
Groups Geom. Dyn. 9 (2015), 1231–1265

DOI 10.4171/GGD/339

Groups, Geometry, and Dynamics

© European Mathematical Society

Bredon cohomological dimensions for groups acting

on CAT(0)-spaces

Dieter Degrijse1 and Nansen Petrosyan1,2

Abstract. Let G be a group acting isometrically with discrete orbits on a separable com-
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1. Introduction

Let G be a discrete group and let F be a family of subgroups of G, i.e. a collec-
tion of subgroups of G that is closed under conjugation and taking subgroups.
A classifying space of G for the family F is a G-CW-complex X such that XH is
contractible for every H in F and empty when H is not in F (see [40]). Equiva-
lently, one can characterizeX by the property that for anyG-CW-complex Y with
stabilizers in F, there exists, up to G-homotopy, a unique G-map from Y to X .
Motivated by the the Baum–Connes and Farrell–Jones Isomorphism Conjectures,
there is a particular interest to study classifying spaces for the families of �nite
and virtually cyclic subgroups. �ese conjectures predict isomorphisms between
certain equivariant cohomology theories of classifying spaces of G and K- and
L-theories of reduced group C �-algebras and of group rings of G (see e.g. [3],
[18], [37], [33]). Other applications of classifying spaces for the family of �nite
subgroups include computations in group cohomology and the formulation of a
generalization from �nite to in�nite groups of the Atiyaa–Segal completion the-
orem in topological K-theory (see [30, §7-8]). With these applications in mind,
it is always desirable to have models for EFG with good geometric properties.
One such property is the dimension ofEFG. Although a classifying space always
exists for any discrete group and a family of subgroups, it need not be �nite di-
mensional. �e smallest possible dimension of a model for EFG is an invariant
of the group called the geometric dimension of G for the family F and denoted by
gdFG.

In the present article our aim is to study the geometric dimension of groups
that act isometrically on separable CAT.0/-spaces of �nite topological dimension.
We do not require the action to be proper but only to have discrete orbits. Our re-
sults extend the main theorem of [31] from proper actions to actions with discrete
orbits, and from proper to separable CAT.0/-spaces. �is allows us to consider ex-
amples of groups that admit actions with in�nite stabilizer subgroups on complete,
not necessarily proper CAT.0/-spaces, such as �nitely generated linear groups of
positive characteristic and mapping class groups.

In this approach we make use of Bredon cohomology which allows one to
analyze �niteness properties ofEFG using homological techniques. For instance,
given a discrete group G and a family of subgroups F, there is a notion of Bredon
cohomological dimension cdFG which satis�es the inequality

cdFG � gdFG � max¹3; cdFGº:

�us, to show that there exists a �nite dimensional model for EFG, it su�ces to
prove that the Bredon cohomological dimension of G for the family F is �nite.



Bredon cohomological dimensions for groups acting on CAT(0)-spaces 1233

We recall the de�nition and the necessary properties of Bredon cohomology in
Section 3.

In order to apply Bredon cohomology in our context, in Section 2, we associate
to the isometric action of a group on a metric space a certain cellular action. �is
is done in Proposition 2.6, which may be of separate interest to the reader. It
asserts that if a group G acts isometrically and with discrete orbits on a separable
metric space X then there exists a simplicial G-complex Y of dimension at most
the topological dimension of X whose stabilizers are also point stabilizers of X
together with a G-map f W X ! Y .

Before stating our main results, let us establish some notation and terminology.
A group G will always be assumed to be discrete. If F is the family of �nite or
the family of virtually cyclic subgroups of a groupsG, then cdFG will be denoted
by cdG or by cd.G/, respectively. Suppose G acts on a topological space X . We
say that G acts discretely on X if the orbits G � x are discrete subsets of X , for all
x 2 X . Let E.G;X/ be the set containing all groups E that �t into a short exact
sequence 1 ! N ! E ! F ! 1, where N is a subgroup of the stabilizer Gx

for some point x 2 X and F is a subgroup of a �nite dihedral group. Finally,
we de�ne the following values associated to the pair .G;X/, which will be used
throughout the article

vst.G;X/ D sup¹cd.E/ j E 2 E.G;X/º

st.G;X/ D sup¹cd.Gx/ j x 2 Xº

st.G;X/ D sup¹cd.Gx/ j x 2 Xº:

Clearly, one has

st.G;X/ � vst.G;X/; and st.G;X/ � st.G;X/C 1

since it is known that cd.S/ � cd.S/ C 1 for any group S (e.g. see [13, 4.2]).
We are not aware of an example of a group G acting on a space X such that
st.G;X/ is �nite but st.G;X/ or vst.G;X/ are not. On the other hand, using �e-
orem C of [12] as in [12, 6.5], one can construct examples where G is an integral
linear group and X is a point such that both st.G;X/ and vst.G;X/ are arbitrarily
larger than st.G;X/.

In Section 4, we prove the following.
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�eorem A. Let G be a group acting isometrically and discretely on a separable
CAT.0/-space X of topological dimension n, and let F be a family of subgroups
of G such that XH ¤ ; for all H 2 F. Suppose that there exists an integer d � 0

such that for each x 2 X one has cdF\Gx
.Gx/ � d . �en we have

cdF.G/ � d C n:

�e following corollary is immediate.

Corollary 1. LetG be a group acting isometrically and discretely on a separable
CAT.0/-space X of topological dimension n, and let F be the smallest family of
subgroups of G containing the point stabilizers Gx, for every x 2 X . �en we
have

cdF.G/ � n:

Since each isometric action of a �nite group on complete CAT(0)-space has a
global �xed point (see Corollary II.2.8(1) in [7]), we conclude the following from
�eorem A.

Corollary 2. Let G be a group acting isometrically and discretely on a complete
separable CAT.0/-space X of topological dimension n. �en

cd.G/ � st.G;X/C n:

�e next theorem provides an upper bound for cd.G/.

�eorem B. Let G be a countable group acting discretely by semi-simple isome-
tries on a complete separable CAT.0/-space X of topological dimension n. �en

cd.G/ � max¹st.G;X/; vst.G;X/C 1º C n:

Let us note that the assumption of the theorem that G acts by semi-simple
isometries is satis�ed when X is a proper metric space on which G acts cocom-
pactly (see Proposition 4.1), or whenX is an R-tree (see [7, II.6.6(3)]), or whenX
is a piecewise Euclidean complex with �nite shapes on which G acts by cellular
isometries (see [5, �eorem A]).

In the last section, Section 5, we consider several concrete applications of the
above theorems. We discuss these next.

Corollary 3. LetG be a countable group acting discretely by semi-simple isome-
tries on a complete separable CAT.0/-space X of topological dimension n.
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(i) If Gx is �nite for each x 2 X , then we have

cd.G/ � n and cd.G/ � nC 1:

(ii) If Gx is virtually free for each x 2 X , then we have

cd.G/ � nC 1 and cd.G/ � nC 2:

(iii) If Gx is virtually polycyclic of Hirsch length at most h for each x 2 X , then

cd.G/ � nC h and cd.G/ � nC hC 1:

(iv) If Gx is elementary amenable of Hirsch length at most h for each x 2 X ,
then

cd.G/ � nC hC 1 and cd.G/ � nC hC 2:

Since every simplicial tree can be viewed as a one-dimensional CAT.0/-space,
this result applies to fundamental groups of graphs of groups (see [39]) and in
particular to generalized Baumslag–Solitar groups. By de�nition, a generalized
Baumslag–Solitar group G is a fundamental group of a graph of groups where all
vertex and edge groups are in�nite cyclic. In this case, we can actually determine
the Bredon cohomological dimension of G.

Corollary 4. Let G be a generalized Baumslag–Solitar group, then

cd.G/ D

8

<

:

3 if Z
2 � G;

0 if Z Š G;

2 otherwise:

Another source of examples to which we can apply �eorems A and B are
�nitely generated linear groups of positive characteristic. By the fundamental
work of Bruhat and Tits (see [8]), such groups admit �xed-point-free actions on
Euclidean buildings. �ese buildings have a natural piecewise Euclidean metric
which turns out to be CAT.0/.

Corollary 5. LetG be a �nitely generated subgroup of GLn.F / where F is a �eld
of positive characteristic. �en

cd.G/ < 1 and cd.G/ < 1:
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Lastly, we present an application to the mapping class group of any closed,
connected, and orientable surface Sg of genus g � 2. �is group acts by semi-
simple isometries on the completion of the Teichmüller space T.Sg/ equipped the
Weip–Petersson metric, such that the stabilizer subgroups are �nitely generated
virtually abelian groups of Hirsch length at most 3g� 3. It follows that the action
is also discrete. Since T.Sg/ is a separable CAT.0/-space, we obtain the following
result.

Corollary 6. LetSg be a closed, connected and orientable surface of genus g � 2,
and let Mod.Sg/ be its mapping class group. �en we have

cd.Mod.Sg// � 9g � 8:

2. Discrete isometric group actions

�roughout this section, let X be a metric space and let G be a discrete group
acting on X by isometries. For every " � 0 and each x 2 X , we denote by B.x; "/
the closure of the open ball B.x; "/ with radius " centered at x. �e action of an
element g 2 G on a point x 2 X will be denoted by g � x and the associated orbit
space byGnX . �e action ofG onX is called cocompact if there exists a compact
subset K of X such that X D

S

g2G g �K.

De�nition 2.1. We say that G acts discretely on X if for every x 2 X , the orbit
G � x is a discrete subset of X .

�e following lemma gives some equivalent de�nitions of a discrete action.

Lemma 2.2. �e following are equivalent.

(i) �e group G acts discretely on X .

(ii) For every x 2 X , there exists an " > 0 such that for all g 2 G

g � B.x; "/ \ B.x; "/ ¤ ; () g 2 Gx :

(iii) For every x 2 X , there exists an " > 0 such that for every subsetK of X that
can be covered by �nitely many open balls with radius ", there exist elements
g1; : : : ; gn 2 G such that

S WD ¹g 2 G j K \ g � B.x; "/ ¤ ;º �

n
[

iD1

giGx:
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Proof. Let us begin by showing that (i) implies (ii). Let x 2 X . Since G � x is
a discrete subset of X , there exists an " > 0 such that B.x; 2"/ \ G � x D ¹xº.
�is implies that g 2 Gx, whenever we have g � x 2 B.x; 2"/. Now assume
that g � B.x; "/ \ B.x; "/ ¤ ; for some g 2 G. �is can only be the case if
d.x; g � x/ < 2". Hence g � x 2 B.x; 2"/ and therefore g 2 Gx . Conversely, if
g 2 Gx then one obviously has g � B.x; "/ \ B.x; "/ ¤ ;. �is shows that (i)
implies (ii).

Next, let us prove that (ii) implies (iii). Let x be a point of X . By (ii), there is
an " > 0 such that for all g 2 G

g � B.x; 2"/ \ B.x; 2"/ ¤ ; () g 2 Gx:

Let K be a subset of X for which there exist elements x1; : : : ; xm 2 X such that

K �

m
[

iD1

B.xi ; "/:

We may assume that S is non-empty, otherwise there is nothing to prove. For each
i 2 ¹1; : : : ; mº choose, when possible, an element gi 2 S such that gi � B.x; "/ \

B.xi ; "/ ¤ ;. Note that giGx � S . Now let g 2 S . �en g �B.x; "/\B.xi ; "/ ¤ ;

for some i . �is implies that there is an (already chosen) element gi 2 S satisfying
gi � B.x; "/ \ B.xi ; "/ ¤ ;. It follows that

B.g � x; 2"/ \ B.gi � x; 2"/ ¤ ;;

and hence g�1
i g � B.x; 2"/ \ B.x; 2"/ ¤ ;. We conclude that g 2 giGx. �is

proves that (ii) implies (iii).
Finally, we will argue that (iii) implies (i). Let x 2 X . By (iii), there exists an

" > 0 and elements g1; : : : ; gn 2 G such that

S D ¹g 2 G j B.x; "/\ g � B.x; "/ ¤ ;º �

n
[

iD1

giGx :

Note that if S D Gx then (i) follows immediately. So, suppose S contains an
element that does not �x x. We de�ne

ı D
1

2
min¹d.gi � x; x/ j gi 2 G XGxº

and note that ı < ". We now claim that B.x; ı/ \ G � x D ¹xº, Indeed, suppose
by a way of contradiction that there exists g 2 G X Gx such that g � x 2 B.x; ı/.
�en this implies that g is contained in

¹g 2 G XGx j B.x; "/ \ g � B.x; "/ ¤ ;º
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and hence g 2 giGx for some gi 2 G X Gx. �erefore, we have gi � x 2 B.x; ı/.
But then

d.gi � x; x/ < ı D
1

2
min¹d.gi � x; x/ j i 2 ¹1; : : : ; nºº;

yielding a contraction. �is proves the claim and the lemma.

Remark 2.3. (1) It is clear from the proof of Lemma 2.2 that, if for a given x 2 X

(ii) is valid for 2" > 0 then (iii) is valid for that x and the value ".

(2) An isometric group action on a metric space is proper (in the sense
of [7, I.8.2]) if and only if it is discrete and has �nite point stabilizers.

�e following lemma is a generalization of Proposition II.6.10(4) in [7].

Lemma 2.4. Suppose thatG acts discretely on the product of metric spacesX�Y

via isometries in Iso.X/ � Iso.Y /. Let N be a normal subgroup of G consisting
of elements that act identically onX under the projection of Iso.X/� Iso.Y / onto
Iso.X/. Assume furthermore that N acts cocompactly on Y under the projection
Iso.X/� Iso.Y / onto Iso.Y /. �enG=N acts discretely onX under the projection
of Iso.X/ � Iso.Y / onto Iso.X/, where gN acts as g for all g 2 G.

Proof. We may assume that G is a subgroup of Iso.X/ � Iso.Y / and denote an
element of G as .g; ˛/ with g 2 Iso.X/ and ˛ 2 Iso.y/. Elements of N are of
the form .IdX ; a/. By cocompactness, we can �nd a compact subset K of Y such
that Y D

S

.IdX ;a/2N a � K. Let .x; y/ 2 X � Y and let " > 0 be chosen such
that 2" satis�es property (iii) of Lemma 2.2 for the element .x; y/ 2 X � Y . Now
choose � > 0 and ı > 0 small enough such that every subset of X � Y of the
form B.x; �/ � B.z; ı/, for z 2 Y , is contained in some open ball of radius 2".
Because K is compact it can be covered by �nitely many open balls of radius
ı. Since .x; y/ and 2" satisfy property (iii) of Lemma 2.2, there exist elements
.g1; ˛1/ : : : .gn; ˛n/ 2 G such that

S WD ¹.g; ˛/ 2 G j .B.x; �/�K/\.g; ˛/ �B..x; y/; 2"/¤ ;
±

�

n
[

iD1

.gi ; ˛i/G.x;y/:

Now, choose "0 > 0 such that "0 � " and 2"0 < d.gi � x; x/ for all i 2 ¹1; : : : ; nº

for which gi � x ¤ x. Since Y D
S

.IdX ;a/2N a � K, any element of G=N can be
represented as .g; ˛/N such that ˛ � y 2 K. So, let .g; ˛/N 2 G=N such that
˛ � y 2 K and assume that

g � B.x; "0/ \ B.x; "0/ ¤ ;: (1)



Bredon cohomological dimensions for groups acting on CAT(0)-spaces 1239

Since "0 � ", one can easily verify that

.x; ˛ � y/ 2 .B.x; �/ �K/ \ .g; ˛/ � B..x; y/; 2"/

and hence .g; ˛/ 2 S . �us, there exists j 2 ¹1; : : : ; nº such that .g; ˛/ 2

.gj ; j̨ /G.x;y/. Since by (1) we have d.g � x; x/ < 2"0, and 2"0 < d.gi � x; x/

for all i 2 ¹1; : : : ; nº for which gi �x ¤ x, we conclude that gj 2 Gx. �is implies
that .g; ˛/N 2 .G=N/x and completes the proof.

Let S be a topological space and let U D ¹U˛º˛2I be an open cover of S . �e
dimension dim.U/ 2 N [ ¹1º of U is the in�mum over all integers d � 0 such
that any �nite collection of pairwise distinct elements U0; : : : ; UdC1 of U has the
property that \dC1

iD0 Ui D ;. A re�nement V D ¹Vˇ ºˇ2J of U is an open cover of
S such that for every V 2 V there is an U 2 U with V � U . �e topological
dimension dim.S/ 2 N [ ¹1º of the space S is the in�mum over all integers
d � 0 such that any open cover U of S has a re�nement V with dim.V/ � d .

�ere are several other notions of dimension that can be associated to a topo-
logical space S . One can for example only consider �nite open covers
U D ¹UiºiD1;:::;k of S and their �nite re�nements V D ¹Vj ºj D1;:::;r of U. �e
number dimF .S/ is then de�ned to be the in�mum over all integers d � 0 such
that any open �nite cover U of S has a �nite re�nement V with dim.V/ � d . By
relaxing �nite covers to locally �nite covers, one obtains the invariant dimLF .S/.
Recall that an open cover U is locally �nite if every point x 2 X has an open
neighbourhood V such that V intersects only �nitely many opens of U. Finally,
one can also de�ne the small inductive dimension ind.S/ of S and the large in-
ductive dimension Ind.S/ of S . We refer the reader to [16] for the de�nitions of
these invariants.

For a general topological space, these various notions of dimension can di�er.
However, in the case of separable metric spaces, it turns out that they all coincide.

Lemma 2.5. Let X be a paracompact Hausdor� space. �en, we have

dimF .X/ D dimLF .X/ D dim.X/:

If, in addition, X is a separable metric space, then

dimF .X/ D dimLF .X/ D dim.X/ D ind.X/ D Ind.X/:

Proof. Since paracompact Hausdor� spaces are normal, it follows from �eo-
rem 3.5 in [14] that dimF .X/ D dimLF .X/. Next, let U be an open cover of X .
Since X is paracompact, U has a locally �nite re�nement U0. Now, U0 and hence
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U has a locally �nite re�nement V satisfying dim.V/ � dimLF .X/. We conclude
that dim.X/ � dimLF .X/.

Next, let U D ¹UiºiD1;:::;k be a �nite open cover of X . �en U has a (possibly
in�nite) re�nement V D ¹V˛º˛2I satisfying dim.V/ � dim.X/. For each ˛ 2 I ,
choose aw.˛/ 2 ¹1; : : : kº such that V˛ � Uw.˛/ and de�ne for each j 2 ¹1; : : : kº,

Zj D
[

˛2I
w.˛/Dj

V˛:

It easily follows that Z D ¹Zj ºj D1;:::;k is a �nite re�nement of U satisfying
dim.Z/ � dim.V/ and thus dim.Z/ � dim.X/. �is implies that dimF .X/ �

dim.X/. Combining the (in)equalities above yields dimF .X/ D dimLF .X/ D

dim.X/.
Now, supposeX is a separable metric space. �enX is paracompact and Haus-

dor�, hence dimF .X/ D dimLF .X/ D dim.X/. Moreover, by �eorem 1.7.7
of [16], we have dimF .X/ D ind.X/ D Ind.X/ (in [16], the notation dim.X/ is
used for what we call dimF .X/ (see [16, 1.6.7])). �is �nishes the proof.

�e goal for the rest of this section is to prove the following generalization of
Lemma 3.9 in [31].

Proposition 2.6. Let X be a separable metric space of topological dimension at
most n. Suppose the group G acts isometrically and discretely on X . �en there
exists a simplicialG-complex Y of dimension at most n whose stabilizers are also
point stabilizers of X , together with a G-map f W X ! Y .

First, we need the following lemmas.

Lemma 2.7. IfG acts discretely and isometrically on a metric spaceX thenGnX

inherits a metric from X , such that the metric topology on G n X coincides with
the quotient topology.

Proof. Let � W X ! GnX be the natural quotient map and let �.x/, �.y/ 2 GnX .
De�ne

Nd.�.x/; �.y// D inf¹d.x; g � y/ j g 2 Gº:

We claim that Nd is a metric on G nX . It is clearly a pseudo-metric. Now suppose
that Nd.�.x/; �.y// D 0. �is means that there exists a sequence ¹gnºn2N of el-
ements in G such that limn!1 d.x; gn � y/ D 0. By Lemma 2.2, there exists an
" > 0 such that for all g 2 G we have g � B.y; "/ \ B.y; "/ ¤ ; () g 2 Gy .
On the other hand, by the triangle inequality there exists an N 2 N such that for
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all n;m � N , we have d.y; g�1
n gm � y/ < " and hence g�1

n gm 2 Gy . �ere-
fore, the sequence ¹gn � yºn2N has only �nitely many distinct terms showing that
d.x; gn � y/ D 0 for some n. �is implies that �.x/ D �.y/, so Nd is a metric. It is
an easy exercise to check that the metric topology induced by this metric coincides
with the quotient topology induced by the map � .

Lemma 2.8. LetX be a separable metric space. If a group G acts discretely and
isometrically on X , then dim.G nX/ D dim.X/.

Proof. Consider the quotient map � W X ! G n X . By Lemma 2.7, G n X is a
metric space such that the associated metric topology coincides with the quotient
topology. Since X is separable and continuous images of separable spaces are
separable,G nX is also a separable metric space. Because � is an open surjective
map such that G � x is a discrete subset of X for each x 2 X , it follows from
�eorem 1.12.7 in [16] that ind.G n X/ D ind.X/. From Lemma 2.5, we deduce
that dim.G nX/ D dim.X/.

We can now prove Proposition 2.6.

Proof. Our arguments are based on the proof of Lemma 3.9 in [31]. We will there-
fore argue in detail where it su�ces to have a discrete group action instead of a
proper action and separable metric space instead of a proper metric space and refer
to [31] for more detail.

Suppose V is a G-invariant open cover ofX such that every V 2 V satis�es the
following condition: there exists a point xV 2 X such that for each g 2 G

g � V \ V ¤ ; () g � V D V () g 2 GxV
:

An open cover satisfying this condition will be called a good open cover. �e
nerve N.V/ of V is the simplicial complex whose vertices are the elements of
V and the pairwise distinct vertices V0; : : : ; Vd span a d -simplex if and only if
\d

iD0Vi ¤ ;. Since V is G-invariant, the action of G on X induces a simplicial
action of G on N.V/. Note that a d -simplex .V0; : : : ; Vd / is mapped to itself by a
group element g if and only if for each i 2 ¹0; : : : ; dº there exists a j 2 ¹0; : : : ; dº

such that g � Vi D Vj . Since Vi \ Vj ¤ ;, we have g � Vi \ Vi ¤ ; and hence
g 2 GxVi

. It follows that all vertices of the simplex .V0; : : : ; Vd / are �xed by g and
so the simplex is �xed pointwise by g. �erefore, N.V/ is a simplicial G-complex
whose stabilizers are also point stabilizers of X . �e simplicial G-complex that
appears in the statement of the proposition will be of this form. �e aim is to
�nd a G-invariant good open cover of X that allows one to construct a G-map
f W X ! N.V/ and satis�es dim.V/ � n.
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By discreteness of the action, for every x 2 X there exists ".x/ > 0 such that
for every g 2 G we have

g � B.x; 2".x// \ B.x; 2".x// ¤ ; () g � B.x; 2".x// D B.x; 2".x//

() g � B.x; ".x// D B.x; ".x//

() g 2 Gx

and such that ".g �x/ D ".x/ holds for every x 2 X and every g 2 G. Consider the
quotient map � W X ! G nX . By Lemma 2.8, we have dim.G nX/ � n. Note that
¹�.B.x; ".x/// j x 2 Xº is an open cover of G n X . Since, by Lemma 2.7, G nX

is a metric space, it is paracompact and Hausdor�. �erefore, by Lemma 2.5, we
can �nd a locally �nite open covering U of G n X such that dim.U/ � n and U is
a re�nement of ¹�.B.x; ".x/// j x 2 Xº. Next, for each U 2 U, let xU 2 X such
that U � �.B.xU ; ".xU ///. De�ne the index set

J D ¹.U; Ng/ j U 2 U; Ng 2 G=GxU
º;

and for each .U; Ng/ 2 J , de�ne the open subset of X

VU; Ng D g � B.xU ; 2".xU // \ ��1.U /:

�en it follows that V D ¹VU; Ng j .U; Ng/ 2 J º is a G-invariant good open cover of
X of dim.V/ � n.

It remains to construct a G-map f W X ! N.V/. To this end, take a locally
�nite partition of unity ¹eU W G n X ! Œ0; 1� j U 2 Uº that is subordinate to U.
Fix a map � W Œ0;1/ ! Œ0; 1� satisfying ��1.0/ D Œ1;1/ and de�ne for each
.U; Ng/ 2 J the function

�U; Ng W X ! Œ0; 1� W x 7! eU .�.x//�.d.x; g � xU //=".xU //:

We claim that the collection ¹�U; Ng j .U; Ng/ 2 J º is locally �nite. Let y 2 X .
BecauseU is locally �nite, we can �nd a ı > 0 such that T D B.�.y/; ı/ intersects
only �nitely many elements of U, say U1; : : : Um 2 U. Let

"0 D
1

2
min¹".xUi

/ j i 2 ¹1; : : : ; mºº

and de�ne
W D B.y; "0/ \ ��1.T /:

It follows that for each i 2 ¹1; : : : ; mº, there exists gi 2 G such that

¹g 2 G j W \ g � B.xUi
; ".xUi

// ¤ ;º � giGxUi
:
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�is shows that the set

JW D ¹.U; Ng/ 2 J j W \ g � B.xU ; ".xU // \ ��1.U / ¤ ;º

is �nite.
Suppose now x 2 W and �U; Ng .x/ > 0. �is implies that

x 2 W \ g � B.xU ; ".xU // \ ��1.U /

which in turn shows that .U; Ng/ 2 JW . Since JW is �nite, this proves the claim.
It follows that the map
X

.U; Ng/2J

�U; Ng W X �! Œ0; 1�; x 7�!
X

.U; Ng/2J

eU .�.x//�.d.x; g � xU /=".xU //;

is well-de�ned and continuous. Moreover, one can check that this map has a value
strictly greater than zero for every element x 2 X . De�ne for each .U; Ng/ 2 J , the
map

 U; Ng W X �! Œ0; 1�; x 7�!
�U; Ng .x/

X

.U; Ng/2J

�U; Ng .x/
:

Now, the map

f W X �! N.V/; x 7�!
X

.U; Ng/2J

 U; Ng .x/VU; Ng ;

is the desired G-map.

3. Bredon cohomology

An important algebraic tool to study classifying spaces for families of subgroups is
Bredon cohomology. �is cohomology theory was introduced by Bredon in [4] for
�nite groups as a means to develop an obstruction theory for equivariant extension
of maps. It was later generalized to arbitrary groups by Lück with applications to
�niteness conditions (see [28, Section 9], [32] and [29]). Next, we recall some
basic notions of this theory. For more details, we refer the reader to [28] and [21].

Let G be a discrete group and let F be a family of subgroups of G. �e orbit
categoryOFG is the category de�ned by the objects which are the left coset spaces
G=H for allH 2 F and the morphisms which are allG-equivariant maps between
the objects. An OFG-module is a contravariant functor M W OFG ! Z-mod.
�e category of OFG-modules, denoted by Mod-OFG, is de�ned by the objects
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which are all theOFG-modules and the morphisms which are all the natural trans-
formations between these objects. A sequence

0 �! M 0 �! M �! M 00 �! 0

in Mod-OFG is called exact if it is exact after evaluating in G=H for all H 2 F.
Let M 2 Mod-OFG and consider the left exact functor

HomF.M;�/ W Mod-OFG �! Z-mod; N 7�! HomF.M;N/;

where HomF.M;N/ is the abelian group of all natural transformations fromM to
N . �e moduleM is a projective OFG-module if and only if this functor is exact.
It can be shown that Mod-OFG contains enough projective modules to construct
projective resolutions. Hence, one can construct functors ExtnOFG.�;M/ that have
all the usual properties. �e n-th Bredon cohomology of G with coe�cientsM 2

Mod-OFG is by de�nition

Hn
F.G;M/ D ExtnOFG.Z;M/;

where Z is the functor that maps all objects to Z and all morphisms to the identity
map.

�ere is a notion of cohomological dimension of G for the family F, denoted
by cdF.G/ and de�ned as

cdF.G/ D sup¹n 2 N j there existsM 2 Mod-OFG W Hn
F.G;M/ ¤ 0º:

Using Shapiro’s lemma for Bredon cohomology, one can show that

cdF\H .H/ � cdF.G/

for any subgroup H of G. Since the augmented cellular chain complex of any
model for EFG yields a projective resolution of Z which can then be used to
compute H�

F
.G;�/, it follows that cdF.G/ � gdF.G/. In [32, 0.1], Lück and

Meintrup prove that one even has

cdF.G/ � gdF.G/ � max¹3; cdF.G/º:

�e following lemma shows that it is possible to reduce the problem of esti-
mating the Bredon cohomological dimension of a countable group to its �nitely
generated subgroups.

Lemma 3.1. Let G be a countable group and let F be a family of subgroups of G
such that each subgroup in F is contained in a �nitely generated subgroup of G.
Suppose there exists an integer d � 0 such that cdF\K.K/ � d for every �nitely
generated subgroupK of G. �en we have cdF.G/ � d C 1.
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Proof. Denote by SFG the family of subgroups of �nitely generated subgroups
of G. Since G can be written as a countable increasing union of �nitely gen-
erated subgroups, we can construct a tree T that is a one-dimensional model
for ESFGG. Since F � SFG, we apply Corollary 4.1 of [13] to T and obtain
cdF.G/ � d C 1.

A chain complex of OFG-modules C is said to be dominated by a chain com-
plex of OFG-modules D if there exists a chain map i W C ! D and a chain map
r W D ! C such that r ı i is chain homotopy equivalent to the identity chain map
on C . A chain complex of OFG-modules C is called d -dimensional if Ck D 0 for
all k > d .

�e following proposition will come to use in the next section.

Proposition 3.2 ([28, Proposition 11.10]). Let P be a chain complex of projective
OFG-modules. �e following are equivalent for every integer d � 0.

(i) �e chain complex P is dominated by a d -dimensional chain complex.

(ii) �e chain complex P is chain homotopy equivalent to a d -dimensional pro-
jective chain complex.

(iii) For every OFG-moduleM , we have HdC1.HomF.P;M// D 0 and for every
integer k > d and H 2 F, we have Hk.P.G=H// D 0.

A key ingredient for the proof of �eorem B is a general construction of Lück
and Weiermann (see [34]) which relates Bredon cohomology for a smaller family
of subgroups to a larger one. Let us explain this construction tailored to the case
of the families of �nite subgroups F and virtually cyclic subgroups VC. Let S
denote the set of in�nite virtually cyclic subgroups of G. As in [34, 2.2], two
in�nite virtually cyclic subgroupsH andK of � are said to be equivalent, denoted
H � K, if jH \ Kj D 1. Using the fact that any two in�nite virtually cyclic
subgroups of a virtually cyclic group are equivalent (e.g. see Lemma 3.1. in [11]),
it is easily seen that this indeed de�nes an equivalence relation on S. One can also
verify that this equivalence relation satis�es the following two properties

- H � K H) H � K for all H;K 2 S;

- H � K () Hg � Kg for all H;K 2 S and all g 2 G.

Let H 2 S and de�ne the group

NG ŒH � D ¹g 2 G j Hg � H º:
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�e group NG ŒH � is called the commensurator of H in G (also denoted by
CommG ŒH �). It depends only on the equivalence class ŒH � of H . In particu-
lar, the commensurator of H coincides with the commensurator of any in�nite
cyclic subgroup of H . Also note that H is contained in NG ŒH �. Denote the fam-
ily of �nite subgroups of G by F and de�ne for H 2 S the following family of
subgroups of NG ŒH �

FŒH � D ¹K � NG ŒH � jK 2 S; K � H º [ .NG ŒH �\ F/:

In other words, FŒH � contains all �nite subgroups of NG ŒH � and all in�nite vir-
tually cyclic subgroups of G that are equivalent to H . �e pushout diagram in
�eorem 2:3 of [34] yields the following (see also [12, §7]).

Proposition 3.3 (Lück and Weiermann, [34]). With the notation above, let ŒS� de-
note the set of equivalence classes of S and let I be a complete set of representatives
ŒH � of the orbits of the conjugation action ofG on ŒS�. For everyM 2 Mod-OVCG,
there exists a long exact sequence

� � � �! Hi
VC.G;M/

�!
�

Y

ŒH�2I

Hi
FŒH�.NG ŒH �;M/

�

˚ Hi
F.G;M/

�!
Y

ŒH�2I

Hi
F\NG ŒH�.NG ŒH �;M/

�! HiC1
VC

.G;M/

�! � � � :

4. Proofs of �eorems A and B

�roughout this section, let G be a discrete group and let X be a CAT.0/-space
on which G acts by isometries. We refer the reader to [7] for the de�nition and
properties of CAT.0/-spaces.

We start by proving �eorem A. To this end, assume also thatG acts discretely
on X and that X is separable and of topological dimension n.

Proof of �eorem A. By Proposition 2.6, there is an n-dimensional G-CW-com-
plex Y with stabilizers that are subgroups of point stabilizers of X and a G-map
f W X ! Y . Let JFG be the terminal object in theG-homotopy category of F-nu-
merable G-spaces (see [30, Section 2]). We claim that there also exists a G-map
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' W EFG ! X � JFG. Assuming this, consider the following composition of
G-equivariant maps

EFG
'
�! X � JFG

f �Id
���! Y � JFG

Id�˛
���! Y �EFG

�2
�! EFG;

where ˛ W JFG ! EFG is the G-homotopy inverse of the G-homotopy equiv-
alence EFG ! JFG (see �eorem 3.7 of [30]), and �2 is projection onto the
second factor. We obtain G-maps such that their composition

EFG �! Y �EFG �! EFG; (2)

is G-homotopic to the identity map by the universal property of EFG. Using the
equivariant cellular approximation theorem (see �eorem II.2.1 of [40]), we may
assume that these maps are cellular and that their composition isG-homotopic via
cellular maps to the identity map.

Let C�.EFG/ and C�.Y / be the associated cellular chain complexes of EFG

and Y . �en C�.EFG/ ˝ C�.Y / D C�.EFG � Y / where C�.EFG � Y / is the
cellular chain complex of EFG � Y . �e maps in (2) induce OFG-chain maps

C�.EFG/ �! C�.EFG � Y / �! C�.EFG/;

such that the composition is chain homotopy equivalent to the identity chain map
on C�.EFG/. Note that C�.EFG � Y / is a chain complex of free OFG-modules
and that C�.EFG/ ! Z is a free resolution of Z. In the proof of Proposition 3.2
of [13], the authors construct a convergent spectral sequence

E
p;q
1 D

Y

�2†p

Hq
F\G�

.G� ;M/ H) HpCq.HomF.C�.EFG/˝ C�.Y /;M//

for every OFG-module M , where †p is a set of representatives of all the G-or-
bits of p-cells of Y and G� is the stabilizer of � . Since Y is n-dimensional and
cdF\G�

.G� / � d for each � , we conclude from the spectral sequence that

HnCdC1.HomF.C�.EFG � Y /;M// D 0

for every OFG-moduleM . Also, for eachH 2 F, C�.EFG/.G=H/ � Z is exact
and Ck.Y /.G=H/ is Z-free for k � 0. Combining these observations with the
fact that C�.Y / is n-dimensional, a double complex spectral sequence argument
shows that

Hk.C�.EFG � Y /.G=H// D 0

for every H 2 F and every k > n. We conclude from Proposition 3.2 that
C�.EFG � Y / is chain homotopy equivalent to an .n C d/-dimensional projec-
tive chain complex Z. �erefore, there exist chain maps i W C�.EFG/ ! Z and
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r W Z ! C�.EFG/ such that r ı i is chain homotopy equivalent to the identity
chain map onC�.EFG/. HenceC�.EFG/ is dominated by an .nCd/-dimensional
chain complex Z. It follows from Proposition 3.2 that C�.EFG/ is chain homo-
topy equivalent to an .nC d/-dimensional projective chain complex P . But then
P ! Z is a projective .n C d/-dimensional OFG-resolution of Z. �is implies
that cdF.G/ � nC d .

It remains to prove the claim that there exists a G-map ' W EFG ! X � JFG.
It su�ces to show that X � JFG is a model for JFG. �e existence of the de-
sired map will then follow from the universal property of JFG, since EFG is an
F-numerable G-space.

A standard fact which follows directly from the de�nition of an F-numerable
G-space is that if there is a G-map between G-spaces with an F-numerable tar-
get then the source is also F-numerable. Hence, X � JFG is an F-numerable
G-space by virtue of the projection onto the second coordinateX �JFG ! JFG.
We equip the product .X �JFG/� .X �JFG/with the diagonalG-action and de-
note the projection of .X�JFG/�.X�JFG/ onto the i-th factorX�JFG by pri ,
for i D 1; 2. By �eorem 2.5(ii) of [30], X � JFG is a model for JFG if and only
if each H 2 F is contained in a point stabilizer of X � JFG and pr1 and pr2 are
G-homotopic. LetG act diagonally on the product JFG�JFG and denote the pro-
jection of JFG�JFG onto the i-th factor JFG by pi , for i D 1; 2. It follows from
�eorem 2.5(ii) of [30] that each subgroup in F is contained in a point stabilizer of
JFG and that p1 and p2 areG-homotopic via aG-mapQ W I�JFG�JFG ! JFG

withQjtD0 D p1 andQjtD1 D p2. LetH 2 F. �en .X�JFG/
H D XH �JFG

H

is non-empty. Hence, H is contained in a point stabilizer of X � JFG. Let G act
diagonally on X � X and denote the projection of X � X onto the i-th factor X
by qi , for i D 1; 2. By Proposition II.1.4 of [7], each pair of points x; y 2 X can be
joined by a unique geodesic, i.e. an isometry x;y W Œ0; L� ! X with x;y.0/ D x,
x;y.L/ D y, and this geodesic varies continuously with its endpoints. By rescal-
ing x;y to a map  0

x;y W Œ0; 1� ! X , we obtain a G-map

R W I � X � X �! X; .t; x; y/ 7�!  0
x;y.t /;

with RjtD0 D q1 and RjtD1 D q2. But then the map

S W I � .X � JFG/ � .X � JFG/ �! X � JFG;

.t; x; a; y; b/ 7�! .R.t; x; y/;Q.t; a; b//

is a G-map with SjtD0 D pr1 and SjtD1 D pr2. �is proves the claim and �nishes
the proof.
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From this point onward, we impose the additional assumption that the CAT.0/-
space X is complete.

Before turning to the proof of �eorem B, let us �rst recall the de�nitions of
semi-simple, elliptic and hyperbolic isometries. Let g be an element of G, and
hence an isometry of X . �e displacement function dg is the function

dg W X �! R
C; x 7�! d.g � x; x/:

�e translation length of g is the number

jgj D inf¹dg.x/ j x 2 Xº:

�e space Min.g/ is the set of all points x 2 X for which dg .x/ D jgj. �e element
g is called semi-simple if Min.g/ is non-empty. In this case, Min.g/ is a closed
convex subset of X and therefore also a complete CAT.0/-space (see Proposition
II.6.2(3) of [7]).

�e following proposition extends Proposition II.6.10(2) of [7] to discrete ac-
tions.

Proposition 4.1. If the groupG acts discretely and cocompactly on a proper met-
ric spaceM , then every element of G acts as a semi-simple isometry.

Proof. By cocompactness, we can �nd a compact subset K of M such that
S

g2G g � K D M . Fix g 2 G and let ¹xnº be a sequence of elements in M
such that limn!1 d.g � xn; xn/ D jgj. Choose a sequence of elements ¹ynº in K
such that there exists a sequence of group elements ¹gnº for which gn � xn D yn,
for each n � 0. By the compactness of K, we can pass to subsequences if neces-
sary and assume that limn!1 yn D y 2 K. Denote hn D gngg

�1
n and note that

d.hn � yn; yn/ D d.g � xn; xn/, for each n � 0. Since

0 � d.hn � y; y/� jgj � d.hn � y; hn � yn/C d.hn � yn; y/ � jgj

� d.hn � y; hn � yn/C d.hn � yn; yn/C d.yn; y/ � jgj

� 2d.y; yn/C d.g � xn; xn/ � jgj

for each n, we have limn!1 d.hn �y; y/ D jgj. It follows that the sequence ¹hn �yº

is contained in a closed ball centered at y. Hence, by passing to subsequences if
necessary, we may assume that ¹hn � yº converges. By discreteness of the action,
this implies that the sequence ¹hn �yº has only �nitely many distinct values. Again
by passing to a subsequence, we may assume that hn �y D h0 �y for all n. We now
have

d.gg�1
0 � y; g�1

0 � y/ D d.h0 � y; y/ D lim
n!1

d.hn � y; y/ D jgj:

�is means that g�1
0 � y 2 Min.g/, hence g is a semi-simple isometry.
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De�nition 4.2. Let g 2 G be semi-simple. �e element g, viewed as an isometry
of X , is called

- elliptic if jgj D 0, i.e. g has a �xed point;

- hyperbolic if jgj > 0, i.e. g has no �xed point.

It follows that if gm 2 G is elliptic (hyperbolic) for some integer m ¤ 0, then
g is also elliptic (hyperbolic), see Proposition II.6.7 and �eorem II.6.8(2) of [7].

Proposition 4.3. Let G be a discrete group and let X be a complete separable
CAT.0/-space of topological dimension n on which G acts discretely and isomet-
rically. Let F be the family of �nite subgroups of G. If H is an in�nite cyclic
subgroup of G generated by an elliptic element, then

cdFŒH�.NG ŒH �/ � nC max¹st.G;X/; st.G;X/º:

Proof. We claim thatXS is non-empty and contractible, for every S 2 FŒH �. First
of all, Corollary II.2.8(1) of [7] gives us thatXF is non-empty and convex for every
�nite subgroup of NG ŒH �. So, let K be an in�nite virtually cyclic subgroup of
NG ŒH � that is equivalent toH . Let h be an elliptic element ofG that generatesH .
BecauseH � K, there exists a non-zero integerm such that hhmi is a �nite index
subgroup of K. Since h is elliptic, we can �nd an x 2 X such that h � x D x. But
then the orbit of x under the action ofK is �nite. It follows from Corollary II.2.8(1)
of [7] that XK is non-empty and convex. �is proves our claim.

Now, �eorem A applied to the group NG ŒH � acting onX and the family FŒH �

implies that cdFŒH�.NG ŒH �/ � nC p, where

p D max¹cdFŒH�\NG ŒH�x .NG ŒH �x/ j x 2 Xº:

To prove the proposition, it remains to show that p � max¹st.G;X/; st.G;X/º.
Let us take x 2 X . We distinguish between two cases. First, assume that

FŒH �\ NG ŒH �x coincides with the family of �nite subgroups of NG ŒH �x. In this
case, we have

cdFŒH�\NG ŒH�x .NG ŒH �x/ D cd.NG ŒH �x/ � cd.Gx/ � st.G;X/:

Secondly, assume that FŒH � \ NG ŒH �x is di�erent from the family of �nite sub-
groups of NG ŒH �x. Clearly, it contains the family of �nite subgroups of NG ŒH �x

and by assumption it must also contain an in�nite cyclic subgroupK that is equiv-
alent to H . Since NG ŒH � only depends on H up to equivalence, we may as well
assume that H is contained in NG ŒH �x. But then, we have

NG ŒH �x D NG ŒH �\ Gx D NGx
ŒH �
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and cdFŒH�\NGŒH�x .NG ŒH �x/ D cd.F\NGx ŒH�/ŒH�.NGx
ŒH �/. It now follows from

Lemma 6.3 of [12] that

cdFŒH�\NG ŒH�x .NG ŒH �x/ � max¹cd.NGx
ŒH �/; cd.NGx

ŒH �/º;

which implies that

cdFŒH�\NGŒH�x .NG ŒH �x/ � max¹cd.Gx/; cd.Gx/º:

�is proves that p � max¹st.G;X/; st.G;X/º.

Before proceeding, we refer to �eorem II.6.8 in [7] for the de�nition and basic
properties of an axis of a hyperbolic element.

Proposition 4.4. LetG be a countable discrete group and letX be a complete sep-
arable CAT.0/-space of topological dimension n on which G acts discretely and
isometrically. LetH be an in�nite cyclic subgroup ofG generated by a hyperbolic
element, then

cdFŒH�.NG ŒH �/ � nC vst.G;X/:

Proof. Let h be a hyperbolic element of G that generates H and let
g 2 NG ŒH �. By de�nition, there exist non-zero integers l and m such that
g�1hlg D hm. Proposition II.6.2(2) of [7] implies that jhl j D jhmj. By applying
Proposition II.6.2(4) and �eorem II.6.8(1) of [7] to an axis of h, it follows that
jhk j D ˙jhjk for all k 2 Z. We deduce that l D ˙m.

Next, letK be a �nitely generated subgroup of NG ŒH � that containsH . We can
�nd a non-zero integer m such that g�1hmg D h˙m for all g 2 K. By replacing
H D hhi with H D hhmi, we may assume that m D 1. Hence, H is a normal
subgroup of K and cdFŒH�\K.K/ D cd.K=H/ by Lemma 4.2 of [12].

Since g�1hg D h˙1 for all g 2 K and Min.h/ D Min.h�1/, it follows from
Proposition II.6.2(2) of [7] that K acts on Min.h/. Moreover, K maps an axis of
h to an axis of h.

It follows from �eorem II.2.14 and Proposition I.5.3(4) of [7] that there exists
a complete separable CAT.0/-subspace Y of X such that Min.h/ is isometric to
Y �R andK acts on Min.h/ D Y �R via discrete isometries in Iso.Y /� Iso.R/.
Since H acts by non-trivial translations on each axis, it acts identically on Y via
the projection of Iso.Y / � Iso.R/ onto Iso.Y /, and it acts cocompactly on R via
the projection of Iso.Y / � Iso.R/ onto Iso.R/.
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Let x 2 Y and consider the point stabilizerKx of the action ofK on Y given by
the projection of Iso.Y /� Iso.R/ onto Iso.Y /. �e projection of Iso.Y /� Iso.R/
onto Iso.R/, maps Kx onto a discrete subgroup of Iso.R/ that acts discretely and
cocompactly on R, i.e. onto a subgroupQ of the in�nite dihedral groupD1. �e
kernel of this map is a subgroup N of the point stabilizer Gx . Hence, we have a
short exact sequence

1 �! N �! Kx �! Q �! 1:

SinceH is a normal subgroup ofK that acts identically on Y and cocompactly on
R, by Lemma 2.4, K=H acts isometrically and discretely on Y which is a com-
plete separable CAT.0/-space. Moreover, by �eorem 2 of [38], the topological
dimension of Y is at most n � 1. �e point stabilizers .K=H/x of the action of
K=H on Y are of the form

1 �! N �! .K=H/x �! Q=H �! 1;

where N is a subgroup Gx and Q=H is a subgroup of a �nite dihedral group.
It follows from �eorem A applied to the family of �nite subgroups of K=H that
cd.K=H/ � n�1Cvst.G;X/. Hence, we have cdFŒH�\K.K/ � n�1Cvst.G;X/
and therefore, by Lemma 3.1, cdFŒH�.NG ŒH �/ � nC vst.G;X/.

We can now prove �eorem B.

Proof of �eorem B. Let F be the family of �nite subgroups of G , let VC be the
family of virtually cyclic subgroups of G and denote by S the set of in�nite virtu-
ally cyclic subgroups ofG. Let ŒH � be the equivalence class represented byH 2 S

and let I be a complete set of representatives ŒH � of the orbits of the conjugation
action of G on ŒS�. Note that we may assume that each class ŒH � in I is repre-
sented by an in�nite cyclic group H , generated by either an elliptic element or a
hyperbolic element. By Proposition 3.3, for everyM 2 Mod-OVCG we have

� � � �! Hi
VC.G;M/

�!
�

Y

ŒH�2I

Hi
FŒH�.NG ŒH �;M/

�

˚ Hi
F.G;M/

�!
Y

ŒH�2I

Hi
F\NG ŒH�.NG ŒH �;M/

�! HiC1
VC
.G;M/

�! � � � :



Bredon cohomological dimensions for groups acting on CAT(0)-spaces 1253

By the preceding two propositions, we have

cdFŒH�.N� ŒH �/ � nC max¹st.G;X/; vst.G;X/º

for each ŒH � 2 I. Also, from �eorem A we can deduce that

cdF\N� ŒH�.N� ŒH �/ � cdF.G/ � nC st.G;X/;

for each ŒH � 2 I. It then follows from the long exact cohomology sequence that

Hi
VC.G;M/ D 0 for all i > nC max¹st.G;X/; vst.G;X/C 1º

and for every M 2 Mod-OVCG, which �nishes the proof.

5. Applications

5.1. Actions with speci�c point stabilizers. Let us �rst recall the following
facts. By [15, 1.2], a virtually free group G acts simplicially on a simplicial tree
with �nite stabilizers. Hence, by Corollary 2, we have cd.G/ � 1 and by �eo-
rem B, cd.G/ � 2.

Next, let G be a virtually polycyclic group of Hirsch length h. In [30, 5.26] it
is shown that cd.G/ D h, and in [34, 5.13] it is proven that cd.G/ � hC 1.

Finally, let G be a countable elementary amenable group of Hirsch length h.
From [19], it follows that cd.G/ � h C 1, and in [12, �eorem A], the authors
show that cd.G/ � h C 2. Also note that the classes of virtually free, virtually
polycyclic and elementary amenable groups are closed under taking subgroups
and �nite extensions.

Now, suppose G is a group that acts on a topological space X . �en, by the
above stated results, it readily follows that

vst.G;X/ � 1

and

st.G;X/ � 2

if Gx is virtually free for each x 2 X ,

vst.G;X/ � h

and

st.G;X/ � hC 1
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if Gx is virtually polycyclic of Hirsch length at most h for each x 2 X , and

vst.G;X/ � hC 1

and

st.G;X/ � hC 2

if Gx is elementary amenable of Hirsch length at most h for each x 2 X .
Using Corollary 2 and �eorem B, we deduce Corollary 3.

5.2. Generalized Baumslag–Solitar groups. Generalized Baumslag–Solitar
groups are fundamental groups of �nite graphs of groups where all vertex and
edge groups are in�nite cyclic. In [27], P. Kropholler characterized non-cyclic
generalized Baumslag–Solitar groups as those �nitely generated groups that are
of cohomological dimension two and have an in�nite cyclic subgroup that inter-
sects all of its conjugates non-trivially. Clearly, the well-known Baumslag–Solitar
groups

BS.m; n/ D hx; y j xymx�1 D yni

are examples of generalized Baumslag–Solitar groups.
Given an arbitrary generalized Baumslag–Solitar group G, we will determine

cd.G/. �e result will depend on whether or notG contains a copy of Z2. We will
need the following property of the generalized Baumslag–Solitar groups
(see [22, 2.5]).

Lemma 5.1. Suppose G acts on a simplicial tree such that all vertex and edge
stabilizers are in�nite cyclic. �en any two elliptic elements of G generate equiv-
alent in�nite cyclic subgroups of G, and NG Œhhi� D G for every elliptic element
h 2 G.

Proof. Let g1 and g2 be elliptic elements of G. By de�nition, there exist vertices
v1; v2 2 T such that g1 � v1 D v1 and g2 � v2 D v2. First, suppose that v1 D v2.
In this case, g1 and g2 are both contained in the stabilizers of v1, which is in�-
nite cyclic. �is implies that hg1i and hg2i are equivalent. Now, consider the case
where v1 and v2 are connected by an edge e. Denote the stabilizer of e by H .
SinceH is a �nite index subgroup of the stabilizers of v1 and v2, it follows thatH
is equivalent to hg1i and hg2i. Hence, hg1i and hg2i are equivalent. �e general
case now follows by induction on the distance between v1 and v2.

Since any conjugate of an elliptic element is again elliptic and two elliptic
elements of G generate equivalent in�nite cyclic subgroups, it follows that
NG Œhhi� D G for every elliptic element h 2 G.
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�is next lemma follows from applying the methods of [26] as in [21, 4.10].
Let us give a di�erent proof based on the results we have developed thus far in the
paper.

Lemma 5.2. Let F be a �nitely generated non-abelian free group, then

cd.F / D 2:

Proof. Since F acts freely on a tree, we have cd.F / � 2 by Corollary 3. Let Z be
the trivial right OVCF -module and let TR be the family of F containing only the
trivial subgroup. Proposition 3.3 yields the following exact sequence

�

Y

ŒH�2I

H1
TRŒH�.NF ŒH �;Z/

�

˚ H1.F;Z/ �!
Y

ŒH�2I

H1.NF ŒH �;Z/

�! H2
VC.F;Z/:

Since F is a free group, it follows that NF ŒH � Š Z for each H 2 I. Hence, we
have cdTRŒH�.NF ŒH �/ D 0 for eachH 2 I, and the exact sequence reduces to

H1.F;Z/ �!
Y

ŒH�2I

H1.Z;Z/ �! H2
VC.F;Z/:

Since the set I is in�nite and H1.F;Z/ is �nitely generated, it follows that
H2

VC
.F;Z/ ¤ 0. We conclude that cd.F / D 2.

Proof of Corollary 4. Clearly, if G Š Z then cd.G/ D 0. Let us suppose now
that G is not cyclic. By Corollary 3, it follows that cd.G/ � 3. If G con-
tains a subgroup isomorphic to Z

2 then cd.G/ D 3, since cd.Z2/ D 3 (see
e.g. [34, 5.21]).

Suppose G does not contain a subgroup isomorphic to Z
2. By de�nition,

G acts on a tree T with in�nite cyclic edge and vertex stabilizers. Let H be an
in�nite cyclic subgroup ofG generated by a hyperbolic element h ofG. By Propo-
sition 24 in [39], the axis of h coincides with the axis of hi , for each i � 1. Using
this fact, it is not di�cult to check that NG ŒH � acts on the axis of h. As in the
proof of Proposition 4.4, the action of NG ŒH � on the axis of h yields a short exact
sequence

1 �! N �! NG ŒH � �! Q �! 1

such thatN is a subgroup ofZ andQ is an in�nite subgroup of the in�nite dihedral
group. Since G does not contain a subgroup isomorphic to Z

2, this implies that
N is trivial. Since G is torsion-free, it follows that NG ŒH � Š Z.
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Let M be a right OVCG-module an let TR be the family of G containing
only the trivial subgroup. By Proposition 3.3, we have the following long exact
sequence

H1
VC.G;M/ �!

�

Y

ŒH�2I

H1
TRŒH�.NG ŒH �;M/

�

˚ H1.G;M/

�!
Y

ŒH�2I

H1.NG ŒH �;M/

�! H2
VC.G;M/

�!
�

Y

ŒH�2I

H2
TRŒH�.NG ŒH �;M/

�

˚ H2.G;M/

�!
Y

ŒH�2I

H2.NG ŒH �;M/

�! H3
VC.G;M/

�!
�

Y

ŒH�2I

H3
TRŒH�.NG ŒH �;M/

�

˚ H3.G;M/

�!
Y

ŒH�2I

H3.NG ŒH �;M/:

By Lemma 5.1, the set I contains exactly one element ŒK� such that K is gen-
erated by an elliptic element. Also, by the same lemma, we have NG ŒK� D G.
Moreover, the family TRŒK� is the same as the family of all cyclic groups gener-
ated by elliptic elements of G, and cdTRŒK�G � 1 because the tree T is a model
for ETRŒK�G. If H is generated by a hyperbolic element, then NG ŒH � Š Z and
hence cdTRŒH�NG ŒH � D 0. Combining all these facts, the long exact sequence
reduces to

H1
VC.G;M/ �! H1.G;M/˚ H1

TRŒK�.G;M/

�! H1.G;M/˚
Y

ŒH�2I0

H1.Z;M/

�! H2
VC.G;M/

�! H2.G;M/

Id
�! H2.G;M/

�! H3
VC.G;M/

�! 0;

(3)

where K is generated by an elliptic element of G and I0 D I X ŒK�. �is implies
that H3

VC
.G;M/ D 0 for every M and hence cd.G/ � 2.
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By Corollary 2 of [27], the second derived subgroup of G is a free group F .
If F is non-abelian, then G contains a �nitely generated non-abelian free group
and hence cd.G/ D 2, by Lemma 5.2. If F is abelian, thenG is a solvable group of
cohomological dimension 2. Since G is a �nitely generated non-cyclic group that
does not contain Z

2, we conclude from [23, �eorem 5] that G is isomorphic to
a solvable Baumslag–Solitar group BS.1; n/, with n ¤ ˙1. Now, �eorem 5.20
of [21] implies that cd.G/ D 2 and �nishes the proof. Let us give a proof of this
fact that is self-contained.

It is well-known that G can be written as a semi-direct product ZŒ 1
n
�ÌZ. Here

the generator t of Z acts on ZŒ 1
n
� as multiplication by n. Setting M as the trivial

module Z, we obtain from (3) the exact sequence

H1.G;Z/˚ H1
TRŒK�.G;Z/

f
�! H1.G;Z/˚

Y

ŒH�2I0

H1.Z;Z/ �! H2
VC.G;Z/:

Note that in this exact sequence, f maps H1
TRŒK�

.G;Z/ into H1.G;Z/ Š Z.
Now, if H is an in�nite cyclic subgroup of G generated by an element h of G
that is not contained in ZŒ 1

n
�, then one veri�es directly or by Lemma 3.1 of [12]

that NG ŒH � Š Z. �erefore, by Lemma 5.1, h is a hyperbolic element of G.
In particular, the subgroups H1 D h.0; t /i and H2 D h.1; t /i of G are generated
by hyperbolic elements. Moreover, one can check that ŒgH1� ¤ ŒH2� for all g 2 G.
�is shows that I0 contains at least two element. �erefore, the map f cannot be
surjective and we conclude that H2

VC
.G;Z/ ¤ 0. �erefore, cd.G/ D 2.

5.3. Graph product of groups. Instead of looking at graphs of groups we can,
more generally, consider Hae�iger’s complexes of groups (see [24] and [7]). How-
ever, one needs to be more careful in this context. In contrast to the one-dimen-
sional case, which is the graph of groups, it is not guaranteed that a complex of
groups gives rise to an action of its direct limit on a CAT.0/-space. We consider
an instance where one does obtain such an action, namely for graph products of
groups.

Let L be a simplicial graph with �nite vertex set S and let ¹Gsºs2S be a col-
lection of countable groups indexed by S . �e associated graph productGL is the
group generated by the elements of the vertex groups Gs, subject to the relations
in Gs and the additional relations that Œgs ; gt � D e if gs 2 Gs, gt 2 Gt and s and t
are joined by an edge in L. LetK be the �ag complex associated to L and let Q be
the poset of those subsets of S that span a simplex in K, including the empty set.
Associate to each � D .s1; : : : ; sr/ 2 Q, the group G� D

Qr
iD1Gsr

. As explained
in [7, II.12.30(2)] (see also [10] and [35]), these data, together with the obvious in-
clusion maps, form a simple complex of groups G.Q/ over the poset Q with direct
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limit 1G.Q/ D GL. Moreover, GL acts isometrically, cocompactly and cellularly
on a complete CAT.0/ piecewise Euclidean cubical complex XGL

, with stabiliz-
ers isomorphic to subgroups of the local groups G� , � 2 Q. Moreover, XGL

is
separable, G acts discretely on XGL

because it acts cellularly, and the topological
dimension of XGL

is dim.K/C 1. By �eorem B, we obtain the following.

Corollary 5.3. Let L be a simplicial graph with a �nite vertex set S and an as-
sociated �ag complex of dimension n. Let ¹Gsºs2S be a collection of countable
groups indexed by the vertex set S and let GL be the associated graph product.
By considering the action of GL on XGL

, one obtains

cd.GL/ � max¹st.GL; XGL
/; vst.GL; XGL

/C 1º C nC 1:

5.4. Groups acting on Euclidean buildings. Euclidean buildings or rather their
geometric realizations provide nice examples of �nite dimensional complete
CAT.0/-spaces (see [10] or [1, §11.2]). In fact, these objects have a rigid metric
structure as they are CAT.0/-polyhedral cell complexes with �nitely many shapes
of cells.

In what follows, we consider groups that act on Euclidean buildings, assuming
always that such an action is cellular and isometric.

Corollary 5.4. Let G be a discrete group that acts on a separable Euclidean
building Xi for each i D 1; : : : ; r . Denote X D X1 � : : : � Xr and by n the
dimension of X . Let G act diagonally on X . Let F be a family of subgroups of G
such that XH ¤ ; for allH 2 F. Suppose that there exists an integer d � 0 such
that for each x 2 X one has cdF\Gx

.Gx/ � d . �en

cdF.G/ � nC d and cd.G/ � max¹st.G;X/; vst.G;X/C 1º C n:

Proof. Note that X is a separable CAT.0/-metric space of topological dimension
at most n. Also, by a result of Bridson (see [5]), G acts by semi-simple isometries
on X . So, the assertions follow directly from �eorems A and B.

As we shall prove next, this result has an immediate application to Bredon
cohomological dimension of linear groups of positive characteristic.

Proof of Corollary 5. �e strategy of the proof is to obtain an action ofG as in the
statement of the previous corollary on a �nite product of buildings. A construction
of Cornick and Kropholler (see [9, §8]) which is the positive characteristic ver-
sion of the original construction of Alperin and Shalen (see [2]) does exactly this.
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We brie�y outline their argument in order to point out that the product of buildings
in this construction is a separable space.

Since the general linear group GLn.F / is isomorphic to a subgroup of
SLnC1.F /, we can assume that G is a subgroup of SLn.F /. Let S be the sub-
ring of F generated by the matrix entries of a �nite set of generators of G and
their inverses. �enG embeds into SLn.S/. So, without loss of generality, we can
assume that G D SLn.S/. �e ring S is a �nitely generated domain and hence it
is integral over a polynomial ring Fp Œx1; : : : ; xs�. Let E be the fraction �eld of S .
It follows that there are �nitely many discrete valuation rings Ovi

of E, 1 � i � r

such that S \
Tr

iD1 Ovi
is contained in the algebraic closure L of Fp in E and L

is �nite (see [9, Proposition 8.4]).
Let yEi denote the completion ofE with respect to the valuation vi and consider

for each 1 � i � r the group SLn. yEi /. �ere is a Euclidean building Xi of dimen-
sion n � 1 associated to SLn. yEi / such that this group acts chamber transitively
on Xi and the restriction of the action to G has vertex stabilizers conjugate to a
subgroup of SLn.Ovi

/ (see [1, §6.9, §11.8.6], [9, page 61]). It follows that G acts
diagonally on the product X D X1 � : : : � Xr such that each stabilizer subgroup
Gx of a vertex x of X lies inside

SLn.S/ \

r
\

iD1

a�1
i SLn.Ovi

/ai ; for ai 2 SLn.E/; i D 1; : : : ; r:

Lemmas 8.6 and 8.7 of [9] entail that Gx is locally �nite. For each 1 � i � r ,
let †i be the fundamental chamber of Xi . Since Xi is a continuous image of the
separable space SLn. yEi / �†i , it is itself separable.

Hence, we obtain an action of G on a product X of Euclidean buildings
with countable locally �nite stabilizers and moreover, X is a separable space.
Since countable locally �nite groups have Bredon cohomological dimension for
the family of �nite subgroups at most 1, by Corollary 2, we deduce that
cd.G/ � 1C r.n� 1/.

Note that vst.G;X/ � 1 because a �nite extension of a locally �nite group is
again locally �nite. �erefore, Corollary 5.4 implies cd.G/ � 2C r.n� 1/.

Remark 5.5. Observe from the proof above that for any �nitely generated domain
S of positive characteristic p and for a positive integer n, one has

cd.SLn.S// � 1C r.n� 1/ and cd.SLn.S// � 2C r.n� 1/

where r is the minimum number of valuations vi such that S \
Tr

iD1 Ovi
is con-

tained in the algebraic closure of Fp in the fraction �eld of S .
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5.5. Mapping class groups. Let Sg be a closed, connected and oriented surface
of genus g and denote by HomeoC.Sg/ the group of orientation preserving home-
omorphisms of Sg . Equipped with the compact-open topology, HomeoC.Sg/ be-
comes a topological group. �e mapping class group of the surface Sg , denoted
Mod.Sg/, is by de�nition the discrete group

Mod.Sg/ D HomeoC.Sg/=Homeo0.Sg/;

where Homeo0.Sg/ is the identity component of HomeoC.Sg/. Equivalently, one
can say that Mod.Sg/ is the group of isotopy classes of orientation preserving
homeomorphisms of Sg . Mapping class groups are known to be virtually torsion-
free, residually �nite and �nitely presented. �e mapping class group of the
2-sphere is trivial. �e mapping class group of the torus is SL.2;Z/ which is
isomorphic to the amalgamated free product Z4 �Z2

Z6. So, for instance, by
Lemma 5.2 and Corollary 3, it follows that cd.SL.2;Z// D 2.

From now on, we assume that g � 2. A marked hyperbolic structure on Sg

is a pair .X; '/, where X is a closed, connected and orientable surface with a
hyperbolic metric and ' W Sg ! X is a di�eomorphism. �e map ' is called a
marking. Two marked hyperbolic structures .X; '/ and .X 0; '0/ on Sg are called
equivalent if there exists an isometry � W X ! X 0 such that �ı' is homotopic to '0.
�e Teichmüller spaceT.Sg/ ofSg is by de�nition the space of equivalence classes
of marked hyperbolic structures on Sg . �e space T.Sg/ can be given a natural
topology under which it is homeomorphic to R

6g�6. It is known that the mapping
class group Mod.Sg/ acts properly on T.Sg/ by precomposing markings with dif-
feomorphisms (every self-homeomorphism of Sg is isotopic to a di�eomorphism
(see [17, 1.13])). Moreover, T.Sg/ has an equivariant triangulation making it a
model for EMod.Sg/ (see [36] and the references therein). We refer the reader
to [17] for more details about stated and other results on mapping class groups and
Teichmüller space.

�ere are several metrics that can be given to T.Sg/ that all give rise to the
same topology. However, the metric properties of T.Sg/ under these di�erent
metrics vary considerably. �e metric we will be interested in is the so-called
Weip–Petersson metric dWP. Equipped with the Weip–Petersson metric, the
Teichmüller space T.Sg/ is a non-complete separable CAT.0/-space of dimen-
sion 6g� 6, on which Mod.Sg/ acts by isometries. �e completion of T.Sg/ with
respect to the Weip–Petersson metric is the augmented Teichmüller space xT.Sg/.
Roughly stated, the augmented Teichmüller space is a strati�ed space whose strata
are Teichmüller spaces associated to nodal surfaces obtained by shrinking essen-
tial simple closed loops on Sg to pairs of cusps. It follows that .xT.Sg/; dWP/ is a
complete separable CAT.0/-space of dimension 6g�6 on which Mod.Sg/ acts by
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isometries. Although xT.Sg/ is not locally compact, the quotient space of xT.Sg/

obtained by modding out the action of Mod.Sg/ is compact. It is the so-called
Deligne-Mumford compacti�cation of the moduli space of curves. We refer to the
survey papers [41] and [42] for the de�nition of the Weip–Petersson metric and
the augmented Teichmüller space, and for the references concerning the properties
stated above.

Proof of Corollary 6. As we already mentioned, the mapping class group
Mod.Sg/ acts by isometries on the augmented Teichmüller space xT.Sg/, which
is a complete separable CAT.0/-space of dimension 6g � 6. Moreover, according
to �eorem A in [6] the action is by semi-simple isometries. We claim that this
action is, in addition, discrete and that the isotropy groups are �nitely generated
virtually abelian of Hirsch length at most 3g�3. Assuming these claims, the result
follows from Corollary 3(iii).

Now, let us prove our claims. Since Mod.Sg/ acts properly on T.Sg/, all orbits
of points in T.Sg/ are discrete and the stablizers of all points in T.Sg/ are �nite.
It remains to consider points in xT.Sg/ X T.Sg/. �is space is a union of strata
S� corresponding to sets � of free homotopy classes of disjoint essential simple
closed curves on Sg . Let x 2 S� and let �� be the group generated by the Dehn
twists de�ned by the curves in �. �e group �� is free abelian of rank at most
3g � 3 and �xes S� pointwise. Hence, �� is contained in the point stabilizers of
x. Moreover, Corollary 2.7 in [25] states that there exists an open neighbourhood
U � xT.Sg/ of x such that the set

¹g 2 Mod.Sg/ j g � U \ U ¤ ;º

is a �nite union of cosets of�� . �is implies that the point stablizer of x contains
�� as a �nite index subgroup. Also, it is not di�cult to see that we can now
choose an open ball B.x; "/ � U such that

g � B.x; "/ \ B.x; "/ ¤ ; () g 2 Mod.Sg/x:

Hence, the orbit of x is discrete. �is completes the proof.
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