 5 we prove that TB forms a group, and we characterize the elements of
TB among all piecewise-linear homeomorphisms. Section 6 describes an isomor-
phism between a subgroup of TB and �ompson’s group T . In Section 7 we show
that TB is �nitely generated, and in Section 8 we prove that TB is virtually simple.

2. �ompson’s Group T

In this section we brie�y review the necessary background on �ompson’s groupT .
See [6] for a more thorough introduction.

Let S1 denote the unit circle, which we identify with R=Z. Suppose we cut
this circle in half along the points 0 and 1=2, as shown in the following �gure:

We then cut each of the resulting intervals in half:

and then cut some of the new intervals in half:

Continuing in this way, we obtain a subdivision of the circle into �nitely many
intervals. Any subdivision obtained in this fashion (by repeatedly cutting in half)
is called a dyadic subdivision.

�e intervals of a dyadic subdivision are all of the form

h k

2m
;
k C 1

2m

i

for some k 2 Z and m 2 N. Intervals of this form are called standard dyadic

intervals, and any endpoint of a standard dyadic interval is called a dyadic point

on the circle. It is easy to see that any subdivision of the circle into standard dyadic
intervals is in fact a dyadic subdivision.



978 J. Belk and B. Forrest

A dyadic rearrangement of the circle is any orientation-preserving piecewise-
linear homeomorphism f W S1 ! S1 that maps linearly between the intervals of
two dyadic subdivisions. Such a homeomorphism can be speci�ed by a pair of
dyadic subdivisions, together with a bijection between the intervals that preserves
the counterclockwise order. �ree such rearrangements are shown in Figure 1.

Figure 1. �ree dyadic rearrangements of the circle. We have used a dot in each case to
indicate a corresponding pair of intervals in the domain and range.

�e following proposition characterizes dyadic rearrangements.

Proposition 2.1. Let f W S1 ! S1 be a piecewise-linear homeomorphism. �en

f is a dyadic rearrangement if and only if it satis�es the following conditions:

(1) �e derivative of each linear segment of f has the form 2m for some m 2 Z.

(2) Each breakpoint of f maps a dyadic point in the domain to a dyadic point in

the range.

It is easy to see from this proposition that the dyadic rearrangements of the cir-
cle form a group under composition. �is group is known as �ompson’s Group T .
�e following theorem summarizes some of the basic properties of this group,
most of which are proven in [6].

�eorem 2.2. (1) T is �nitely generated. In particular, T is generated by the

three dyadic rearrangements shown in Figure 1.

(2) T is �nitely presented, and indeed has type F1 [5].

(3) T is simple.

(4) T acts transitively on the dyadic points of the circle.

(5) �e stabilizer under T of any dyadic point is isomorphic to �ompson’s

group F .

3. �e Basilica

In this section, we brie�y review the de�nition of the Basilica Julia set and its
relation to the Basilica lamination. See [15] for further information.
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Let p W C ! C be the polynomial function p.z/ D z2 � 1. If z 2 C, the orbit

of z under p is the sequence

z; p.z/; p.p.z//; p.p.p.z///; : : : .

�e �lled Julia set for p is the subset of the complex plane consisting of all
points whose orbits remain bounded under p. �is set is shown in Figure 2A.
�e Julia set for p is the topological boundary of the �lled Julia set, as shown
in Figure 2B. �is Julia set is known as the Basilica, and will be denoted by the
letter B .

(a) �e �lled Julia set. (b) �e Basilica.

Figure 2. �e �lled Julia set and Julia set for z2 � 1.

�e complement of the Basilica consists of an exterior region, together with
in�nitely many interior regions, which we refer to as components of the Basilica.
Each of these components is a topological disk, and two of these components
are said to be adjacent if they have a boundary point in common. Among the
components, the most important is the large central component, which contains
the origin of the complex plane.

Figure 3. �e Böttcher map ˆ from the exterior of the Basilica to the complement of the
closed unit disk.
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�e exterior region E for the Basilica is an open annulus. By the Riemann
Mapping �eorem, this region is conformally equivalent to the complementCnD2

of the closed unit disk. Indeed, there exists a unique conformal homeomorphism
ˆ W E ! CnD2 making the following diagram commute:

E
p

//

ˆ

��

E

ˆ

��

CnD2

z2

// CnD2

�e homeomorphism ˆ is known as the Böttcher map for the Basilica. A sketch
of this map is shown in Figure 3.

�e preimages of radial lines under the Böttcher map are known as external

rays. Several of these are shown in Figure 4, with each ray labeled by the corre-
sponding angle. (By convention, we label angles with real numbers from 0 to 1.)

3=8 1=3 7=24 1=4 5=24 1=6 1=8

1=12

1=24

0

23=24

11=12

7=85=619=243=417=242=35=8

7=12

13=24

1=2

11=24

5=12

Figure 4. External rays for the Basilica. Each ray is labeled by the angle of the correspond-
ing radial segment.

Each external ray lands at a point on the Basilica, which de�nes a continu-
ous surjection  from the unit circle S1 to the Basilica B . �is map �ts into a
commutative diagram:

S1
z2

//

 

��

S1

 

��

B
p

// B
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�e map  is not one-to-one. For example, the external rays for 1=3 and 2=3 end
at the same point of the Basilica (see Figure 4), and therefore  .1=3/ D  .2=3/.

Since the circle is compact, the map  is a quotient map, and therefore the
Basilica is a quotient of the circle. �e corresponding equivalence relation can be
described using an invariant lamination (see Figure 5), which we refer to as the
Basilica lamination. �is lamination consists of the closed unit diskD2, together
with a hyperbolic arc (or leaf ) connecting each pair of points on the boundary
circle that are identi�ed in the Basilica. For example, there is an arc from 1=3

to 2=3 in the Basilica lamination because the external rays for these angles land
at the same point. More generally, there is an arc in the lamination between the
points

3k � 1

3 � 2n
and

3k C 1

3 � 2n

for all k 2 Z and n � 0. Any homeomorphism of the circle that preserves the
equivalence relation de�ned by these arcs descends to a homeomorphism of the
Basilica Julia set.

7=24 5=24
1=3 1=6

17=24 19=24
2=3 5=6

13=24

11=24

7=12

5=12

23=24

1=24

11=12

1=12

Figure 5. �e Basilica lamination.

�e complementary components of the Basilica lamination are known as gaps.
Each of these corresponds to a component of the Basilica. Indeed, the �lled Julia
set can be described as the quotient of the closed unit disk obtained by contracting
each arc of the lamination to a single point. Note then that two gaps correspond
to adjacent components if and only if the closures of the gaps intersect along an
arc of the lamination.
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4. Dyadic Rearrangements of the Basilica

Consider the arcs ¹1=3; 2=3º and ¹1=6; 5=6º in the unit disk:

�ese arcs divide the unit circle into four subintervals, namely Œ1=6; 1=3�,
Œ1=3; 2=3�, Œ2=3; 5=6�, and Œ�1=6; 1=6�. Each of these intervals supports its own
primary arc, which subdivides the interval with ratios 1 W 2 W 1. We add these arcs
to our diagram:

Together, these six arcs divide the circle into twelve subintervals. Again, each
of these intervals supports a primary arc, and we add some of these arcs to our
diagram:

Continuing in this way, we obtain a �nite collection of arcs, which we refer to as
an arc diagram. By de�nition, every arc diagram must include at least the two
arcs ¹1=3; 2=3º and ¹1=6; 5=6º.

Any arc diagram divides the unit circle into �nitely many intervals, each of
which has the form

h3k C 1

3 � 2n
;
3k C 2

3 � 2n

i

or
h 3k � 1

3 � 2nC1
;
3k C 1

3 � 2nC1

i

for some k; n 2 ¹0; 1; 2; : : :º. We refer to intervals of this form as standard inter-

vals. It is easy to see that any subdivision of the unit circle into standard intervals
can be obtained from some arc diagram.
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We can think of an arc diagram as a 2-complex, with the arcs and intervals
as edges and the regions as faces. We say that two arc diagrams are isomorphic

if there exists an orientation-preserving isomorphism between the corresponding
complexes.

Given an isomorphism ' W D ! R between two arc diagrams, we can de�ne
a piecewise-linear homeomorphism f W S1 ! S1 by sending each interval of
D linearly to the corresponding interval of R. Note that such a homeomorphism
necessarily preserves the equivalence relation on the circle de�ned by the Basilica
lamination, and therefore acts as a self-homeomorphism of the Julia set. We will
refer to such a homeomorphism as a dyadic rearrangement of the Basilica. In
Section 5 we will prove that the set of dyadic rearrangements of the Basilica forms
a group.

Figure 6. An arc pair diagram.

Figure 6 shows an isomorphism between two arc diagrams, which in turn de-
�nes a dyadic rearrangement of the Basilica. We will refer to a picture of this kind
as an arc pair diagram. Note that we have marked a corresponding pair of points
in the domain and range to specify the isomorphism.

It may seem odd to refer to these homeomorphisms as “dyadic rearrange-
ments,” since their endpoints are not dyadic fractions. However, their endpoints
have denominators of the form 3 � 2n, and it is easy to verify that the slopes of
a dyadic rearrangement are always powers of two. Indeed, the dyadic rearrange-
ments of the Basilica are all contained in a certain conjugate copy of �ompson’s
group T acting on the unit circle (see Remark 5.5 below).

In Section 7, we will prove that the group of dyadic rearrangements of the
Basilica is generated by four elements ˛, ˇ,  , and ı. �e following example
introduces these elements.
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Figure 7. Arc pair diagrams for ˛, ˇ,  , and ı.

Example 4.1. Let ˛, ˇ,  , and ı be the dyadic rearrangements de�ned by the
arc pair diagrams in Figure 7. �e following table lists the breakpoints for these
homeomorphisms:

Name Domain Breakpoints Range Breakpoints

˛ 1/3, 2/3 1/6, 5/6

ˇ 1/6, 2/3, 17/24, 5/6 1/6, 7/24, 1/3, 5/6

 1/6, 7/24, 29/96, 1/3 1/6, 19/96, 5/24, 1/3

�e homeomorphism ı corresponds to the linear function � 7! � C 1=2, which
has no breakpoints. �e graphs of ˛, ˇ, and  are shown in Figure 8.

Figure 8. Graphs of ˛, ˇ, and  .
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Figure 9. �e actions of ˛, ˇ,  , and ı on the Basilica.

Figure 9 shows the actions of ˛, ˇ,  and ı on the Basilica. Geometrically,
˛ �xes the right and left endpoints of the Basilica, and slides each component
along the real axis one step to the right. Both ˇ and  permute the components
adjacent to central component, stretching and compressing portions of the bound-
ary of the central component as needed. For example, ˇ shrinks the top portion of
the Basilica that connects C to A in Figure 9, and expands the lower-right portion
that stretches from B to C, sliding the portion connecting A and B from the lower
left to the top left. �e element  acts in a similar way, but is supported entirely
on the top portion of the Basilica. Finally, ı acts as a 180ı rotation of the Basilica
around the origin.

Note that ˇ,  , and ı act on the boundary of the central component in the same
way that generators for �ompson’s group T act on the unit circle (see Figure 1).
Indeed, we will show in Section 6 that ˇ,  , and ı generate an isomorphic copy
of �ompson’s group T .
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5. �e Group TB

Let TB be the set of all dyadic rearrangements of the Basilica. In this section, we
characterize the elements of TB among all piecewise-linear homeomorphisms of
the circle. Using this characterization, we will prove that TB forms a group under
composition.

As we have seen, every element of TB can be de�ned using an arc pair diagram.
However, the arc pair diagram for a given dyadic rearrangement is not necessarily
unique.

De�nition 5.1. An expansion of an arc pair diagram is obtained by attaching
primary arcs to a corresponding pair of intervals in the domain and range (see
Figure 10). �e inverse of an expansion is called a reduction. An arc pair diagram
is reduced if it is not subject to any reductions.

Expansions and reductions do not change the underlying piecewise-linear
homeomorphism – they simply correspond to adding or removing unnecessary
subdivisions of the domain and range intervals.

Proposition 5.2. Every element of TB has a unique reduced arc pair diagram.

Proof. Let f 2 TB . Given a standard interval I , we say that I is regular if f is
linear on I , and the image f .I / is also a standard interval. �e domain intervals
of any arc pair diagram for f must be regular, and any subdivision of the domain
into regular intervals determines an arc pair diagram. In particular, an arc pair
diagram for f is reduced if and only if each of the regular intervals in its domain
is maximal under inclusion.

Now, for any pair of standard intervals, either one is contained in the other or
the two intervals have disjoint interiors. It follows that any two maximal regular
intervals have disjoint interiors, so there can be only one subdivision of the circle
into maximal regular intervals.

Figure 10. An expansion of an arc pair diagram. �e arcs to be added are drawn as dashed
lines.
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Given the reduced arc pair diagrams for two dyadic rearrangements f; g 2 TB ,
there is a simple algorithm to compute an arc pair diagram for the composition
g ı f , as illustrated in the following example.

Example 5.3. Suppose we wish to compute an arc pair diagram for the compo-
sition ˇ ı ˛, starting with the arc pair diagrams for ˛ and ˇ shown in Figure 7.
�e �rst step is to expand the arc pair diagram for ˛ until the range diagram for ˛
contains the domain diagram for ˇ:

Next, we expand the arc pair diagram for ˇ so that the domain diagram for ˇ is
the same as the range diagram for ˛:

Finally, we construct an arc pair diagram for ˇ ı ˛ using the domain diagram for
˛ and the range diagram for ˇ:

�e isomorphism between these two arc diagrams is obtained by composing the
isomorphisms from the expanded arc pair diagrams for ˛ and ˇ.

It is possible to use the above algorithm to prove that TB is a group. However,
we will take a di�erent approach.

�eorem 5.4. Let f be a piecewise-linear homeomorphism of the circle. �en

f induces a dyadic rearrangement of the Basilica if and only if it satis�es the

following requirements:

(1) �e equivalence relation on the circle de�ned by the Basilica lamination is

invariant under f .

(2) Every breakpoint of f is the endpoint of an arc in the lamination.

In particular, TB forms a group under composition.
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Proof. �e forward direction follows from the de�nition of a dyadic rearrange-
ment of the Basilica. For the converse, recall that the endpoints of the arcs of the
Basilica lamination all have the form

k C 1

3 � 2m
or

k C 2

3 � 2m
; (1)

where k 2 Z and m 2 ¹0; 1; 2; : : :º. Each linear segment of f must preserve this
set of points, and must therefore have the form

� 7�! 2j
�

� C
n

2m

�

(2)

for some j;m; n 2 Z.
Now, let M be the maximum value of m that appears in formulas (1) and (2)

for the breakpoints and linear segments of f . Let D be any dyadic subdivision
of the unit circle into standard intervals of length less than 1=2M . �en f must
be linear on each interval of D, and each of these intervals maps to a standard
interval under f . �e images of the intervals of D form a dyadic subdivision R of
the range, and f maps linearly between the intervals of D and R. Moreover, since
f preserves the arcs of the Basilica lamination, f must induce an isomorphism
between the arc diagrams for D and R, and therefore f is a dyadic rearrangement.

Remark 5.5. As discussed in the proof of this theorem, each linear segment of
an element of TB has the form

� 7�! 2n� C d

where n 2 Z and d is a dyadic rational. However, the breakpoints of such an
element are not dyadic rationals, so elements of TB do not act in the circle in the
same way as elements of �ompson’s group T .

On the other hand, the group TB is isomorphic to a subgroup of T . In particular,
consider the group T .3/ of all piecewise-linear homeomorphisms of the circle
satisfying the following conditions:

(1) the derivative of each linear segment has the form 2m for some m 2 Z;

(2) the coordinates of each breakpoint have the form
k

3 � 2n
for some k; n 2 Z.

�en T .3/ is isomorphic to �ompson’s group T , since it is conjugate to T
in the group of all piecewise-linear homeomorphisms of the circle. Each element
of TB acts on the circle as an element of T .3/, and therefore TB is isomorphic to
a subgroup of �ompson’s group T .
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More explicitly, TB is isomorphic to the subgroup of T consisting of all ele-
ments that preserve the equivalence relation on the dyadics corresponding to the
lamination shown in Figure 11.

5=16 3=16

3=8 1=8

7=16 1=16

11=16 13=16

9=16 15=16

5=8 7=8

Figure 11. A lamination whose arcs have dyadic endpoints. �e corresponding subgroup
of T is isomorphic to TB .

6. �e Central Component

1=4

3=4

3=8 1=8

5=8 7=8

1=2 0

(a)

1=2 0

1=4

3=4

3=8 1=8

5=8 7=8

(b)

Figure 12. (A) Dyadic labels for the central arcs of the Basilica lamination. (B) �e corre-
sponding dyadic points on @C .

Consider the central component C of the Basilica Julia set. �is component is
a quotient of the central gap in the Basilica lamination, i.e. the gap containing
the center point of the disk. In particular, C is obtained from the central gap by
collapsing each of the in�nitely many central arcs that surround this gap. We can
label these central arcs using the dyadic rationals, as shown in Figure 12A.
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Each central arc corresponds to a single point in the boundary @C ofC the cen-
tral component. �ese points are dense in @C , as shown in Figure 12B. �erefore,
the labeling of the central arcs by dyadics induces a well-de�ned homeomorphism
from @C to the unit circle. In particular, we obtain a canonical action of �omp-
son’s group T on @C

Remark 6.1. It is possible to use the Riemann Mapping �eorem to de�ne the
homeomorphism @C ! S1 directly, without reference to the invariant lamination.
In particular, consider the Riemann map from C to the unit disk that sends 0 to 0
with derivative 1, as shown in Figure 13. �is map extends to the boundary, and
the resulting homeomorphism from @C to the circle is the same as the one de�ned
above.

As we shall see, the action of �ompson’s group T on @C is closely related
to the action of TB on the Basilica. In particular, consider the following two sub-
groups of TB :

De�nition 6.2. (1) �e stabilizer of C , denoted stab.C /, is the group of all ele-
ments of TB that map the central component C to itself.

(2) �e rigid stabilizer of C , denoted rist.C /, is the group of all elements of
TB that have an arc pair diagram consisting solely of central arcs.

Figure 13. A Riemann map on the central component.

Every element of the stabilizer mapsC to itself, and therefore the group stab.C /
acts on @C by homeomorphisms. �e rigid stabilizer rist.C / is a subgroup of
stab.C /. �ough we have de�ned it using arc pair diagrams, rist.C / can also be
characterized as the group all elements of stab.C / that extend conformally to the
interiors of the non-central components of B . It is “rigid” in the sense that an
element of rist.C / is determined entirely by its action on @C .
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�e following theorem describes the action of these groups on the boundary
of the central component.

�eorem 6.3. Each element of stab.C / acts on @C as an element of �ompson’s

group T . In particular, rist.C / acts on @C as an isomorphic copy of T .

Proof. Consider �rst an element f 2 rist.C /. For example, f could be the fol-
lowing element:

Note that f must have the same number of central arcs in its domain and range
diagrams. �ese arcs correspond precisely to the cut points for two dyadic subdi-
visions of the circle:

�is correspondence clearly de�nes an isomorphism � W rist.C / ! T .

Next, observe that the action of an element f 2 rist.C / on the central arcs on
the Basilica lamination is precisely the same as the action of �.f / on the dyadic
points of the circle. Since the images of the central arcs are dense in @C , it follows
that f acts on @C in exactly the same way as �.f /.

Finally, observe that if g is any element of stab.C /, then g acts on @C in exactly
the same way as some element f 2 rist.C /. Speci�cally, an arc pair diagram for f
can be obtained by removing all of the non-central arcs from an arc pair diagram
for g. For example, the following element of stab.C / acts on @C in precisely the
same way as the element f 2 rist.C / shown above:
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Corollary 6.4. �e group rist.C / is generated by the elements ˇ,  , and ı de�ned

in Example 4.1

Proof. �ese three elements act on @C in the same way as the three generators for
�ompson’s group T shown in Figure 1.

Remark 6.5. �eorem 6.3 shows that TB contains an isomorphic copy of �omp-
son’s group T . �is has a few basic consequences:

(1) TB contains a non-abelian free group of rank two;

(2) TB contains a free abelian group of in�nite rank.

It follows from (1) that TB has exponential growth, and is not amenable.

Remark 6.6. One result of �eorem 6.3 is that the group stab.C / has the structure
of a semidirect product:

stab.C / D �x.C / Ì T:

Here �x.C / denotes the kernel of the homomorphism stab.C / ! T , i.e. the group
of all elements of stab.C / that restrict to the identity on @C .

�ough we shall not prove it here, stab.C / is actually isomorphic to a direct
limit of iterated wreath products:

T �! F o T �! F o F o T �! � � �

where T acts on the dyadic points of the circle, andF denotes �ompson’s groupF
acting on the dyadic points in the interval .0; 1/. Note that each of the wreath
products above is a restricted wreath product, i.e. a semidirect product whose �rst
component is an in�nite direct sum of groups.

7. Generators

In this section we prove the following theorem.

�eorem 7.1. �e group TB is generated by the elements ¹˛; ˇ; ; ıº de�ned in

Example 4.1.

We will need the following lemma.

Lemma 7.2. �e group h˛; ˇ; ; ıi acts transitively on the gaps of the Basilica

lamination.
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Proof. De�ne the depth of each gap in the Basilica lamination to be the number
of arcs separating it from the central gap. �us the central gap has depth zero,
adjacent gaps have depth one, and so forth.

Let Rn be any gap of depth n. We will show that Rn can be mapped to the
central gap using an element of h˛; ˇ; ; ıi. We proceed by induction on n.

If n D 0 then Rn is already the central gap and we are done. Otherwise,
Rn is connected to the central gap R0 through a path R0; R1; : : : ; Rn of pairwise
adjacent gaps.

Consider the gap R1, which borders the central gap along a central arc A.
Now, recall from Section 6 that the group hˇ; ; ıi acts on the central arcs in the
same way that �ompson’s group T acts on the dyadic points of the unit circle. In
particular, the group hˇ; ; ıi acts transitively on the central arcs, so there exists
an element f 2 hˇ; ; ıi for which f .A/ is the arc ¹1=3; 2=3º. �en f .R1/ must
be the gap directly to the left of the central gap, so .˛ ı f /.R1/ is the central gap.
�en .˛ ı f /.R1/; : : : ; .˛ ı f /.Rn/ is a path of pairwise adjacent gaps, where
.˛ ı f /.R1/ is the central gap, and therefore .˛ ı f /.Rn/ has depth n� 1. By our
induction hypothesis, it follows that .˛ıf /.Rn/ can be mapped to the central gap,
and therefore Rn can as well.

Proof of �eorem 7.1. Let f 2 TB . By the lemma, we may assume that f maps
the central gap to itself, i.e. that f 2 stab.C /. We must show that f 2 h˛; ˇ; ; ıi.
Let n be the total number of arcs in the reduced arc pair diagram for f . We proceed
by induction on n.

Note that n � 4, since the arcs ¹1=3; 2=3º and ¹1=6; 5=6º must appear in both
the domain and range diagrams. �e base case is n D 4, for which f must be
either the identity or the element ı, both of which lie in h˛; ˇ; ; ıi.

Suppose that n � 5. Since f 2 stab.C /, the action of f permutes the central
arcs of the lamination, so any arc pair diagram for f must map central arcs to
central arcs. For example, the reduced arc pair diagram for f may look like

where P1; : : : ; P4 and Q1; : : : ; Q4 denote the arcs in the indicated sections of the
diagram.
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Now, the permutation of the central arcs is determined by the action of f on
the boundary of the central component. By the results of the previous section,
there exists an element g 2 hˇ; ; ıi that permutes the central arcs in the same
way:

�en the composition h D g�1 ı f �xes each central arc:

h

Note that h has at most n arcs in its reduced arc pair diagram. It su�ces to prove
that h 2 h˛; ˇ; ; ıi. We shall prove this using two cases.

Case 1 . h has non-central arcs in more than one section. Let A1; : : : ; Am be the
central arcs in the arc pair diagram for h, and suppose that h has non-central arcs
behind more than one Ai . �en we can express h as a composition h1 ı � � � ı hm,
where each hi has the same central arcs as h, but has non-central arcs only in the
section of the diagram bounded by Ai . For example, the element h2 might have
the following arc pair diagram:

�en each hi must have fewer than n arcs. By induction, it follows that each
hi 2 h˛; ˇ; ; ıi, and therefore h 2 h˛; ˇ; ; ıi as well.
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Case 2. h has non-central arcs in only one section. Suppose that all of the non-
central arcs of h lie behind a single central arc A, and let r be the element of
hˇ; ; ıi that cyclically permutes the central arcs of h:

�en rj .A/ D ¹1=6; 5=6º for some exponent j . Let k D rj ıhı r�j . Note that we
can conjugate h by rj without expanding h, so k has at most n arcs. Moreover, all
of the non-central arcs of k lie to the right of ¹1=6; 5=6º. It su�ces to prove that
k 2 h˛; ˇ; ; ıi.

Consider the reduced arc pair diagram for k:

k

If k is the identity, we are done. Otherwise, both P and Q must contain the
arc ¹1=12; 5=12º, as indicated in the picture. In this case, we can conjugate k
by ˛ without performing any expansions of k. �e resulting arc pair diagram for
˛�1 ı k ı ˛ has the form:

We can now cancel the arcs ¹5=12; 7=12º in the domain and range to yield an arc
pair diagram for ˛�1 ı k ı ˛ with fewer than n arcs. By our induction hypothesis,
it follows that k 2 h˛; ˇ; ; ıi.

Remark 7.3. Now that we have shown that TB is �nitely generated, we would
like to know whether it is �nitely presented. �ough F , T , and V are �nitely
presented, it seems that the proof for these groups does not generalize to TB .
As a result, we suspect that TB is not �nitely presented.
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8. �e Commutator Subgroup

Figure 14. �e two-coloring of the components of the Basilica.

In this section we investigate the commutator subgroup ŒTB ; TB � of TB . First,
consider the two-coloring of the components of the Basilica shown in Figure 14.
�is two-coloring is related to dynamics: if p.z/ D z2�1, then pıp has attracting
�xed points at 0 and �1, and the colors represent the basins of attraction for these
�xed points.

�eorem 8.1. �e commutator subgroup ŒTB ; TB� is the index-two subgroup of

TB consisting of all elements that preserve the two-coloring of the components of

the Basilica. �is group is generated by the elements ¹ˇ; ; ı; ˇ˛; ˛; ı˛º.

Proof. De�ne a homomorphism � W TB ! Z=2Z by �.f / D 0 if f preserves the
coloring of the components, and �.f / D 1 if f switches the two colors. Since
Z=2Z is abelian, we know that ŒTB ; TB � � ker.�/. We would like to show that
ker.�/ � ŒTB ; TB �.

By Schreier’s Lemma, ker.�/ is generated by the six elements in the statement
of the theorem together with the element ˛2. It is easy to check that ˛2 D ı�1ıı˛,
which proves that ker.�/ is generated by the six given elements. We must show
that each of these elements lies in the commutator subgroup.

From Section 6, we know that ˇ,  , and ı generate a subgroup of TB isomor-
phic to �ompson’s group T . Since T is simple, ŒT; T � D T , so ˇ,  , and ı must
be products of commutators in hˇ; ; ıi. Hence ˇ; ; ı 2 ŒTB ; TB �. Since ŒTB ; TB �
is normal in TB , it follows that ˇ˛; ˛; ı˛ 2 ŒTB ; TB�, so ker.�/ D ŒTB ; TB �.

Corollary 8.2. �e abelianization of TB is isomorphic to Z=2Z.
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Remark 8.3. It is not hard to show that the epimorphism TB ! Z=2Z splits.
For example, consider the element ı ı ˛, which acts as an order-two “rotation”
of the Basilica around the point where the central component and the main left
component touch. �is element switches the two colors, and therefore de�nes
a splitting Z=2Z ! TB . It follows that TB is a semidirect product of ŒTB ; TB �
with Z=2Z.

�eorem 8.4. �e group ŒTB ; TB � is simple.

Proof. �is proof follows the basic outline for the proof of the simplicity of T ,
which in turn is based on the work of Epstein [8] on the simplicity of groups of dif-
feomorphisms. In particular, we use Epstein’s double commutator trick, together
with an argument that TB is generated by elements of small support.

Let N be a nontrivial normal subgroup of ŒTB ; TB �. We wish to prove that
N D ŒTB ; TB �.

Let f be a non-trivial element of N . Since the dyadic points are dense on the
unit circle, there must exist some dyadic rational q that is not �xed by f . �en
there exists a su�ciently small standard interval I containing q such that

� the endpoints of I are joined by an arc in the Basilica lamination, and

� the image interval J D f .I / is disjoint from I .

Now, consider any pair of elements g; h 2 ŒTB ; TB � with support in I . Since
f .I / D J , the conjugate f ı g�1 ı f �1 has support in J . �en the commutator
Œg; f � D g ı f ı g�1 ı f �1 has support in I [ J , and agrees with g on I . Since
h has support in I , it follows that

ŒŒg; f �; h� D Œg; h�:

�e double commutator on the left must be an element of N , and therefore
Œg; h� 2 N for every pair of elements g; h 2 ŒTB ; TB � with support in I .

Now, since each arc of the Basilica lamination borders gaps of two di�erent
colors, the group ŒTB ; TB � acts transitively on these arcs. In particular, there exists
an element k 2 ŒTB ; TB � that maps the arc joining the endpoints of I to ¹1=3; 2=3º.
�en k.I / must be either Œ1=3; 2=3� or Œ�1=3; 1=3�. Replacing I with a smaller
interval if necessary, we may assume that k.I / D Œ�1=3; 1=3�. Conjugating the
result of the previous paragraph by k, we �nd that Œg; h� 2 N for any g; h 2

ŒTB ; TB � with support on the interval Œ�1=3; 1=3�.
Next, recall from Section 6 that the group rist.C / is isomorphic to �omp-

son’s group T . Under this isomorphism, the elements of rist.C / with support on



998 J. Belk and B. Forrest

Œ�1=3; 1=3� correspond to the stabilizer of 1=2 in T , which is a copy of �omp-
son’s group F . Since F is not abelian, there exists at least one pair of elements
g; h 2 rist.C /with support in Œ�1=3; 1=3� for which Œg; h� is nontrivial. �en Œg; h�
lies in both N and rist.C /, so the intersection N \ rist.C / is a nontrivial normal
subgroup of rist.C /. But rist.C / Š T and T is simple, so N \ rist.C / D rist.C /,
and therefore rist.C / � N .

Now consider the conjugate subgroup rist.C /˛, which can be interpreted as the
rigid stabilizer of the component immediately to the left of the central component.
If we choose I so that k.I / D Œ1=3; 2=3�, we can use the same argument as before
to show that N \ rist.C /˛ has a nontrivial element, and therefore rist.C /˛ � N .

So far we have proven that rist.C /[rist.C /˛ � N . However, the group rist.C /
is generated by ˇ,  , and ı, while rist.C /˛ is generated by ˇ˛, ˛ , and ı˛. Since
these six elements generate ŒTB ; TB �, we conclude that N contains all of ŒTB ; TB�,
and therefore ŒTB ; TB � is simple.

Note that this proof does not actually require that the subgroupN be contained
in ŒTB ; TB �. Indeed, this proof shows that ŒTB ; TB � is the only nontrivial proper
subgroup of TB that is normalized by ŒTB ; TB �. In particular:

Corollary 8.5. �e commutator subgroup ŒTB ; TB � is the only nontrivial proper

normal subgroup of TB .

Since any �nite-index subgroup of TB must contain a normal subgroup of �nite
index, we also obtain:

Corollary 8.6. �e commutator subgroup ŒTB ; TB � is the only proper �nite-index

subgroup of TB .

Remark 8.7. Although the group ŒTB ; TB� is �nitely generated and simple, it is
not isomorphic to �ompson’s group T . To see this, consider the involutions ı and
ı˛ in ŒTB ; TB �. �e �rst is the order-two rotation of the Basilica around the origin,
while the second is an order-two “rotation” of the Basilica around the main left
component. Since ı �xes a yellow component of the Basilica (the central compo-
nent), and ı˛ �xes a blue component (the main left component), these elements
cannot be conjugate in ŒTB ; TB �. However, �ompson’s group T has only one con-
jugacy class of involutions, namely the conjugacy class of the order-two rotation
of the circle. (�is follows from the results in [1]. See also [9].) �us ŒTB ; TB �
cannot be isomorphic to T .
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