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Actions of groups of homeomorphisms on one-manifolds
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Abstract. In this article, we describe all the group morphisms from the group of compactly-
supported homeomorphisms isotopic to the identity of a manifold to the group of homeo-
morphisms of the real line or of the circle.
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1. Introduction

Fix a connected manifold M (without boundary). For an integer r > 0,
we denote by Diff” (M) the group of C”-diffeomorphisms of M. When r = 0,
this group will also be denoted by Homeo(M ). For a homeomorphism f of M,
the support of f is the closure of the set:

{xeM, f(x)#x}.

We say that a homeomorphism f in Diff” (M) with compact support is compactly
isotopic to the identity if there exists a C” map

F:Mx[0,1]— M

such that
(1) forany ¢ € [0, 1], F(-,¢) belongs to Dift" (M);

(2) there exists a compact subset K C M such that, for any ¢ € [0, 1], the support
of the diffeomorphism F(-, ¢) is contained in K;

(3) F(-0)=Idy and F(-, 1) = f.

! Supported by the Fondation Mathématique Jacques Hadamard.
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We denote by Diff(M) (Homeoo (M) if r = 0) the group of compactly supported
C7-diffeomorphisms of M which are compactly isotopic to the identity. The main
reason why we are considering these groups is the following difficult theorem by
Fisher, Mather and Thurston (see [1], [2], [5], [10], and [11]).

Theorem (Fisher, Mather, and Thurston). Let M be a connected manifold.
The group Diffy(M) is simple if r # dim(M) + 1.

This theorem will be used throughout the article. It implies for instance that
any group morphism from a group of the form Diff{, (M) to another group is either
one-to-one or trivial: the kernel of such a morphism is a normal subgroup of
Diff(M) and hence is either trivial or the whole group. As an application of
this theorem, let us prove that any group morphism Homeog(T?) — Homeo(R)
is trivial. Notice that the group Homeog(T?) contains finite order elements (the
rational translations) whereas the group of homeomorphisms of the real line does
not. Hence, a finite order element has to be sent to the identity under such a
morphism which is not one-to-one. Therefore, it is trivial.

In [7], Etienne Ghys asked whether the following statement was true: if M
and N are two closed manifolds and if there exists a non-trivial morphism
Diff°(M) — Diffg°(N), then dim(M) < dim(N). In [9], Kathryn Mann
proved the following theorem. Take a connected manifold M of dimension greater
than 1 and a one-dimensional connected manifold N. Then any morphism
Diffg°(M) — Diffy°(N) is trivial: she answers Ghys’s question in the case where
the manifold N is one-dimensional. Mann also describes all the group morphisms
Diffg(M) — Diffg(N) for r > 3 when M as well as N are one-dimensional.
The techniques involved in the proofs of these theorems are Kopell’s lemma
(see [16] Theorem 4.1.1) and Szekeres’s theorem (see [16] Theorem 4.1.11). These
theorems are valid only for a regularity at least C2. In this article, we prove similar
results in the case of a C? regularity. The techniques used are different.

Theorem 1.1. Let M be a connected manifold of dimension greater than 2 and let
N be a connected one-manifold. Then any group morphism

Homeog (M) — Homeo(N)
is trivial.

The case where the manifold M is one-dimensional is also well-understood.
Using bounded cohomology techniques, Matsumoto proved the following the-
orem (see [13] Theorem 5.3) which is also a key point in the proof of our theorems.
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Theorem (Matsumoto). Every group morphism
Homeog($') — Homeog(S!)
is a conjugation by a homeomorphism of the circle.

Notice that any group morphism Homeog(S') — Homeo(RR) is trivial. Recall
that, as the group Homeog($') is simple, such a group morphism is either one-to-
one or trivial. However, the group Homeog($') contains torsion elements whereas
the group Homeo(R) does not: such a morphism cannot be one-to-one.

It remains to study the case of a morphism defined on Homeog (R).

Theorem 1.2. Let N be a connected one-manifold. For any group morphism
¢ : Homeog(R) — Homeo(N),

there exists a closed set K C N such that
(1) the set K is pointwise fixed under any homeomorphism in ¢(Homeog(RR));

(2) for any connected component I of N — K, there exists a homeomorphism
hi: R— 1

such that
(i = hr fhy', forall f € Homeop(R).

Notice that the set K has to be the set of points which are fixed under every
element in ¢(Homeog(R)).

The following remark will be used repeatedly in the proof of Theorems 1.1
and 1.2. Consider a nontrivial morphism ¢ from a group G to the group
Homeoy (R). Denote by F the closed set of points of the real line which are
fixed under every element in ¢(G). Take a connected component / of R — F.
Any homeomorphism in ¢(G) preserves this connected component /. Consider
then the morphism

G —> Homeo (1),

g— (@)
Notice that the image of this morphism has no global fixed point and that the
interval [ is homeomorphic to the real line. We have just seen that any morphism
G — Homeo (R) induces by restriction a morphism without global fixed point.
Hence, to prove that any morphism G — Homeo+ (R) is trivial, it suffices to prove
that any such morphism has a fixed point.
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2. Proofs of Theorems 1.1 and 1.2

Fix integers d > k > 0. We will call embedded k-dimensional ball of R4 the
image of the closed unit ball of R¥ = R x {O}d_k c R? under a homeomor-
phism of R¢. Take an embedded k-dimensional ball D C R (which is a single
point if & = 0). We denote by G% the group of homeomorphisms of R? — D with
compact support which are compactly isotopic to the identity. As any homeomor-
phism in the group Gg is equal to the identity near the embedded ball D, it can
be continuously extended by the identity on the ball D. Hence the group G % can
be seen as a subgroup of Homeog (R¥).

Finally, if G denotes a subgroup of Homeo(R¢), a point p € R? is said to
be fixed under the group G if it is fixed under all the elements of this group.
We denote by Fix(G) the (closed) set of fixed points of G.

The theorems will be deduced from the following propositions. The two first
propositions will be proved respectively in Sections 3 and 4.

Proposition 2.1. Let d > 0 and let ¢: Homeog(R¢) — Homeo(R) be a group
morphism. Suppose that no point of the real line is fixed under the group
@(Homeoy(R¥)). Then, for any embedded (d — 1)-dimensional ball D C R?,
the group go(Gﬁ) admits at most one fixed point.

Proposition 2.2. Let d > 0 and
¢: Homeog(R?) —> Homeo(R)

be a group morphism. Then, for any point p in R¢, the group go(Gg ) admits at
least one fixed point.

Proposition 2.3. Let d > 0. For any group morphism
¥ : Homeog(R?) — Homeo(S1),

the group ¥ (Homeoo(R%)) has a fixed point.

Proof of Proposition 2.3. Recall that the group Homeog(R?) is infinite and sim-
ple and that the group Homeo(S$')/Homeog($!) is isomorphic to Z/27Z.
Hence any morphism Homeogy (R?) — Homeo(S')/Homeog($") is trivial. There-
fore, the image of a morphism Homeog(R¢) — Homeo($') is contained in
Homeog(S!).
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The rest of the proof of this proposition uses a result by Ghys. Ghys associates
to any morphism from a group G to the group Homeog(S') an element of the
second bounded cohomology group H bz(G, 7)) of the discrete group G, which we
call the bounded Euler class of this action of G. This class vanishes if and only if
the action has a global fixed point on the circle. For some more background about
the bounded cohomology of groups and the bounded Euler class of a group acting
on a circle, see Section 6 in [6].

By a theorem by Matsumoto and Morita (see Theorem 3.1 in [14]):

H?(Homeoo(R?), Z) = {0}.

Therefore, the bounded Euler class of a morphism Homeog(R¢) — Homeog ($')
vanishes: this action has a fixed point. U

Proof of Theorem 1.1. Let d = dim(M). The theorem will be deduced from the
following lemma.

Lemma 2.4. For any d > 1, any group morphism Homeoy(R?) — Homeo(R)
is trivial.

Using Proposition 2.3, we obtain the following immediate corollary.

Corollary 2.5. Foranyd > 1, any group morphism Homeog(R¢) — Homeo(S')
is trivial.

Let us see why this lemma and this corollary imply the theorem. Consider a
morphism Homeoy(M) — Homeoy(N). Take an open set U C M homeomor-
phic to R? and let us denote by Homeoo(U) the subgroup of Homeog(M) con-
sisting of homeomorphisms supported in U. By Lemma 2.4 and Corollary 2.5,
the restriction of this morphism to the subgroup Homeog (V) is trivial. Moreover,
as the group Homeoy (M) is simple, such a group morphism is either one-to-one
or trivial: it is necessarily trivial in this case. O

Proof of Lemma 2.4. Take a group morphism ¢: Homeog(R¢) — Homeo(R).
Suppose by contradiction that this morphism is nontrivial. Replacing if necessary
R with a connected component of the complement of the closed set
Fix(¢(Homeog (R9))), we can suppose that the group ¢(Homeog(R¢)) has no
fixed points.

Claim 2.6. For any points p; # p, in RY,

Fix(¢(G¢ ) N Fix(p(G2))) = 0.
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Proof. The proof of this claim requires the following lemma which will be proved
afterwards.

Lemma 2.7. Letd > 1 andd > k > 0 be integers. Let D1 and D, be two
disjoint embedded k-dimensional balls of R¢. Then, for any homeomorphism f
in Homeoy(R?), there exist homeomorphisms fi, f3 in Ggl and f> in G%z such
that

f=nhrfs
Take two points p; and p, in R¢. Suppose by contradiction that

Fix(¢(Gy,)) N Fix(¢(Gy,)) # 0.

By Lemma 2.7 applied to the O-dimensional balls {p;} and {p,}, a point in this
set is a fixed point of the group ¢(Homeoy(R?)), a contradiction. ]

By Proposition 2.2, the sets Fix(go(G;f )), for p € R? are nonempty.
We just saw that they are pairwise disjoint. Recall that, for any embedded
(d — 1)-dimensional ball D, the set Fix(go(Gﬁ)) contains the union of the sets
Fix(go(GI‘f )) over the points p in the closed set D. Hence, this set has infinitely
many points as d > 2, a contradiction with Proposition 2.1. U

Proof of Lemma 2.7. To, prove this lemma, we use the following theorem by Brown
and Gluck (see Theorem 7.1 in [3]), which is also a consequence of the annulus
theorem by Kirby and Quinn (see [8] and [17]).

Theorem (Brown—Gluck). Let d > 1 and let B1 and B, be two d-dimensional
balls of R? such that the ball B, is contained in the interior of B,. Let h be any
homeomorphism in Homeoo (R¥) such that the ball h(By) is also contained in the
interior of B,. Then there exists a homeomorphism h in Homeoy(R%) with the
Jollowing properties:

(1) the homeomorphism h is supported in B;
2 ;llBl = hp,.
Take a homeomorphism f in Homeog(R?).
Claim 2.8. There exists a homeomorphism f Ggl such that f;™' sends the

k-dimensional embedded ball f(D1) to a k-dimensional embedded ball which
lies in the same connected component of R — D, as the embedded ball D .
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Notice that, if d # 1, the set R? — D, is connected. In the case d = 1, this
lemma amounts to finding a homeomorphism which sends the ball £ (D) to a ball
which is disjoint from D5.

Proof. First suppose that d = 1. If sup(D1) < inf(D,), take as f;~! any home-
omorphism in Homeog(R¢) supported in (sup(D1), +0o0) which sends the point
sup(h(Dy)) to a point x < inf(Dy). If sup(D2) < inf(D;), take as f;~! any
homeomorphism in Homeog(R?) supported in (—oo, inf(D;)) which sends the
point inf(4(D1)) to a point x > inf(D,).

Now suppose that d > 2. It is not difficult to find a d-dimensional embedded
ball B which contains the k-dimensional ball D, and a point p outside f(D;) in
its interior: using the definition of an embedded ball, find first a d-dimensional
By which contains D, in its interior. If this ball is not contained in f(D;) take
B = By. Otherwise take any point p which does not belongto f(D) and consider
a tubular neighbourhood T of a path in R¢ — D which joins the ball By and the
point p to construct the ball B out of 7" and B.

Changing coordinates if necessary, we can suppose that p = 0 € R? and that
the ball B is the unit ball. Consider any vector field X of R¢ which is supported
in B and which is equal to x +> x on a ball centered at O containing D,. Let I be
a neighbourhood of the point 0 which is disjoint from the embedded ball f (D).
Denote by ¢} the time ¢ of the flow of the vector field X . Observe that there exists
T > O such that ¢f (B — V) N D, = 0. Hence ¢f (f(D1)) N Dy = @. It suffices
to take f;7! = ¢l O

Take a d-dimensional ball B, with the following properties:
(1) it contains Dy and f; ! f(D1);
(2) itis disjoint from the embedded ball D.

Consider a d-dimensional ball B; contained in the interior of the embedded ball
B, such that ;! f(By) is contained in the interior of B,. Apply the theorem by
Brown and Gluck above with the balls By, B, and the homeomorphism
h = f{! f: there exists a homeomorphism f; in G$2 which is equal to f;7! f in
a neighbourhood of the k-dimensional embedded ball D;.

Notice that the homeomorphism f2—1 S f pointwise fixes a neighbourhood
of the embedded ball D;. However, its restriction to R¢ — D, might not be com-
pactly isotopic to the identity. Nevertheless, this homeomorphism of R? — D is
compactly isotopic to a homeomorphism 7 whose support is contained in a small
neighbourhood of the embedded ball D; and is disjoint from the embedded ball
D5: in order to see it, conjugate the homeomorphism fz_l St f with the flow at
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a sufficiently large time of a vector field for which a small neighbourhood of the
embedded ball D; is an attractor.

Let us check that the homeomorphism nga_p, is compactly isotopic to the
identity. To prove it, it suffices to conjugate this homeomorphism by a continuous
family of homeomorphisms (4;);e[0,+00) Supported in R? — D, such that

(1) hog = 1d and

(2) the family of compact sets (%, (supp(n))):>o0 converges to a point for the Haus-
dorff topology as t — +oc.

Hence the continuous family of homeomorphisms &, nh; ! converges to the iden-
tity as t — 4oo (this the well-known Alexander trick).
To finish the proof of the lemma, it suffices to take

o= fAz’]
and

=LA O

Proof of Theorem 1.2. Let ¢: Homeog(R) — Homeo(N) be a nontrivial group
morphism. By Proposition 2.3, we can suppose that the manifold o is the real line
RR. Replacing R with a connected component of the complement of the closed set
Fix(¢(Homeog(R))) if necessary, we can suppose that the group ¢(Homeog(R))
has no fixed point (see the remark at the end of the introduction). Recall that
the group Homeog (R) is simple. Hence any morphism Homeoy(R) — Z/27Z is
trivial. Thus, any element of the group ¢(Homeog(RR)) preserves the orientation
of R.

By Propositions 2.1 and 2.2, for any real number x, the group ¢(G}) has a
unique fixed point 2 (x). Take a homeomorphism f in Homeoy(RR) which sends
a point x in R to a point y in R. Then fG, f~' = G and, taking the image
under ¢, p(f)e(Gx)e(f)~ = ¢(Gy). Hence ¢(f)(Fix(¢(Gy))) = Fix(p(Gy)).
Therefore, for any homeomorphism f in Homeog(R), ¢(f)h = hf.

Let us prove that the map % is one-to-one. Suppose by contradiction that there
exist real numbers x # y such that A(x) = h(y). The point /(x) is fixed under
the groups ¢(G,) and ¢(G}). However, the groups G| and G generate the group
Homeog(R) by Lemma 2.7. Therefore, the point 4(x) is fixed under the group
¢(Homeog(RR)), a contradiction.

Now we prove that the map # is either strictly increasing or strictly decreasing.
Fix two points xo < yg of the real line. For any two points x < y of the real line,
let us consider a homeomorphism f5 , in Homeog (R) such that f; ,(x¢) = x and
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fry(¥0) = y. As ¢(fx.y)h = hfx,y, the homeomorphism ¢( fy,y) sends the or-
dered pair (h(xo), h(yo)) to the ordered pair (h(x), #(y)). As the homeomorphism
@(fx,y) is strictly increasing:

h(x) <h(y) < h(xo) < h(yo)
and

h(x) > h(y) <= h(xo) > h(yo).

Hence the map # is either strictly increasing or strictly decreasing.

Now, it remains to prove that the map /% is onto to complete the proof. Suppose
by contradiction that the map 4 is not onto. Notice that the set 2(R) is preserved
under the group ¢(Homeog (R)). If this set had a lower bound or an upper bound,
then the supremum of this set or the infimum of this set would provide a fixed
point for the group ¢(Homeoy(R)), a contradiction. This set has neither upper
bound nor lower bound. Let C be a connected component of the complement of
the set #(R). Replacing if necessary 4 by —h and the morphism ¢ by its conjugate
under —Id, we can suppose that the map # is increasing. Let us denote by xg
the supremum of the set of points x such that the real number /(x) is lower than
any point in the interval C. Then the point /(x¢) is necessarily in the closure
of C: otherwise, there would exist an interval in the complement of 4 (RR) which
strictly contains the interval C. Hence the point 2(x¢) is either the infimum or
the supremum of the interval C. As the proof is analogous in these two cases, we
suppose from now on that the point /(x¢) is the supremum of the interval C.

Choose, for each couple (z1, z2) of real numbers, a homeomorphism g, -, in
Homeog (R) which sends the point z; to the point z,. Then the sets gx,,»(C), for x
in R, are pairwise disjoint: they are pairwise distinct as their suprema are pairwise
distinct (the supremum of the set gx,,x(C) is the point #(x)). Moreover, those sets
do not contain any point of #(R) and the infima of those sets are accumulated by
points in A(IR). Hence, these sets are pairwise disjoint. Then the set C has neces-
sarily an empty interior as the topological space R is second-countable. Therefore
C = {h(xo)}, which is not possible. O

3. Proof of Proposition 2.1

Fix d > 0 and a group morphism ¢ : Homeoy(R?) — Homeo(RR). We want
to prove that, for any (d — 1)-dimensional embedded ball D, the group go(Gﬁ) has
at most one global fixed point.
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The proof of the proposition is similar to the proofs of Lemmas 3.6 and 3.7
in [15]. For an embedded (d — 1)-dimensional ball D, let Fp = Fix(go(Gﬁ)). Let
us prove that these sets are pairwise homeomorphic. Take two embedded (d — 1)-
dimensional balls D an D’ and take a homeomorphism / in Homeoo (R¢) which
sends the set D onto D’. Observe that

hGEh~' = HE,
and that

e(Ne(GHph) ™ = p(HE)).
Therefore,

¢(h)(Fp) = Fp'.

In the case where these sets are all empty, there is nothing to prove. We suppose
in what follows that they are not empty.

Given two disjoint embedded (d — 1)-dimensional balls D and D’, Lemma 2.7
implies, as in the proof of Lemma 2.4,

Fp N Fp =40.

Lemma 3.1. Fix an embedded (d — 1)-dimensional ball Dy of R?. For any
connected component C of the complement of Fp,, there exists an embedded
(d — 1)-dimensional ball D disjoint from D such that the set Fp meets C.

Proof. Let (ai,az) be a connected component of the complement of Fp,.
It is possible that either a; = —o0 or a, = +o0. Consider a homeomorphism
e: R x R — R¥ such that e(B9~! x {0}) = Dy, where B4~ denotes the unit
closed ball in R?~!. For any real number x, let D, = e¢(B?~! x {x}). Given two
real x # y, take a homeomorphism 7, , in Homeoy(RR) which sends the point x
to the point y. Consider a homeomorphism 4 ,, such that the following property
is satisfied. The restriction of e/, ye ™' to B4~! x R is equal to the map

B4l xR — R4 x R,
(p7Z) > (p’ ”x,y(Z))-

Notice that, for any real numbers x and y, hx ,(Dx) = D,

Let us prove by contradiction that there exists a real number x # 0 such that
Fp. N (a1,a2) # ©. Suppose that, for any such embedded ball Dy,
Fp,. N (ai,az) = @. We claim that the open sets ¢(ho x)((a1,a2)) are pairwise
disjoint. It is not possible as there would be uncountably many pairwise disjoint
open intervals in R.
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Indeed, suppose by contradiction that there exists real numbers x # y such
that ¢(hox)((a1,az2)) N @(ho,y)((a1.az)) # @. Notice that the homeomorphism
ho_jcho,y and ho_j,ho,x send respectively the set Dy to sets of the form D, and
D, where z,z" € R. Hence, for i = 1,2, the homeomorphisms ¢(hg/0,y)
(respectively go(ho_j,hg, x)) sends the point a; € Fp, to apointin Fp_ (respectively
in Fp_,). By hypothesis, these points do not belong to (ay, az). Therefore

@(hg yhox) (a1, a2) = (a1, az)
or
@(hox)(ar,az) = @(ho,y)(ar,az).

But this last equality cannot hold as the real endpoints of the interval on the left-
hand side belong to Fp, and the real endpoints point of the interval on the right-
hand side belongs to Fp,. Moreover, we saw that these two closed sets were
disjoint, a contradiction. Ol

Lemma 3.2. Each set Fp contains only one point.

Proof. Suppose that there exists an embedded (d — 1)-dimensional ball D such
that the set Fp contains two points p; < p,. By Lemma 3.1, there exists an
embedded (d — 1)-dimensional ball D’ disjoint from D such that the set Fp- has a
common point with the open interval (p;, p,). Take a real number r < p;. Then,
for any homeomorphisms g; in Gp, g» in Gp’ and g3 in Gp,

9(g1) © 9(g2) 0 p(g3)(r) < pa.
By Lemma 2.7, this implies that the following inclusion holds:
{¢(8)(r). g € Homeoo(R?)} C (=00, pa].

The supremum of the left-hand set provides a fixed point for the action ¢, a con-
tradiction. O

4. Proof of Proposition 2.2

This proof uses the following lemmas. For a subgroup G of Homeog (R%), we
define the support Supp(G) of G as the closure of the set

{x € R?, there exists g € G, gx # x}.

Let Homeoz(R) = {f € Homeo(R), forall x € R, f(x + 1) = f(x) + 1}.
To prove Proposition 2.2, we need the following lemmas.
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Lemma 4.1. Let G and G’ be subgroups of the group Homeo (R) of orientation-
preserving homeomorphisms of the real line. Suppose that the following condi-
tions are satisfied.

(1) The groups G and G' are isomorphic to the group Homeoyz(R).

(2) The subgroups G and G’ of Homeo (R) commute: gg' = g'g forall g € G,
g €Gle.

Then Supp(G) C Fix(G’) and Supp(G’) C Fix(G).

Lemma 4.2. Let d > 0. Take any nonempty open subset U of R. Then there
exists a subgroup of Homeoy(R?) isomorphic to Homeoyz(R) which is supported
inU.

Lemma 4.1 will be proved in the next section. We now provide a proof of
Lemma 4.2.

Proof of Lemma 4.2. Take a closed ball B contained in U. Changing coordi-
nates if necessary, we can suppose that B is the unit closed ball in R?. Take
an orientation-preserving homeomorphism #: R — (—1, 1). For any orientation-
preserving homeomorphism f: R — R, we define the homeomorphism

An(f): R — R

in the following way.

(1) The homeomorphism Aj( f) is equal to the identity outside the interior of the
ball B.

(2) Forany (x1,x’) € R x R4~! nint(B):

() = (VIZToPho f o™ (s ).
V=T
The map A, defines an embedding of the group Homeot(R) into the group
Homeog(R¢). The image under Aj, of the group Homeoz(R) is a subgroup of
Homeoo(R?) which is supported in U. O

Let us complete now the proof of Proposition 2.2.

Proof of Proposition 2.2. Fix a point p in R¢. Take a closed ball B ¢ R? which
is centered at p. Let us prove that Fix(go(Gg)) £ 0.

Take a subgroup G, of Homeoo(R¢) which is isomorphic to Homeoz(R) and
supported in B. Such a subgroup exists by Lemma 4.2. This subgroup commutes
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with any subgroup G, of Homeog(R¢) which is isomorphic to Homeoz(R) and
supported outside B.

If the group ¢(Homeoo(R?)) admits a fixed point, there is nothing to prove.
Suppose that this group has no fixed point. As the group Homeog (R?) is simple,
the morphism ¢ is one-to-one. Moreover, any morphism Homeog(R¢) — 7 /27
is trivial: the morphism ¢ takes values in Homeo4 (RR). Hence the subgroups
¢(G1) and ¢(G,) of Homeo(RR) satisfy the hypothesis of Lemma 4.1. By this
lemma,

@ # Supp(¢(G1)) C Fix(¢(G2)).

Claim 4.3. The group G‘é is generated by the union of its subgroups isomorphic
to Homeoz(R).

This claim implies that

@ # Supp(¢(G1)) C Fix(p(G2)).

Proof. For d > 2, observe that the open set RY — B is connected. Hence, as
we recalled in the introduction, the group Gg is simple by a theorem by Fisher
(see [5]). The claim is a direct consequence of the simplicity of this group. In the
case where d = 1, the open set R — B has two connected components. Denote
by [a, b] the compact interval B. The inclusions of the groups Homeog ((—o0, @))
and Homeog((b, +00)) induce an isomorphism

Homeoy((—o0, @)) x Homeog ((b, +00)) —> Gg.

The simplicity of each factor of this decomposition implies the claim. O
Claim 4.4. The set FiX((p(Gg)) is compact.

Proof. Suppose by contradiction that there exists a sequence (a )xe of real num-
bers in Fix(<p(Gg)) which tends to +oo (if we suppose that it tends to —oo, we ob-
tain of course an analogous contradiction). Let us choose a closed ball B’ ¢ R?
which is disjoint from B. Observe that the subgroups Gg and Gg/ are conjugate
in Homeog (R?) by a homeomorphism which sends the ball B to the ball B’. Then
the subgroups @(Gg) and <p(Gg/) are conjugate in the group Homeo (R). Hence
the sets Fix(<p(Gg)) and Fix(p(G¢,)) are homeomorphic: there exists a sequence
(b )ken of elements in Fix(¢(G%,)) which tends to 4+o0. Take positive integers
ny, ny and n3 such that a,, < b,, < an,. Fix xo < a,,. We notice then that for
any homeomorphisms g; € G¢, g, € Gg, and g3 € Gg, the following inequality
is satisfied:

(819 (g2)9(g3)(x0) < ans.
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However, by Lemma 2.7, any element g in Homeog (]Rd ) can be written as a prod-
uct

g = 818243,

where g; and g3 belong to Gg and g, belongs to Gg/. The proof of this fact is
similar to that of Lemma 2.7. Therefore,

{p(2)(x0). & € Homeog(R9)} C (=00, ap,].

The greatest element of the left-hand set is a fixed point of the image of ¢: this is
not possible as this image was supposed to have no fixed point. U

Observe that the group go(GI‘f ) is the union of its subgroup of the form cp(Gg/),
with B’ varying over the set B, of closed balls centered at the point p. By com-
pactness, the set

Fix(p(G))) = (] Fix(G§)
B’eB,

is nonempty. Proposition 2.2 is proved. U

5. Proof of Lemma 4.1

We start this section by recalling some facts about the group Homeoz(RR)
of homeomorphisms of the real line which commute with integral translations.
Observe that the center of the group Homeoz(R) is the subgroup generated by
the translation x — x + 1. The quotient of this group by its center is the group
Homeog($!). The following lemma is classical.

Lemma 5.1. Any group morphism Homeoz(R) — Z or Homeoz(R) — Z/27
is trivial.

Proof of Lemma 5.1. Actually, any element in Homeoz(RR) can be written as a
product of commutators, i.e. elements of the form aba='h~!, "where a and b
belong to the group Homeoyz(RR). For an explicit construction of such a decom-
position, see Section 2 in [4]. |

Lemma 5.2. Let ¢ : Homeoz(R) — Homeo4 (R) be a group morphism. Denote
by F the closed set of fixed points of the group ¥ (Homeoz(R)). Then, for any
connected component K of the complement of F, there exists a homeomorphism

hg:R— K
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such that

v(f)x) = hth}I, forall f € Homeoz(R), x € K.

This lemma is similar to Matsumoto’s theorem about morphisms
Homeog($!) — Homeog(S!) (see introduction) and the proof of this lemma re-
lies heavily on Matsumoto’s theorem. Before proving this lemma, let us see how
it implies Lemma 4.1.

Proof of Lemma 4.1. Recall that we are given two subgroups G and G’ of
Homeo (R) isomorphic to the group Homeoz(R).

Let « (respectively «) be a generator of the center of G (respectively of G”).
Let Ay, = R — Fix(«) and A, = R — Fix(').

As the homeomorphisms « and o’ commute:

o' (Ae) = Aq.
Ol(Aa/) = Ay.

Claim 5.3. Take any connected component I of Ay and any connected component
I’ of Ay. Then the interval I and 1’ are disjoint.

This claim is proved below. Let us complete now the proof of Lemma 4.1.
By Lemma 5.2, 4, = Fix(G) and A, = Fix(G’). Hence, we have proved that
any connected component of the complement of Fix(G) is disjoint from the com-
plement of Fix(G’). Therefore Supp(G) C Fix(G’). We have also proved that
Supp(G’) C Fix(G). O

Claim 5.3 is a direct consequence of the three following claims.

Claim 5.4. Either I is contained in I', or I’ is contained in I, or I and I’ are
disjoint.

Claim 5.5. The interval I is not strictly contained in the interval I'.

Of course, the case where the interval I’ is strictly contained in / is symmetric
and cannot occur.

Claim 5.6. The interval I and I’ are distinct.

Proof of Claim 5.4. Suppose for a contradiction that the conclusion of this claim
does not hold. Changing the roles of @ and ' if necessary, we can suppose that the
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supremum b of I is contained in the open interval /" and the infimum a’ of I’ is
contained in the open interval /. Then either the sequence (a’* (b))~ converges
to the point a’ as k — +o0 or the sequence (o'~ (b))~ converges to the point
a’ as k — +o0. In any case, a sequence of points in A, converge to the point a’.
As the set Ay is closed, this means that the point a’ belongs to A,. This is not
possible as a’ belongs to I which is a connected component of the complement
of A, . |

Proof of Claim 5.5. Suppose for a contradiction that the interval / is strictly con-
tained in the interval I’. Let ~ be the equivalence relation defined on I’ by

x ~y < (thereexists k € Z, x = o’ (y)).

The topological space I’/ ~ is homeomorphic to a circle. By Lemma 5.2, the
group G’ preserves the interval I’. Notice that the group G’/ (') ~ Homeog(S')
acts on the circle I’/ ~. As the group G’ commutes with the homeomorphism «,
this action preserves the nonempty set (44 N 1")/ ~. As &’(Ay) = Aq, the points
of the interval [ are sent to points in the complement of A, under the iterates of
the homeomorphism «’. Hence the set (4, N I”)/ ~ is not equal to the whole cir-
cle I’/ ~. However, by Theorem 5.3 in [13] (see the remark below Theorem 1.2),
a non-trivial action of the group Homeoy($!) on a circle has no non-empty proper
invariant subset. Hence, the group G’/{’) acts trivially on the circle I’/ ~:
for any element B’ of G’, and any point x € I, there exists an integer k(x, ') € Z
such that B'(x) = «’*@*-#")(x). Fixing such a point x, we see that the map

G — 7,

B’ — k(x.B).
is a group morphism. Such a group morphism is trivial by Lemma 5.1. Therefore,
the group G’ acts trivially on the interval /', a contradiction. O

Proof of Claim 5.6. Suppose that I = [’. Take any element 8’ in G’. As the
homeomorphism B’ commutes with «, by Lemma 5.2, the homeomorphism g’
is equal to some element of G on /. As the homeomorphism 8’ commute with

The map k: G — Z is a nontrivial group morphism. But such a map cannot exist
by Lemma 5.1. O

It remains to prove Lemma 5.2.

Proof of Lemma 5.2. Denote by ¢ a generator of the center of Homeoz(R).
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Claim 5.7. The connected components of the complement of Fix(y (t)) are each
preserved by the group ¥ (Homeoz(R)). Moreover

Fix(y¥ (Homeoz(RR))) = Fix(¥(¢)).

Claim 5.8. Any action of the group Homeoz(R) on R without fixed points is
conjugate to the standard action.

It is clear that these two claims imply Lemma 5.2. U

Proof of Claim 5.77. The set Fix(y¥(¢)) is preserved under any element in
¥ (Homeoz(IR)), because any element of this group commutes with the homeo-
morphism v (¢). Moreover, any element in ¥ (Homeoyz(R)) preserves the orienta-
tion by Lemma 5.1. Hence the action ¥ induces an action of the group
Homeoz(R)/(t), which is isomorphic to Homeog(S!), on the set F = Fix(y (¢))
by increasing homeomorphisms. As the group Homeog(S') is simple, the in-
duced morphism from the group Homeog($!) to the group Homeo(F) of in-
creasing homeomorphisms of F is either one-to-one or trivial. However, the
group Homeog(S') contains some non-trivial finite order elements whereas the
group Homeo (F) does not: such a morphism is trivial. Hence any element of
the group ¥ (Homeoz(R)) fixes any point in Fix(y(¢)): any element of this group
preserves each connected component of the complement of Fix(v(¢)). O

Proof of Claim 5.8. We denote by ¢: Homeoz(R) — Homeo(R) a morphism
such that the group ¢(Homeoyz(RR)) of homeomorphisms of R has no fixed point.
By Claim 5.7, the homeomorphism ¢(¢) has no fixed point. Changing coordi-
nates if necessary, we can suppose that the homeomorphism ¢() is the translation
x > x + 1. The morphism ¢ induces an action ¢ of the group Homeoz(R)/(¢) ~
Homeog(S!) on the circle R/Z. This action is nontrivial: otherwise, there would
exist a nontrivial group morphism Homeoy($!) — Z. By the theorem by Mat-
sumoto that we recalled earlier (see the introduction of this article), there exists
a homeomorphism # of the circle R/Z such that, for any homeomorphism f in
Homeoyz(R)/(¢) (which can be canonically identified with Homeog(RR/7Z)):

@) =hfh".
Take alift1: R — R of h. For any integer n, denote by 7,, : R — R the translation

X + x + n. For any homeomorphism f in Homeoz(R), there exists an integer
n( f) such that

0(f) = Taunh fH".
However, the map n: Homeoz(R) — Z is a group morphism: it is trivial by
Lemma 5.1. This completes the proof of Claim 5.8. U
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