
Groups Geom. Dyn. 10 (2016), 45–63

DOI 10.4171/GGD/342

Groups, Geometry, and Dynamics

© European Mathematical Society

Actions of groups of homeomorphisms on one-manifolds

Emmanuel Militon1

Abstract. In this article, we describe all the group morphisms from the group of compactly-

supported homeomorphisms isotopic to the identity of a manifold to the group of homeo-

morphisms of the real line or of the circle.
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1. Introduction

Fix a connected manifold M (without boundary). For an integer r � 0,

we denote by Di�r.M/ the group of C r -di�eomorphisms of M . When r D 0,

this group will also be denoted by Homeo.M/. For a homeomorphism f of M ,

the support of f is the closure of the set:

¹x 2 M; f .x/ ¤ xº :

We say that a homeomorphism f in Di�r .M/ with compact support is compactly

isotopic to the identity if there exists a C r map

F W M � Œ0; 1� �! M

such that

(1) for any t 2 Œ0; 1�, F.�; t / belongs to Di�r.M/;

(2) there exists a compact subsetK � M such that, for any t 2 Œ0; 1�, the support

of the di�eomorphism F.�; t / is contained in K;

(3) F.�; 0/ D IdM and F.�; 1/ D f .

1 Supported by the Fondation Mathématique Jacques Hadamard.
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We denote by Di�r
0.M/ (Homeo0.M/ if r D 0) the group of compactly supported

C r -di�eomorphisms ofM which are compactly isotopic to the identity. �e main

reason why we are considering these groups is the following di�cult theorem by

Fisher, Mather and �urston (see [1], [2], [5], [10], and [11]).

�eorem (Fisher, Mather, and �urston). Let M be a connected manifold.

�e group Di�r
0.M/ is simple if r ¤ dim.M/C 1.

�is theorem will be used throughout the article. It implies for instance that
any group morphism from a group of the form Di�r

0.M/ to another group is either
one-to-one or trivial: the kernel of such a morphism is a normal subgroup of
Di�r

0.M/ and hence is either trivial or the whole group. As an application of
this theorem, let us prove that any group morphism Homeo0.T

2/ ! Homeo.R/
is trivial. Notice that the group Homeo0.T

2/ contains �nite order elements (the
rational translations) whereas the group of homeomorphisms of the real line does
not. Hence, a �nite order element has to be sent to the identity under such a
morphism which is not one-to-one. �erefore, it is trivial.

In [7], Étienne Ghys asked whether the following statement was true: if M
and N are two closed manifolds and if there exists a non-trivial morphism
Di�1

0 .M/ ! Di�1
0 .N /, then dim.M/ � dim.N /. In [9], Kathryn Mann

proved the following theorem. Take a connected manifoldM of dimension greater
than 1 and a one-dimensional connected manifold N . �en any morphism
Di�1

0 .M/ ! Di�1
0 .N / is trivial: she answers Ghys’s question in the case where

the manifoldN is one-dimensional. Mann also describes all the group morphisms
Di�r

0.M/ ! Di�r
0.N / for r � 3 when M as well as N are one-dimensional.

�e techniques involved in the proofs of these theorems are Kopell’s lemma
(see [16] �eorem 4.1.1) and Szekeres’s theorem (see [16] �eorem 4.1.11). �ese
theorems are valid only for a regularity at leastC 2. In this article, we prove similar
results in the case of a C 0 regularity. �e techniques used are di�erent.

�eorem 1.1. LetM be a connected manifold of dimension greater than 2 and let

N be a connected one-manifold. �en any group morphism

Homeo0.M/ �! Homeo.N /

is trivial.

�e case where the manifold M is one-dimensional is also well-understood.
Using bounded cohomology techniques, Matsumoto proved the following the-

orem (see [13] �eorem 5.3) which is also a key point in the proof of our theorems.
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�eorem (Matsumoto). Every group morphism

Homeo0.S
1/ �! Homeo0.S

1/

is a conjugation by a homeomorphism of the circle.

Notice that any group morphism Homeo0.S
1/ ! Homeo.R/ is trivial. Recall

that, as the group Homeo0.S
1/ is simple, such a group morphism is either one-to-

one or trivial. However, the group Homeo0.S
1/ contains torsion elements whereas

the group Homeo.R/ does not: such a morphism cannot be one-to-one.
It remains to study the case of a morphism de�ned on Homeo0.R/.

�eorem 1.2. Let N be a connected one-manifold. For any group morphism

' W Homeo0.R/ �! Homeo.N /;

there exists a closed set K � N such that

(1) the set K is pointwise �xed under any homeomorphism in '.Homeo0.R//I

(2) for any connected component I of N �K, there exists a homeomorphism

hI W R �! I

such that

'.f /jI D hIf h
�1
I ; for all f 2 Homeo0.R/:

Notice that the set K has to be the set of points which are �xed under every
element in '.Homeo0.R//.

�e following remark will be used repeatedly in the proof of �eorems 1.1
and 1.2. Consider a nontrivial morphism ' from a group G to the group
HomeoC.R/. Denote by F the closed set of points of the real line which are
�xed under every element in '.G/. Take a connected component I of R � F .
Any homeomorphism in '.G/ preserves this connected component I . Consider
then the morphism

G �! HomeoC.I /;

g 7�! '.g/jI :

Notice that the image of this morphism has no global �xed point and that the
interval I is homeomorphic to the real line. We have just seen that any morphism
G ! HomeoC.R/ induces by restriction a morphism without global �xed point.
Hence, to prove that any morphismG ! HomeoC.R/ is trivial, it su�ces to prove
that any such morphism has a �xed point.
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2. Proofs of �eorems 1.1 and 1.2

Fix integers d � k � 0. We will call embedded k-dimensional ball of Rd the
image of the closed unit ball of Rk D Rk � ¹0ºd�k � Rd under a homeomor-
phism of Rd . Take an embedded k-dimensional ball D � Rd (which is a single
point if k D 0). We denote by Gd

D the group of homeomorphisms of Rd �D with
compact support which are compactly isotopic to the identity. As any homeomor-
phism in the group Gd

D is equal to the identity near the embedded ball D, it can
be continuously extended by the identity on the ball D. Hence the group Gd

D can
be seen as a subgroup of Homeo0.R

d /.

Finally, if G denotes a subgroup of Homeo.Rd /, a point p 2 Rd is said to
be �xed under the group G if it is �xed under all the elements of this group.
We denote by Fix.G/ the (closed) set of �xed points of G.

�e theorems will be deduced from the following propositions. �e two �rst
propositions will be proved respectively in Sections 3 and 4.

Proposition 2.1. Let d > 0 and let ' W Homeo0.R
d / ! Homeo.R/ be a group

morphism. Suppose that no point of the real line is �xed under the group

'.Homeo0.R
d //. �en, for any embedded .d � 1/-dimensional ball D � Rd ,

the group '.Gd
D/ admits at most one �xed point.

Proposition 2.2. Let d > 0 and

' W Homeo0.R
d / �! Homeo.R/

be a group morphism. �en, for any point p in Rd , the group '.Gd
p / admits at

least one �xed point.

Proposition 2.3. Let d > 0. For any group morphism

 W Homeo0.R
d / �! Homeo.S1/;

the group  .Homeo0.R
d // has a �xed point.

Proof of Proposition 2.3. Recall that the group Homeo0.R
d / is in�nite and sim-

ple and that the group Homeo.S1/=Homeo0.S
1/ is isomorphic to Z=2Z.

Hence any morphism Homeo0.R
d / ! Homeo.S1/=Homeo0.S

1/ is trivial. �ere-
fore, the image of a morphism Homeo0.R

d / ! Homeo.S1/ is contained in
Homeo0.S

1/.



Actions of groups of homeomorphisms on one-manifolds 49

�e rest of the proof of this proposition uses a result by Ghys. Ghys associates
to any morphism from a group G to the group Homeo0.S

1/ an element of the
second bounded cohomology groupH 2

b
.G;Z/ of the discrete group G, which we

call the bounded Euler class of this action of G. �is class vanishes if and only if
the action has a global �xed point on the circle. For some more background about
the bounded cohomology of groups and the bounded Euler class of a group acting
on a circle, see Section 6 in [6].

By a theorem by Matsumoto and Morita (see �eorem 3.1 in [14]):

H 2
b .Homeo0.R

d /;Z/ D ¹0º :

�erefore, the bounded Euler class of a morphism Homeo0.R
d / ! Homeo0.S

1/

vanishes: this action has a �xed point.

Proof of �eorem 1.1. Let d D dim.M/. �e theorem will be deduced from the
following lemma.

Lemma 2.4. For any d > 1, any group morphism Homeo0.R
d / ! Homeo.R/

is trivial.

Using Proposition 2.3, we obtain the following immediate corollary.

Corollary 2.5. For any d > 1, any group morphism Homeo0.R
d / ! Homeo.S1/

is trivial.

Let us see why this lemma and this corollary imply the theorem. Consider a
morphism Homeo0.M/ ! Homeo0.N /. Take an open set U � M homeomor-
phic to Rd and let us denote by Homeo0.U / the subgroup of Homeo0.M/ con-
sisting of homeomorphisms supported in U . By Lemma 2.4 and Corollary 2.5,
the restriction of this morphism to the subgroup Homeo0.U / is trivial. Moreover,
as the group Homeo0.M/ is simple, such a group morphism is either one-to-one
or trivial: it is necessarily trivial in this case.

Proof of Lemma 2.4. Take a group morphism ' W Homeo0.R
d / ! Homeo.R/.

Suppose by contradiction that this morphism is nontrivial. Replacing if necessary
R with a connected component of the complement of the closed set
Fix.'.Homeo0.R

d ///, we can suppose that the group '.Homeo0.R
d // has no

�xed points.

Claim 2.6. For any points p1 ¤ p2 in Rd ,

Fix.'.Gd
p1
// \ Fix.'.Gd

p2
// D ;:
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Proof. �e proof of this claim requires the following lemma which will be proved
afterwards.

Lemma 2.7. Let d � 1 and d � k � 0 be integers. Let D1 and D2 be two

disjoint embedded k-dimensional balls of Rd . �en, for any homeomorphism f

in Homeo0.R
d /, there exist homeomorphisms f1; f3 in Gd

D1
and f2 in Gd

D2
such

that

f D f1f2f3:

Take two points p1 and p2 in Rd . Suppose by contradiction that

Fix.'.Gd
p1
// \ Fix.'.Gd

p2
// ¤ ;:

By Lemma 2.7 applied to the 0-dimensional balls ¹p1º and ¹p2º, a point in this
set is a �xed point of the group '.Homeo0.R

d //, a contradiction.

By Proposition 2.2, the sets Fix.'.Gd
p //, for p 2 Rd are nonempty.

We just saw that they are pairwise disjoint. Recall that, for any embedded
.d � 1/-dimensional ball D, the set Fix.'.Gd

D// contains the union of the sets
Fix.'.Gd

p // over the points p in the closed set D. Hence, this set has in�nitely
many points as d � 2, a contradiction with Proposition 2.1.

Proof of Lemma 2.7. To, prove this lemma, we use the following theorem by Brown
and Gluck (see �eorem 7.1 in [3]), which is also a consequence of the annulus
theorem by Kirby and Quinn (see [8] and [17]).

�eorem (Brown–Gluck). Let d � 1 and let B1 and B2 be two d -dimensional

balls of Rd such that the ball B1 is contained in the interior of B2. Let h be any

homeomorphism in Homeo0.R
d / such that the ball h.B1/ is also contained in the

interior of B2. �en there exists a homeomorphism Qh in Homeo0.R
d / with the

following properties:

(1) the homeomorphism Qh is supported in B2I

(2) QhjB1
D hjB1

.

Take a homeomorphism f in Homeo0.R
d /.

Claim 2.8. �ere exists a homeomorphism f1 G
d
D1

such that f �1
1 sends the

k-dimensional embedded ball f .D1/ to a k-dimensional embedded ball which

lies in the same connected component of Rd �D2 as the embedded ball D1.
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Notice that, if d ¤ 1, the set Rd � D2 is connected. In the case d ¤ 1, this
lemma amounts to �nding a homeomorphism which sends the ball f .D1/ to a ball
which is disjoint from D2.

Proof. First suppose that d D 1. If sup.D1/ < inf.D2/, take as f �1
1 any home-

omorphism in Homeo0.R
d / supported in .sup.D1/;C1/ which sends the point

sup.h.D1// to a point x < inf.D2/. If sup.D2/ < inf.D1/, take as f �1
1 any

homeomorphism in Homeo0.R
d / supported in .�1; inf.D1// which sends the

point inf.h.D1// to a point x > inf.D2/.
Now suppose that d � 2. It is not di�cult to �nd a d -dimensional embedded

ball B which contains the k-dimensional ball D2 and a point p outside f .D1/ in
its interior: using the de�nition of an embedded ball, �nd �rst a d -dimensional
B0 which contains D2 in its interior. If this ball is not contained in f .D1/ take
B D B0. Otherwise take any pointp which does not belong to f .D1/ and consider
a tubular neighbourhood T of a path in Rd �D1 which joins the ball B0 and the
point p to construct the ball B out of T and B .

Changing coordinates if necessary, we can suppose that p D 0 2 Rd and that
the ball B is the unit ball. Consider any vector �eld X of Rd which is supported
in B and which is equal to x 7! x on a ball centered at 0 containingD2. Let V be
a neighbourhood of the point 0 which is disjoint from the embedded ball f .D1/.
Denote by 't

X the time t of the �ow of the vector �eldX . Observe that there exists
T > 0 such that 'T

X .B � V / \D2 D ;. Hence 'T
X .f .D1// \D2 D ;. It su�ces

to take f �1
1 D 'T

X .

Take a d -dimensional ball B2 with the following properties:

(1) it contains D1 and f �1
1 f .D1/;

(2) it is disjoint from the embedded ball D2.

Consider a d -dimensional ball B1 contained in the interior of the embedded ball
B2 such that f �1

1 f .B1/ is contained in the interior of B2. Apply the theorem by
Brown and Gluck above with the balls B1, B2 and the homeomorphism
h D f �1

1 f : there exists a homeomorphism Of2 in Gd
D2

which is equal to f �1
1 f in

a neighbourhood of the k-dimensional embedded ball D1.
Notice that the homeomorphism Of �1

2 f �1
1 f pointwise �xes a neighbourhood

of the embedded ball D1. However, its restriction to Rd �D1 might not be com-
pactly isotopic to the identity. Nevertheless, this homeomorphism of Rd �D1 is
compactly isotopic to a homeomorphism � whose support is contained in a small
neighbourhood of the embedded ball D1 and is disjoint from the embedded ball
D2: in order to see it, conjugate the homeomorphism Of �1

2 f �1
1 f with the �ow at
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a su�ciently large time of a vector �eld for which a small neighbourhood of the
embedded ball D1 is an attractor.

Let us check that the homeomorphism �jRd �D2
is compactly isotopic to the

identity. To prove it, it su�ces to conjugate this homeomorphism by a continuous
family of homeomorphisms .ht /t2Œ0;C1/ supported in Rd �D2 such that

(1) h0 D Id and

(2) the family of compact sets .ht .supp.�///t�0 converges to a point for the Haus-
dor� topology as t ! C1.

Hence the continuous family of homeomorphisms ht�h
�1
t converges to the iden-

tity as t ! C1 (this the well-known Alexander trick).
To �nish the proof of the lemma, it su�ces to take

f2 D Of2�

and

f3 D f �1
2 f �1

1 f:

Proof of �eorem 1.2. Let ' W Homeo0.R/ ! Homeo.N / be a nontrivial group
morphism. By Proposition 2.3, we can suppose that the manifoldN is the real line
R. Replacing R with a connected component of the complement of the closed set
Fix.'.Homeo0.R/// if necessary, we can suppose that the group '.Homeo0.R//

has no �xed point (see the remark at the end of the introduction). Recall that
the group Homeo0.R/ is simple. Hence any morphism Homeo0.R/ ! Z=2Z is
trivial. �us, any element of the group '.Homeo0.R// preserves the orientation
of R.

By Propositions 2.1 and 2.2, for any real number x, the group '.G1
x/ has a

unique �xed point h.x/. Take a homeomorphism f in Homeo0.R/ which sends
a point x in R to a point y in R. �en f G1

xf
�1 D G1

y and, taking the image
under ', '.f /'.G1

x/'.f /
�1 D '.G1

y/. Hence '.f /.Fix.'.G1
x/// D Fix.'.G1

y//.
�erefore, for any homeomorphism f in Homeo0.R/, '.f /h D hf .

Let us prove that the map h is one-to-one. Suppose by contradiction that there
exist real numbers x ¤ y such that h.x/ D h.y/. �e point h.x/ is �xed under
the groups '.G1

x/ and '.G1
y /. However, the groups G1

x and G1
y generate the group

Homeo0.R/ by Lemma 2.7. �erefore, the point h.x/ is �xed under the group
'.Homeo0.R//, a contradiction.

Now we prove that the map h is either strictly increasing or strictly decreasing.
Fix two points x0 < y0 of the real line. For any two points x < y of the real line,
let us consider a homeomorphism fx;y in Homeo0.R/ such that fx;y.x0/ D x and
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fx;y.y0/ D y. As '.fx;y/h D hfx;y , the homeomorphism '.fx;y/ sends the or-
dered pair .h.x0/; h.y0// to the ordered pair .h.x/; h.y//. As the homeomorphism
'.fx;y/ is strictly increasing:

h.x/ < h.y/ () h.x0/ < h.y0/

and

h.x/ > h.y/ () h.x0/ > h.y0/:

Hence the map h is either strictly increasing or strictly decreasing.

Now, it remains to prove that the map h is onto to complete the proof. Suppose
by contradiction that the map h is not onto. Notice that the set h.R/ is preserved
under the group '.Homeo0.R//. If this set had a lower bound or an upper bound,
then the supremum of this set or the in�mum of this set would provide a �xed
point for the group '.Homeo0.R//, a contradiction. �is set has neither upper
bound nor lower bound. Let C be a connected component of the complement of
the set h.R/. Replacing if necessary h by �h and the morphism ' by its conjugate
under � Id, we can suppose that the map h is increasing. Let us denote by x0

the supremum of the set of points x such that the real number h.x/ is lower than
any point in the interval C . �en the point h.x0/ is necessarily in the closure
of C : otherwise, there would exist an interval in the complement of h.R/ which
strictly contains the interval C . Hence the point h.x0/ is either the in�mum or
the supremum of the interval C . As the proof is analogous in these two cases, we
suppose from now on that the point h.x0/ is the supremum of the interval C .

Choose, for each couple .z1; z2/ of real numbers, a homeomorphism gz1;z2
in

Homeo0.R/which sends the point z1 to the point z2. �en the sets gx0;x.C /, for x
in R, are pairwise disjoint: they are pairwise distinct as their suprema are pairwise
distinct (the supremum of the set gx0;x.C / is the point h.x/). Moreover, those sets
do not contain any point of h.R/ and the in�ma of those sets are accumulated by
points in h.R/. Hence, these sets are pairwise disjoint. �en the set C has neces-
sarily an empty interior as the topological space R is second-countable. �erefore
C D ¹h.x0/º, which is not possible.

3. Proof of Proposition 2.1

Fix d > 0 and a group morphism ' W Homeo0.R
d / ! Homeo.R/. We want

to prove that, for any .d �1/-dimensional embedded ballD, the group '.Gd
D/ has

at most one global �xed point.
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�e proof of the proposition is similar to the proofs of Lemmas 3.6 and 3.7
in [15]. For an embedded .d � 1/-dimensional ball D, let FD D Fix.'.Gd

D//. Let
us prove that these sets are pairwise homeomorphic. Take two embedded .d � 1/-
dimensional balls D an D0 and take a homeomorphism h in Homeo0.R

d / which
sends the setD onto D0. Observe that

hGd
Dh

�1 D Hd
D0

and that

'.h/'.Gd
D/'.h/

�1 D '.Hd
D0/:

�erefore,

'.h/.FD/ D FD0 :

In the case where these sets are all empty, there is nothing to prove. We suppose
in what follows that they are not empty.

Given two disjoint embedded .d �1/-dimensional ballsD andD0, Lemma 2.7
implies, as in the proof of Lemma 2.4,

FD \ FD0 D ;:

Lemma 3.1. Fix an embedded .d � 1/-dimensional ball D0 of Rd . For any

connected component C of the complement of FD0
, there exists an embedded

.d � 1/-dimensional ball D disjoint from D0 such that the set FD meets C .

Proof. Let .a1; a2/ be a connected component of the complement of FD0
.

It is possible that either a1 D �1 or a2 D C1. Consider a homeomorphism
e W Rd�1 �R ! Rd such that e.Bd�1 � ¹0º/ D D0, where Bd�1 denotes the unit
closed ball in Rd�1. For any real number x, let Dx D e.Bd�1 � ¹xº/. Given two
real x ¤ y, take a homeomorphism �x;y in Homeo0.R/ which sends the point x
to the point y. Consider a homeomorphism hx;y such that the following property
is satis�ed. �e restriction of ehx;ye

�1 to Bd�1 � R is equal to the map

Bd�1 � R �! R
d�1 � R;

.p; z/ 7�! .p; �x;y.z//:

Notice that, for any real numbers x and y, hx;y.Dx/ D Dy

Let us prove by contradiction that there exists a real number x ¤ 0 such that
FDx

\ .a1; a2/ ¤ ;. Suppose that, for any such embedded ball Dx,
FDx

\ .a1; a2/ D ;. We claim that the open sets '.h0;x/..a1; a2// are pairwise
disjoint. It is not possible as there would be uncountably many pairwise disjoint
open intervals in R.
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Indeed, suppose by contradiction that there exists real numbers x ¤ y such
that '.h0;x/..a1; a2// \ '.h0;y/..a1; a2// ¤ ;. Notice that the homeomorphism
h�1

0;xh0;y and h�1
0;yh0;x send respectively the set D0 to sets of the form Dz and

Dz0 , where z; z0 2 R. Hence, for i D 1; 2, the homeomorphisms '.h�1
0;xh0;y/

(respectively '.h�1
0;yh0;x/) sends the point ai 2 FD0

to a point in FDz
(respectively

in FDz0
). By hypothesis, these points do not belong to .a1; a2/. �erefore

'.h�1
0;yh0;x/.a1; a2/ D .a1; a2/

or
'.h0;x/.a1; a2/ D '.h0;y/.a1; a2/:

But this last equality cannot hold as the real endpoints of the interval on the left-
hand side belong to FDx

and the real endpoints point of the interval on the right-
hand side belongs to FDy

. Moreover, we saw that these two closed sets were
disjoint, a contradiction.

Lemma 3.2. Each set FD contains only one point.

Proof. Suppose that there exists an embedded .d � 1/-dimensional ball D such
that the set FD contains two points p1 < p2. By Lemma 3.1, there exists an
embedded .d �1/-dimensional ballD0 disjoint fromD such that the set FD0 has a
common point with the open interval .p1; p2/. Take a real number r < p1. �en,
for any homeomorphisms g1 in GD, g2 in GD0 and g3 in GD,

'.g1/ ı '.g2/ ı '.g3/.r/ < p2:

By Lemma 2.7, this implies that the following inclusion holds:

¹'.g/.r/; g 2 Homeo0.R
d /º � .�1; p2�:

�e supremum of the left-hand set provides a �xed point for the action ', a con-
tradiction.

4. Proof of Proposition 2.2

�is proof uses the following lemmas. For a subgroup G of Homeo0.R
d /, we

de�ne the support Supp.G/ of G as the closure of the set

¹x 2 R
d ; there exists g 2 G; gx ¤ xº:

Let HomeoZ.R/ D ¹f 2 Homeo.R/; for all x 2 R; f .x C 1/ D f .x/C 1º:

To prove Proposition 2.2, we need the following lemmas.
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Lemma 4.1. LetG andG0 be subgroups of the group HomeoC.R/ of orientation-

preserving homeomorphisms of the real line. Suppose that the following condi-

tions are satis�ed.

(1) �e groups G and G0 are isomorphic to the group HomeoZ.R/.

(2) �e subgroupsG and G0 of HomeoC.R/ commute: gg0 D g0g for all g 2 G,

g0 2 G0e.

�en Supp.G/ � Fix.G0/ and Supp.G0/ � Fix.G/.

Lemma 4.2. Let d > 0. Take any nonempty open subset U of Rd . �en there

exists a subgroup of Homeo0.R
d / isomorphic to HomeoZ.R/ which is supported

in U .

Lemma 4.1 will be proved in the next section. We now provide a proof of
Lemma 4.2.

Proof of Lemma 4.2. Take a closed ball B contained in U . Changing coordi-
nates if necessary, we can suppose that B is the unit closed ball in Rd . Take
an orientation-preserving homeomorphism h W R ! .�1; 1/. For any orientation-
preserving homeomorphism f W R ! R, we de�ne the homeomorphism

�h.f / W R
d �! R

d

in the following way.

(1) �e homeomorphism �h.f / is equal to the identity outside the interior of the
ball B .

(2) For any .x1; x
0/ 2 R � Rd�1 \ int.B/:

�h.f /.x1; x
0/ D

�

p

1 � kx0k2h ı f ı h�1

�

x1
p

1 � kx0k2

�

; x0

�

:

�e map �h de�nes an embedding of the group HomeoC.R/ into the group
Homeo0.R

d /. �e image under �h of the group HomeoZ.R/ is a subgroup of
Homeo0.R

d / which is supported in U .

Let us complete now the proof of Proposition 2.2.

Proof of Proposition 2.2. Fix a point p in Rd . Take a closed ball B � Rd which
is centered at p. Let us prove that Fix.'.Gd

B// ¤ ;.
Take a subgroup G1 of Homeo0.R

d / which is isomorphic to HomeoZ.R/ and
supported in B . Such a subgroup exists by Lemma 4.2. �is subgroup commutes
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with any subgroup G2 of Homeo0.R
d / which is isomorphic to HomeoZ.R/ and

supported outside B .
If the group '.Homeo0.R

d // admits a �xed point, there is nothing to prove.
Suppose that this group has no �xed point. As the group Homeo0.R

d / is simple,
the morphism ' is one-to-one. Moreover, any morphism Homeo0.R

d / ! Z=2Z

is trivial: the morphism ' takes values in HomeoC.R/. Hence the subgroups
'.G1/ and '.G2/ of Homeo.R/ satisfy the hypothesis of Lemma 4.1. By this
lemma,

; ¤ Supp.'.G1// � Fix.'.G2//:

Claim 4.3. �e group Gd
B is generated by the union of its subgroups isomorphic

to HomeoZ.R/.

�is claim implies that

; ¤ Supp.'.G1// � Fix.'.Gd
B//:

Proof. For d � 2, observe that the open set Rd � B is connected. Hence, as
we recalled in the introduction, the group Gd

B is simple by a theorem by Fisher
(see [5]). �e claim is a direct consequence of the simplicity of this group. In the
case where d D 1, the open set R � B has two connected components. Denote
by Œa; b� the compact interval B . �e inclusions of the groups Homeo0..�1; a//

and Homeo0..b;C1// induce an isomorphism

Homeo0..�1; a//� Homeo0..b;C1// �! Gd
B :

�e simplicity of each factor of this decomposition implies the claim.

Claim 4.4. �e set Fix.'.Gd
B// is compact.

Proof. Suppose by contradiction that there exists a sequence .ak/k2N of real num-
bers in Fix.'.Gd

B//which tends to C1 (if we suppose that it tends to �1, we ob-
tain of course an analogous contradiction). Let us choose a closed ball B 0 � Rd

which is disjoint from B . Observe that the subgroups Gd
B and Gd

B0 are conjugate
in Homeo0.R

d / by a homeomorphism which sends the ball B to the ball B 0. �en
the subgroups '.Gd

B/ and '.Gd
B0/ are conjugate in the group HomeoC.R/. Hence

the sets Fix.'.Gd
B// and Fix.'.Gd

B0// are homeomorphic: there exists a sequence
.bk/k2N of elements in Fix.'.Gd

B0// which tends to C1. Take positive integers
n1, n2 and n3 such that an1

< bn2
< an3

. Fix x0 < an1
. We notice then that for

any homeomorphisms g1 2 Gd
B , g2 2 Gd

B0 and g3 2 Gd
B , the following inequality

is satis�ed:
'.g1/'.g2/'.g3/.x0/ < an3

:
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However, by Lemma 2.7, any element g in Homeo0.R
d / can be written as a prod-

uct
g D g1g2g3;

where g1 and g3 belong to Gd
B and g2 belongs to Gd

B0 . �e proof of this fact is
similar to that of Lemma 2.7. �erefore,

®

'.g/.x0/; g 2 Homeo0.Rd /
¯

� .�1; an3
�:

�e greatest element of the left-hand set is a �xed point of the image of ': this is
not possible as this image was supposed to have no �xed point.

Observe that the group '.Gd
p / is the union of its subgroup of the form '.Gd

B0/,
with B 0 varying over the set Bp of closed balls centered at the point p. By com-
pactness, the set

Fix.'.Gd
p // D

\

B02Bp

Fix.Gd
B0/

is nonempty. Proposition 2.2 is proved.

5. Proof of Lemma 4.1

We start this section by recalling some facts about the group HomeoZ.R/
of homeomorphisms of the real line which commute with integral translations.
Observe that the center of the group HomeoZ.R/ is the subgroup generated by
the translation x 7! x C 1. �e quotient of this group by its center is the group
Homeo0.S

1/. �e following lemma is classical.

Lemma 5.1. Any group morphism HomeoZ.R/ ! Z or HomeoZ.R/ ! Z=2Z

is trivial.

Proof of Lemma 5.1. Actually, any element in HomeoZ.R/ can be written as a
product of commutators, i.e. elements of the form aba�1b�1, "where a and b
belong to the group HomeoZ.R/. For an explicit construction of such a decom-
position, see Section 2 in [4].

Lemma 5.2. Let  W HomeoZ.R/ ! HomeoC.R/ be a group morphism. Denote

by F the closed set of �xed points of the group  .HomeoZ.R//. �en, for any

connected component K of the complement of F , there exists a homeomorphism

hK W R �! K
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such that

 .f /.x/ D hKf h
�1
K ; for all f 2 HomeoZ.R/; x 2 K:

�is lemma is similar to Matsumoto’s theorem about morphisms
Homeo0.S

1/ ! Homeo0.S
1/ (see introduction) and the proof of this lemma re-

lies heavily on Matsumoto’s theorem. Before proving this lemma, let us see how
it implies Lemma 4.1.

Proof of Lemma 4.1. Recall that we are given two subgroups G and G0 of
HomeoC.R/ isomorphic to the group HomeoZ.R/.

Let ˛ (respectively ˛0) be a generator of the center of G (respectively of G0).
Let A˛ D R � Fix.˛/ and A˛0 D R � Fix.˛0/.

As the homeomorphisms ˛ and ˛0 commute:
8

<

:

˛0.A˛/ D A˛;

˛.A˛0/ D A˛0 :

Claim 5.3. Take any connected component I ofA˛ and any connected component

I 0 of A˛0 . �en the interval I and I 0 are disjoint.

�is claim is proved below. Let us complete now the proof of Lemma 4.1.
By Lemma 5.2, A˛ D Fix.G/ and A˛0 D Fix.G0/. Hence, we have proved that
any connected component of the complement of Fix.G/ is disjoint from the com-
plement of Fix.G0/. �erefore Supp.G/ � Fix.G0/. We have also proved that
Supp.G0/ � Fix.G/.

Claim 5.3 is a direct consequence of the three following claims.

Claim 5.4. Either I is contained in I 0, or I 0 is contained in I , or I and I 0 are

disjoint.

Claim 5.5. �e interval I is not strictly contained in the interval I 0.

Of course, the case where the interval I 0 is strictly contained in I is symmetric
and cannot occur.

Claim 5.6. �e interval I and I 0 are distinct.

Proof of Claim 5.4. Suppose for a contradiction that the conclusion of this claim
does not hold. Changing the roles of ˛ and ˛0 if necessary, we can suppose that the
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supremum b of I is contained in the open interval I 0 and the in�mum a0 of I 0 is
contained in the open interval I . �en either the sequence .˛0k.b//k>0 converges
to the point a0 as k ! C1 or the sequence .˛0�k.b//k>0 converges to the point
a0 as k ! C1. In any case, a sequence of points in A˛ converge to the point a0.
As the set A˛ is closed, this means that the point a0 belongs to A˛. �is is not
possible as a0 belongs to I which is a connected component of the complement
of A˛ .

Proof of Claim 5.5. Suppose for a contradiction that the interval I is strictly con-
tained in the interval I 0. Let � be the equivalence relation de�ned on I 0 by

x � y () .there exists k 2 Z; x D ˛0k.y//:

�e topological space I 0= � is homeomorphic to a circle. By Lemma 5.2, the
group G0 preserves the interval I 0. Notice that the group G0=h˛0i � Homeo0.S

1/

acts on the circle I 0= �. As the group G0 commutes with the homeomorphism ˛,
this action preserves the nonempty set .A˛ \ I 0/= �. As ˛0.A˛/ D A˛, the points
of the interval I are sent to points in the complement of A˛ under the iterates of
the homeomorphism ˛0. Hence the set .A˛ \ I 0/= � is not equal to the whole cir-
cle I 0= �. However, by �eorem 5.3 in [13] (see the remark below �eorem 1.2),
a non-trivial action of the group Homeo0.S

1/ on a circle has no non-empty proper
invariant subset. Hence, the group G0=h˛0i acts trivially on the circle I 0= �:
for any element ˇ0 ofG0, and any point x 2 I 0, there exists an integer k.x; ˇ0/ 2 Z

such that ˇ0.x/ D ˛0k.x;ˇ 0/.x/. Fixing such a point x, we see that the map

G0 �! Z;

ˇ0 7�! k.x; ˇ0/;

is a group morphism. Such a group morphism is trivial by Lemma 5.1. �erefore,
the group G0 acts trivially on the interval I 0, a contradiction.

Proof of Claim 5.6. Suppose that I D I 0. Take any element ˇ0 in G0. As the
homeomorphism ˇ0 commutes with ˛, by Lemma 5.2, the homeomorphism ˇ0

is equal to some element of G on I . As the homeomorphism ˇ0 commute with
any element of G, there exists a unique integer k.ˇ0/ such that ˇ0

jI
D ˛

k.ˇ 0/

jI
:

�e map k W G ! Z is a nontrivial group morphism. But such a map cannot exist
by Lemma 5.1.

It remains to prove Lemma 5.2.

Proof of Lemma 5.2. Denote by t a generator of the center of HomeoZ.R/.
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Claim 5.7. �e connected components of the complement of Fix. .t// are each

preserved by the group  .HomeoZ.R//. Moreover

Fix. .HomeoZ.R/// D Fix. .t//:

Claim 5.8. Any action of the group HomeoZ.R/ on R without �xed points is

conjugate to the standard action.

It is clear that these two claims imply Lemma 5.2.

Proof of Claim 5.7. �e set Fix. .t// is preserved under any element in
 .HomeoZ.R//, because any element of this group commutes with the homeo-
morphism  .t/. Moreover, any element in  .HomeoZ.R// preserves the orienta-
tion by Lemma 5.1. Hence the action  induces an action of the group
HomeoZ.R/=hti, which is isomorphic to Homeo0.S

1/, on the set F D Fix. .t//
by increasing homeomorphisms. As the group Homeo0.S

1/ is simple, the in-
duced morphism from the group Homeo0.S

1/ to the group Homeo<.F / of in-
creasing homeomorphisms of F is either one-to-one or trivial. However, the
group Homeo0.S

1/ contains some non-trivial �nite order elements whereas the
group Homeo<.F / does not: such a morphism is trivial. Hence any element of
the group  .HomeoZ.R// �xes any point in Fix. .t//: any element of this group
preserves each connected component of the complement of Fix. .t//.

Proof of Claim 5.8. We denote by ' W HomeoZ.R/ ! Homeo.R/ a morphism
such that the group '.HomeoZ.R// of homeomorphisms of R has no �xed point.

By Claim 5.7, the homeomorphism '.t/ has no �xed point. Changing coordi-
nates if necessary, we can suppose that the homeomorphism '.t/ is the translation
x 7! xC 1. �e morphism ' induces an action O' of the group HomeoZ.R/=hti �

Homeo0.S
1/ on the circle R=Z. �is action is nontrivial: otherwise, there would

exist a nontrivial group morphism Homeo0.S
1/ ! Z. By the theorem by Mat-

sumoto that we recalled earlier (see the introduction of this article), there exists
a homeomorphism h of the circle R=Z such that, for any homeomorphism f in
HomeoZ.R/=hti (which can be canonically identi�ed with Homeo0.R=Z/):

O'.f / D hf h�1:

Take a lift Qh W R ! R of h. For any integer n, denote by Tn W R ! R the translation
x 7! x C n. For any homeomorphism f in HomeoZ.R/, there exists an integer
n.f / such that

'.f / D Tn.f /
Qhf Qh�1:

However, the map n W HomeoZ.R/ ! Z is a group morphism: it is trivial by
Lemma 5.1. �is completes the proof of Claim 5.8.
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