Groups Geom. Dyn. 10 (2016), 45[–63](#page-18-0) DOI 10.4171/GGD/342

Groups, Geometry, and Dynamics © European Mathematical Society

Actions of groups of homeomorphisms on one-manifolds

Emmanuel Militon1

Abstract. In this article, we describe all the group morphisms from the group of compactlysupported homeomorphisms isotopic to the identity of a manifold to the group of homeomorphisms of the real line or of the circle.

Mathematics Subject Classification (2010). 37C85.

Keywords. Homeomorphism, topological dynamics, groups.

1. Introduction

Fix a connected manifold M (without boundary). For an integer $r \geq 0$, we denote by $\text{Diff}^{r}(M)$ the group of C^r-diffeomorphisms of M. When $r = 0$, this group will also be denoted by Homeo (M) . For a homeomorphism f of M, the *support* of f is the closure of the set:

$$
\{x \in M, f(x) \neq x\}.
$$

We say that a homeomorphism f in $\text{Diff}^r(M)$ with compact support is *compactly isotopic to the identity* if there exists a C^r map

$$
F\colon M\times [0,1]\longrightarrow M
$$

such that

- (1) for any $t \in [0, 1]$, $F(\cdot, t)$ belongs to Diff^r (M) ;
- (2) there exists a compact subset $K \subset M$ such that, for any $t \in [0, 1]$, the support of the diffeomorphism $F(\cdot, t)$ is contained in K;
- (3) $F(\cdot, 0) = \text{Id}_M$ and $F(\cdot, 1) = f$.

¹ Supported by the Fondation Mathématique Jacques Hadamard.

We denote by $\text{Diff}_0^r(M)$ (Homeo₀ (M) if $r = 0$) the group of compactly supported C^r -diffeomorphisms of M which are compactly isotopic to the identity. The main reason why we are considering these groups is the following difficult theorem by Fisher, Mather and Thurston (see [\[1\]](#page-17-0), [\[2\]](#page-17-1), [\[5\]](#page-17-2), [\[10\]](#page-17-3), and [\[11\]](#page-17-4)).

Theorem (Fisher, Mather, and Thurston). Let M be a connected manifold. *The group* $\text{Diff}_{0}^{r}(M)$ *is simple if* $r \neq \dim(M) + 1$ *.*

This theorem will be used throughout the article. It implies for instance that any group morphism from a group of the form $\mathrm{Diff}_0^r(M)$ to another group is either one-to-one or trivial: the kernel of such a morphism is a normal subgroup of $\text{Diff}_0^r(M)$ and hence is either trivial or the whole group. As an application of this theorem, let us prove that any group morphism $Homeo_0(\mathbb{T}^2) \rightarrow Homeo(\mathbb{R})$ is trivial. Notice that the group $Homeo_0(\mathbb{T}^2)$ contains finite order elements (the rational translations) whereas the group of homeomorphisms of the real line does not. Hence, a finite order element has to be sent to the identity under such a morphism which is not one-to-one. Therefore, it is trivial.

In [\[7\]](#page-17-5), Étienne Ghys asked whether the following statement was true: if M and N are two closed manifolds and if there exists a non-trivial morphism $\text{Diff}_{0}^{\infty}(M) \rightarrow \text{Diff}_{0}^{\infty}(N)$, then $\dim(M) \leq \dim(N)$. In [\[9\]](#page-17-6), Kathryn Mann proved the following theorem. Take a connected manifold M of dimension greater than 1 and a one-dimensional connected manifold N . Then any morphism $\mathrm{Diff}_0^{\infty}(M) \to \mathrm{Diff}_0^{\infty}(N)$ is trivial: she answers Ghys's question in the case where the manifold N is one-dimensional. Mann also describes all the group morphisms $\text{Diff}_0^r(M) \to \text{Diff}_0^r(N)$ for $r \geq 3$ when M as well as N are one-dimensional. The techniques involved in the proofs of these theorems are Kopell's lemma (see $[16]$ Theorem 4.1.1) and Szekeres's theorem (see $[16]$ Theorem 4.1.11). These theorems are valid only for a regularity at least C^2 . In this article, we prove similar results in the case of a $C⁰$ regularity. The techniques used are different.

eorem 1.1. *Let* M *be a connected manifold of dimension greater than* 2 *and let* N be a connected one-manifold. Then any group morphism

 $\text{Homeo}_0(M) \longrightarrow \text{Homeo}(N)$

is trivial.

The case where the manifold M is one-dimensional is also well-understood.

Using bounded cohomology techniques, Matsumoto proved the following theorem (see $[13]$ Theorem 5.3) which is also a key point in the proof of our theorems. **Theorem** (Matsumoto). *Every group morphism*

 $\text{Homeo}_0(\mathbb{S}^1) \longrightarrow \text{Homeo}_0(\mathbb{S}^1)$

is a conjugation by a homeomorphism of the circle.

Notice that any group morphism $Homeo_0(\mathbb{S}^1) \rightarrow Homeo(\mathbb{R})$ is trivial. Recall that, as the group $Homeo_0(S^1)$ is simple, such a group morphism is either one-toone or trivial. However, the group $Homeo_0(\mathbb{S}^1)$ contains torsion elements whereas the group $Homeo(R)$ does not: such a morphism cannot be one-to-one.

It remains to study the case of a morphism defined on $Homeo_0(\mathbb{R})$.

Theorem 1.2. Let N be a connected one-manifold. For any group morphism

 φ : Homeo₀(R) \longrightarrow Homeo(N),

there exists a closed set $K \subset N$ *such that*

- (1) *the set* K *is pointwise fixed under any homeomorphism in* φ (Homeo₀(R));
- (2) *for any connected component* I *of* $N K$ *, there exists a homeomorphism*

 $h_I : \mathbb{R} \longrightarrow I$

such that

$$
\varphi(f)|_I = h_I f h_I^{-1}, \quad \text{for all } f \in \text{Homeo}_0(\mathbb{R}).
$$

Notice that the set K has to be the set of points which are fixed under every element in φ (Homeo₀(R)).

The following remark will be used repeatedly in the proof of Theorems [1.1](#page-1-0) and [1.2.](#page-2-0) Consider a nontrivial morphism φ from a group G to the group Homeo₊(R). Denote by F the closed set of points of the real line which are fixed under every element in $\varphi(G)$. Take a connected component I of $\mathbb{R} - F$. Any homeomorphism in $\varphi(G)$ preserves this connected component I. Consider then the morphism

$$
G \longrightarrow \text{Homeo}_+(I),
$$

$$
g \longmapsto \varphi(g)_{|I}.
$$

Notice that the image of this morphism has no global fixed point and that the interval I is homeomorphic to the real line. We have just seen that any morphism $G \rightarrow \text{Homeo}_+(\mathbb{R})$ induces by restriction a morphism without global fixed point. Hence, to prove that any morphism $G \to \text{Homeo}_+(\mathbb{R})$ is trivial, it suffices to prove that any such morphism has a fixed point.

2. Proofs of Theorems [1.1](#page-1-0) and [1.2](#page-2-0)

Fix integers $d \geq k \geq 0$. We will call *embedded* k-dimensional ball of \mathbb{R}^d the image of the closed unit ball of $\mathbb{R}^k = \mathbb{R}^k \times \{0\}^{d-k} \subset \mathbb{R}^d$ under a homeomorphism of \mathbb{R}^d . Take an embedded *k*-dimensional ball $D \subset \mathbb{R}^d$ (which is a single point if $k = 0$). We denote by G_D^d the group of homeomorphisms of $\mathbb{R}^d - D$ with compact support which are compactly isotopic to the identity. As any homeomorphism in the group G_D^d is equal to the identity near the embedded ball D, it can be continuously extended by the identity on the ball D. Hence the group G_D^d can be seen as a subgroup of $\text{Homeo}_0(\mathbb{R}^d)$.

Finally, if G denotes a subgroup of Homeo(\mathbb{R}^d), a point $p \in \mathbb{R}^d$ is said to be fixed under the group G if it is fixed under all the elements of this group. We denote by $Fix(G)$ the (closed) set of fixed points of G.

The theorems will be deduced from the following propositions. The two first propositions will be proved respectively in Sections [3](#page-8-0) and [4.](#page-10-0)

Proposition 2.1. Let $d > 0$ and let φ : Homeo $_0(\mathbb{R}^d) \to$ Homeo (\mathbb{R}) be a group *morphism.* Suppose that no point of the real line is fixed under the group φ (Homeo₀(\mathbb{R}^d)). Then, for any embedded (d – 1)-dimensional ball $D \subset \mathbb{R}^d$, the group $\varphi(G_{D}^{d})$ admits at most one fixed point.

Proposition 2.2. Let $d > 0$ and

 $\varphi: \text{Homeo}_0(\mathbb{R}^d) \longrightarrow \text{Homeo}(\mathbb{R})$

be a group morphism. Then, for any point p in \mathbb{R}^d , the group $\varphi(G_p^d)$ admits at *least one fixed point.*

Proposition 2.3. *Let* d > 0*. For any group morphism*

 $\psi: \text{Homeo}_0(\mathbb{R}^d) \longrightarrow \text{Homeo}(\mathbb{S}^1)$,

the group ψ (Homeo₀(\mathbb{R}^d)) has a fixed point.

Proof of Proposition [2.3](#page-3-0). Recall that the group $Homeo_0(\mathbb{R}^d)$ is infinite and simple and that the group $Homeo(S^1)/Homeo_0(S^1)$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Hence any morphism $\text{Homeo}_0(\mathbb{R}^d) \to \text{Homeo}(\mathbb{S}^1)/\text{Homeo}_0(\mathbb{S}^1)$ is trivial. Therefore, the image of a morphism $\text{Homeo}_0(\mathbb{R}^d) \rightarrow \text{Homeo}(\mathbb{S}^1)$ is contained in $Homeo_0(S^1)$.

The rest of the proof of this proposition uses a result by Ghys. Ghys associates to any morphism from a group G to the group $\text{Homeo}_0(\mathbb{S}^1)$ an element of the second bounded cohomology group $H_b^2(G,\mathbb{Z})$ of the discrete group G , which we call the bounded Euler class of this action of G . This class vanishes if and only if the action has a global fixed point on the circle. For some more background about the bounded cohomology of groups and the bounded Euler class of a group acting on a circle, see Section 6 in [\[6\]](#page-17-9).

By a theorem by Matsumoto and Morita (see Theorem 3.1 in $[14]$):

$$
H_b^2(\text{Homeo}_0(\mathbb{R}^d), \mathbb{Z}) = \{0\}.
$$

Therefore, the bounded Euler class of a morphism $\text{Homeo}_0(\mathbb{R}^d) \to \text{Homeo}_0(\mathbb{S}^1)$ vanishes: this action has a fixed point. П

Proof of Theorem [1.1](#page-1-0). Let $d = \dim(M)$. The theorem will be deduced from the following lemma.

Lemma 2.4. *For any* $d > 1$ *, any group morphism* $Homeo_0(\mathbb{R}^d) \rightarrow Homeo(\mathbb{R})$ *is trivial.*

Using Proposition [2.3,](#page-3-0) we obtain the following immediate corollary.

Corollary 2.5. *For any* $d > 1$, *any* group morphism Homeo₀(\mathbb{R}^d) \rightarrow Homeo(\mathbb{S}^1) *is trivial.*

Let us see why this lemma and this corollary imply the theorem. Consider a morphism Homeo₀ $(M) \rightarrow$ Homeo₀ (N) . Take an open set $U \subset M$ homeomorphic to \mathbb{R}^d and let us denote by $\text{Homeo}_0(U)$ the subgroup of $\text{Homeo}_0(M)$ consisting of homeomorphisms supported in U . By Lemma [2.4](#page-4-0) and Corollary [2.5,](#page-4-1) the restriction of this morphism to the subgroup $Homeo_0(U)$ is trivial. Moreover, as the group $Homeo_0(M)$ is simple, such a group morphism is either one-to-one or trivial: it is necessarily trivial in this case. \Box

Proof of Lemma [2.4](#page-4-0). Take a group morphism φ : Homeo₀(\mathbb{R}^d) \to Homeo(\mathbb{R}). Suppose by contradiction that this morphism is nontrivial. Replacing if necessary R with a connected component of the complement of the closed set Fix(φ (Homeo₀(\mathbb{R}^d))), we can suppose that the group φ (Homeo₀(\mathbb{R}^d)) has no fixed points.

Claim 2.6. *For any points* $p_1 \neq p_2$ *in* \mathbb{R}^d *,*

$$
Fix(\varphi(G_{p_1}^d)) \cap Fix(\varphi(G_{p_2}^d)) = \emptyset.
$$

Proof. The proof of this claim requires the following lemma which will be proved afterwards.

Lemma 2.7. Let $d \geq 1$ and $d \geq k \geq 0$ be integers. Let D_1 and D_2 be two disjoint embedded k-dimensional balls of \mathbb{R}^d . Then, for any homeomorphism f *in* Homeo₀(\mathbb{R}^d), there exist homeomorphisms f_1 , f_3 *in* $G_{D_1}^d$ *and* f_2 *in* $G_{D_2}^d$ *such that*

$$
f = f_1 f_2 f_3.
$$

Take two points p_1 and p_2 in \mathbb{R}^d . Suppose by contradiction that

$$
Fix(\varphi(G_{p_1}^d)) \cap Fix(\varphi(G_{p_2}^d)) \neq \emptyset.
$$

By Lemma [2.7](#page-5-0) applied to the 0-dimensional balls $\{p_1\}$ and $\{p_2\}$, a point in this set is a fixed point of the group $\varphi(\mathrm{Homeo}_0(\mathbb{R}^d))$, a contradiction. \Box

By Proposition [2.2,](#page-3-1) the sets $Fix(\varphi(G_p^d))$, for $p \in \mathbb{R}^d$ are nonempty. We just saw that they are pairwise disjoint. Recall that, for any embedded $(d-1)$ -dimensional ball D, the set Fix $(\varphi(G_{D}^{d}))$ contains the union of the sets $Fix(\varphi(G_p^d))$ over the points p in the closed set D. Hence, this set has infinitely many points as $d \ge 2$, a contradiction with Proposition [2.1.](#page-3-2) \Box

Proof of Lemma [2.7](#page-5-0)*.* To, prove this lemma, we use the following theorem by Brown and Gluck (see Theorem 7.1 in [\[3\]](#page-17-11)), which is also a consequence of the annulus theorem by Kirby and Quinn (see [\[8\]](#page-17-12) and [\[17\]](#page-17-13)).

Theorem (Brown–Gluck). Let $d \ge 1$ *and let* B_1 *and* B_2 *be two* d-dimensional balls of \mathbb{R}^d such that the ball B_1 is contained in the interior of B_2 . Let h be any homeomorphism in $\text{Homeo}_0(\mathbb{R}^d)$ such that the ball $h(B_1)$ is also contained in the interior of B_2 . Then there exists a homeomorphism \tilde{h} in $\text{Homeo}_0(\mathbb{R}^d)$ with the *following properties*:

- (1) the homeomorphism \tilde{h} is supported in B_2 ;
- (2) $\tilde{h}_{|B_1} = h_{|B_1}$.

Take a homeomorphism f in Homeo₀(\mathbb{R}^d).

Claim 2.8. *There exists a homeomorphism* f_1 $G_{D_1}^d$ *such that* f_1^{-1} *sends the* k-dimensional embedded ball $f(D_1)$ to a k-dimensional embedded ball which *lies in the same connected component of* \mathbb{R}^d – D_2 *as the embedded ball* D_1 *.*

Notice that, if $d \neq 1$, the set $\mathbb{R}^d - D_2$ is connected. In the case $d \neq 1$, this lemma amounts to finding a homeomorphism which sends the ball $f(D_1)$ to a ball which is disjoint from D_2 .

Proof. First suppose that $d = 1$. If $\sup(D_1) < \inf(D_2)$, take as f_1^{-1} any homeomorphism in Homeo $_0(\mathbb{R}^d)$ supported in $(\sup(D_1), +\infty)$ which sends the point $\sup(h(D_1))$ to a point $x < \inf(D_2)$. If $\sup(D_2) < \inf(D_1)$, take as f_1^{-1} any homeomorphism in Homeo₀(\mathbb{R}^d) supported in $(-\infty, \inf(D_1))$ which sends the point inf $(h(D_1))$ to a point $x > \inf(D_2)$.

Now suppose that $d \ge 2$. It is not difficult to find a d-dimensional embedded ball B which contains the k-dimensional ball D_2 and a point p outside $f(D_1)$ in its interior: using the definition of an embedded ball, find first a d -dimensional B_0 which contains D_2 in its interior. If this ball is not contained in $f(D_1)$ take $B = B₀$. Otherwise take any point p which does not belong to $f(D₁)$ and consider a tubular neighbourhood T of a path in \mathbb{R}^d – D_1 which joins the ball B_0 and the point p to construct the ball B out of T and B .

Changing coordinates if necessary, we can suppose that $p = 0 \in \mathbb{R}^d$ and that the ball B is the unit ball. Consider any vector field X of \mathbb{R}^d which is supported in B and which is equal to $x \mapsto x$ on a ball centered at 0 containing D_2 . Let V be a neighbourhood of the point 0 which is disjoint from the embedded ball $f(D_1)$. Denote by φ_X^t the time t of the flow of the vector field X. Observe that there exists $T > 0$ such that $\varphi_X^T(B - V) \cap D_2 = \emptyset$. Hence $\varphi_X^T(f(D_1)) \cap D_2 = \emptyset$. It suffices to take $f_1^{-1} = \varphi_X^T$. \Box

Take a d -dimensional ball B_2 with the following properties:

- (1) it contains D_1 and $f_1^{-1}f(D_1);$
- (2) it is disjoint from the embedded ball D_2 .

Consider a d -dimensional ball B_1 contained in the interior of the embedded ball B_2 such that $f_1^{-1} f(B_1)$ is contained in the interior of B_2 . Apply the theorem by Brown and Gluck above with the balls B_1 , B_2 and the homeomorphism $h = f_1^{-1} f$: there exists a homeomorphism \hat{f}_2 in $G_{D_2}^d$ which is equal to $f_1^{-1} f$ in a neighbourhood of the k -dimensional embedded ball D_1 .

Notice that the homeomorphism $\hat{f}_2^{-1} f_1^{-1} f$ pointwise fixes a neighbourhood of the embedded ball D_1 . However, its restriction to $\mathbb{R}^d - D_1$ might not be compactly isotopic to the identity. Nevertheless, this homeomorphism of $\mathbb{R}^d - D_1$ is compactly isotopic to a homeomorphism η whose support is contained in a small neighbourhood of the embedded ball D_1 and is disjoint from the embedded ball D_2 : in order to see it, conjugate the homeomorphism $\hat{f}_2^{-1} f_1^{-1} f$ with the flow at

a sufficiently large time of a vector field for which a small neighbourhood of the embedded ball D_1 is an attractor.

Let us check that the homeomorphism $\eta_{\parallel \mathbb{R}^d - D_2}$ is compactly isotopic to the identity. To prove it, it suffices to conjugate this homeomorphism by a continuous family of homeomorphisms $(h_t)_{t\in[0,+\infty)}$ supported in \mathbb{R}^d – D_2 such that

- (1) $h_0 =$ Id and
- (2) the family of compact sets $(h_t(\text{supp}(\eta)))_{t>0}$ converges to a point for the Hausdorff topology as $t \to +\infty$.

Hence the continuous family of homeomorphisms $h_t \eta h_t^{-1}$ converges to the identity as $t \to +\infty$ (this the well-known Alexander trick).

To finish the proof of the lemma, it suffices to take

$$
f_2 = \hat{f}_2 \eta
$$

and

$$
f_3 = f_2^{-1} f_1^{-1} f.
$$

Proof of Theorem [1.2](#page-2-0). Let φ : Homeo₀(R) \rightarrow Homeo(N) be a nontrivial group morphism. By Proposition [2.3,](#page-3-0) we can suppose that the manifold N is the real line $\mathbb R$. Replacing $\mathbb R$ with a connected component of the complement of the closed set $Fix(\varphi(\text{Homeo}_0(\mathbb{R})))$ if necessary, we can suppose that the group $\varphi(\text{Homeo}_0(\mathbb{R}))$ has no fixed point (see the remark at the end of the introduction). Recall that the group Homeo₀(R) is simple. Hence any morphism Homeo₀(R) \rightarrow Z/2Z is trivial. Thus, any element of the group φ . (Homeo₀(R)) preserves the orientation of R.

By Propositions [2.1](#page-3-2) and [2.2,](#page-3-1) for any real number x, the group $\varphi(G_x^1)$ has a unique fixed point $h(x)$. Take a homeomorphism f in Homeo₀(R) which sends a point x in R to a point y in R. Then $f G_x^1 f^{-1} = G_y^1$ and, taking the image under φ , $\varphi(f)\varphi(G_x^1)\varphi(f)^{-1} = \varphi(G_y^1)$. Hence $\varphi(f)(\text{Fix}(\varphi(G_x^1))) = \text{Fix}(\varphi(G_y^1))$. Therefore, for any homeomorphism f in Homeo₀(R), $\varphi(f)h = hf$.

Let us prove that the map h is one-to-one. Suppose by contradiction that there exist real numbers $x \neq y$ such that $h(x) = h(y)$. The point $h(x)$ is fixed under the groups $\varphi(G_x^1)$ and $\varphi(G_y^1)$. However, the groups G_x^1 and G_y^1 generate the group Homeo₀(R) by Lemma [2.7.](#page-5-0) Therefore, the point $h(x)$ is fixed under the group φ (Homeo₀(R)), a contradiction.

Now we prove that the map h is either strictly increasing or strictly decreasing. Fix two points $x_0 < y_0$ of the real line. For any two points $x < y$ of the real line, let us consider a homeomorphism $f_{x,y}$ in Homeo₀(R) such that $f_{x,y}(x_0) = x$ and $f_{x,y}(y_0) = y$. As $\varphi(f_{x,y})h = hf_{x,y}$, the homeomorphism $\varphi(f_{x,y})$ sends the ordered pair $(h(x_0), h(y_0))$ to the ordered pair $(h(x), h(y))$. As the homeomorphism $\varphi(f_{x,y})$ is strictly increasing:

$$
h(x) < h(y) \iff h(x_0) < h(y_0)
$$

and

$$
h(x) > h(y) \iff h(x_0) > h(y_0).
$$

Hence the map h is either strictly increasing or strictly decreasing.

Now, it remains to prove that the map h is onto to complete the proof. Suppose by contradiction that the map h is not onto. Notice that the set $h(\mathbb{R})$ is preserved under the group φ (Homeo₀(R)). If this set had a lower bound or an upper bound, then the supremum of this set or the infimum of this set would provide a fixed point for the group φ (Homeo₀(R)), a contradiction. This set has neither upper bound nor lower bound. Let C be a connected component of the complement of the set $h(\mathbb{R})$. Replacing if necessary h by $-h$ and the morphism φ by its conjugate under $-Id$, we can suppose that the map h is increasing. Let us denote by x_0 the supremum of the set of points x such that the real number $h(x)$ is lower than any point in the interval C. Then the point $h(x_0)$ is necessarily in the closure of C: otherwise, there would exist an interval in the complement of $h(\mathbb{R})$ which strictly contains the interval C. Hence the point $h(x_0)$ is either the infimum or the supremum of the interval C . As the proof is analogous in these two cases, we suppose from now on that the point $h(x_0)$ is the supremum of the interval C.

Choose, for each couple (z_1, z_2) of real numbers, a homeomorphism g_{z_1, z_2} in Homeo₀(R) which sends the point z_1 to the point z_2 . Then the sets $g_{x_0,x}(C)$, for x in R, are pairwise disjoint: they are pairwise distinct as their suprema are pairwise distinct (the supremum of the set $g_{x_0,x}(C)$ is the point $h(x)$). Moreover, those sets do not contain any point of $h(\mathbb{R})$ and the infima of those sets are accumulated by points in $h(\mathbb{R})$. Hence, these sets are pairwise disjoint. Then the set C has necessarily an empty interior as the topological space $\mathbb R$ is second-countable. Therefore $C = \{h(x_0)\}\text{, which is not possible.}$ □

3. Proof of Proposition [2.1](#page-3-2)

Fix $d > 0$ and a group morphism φ : Homeo $_0(\mathbb{R}^d) \to$ Homeo(\mathbb{R}). We want to prove that, for any $(d-1)$ -dimensional embedded ball D , the group $\varphi(G_D^d)$ has at most one global fixed point.

The proof of the proposition is similar to the proofs of Lemmas 3.6 and 3.7 in [\[15\]](#page-17-14). For an embedded $(d-1)$ -dimensional ball D, let $F_D = Fix(\varphi(G_D^d))$. Let us prove that these sets are pairwise homeomorphic. Take two embedded $(d - 1)$ dimensional balls D an D' and take a homeomorphism h in Homeo₀(\mathbb{R}^d) which sends the set D onto D' . Observe that

$$
hG_D^dh^{-1} = H_{D'}^d
$$

and that

$$
\varphi(h)\varphi(G_D^d)\varphi(h)^{-1} = \varphi(H_{D'}^d).
$$

Therefore.

$$
\varphi(h)(F_D)=F_{D'}.
$$

In the case where these sets are all empty, there is nothing to prove. We suppose in what follows that they are not empty.

Given two disjoint embedded $(d-1)$ -dimensional balls D and D', Lemma [2.7](#page-5-0) implies, as in the proof of Lemma [2.4,](#page-4-0)

$$
F_D \cap F_{D'} = \emptyset.
$$

Lemma 3.1. Fix an embedded $(d - 1)$ -dimensional ball D_0 of \mathbb{R}^d . For any *connected component* C *of the complement of* F_{D_0} *, there exists an embedded* $(d-1)$ -dimensional ball D disjoint from D_0 such that the set F_D meets C.

Proof. Let (a_1, a_2) be a connected component of the complement of F_{D_0} . It is possible that either $a_1 = -\infty$ or $a_2 = +\infty$. Consider a homeomorphism $e: \mathbb{R}^{d-1} \times \mathbb{R} \to \mathbb{R}^d$ such that $e(B^{d-1} \times \{0\}) = D_0$, where B^{d-1} denotes the unit closed ball in \mathbb{R}^{d-1} . For any real number x, let $D_x = e(B^{d-1} \times \{x\})$. Given two real $x \neq y$, take a homeomorphism $\eta_{x,y}$ in Homeo₀(R) which sends the point x to the point y. Consider a homeomorphism $h_{x,y}$ such that the following property is satisfied. The restriction of $eh_{x,y}e^{-1}$ to $B^{d-1}\times \mathbb{R}$ is equal to the map

$$
B^{d-1} \times \mathbb{R} \longrightarrow \mathbb{R}^{d-1} \times \mathbb{R},
$$

\n $(p, z) \longmapsto (p, \eta_{x,y}(z)).$

Notice that, for any real numbers x and y, $h_{x,y}(D_x) = D_y$

Let us prove by contradiction that there exists a real number $x \neq 0$ such that $F_{D_x} \cap (a_1, a_2) \neq \emptyset$. Suppose that, for any such embedded ball D_x , $F_{D_x} \cap (a_1, a_2) = \emptyset$. We claim that the open sets $\varphi(h_{0,x})((a_1, a_2))$ are pairwise disjoint. It is not possible as there would be uncountably many pairwise disjoint open intervals in R.

Indeed, suppose by contradiction that there exists real numbers $x \neq y$ such that $\varphi(h_{0,x})((a_1,a_2)) \cap \varphi(h_{0,y})((a_1,a_2)) \neq \emptyset$. Notice that the homeomorphism $h_{0,x}^{-1}h_{0,y}$ and $h_{0,y}^{-1}h_{0,x}$ send respectively the set D_0 to sets of the form D_z and $D_{z'}$, where $z, z' \in \mathbb{R}$. Hence, for $i = 1, 2$, the homeomorphisms $\varphi(h_{0,x}^{-1}h_{0,y})$ (respectively $\varphi(h_{0,y}^{-1}h_{0,x})$) sends the point $a_i \in F_{D_0}$ to a point in F_{D_z} (respectively in $F_{D_{z'}}$). By hypothesis, these points do not belong to (a_1, a_2) . Therefore

$$
\varphi(h_{0,y}^{-1}h_{0,x})(a_1,a_2)=(a_1,a_2)
$$

or

$$
\varphi(h_{0,x})(a_1,a_2) = \varphi(h_{0,y})(a_1,a_2).
$$

But this last equality cannot hold as the real endpoints of the interval on the lefthand side belong to F_{D_x} and the real endpoints point of the interval on the righthand side belongs to F_{D_y} . Moreover, we saw that these two closed sets were disjoint, a contradiction. \Box

Lemma 3.2. *Each set* F_D *contains only one point.*

Proof. Suppose that there exists an embedded $(d - 1)$ -dimensional ball D such that the set F_D contains two points $p_1 < p_2$. By Lemma [3.1,](#page-9-0) there exists an embedded $(d-1)$ -dimensional ball D' disjoint from D such that the set $F_{D'}$ has a common point with the open interval (p_1, p_2) . Take a real number $r < p_1$. Then, for any homeomorphisms g_1 in G_D , g_2 in $G_{D'}$ and g_3 in G_D ,

$$
\varphi(g_1)\circ\varphi(g_2)\circ\varphi(g_3)(r)
$$

By Lemma [2.7,](#page-5-0) this implies that the following inclusion holds:

$$
\{\varphi(g)(r), g \in \text{Homeo}_0(\mathbb{R}^d)\} \subset (-\infty, p_2].
$$

The supremum of the left-hand set provides a fixed point for the action φ , a contradiction. П

4. Proof of Proposition [2.2](#page-3-1)

This proof uses the following lemmas. For a subgroup G of $\text{Homeo}_0(\mathbb{R}^d)$, we define the support $\text{Supp}(G)$ of G as the closure of the set

$$
\{x \in \mathbb{R}^d, \text{ there exists } g \in G, gx \neq x\}.
$$

Let Homeo_Z $(\mathbb{R}) = \{f \in \text{Homeo}(\mathbb{R}), \text{ for all } x \in \mathbb{R}, f(x + 1) = f(x) + 1\}.$ To prove Proposition [2.2,](#page-3-1) we need the following lemmas.

Lemma 4.1. Let G and G' be subgroups of the group $Homec_{+}(\mathbb{R})$ of orientation*preserving homeomorphisms of the real line. Suppose that the following conditions are satised.*

- (1) *The groups* G *and* G' *are isomorphic to the group* $Homeo_{\mathbb{Z}}(\mathbb{R})$ *.*
- (2) *The subgroups G* and *G'* of $Homeo_+(\mathbb{R})$ *commute:* $gg' = g'g$ *for all* $g \in G$ *,* $g' \in G'e$.

Then Supp $(G) \subset Fix(G')$ *and* Supp $(G') \subset Fix(G)$ *.*

Lemma 4.2. Let $d > 0$. Take any nonempty open subset U of \mathbb{R}^d . Then there e xists a subgroup of $\mathrm{Homeo}_0(\mathbb{R}^d)$ isomorphic to $\mathrm{Homeo}_\mathbb{Z}(\mathbb{R})$ which is supported *in* U*.*

Lemma [4.1](#page-10-1) will be proved in the next section. We now provide a proof of Lemma [4.2.](#page-11-0)

Proof of Lemma [4.2](#page-11-0). Take a closed ball B contained in U. Changing coordinates if necessary, we can suppose that B is the unit closed ball in \mathbb{R}^d . Take an orientation-preserving homeomorphism $h: \mathbb{R} \to (-1, 1)$. For any orientationpreserving homeomorphism $f : \mathbb{R} \to \mathbb{R}$, we define the homeomorphism

$$
\lambda_h(f) \colon \mathbb{R}^d \longrightarrow \mathbb{R}^d
$$

in the following way.

- (1) The homeomorphism $\lambda_h (f)$ is equal to the identity outside the interior of the ball B.
- (2) For any $(x_1, x') \in \mathbb{R} \times \mathbb{R}^{d-1} \cap \text{int}(B)$:

$$
\lambda_h(f)(x_1, x') = \left(\sqrt{1 - \|x'\|^2}h \circ f \circ h^{-1}\left(\frac{x_1}{\sqrt{1 - \|x'\|^2}}\right), x'\right).
$$

The map λ_h defines an embedding of the group Homeo₊(R) into the group Homeo₀(\mathbb{R}^d). The image under λ_h of the group Homeo_Z(\mathbb{R}) is a subgroup of Homeo $_0(\mathbb{R}^d)$ which is supported in $U.$ \Box

Let us complete now the proof of Proposition [2.2.](#page-3-1)

Proof of Proposition [2.2](#page-3-1). Fix a point p in \mathbb{R}^d . Take a closed ball $B \subset \mathbb{R}^d$ which is centered at p. Let us prove that $Fix(\varphi(G^d_B)) \neq \emptyset$.

Take a subgroup G_1 of $\text{Homeo}_0(\mathbb{R}^d)$ which is isomorphic to $\text{Homeo}_{\mathbb{Z}}(\mathbb{R})$ and supported in B . Such a subgroup exists by Lemma [4.2.](#page-11-0) This subgroup commutes

with any subgroup G_2 of Homeo₀(\mathbb{R}^d) which is isomorphic to Homeo_Z(\mathbb{R}) and supported outside B.

If the group φ (Homeo₀(\mathbb{R}^d)) admits a fixed point, there is nothing to prove. Suppose that this group has no fixed point. As the group $\text{Homeo}_0(\mathbb{R}^d)$ is simple, the morphism φ is one-to-one. Moreover, any morphism $\text{Homeo}_0(\mathbb{R}^d) \to \mathbb{Z}/2\mathbb{Z}$ is trivial: the morphism φ takes values in Homeo₊(R). Hence the subgroups $\varphi(G_1)$ and $\varphi(G_2)$ of Homeo(R) satisfy the hypothesis of Lemma [4.1.](#page-10-1) By this lemma,

$$
\emptyset \neq \text{Supp}(\varphi(G_1)) \subset \text{Fix}(\varphi(G_2)).
$$

Claim 4.3. The group G^d_B is generated by the union of its subgroups isomorphic to Homeo $Z(\mathbb{R})$ *.*

This claim implies that

$$
\emptyset \neq \operatorname{Supp}(\varphi(G_1)) \subset \operatorname{Fix}(\varphi(G^d_B)).
$$

Proof. For $d \ge 2$, observe that the open set \mathbb{R}^d – B is connected. Hence, as we recalled in the introduction, the group G_B^d is simple by a theorem by Fisher (see $[5]$). The claim is a direct consequence of the simplicity of this group. In the case where $d = 1$, the open set $\mathbb{R} - B$ has two connected components. Denote by [a, b] the compact interval B. The inclusions of the groups Homeo₀ $((-\infty, a))$ and Homeo₀ $((b, +\infty))$ induce an isomorphism

$$
\text{Homeo}_0((-\infty, a)) \times \text{Homeo}_0((b, +\infty)) \longrightarrow G^d_B
$$

:

 \Box

The simplicity of each factor of this decomposition implies the claim.

Claim 4.4. *The set* $Fix(\varphi(G^d_B))$ *is compact.*

Proof. Suppose by contradiction that there exists a sequence $(a_k)_{k\in\mathbb{N}}$ of real numbers in Fix($\varphi(G^d_B)$) which tends to $+\infty$ (if we suppose that it tends to $-\infty$, we obtain of course an analogous contradiction). Let us choose a closed ball $B'\subset \mathbb{R}^d$ which is disjoint from B. Observe that the subgroups G_B^d and $G_{B'}^d$ are conjugate in Homeo $_0(\mathbb{R}^d)$ by a homeomorphism which sends the ball B to the ball $B'.$ Then the subgroups $\varphi(G^d_B)$ and $\varphi(G^d_{B'})$ are conjugate in the group Homeo₊(R). Hence the sets $Fix(\varphi(G^d_B))$ and $Fix(\varphi(G^d_{B'}))$ are homeomorphic: there exists a sequence $(b_k)_{k\in\mathbb{N}}$ of elements in Fix $(\varphi(G^d_{B'}))$ which tends to $+\infty$. Take positive integers n_1 , n_2 and n_3 such that $a_{n_1} < b_{n_2} < a_{n_3}$. Fix $x_0 < a_{n_1}$. We notice then that for any homeomorphisms $g_1 \in G_B^d$, $g_2 \in G_{B'}^d$ and $g_3 \in G_B^d$, the following inequality is satisfied:

$$
\varphi(g_1)\varphi(g_2)\varphi(g_3)(x_0) < a_{n_3}.
$$

However, by Lemma [2.7,](#page-5-0) any element g in $\text{Homeo}_0(\mathbb{R}^d)$ can be written as a product

$$
g=g_1g_2g_3,
$$

where g_1 and g_3 belong to G_B^d and g_2 belongs to $G_{B'}^d$. The proof of this fact is similar to that of Lemma [2.7.](#page-5-0) Therefore,

$$
\{\varphi(g)(x_0),\ g\in \text{Homeo}_0(\mathbb{R}^d)\}\subset (-\infty, a_{n_3}].
$$

The greatest element of the left-hand set is a fixed point of the image of φ : this is not possible as this image was supposed to have no fixed point. П

Observe that the group $\varphi(G_p^d)$ is the union of its subgroup of the form $\varphi(G_{B'}^d)$, with B' varying over the set \mathcal{B}_p of closed balls centered at the point p. By compactness, the set

$$
Fix(\varphi(G_p^d)) = \bigcap_{B' \in \mathcal{B}_p} Fix(G_{B'}^d)
$$

is nonempty. Proposition [2.2](#page-3-1) is proved.

5. Proof of Lemma [4.1](#page-10-1)

We start this section by recalling some facts about the group $\text{Homeo}_{\mathbb{Z}}(\mathbb{R})$ of homeomorphisms of the real line which commute with integral translations. Observe that the center of the group Homeo $Z(\mathbb{R})$ is the subgroup generated by the translation $x \mapsto x + 1$. The quotient of this group by its center is the group Homeo₀(\mathbb{S}^1). The following lemma is classical.

Lemma 5.1. *Any group morphism* $\text{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \mathbb{Z}$ *or* $\text{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \mathbb{Z}/2\mathbb{Z}$ *is trivial.*

Proof of Lemma [5.1](#page-13-0). Actually, any element in $Homeo_{\mathbb{Z}}(\mathbb{R})$ can be written as a product of commutators, *i.e.* elements of the form $aba^{-1}b^{-1}$, "where a and b belong to the group $Hom\{e_{{\mathbb{Z}}}(R)\}$. For an explicit construction of such a decomposition, see Section 2 in [\[4\]](#page-17-15). \Box

Lemma 5.2. *Let* ψ : Homeo_Z(R) \rightarrow Homeo₊(R) *be a group morphism. Denote by F* the closed set of fixed points of the group ψ (Homeo_Z(R)). Then, for any *connected component* K *of the complement of* F *, there exists a homeomorphism*

 $h_K : \mathbb{R} \longrightarrow K$

 \Box

such that

$$
\psi(f)(x) = h_K f h_K^{-1}, \quad \text{for all } f \in \text{Homeo}_{\mathbb{Z}}(\mathbb{R}), x \in K.
$$

This lemma is similar to Matsumoto's theorem about morphisms Homeo₀(S¹) \rightarrow Homeo₀(S¹) (see introduction) and the proof of this lemma relies heavily on Matsumoto's theorem. Before proving this lemma, let us see how it implies Lemma [4.1.](#page-10-1)

Proof of Lemma [4.1](#page-10-1). Recall that we are given two subgroups G and G' of Homeo_{$+(R)$} isomorphic to the group Homeo_{$\mathbb{Z}(R)$.}

Let α (respectively α') be a generator of the center of G (respectively of G'). Let $A_{\alpha} = \mathbb{R} - \text{Fix}(\alpha)$ and $A_{\alpha'} = \mathbb{R} - \text{Fix}(\alpha')$.

As the homeomorphisms α and α' commute:

$$
\begin{cases}\n\alpha'(A_{\alpha}) = A_{\alpha}, \\
\alpha(A_{\alpha'}) = A_{\alpha'}.\n\end{cases}
$$

Claim 5.3. *Take any connected component I of* A_{α} *and any connected component* I' of $A_{\alpha'}$. Then the interval I and I' are disjoint.

This claim is proved below. Let us complete now the proof of Lemma [4.1.](#page-10-1) By Lemma [5.2,](#page-13-1) $A_{\alpha} = Fix(G)$ and $A_{\alpha'} = Fix(G')$. Hence, we have proved that any connected component of the complement of $Fix(G)$ is disjoint from the complement of Fix (G') . Therefore Supp $(G) \subset Fix(G')$. We have also proved that $\text{Supp}(G') \subset \text{Fix}(G)$. П

Claim [5.3](#page-14-0) is a direct consequence of the three following claims.

Claim 5.4. *Either I is contained in I'*, or I' *is contained in I*, or I and I' are *disjoint.*

Claim 5.5. The interval I is not strictly contained in the interval I' .

Of course, the case where the interval I' is strictly contained in I is symmetric and cannot occur.

Claim 5.6. *The interval I and I' are distinct.*

Proof of Claim [5.4](#page-14-1)*.* Suppose for a contradiction that the conclusion of this claim does not hold. Changing the roles of α and α' if necessary, we can suppose that the

supremum b of I is contained in the open interval I' and the infimum a' of I' is contained in the open interval *I*. Then either the sequence $(\alpha^{k}(b))_{k>0}$ converges to the point *a'* as $k \to +\infty$ or the sequence $(\alpha'^{-k}(b))_{k>0}$ converges to the point a' as $k \to +\infty$. In any case, a sequence of points in A_{α} converge to the point a' . As the set A_{α} is closed, this means that the point a' belongs to A_{α} . This is not possible as a' belongs to I which is a connected component of the complement of A_{α} . \Box

Proof of Claim [5.5](#page-14-2). Suppose for a contradiction that the interval *I* is strictly contained in the interval I' . Let \sim be the equivalence relation defined on I' by

$$
x \sim y \iff
$$
 (there exists $k \in \mathbb{Z}$, $x = \alpha^{k}(y)$).

The topological space I'/\sim is homeomorphic to a circle. By Lemma [5.2,](#page-13-1) the group G' preserves the interval I'. Notice that the group $G'/\langle \alpha' \rangle \approx \text{Homeo}_0(\mathbb{S}^1)$ acts on the circle I'/\sim . As the group G' commutes with the homeomorphism α , this action preserves the nonempty set $(A_{\alpha} \cap I') / \sim$. As $\alpha'(A_{\alpha}) = A_{\alpha}$, the points of the interval I are sent to points in the complement of A_{α} under the iterates of the homeomorphism α' . Hence the set $(A_{\alpha} \cap I') / \sim$ is not equal to the whole circle I' / \sim . However, by Theorem 5.3 in [\[13\]](#page-17-8) (see the remark below Theorem [1.2\)](#page-2-0), a non-trivial action of the group $\mathrm{Homeo}_0(\mathbb{S}^1)$ on a circle has no non-empty proper invariant subset. Hence, the group $G'/\langle \alpha' \rangle$ acts trivially on the circle I'/\sim : for any element β' of G', and any point $x \in I'$, there exists an integer $k(x, \beta') \in \mathbb{Z}$ such that $\beta'(x) = \alpha^{k(x,\beta)}(x)$. Fixing such a point x, we see that the map

$$
G' \longrightarrow \mathbb{Z},
$$

$$
\beta' \longmapsto k(x, \beta'),
$$

is a group morphism. Such a group morphism is trivial by Lemma [5.1.](#page-13-0) Therefore, the group G' acts trivially on the interval I' , a contradiction. □

Proof of Claim [5.6](#page-14-3). Suppose that $I = I'$. Take any element β' in G'. As the homeomorphism β' commutes with α , by Lemma [5.2,](#page-13-1) the homeomorphism β' is equal to some element of G on I. As the homeomorphism β' commute with any element of G, there exists a unique integer $k(\beta')$ such that $\beta'_{|I} = \alpha_{|I}^{k(\beta')}$ $\frac{\kappa(\rho)}{|I|}$. The map $k: G \to \mathbb{Z}$ is a nontrivial group morphism. But such a map cannot exist by Lemma [5.1.](#page-13-0) \Box

It remains to prove Lemma [5.2.](#page-13-1)

Proof of Lemma [5.2](#page-13-1). Denote by t a generator of the center of Homeo_{$\mathbb{Z}(\mathbb{R})$.}

Claim 5.7. The connected components of the complement of $Fix(\psi(t))$ are each *preserved by the group* ψ (Homeoz(R)). Moreover

$$
Fix(\psi(\text{Homeo}_{\mathbb{Z}}(\mathbb{R}))) = Fix(\psi(t)).
$$

Claim 5.8. Any action of the group $Hom\{C_R(\mathbb{R})\}$ on \mathbb{R} without fixed points is *conjugate to the standard action.*

It is clear that these two claims imply Lemma [5.2.](#page-13-1)

Proof of Claim [5.7](#page-15-0). The set $Fix(\psi(t))$ is preserved under any element in ψ (Homeo_Z(R)), because any element of this group commutes with the homeomorphism $\psi(t)$. Moreover, any element in ψ (Homeo_Z(R)) preserves the orienta-tion by Lemma [5.1.](#page-13-0) Hence the action ψ induces an action of the group Homeo_Z(R)/ $\langle t \rangle$, which is isomorphic to Homeo₀(S¹), on the set $F = Fix(\psi(t))$ by increasing homeomorphisms. As the group $Homeo_0(S^1)$ is simple, the induced morphism from the group $Homeo_0(S^1)$ to the group $Homeo_<(F)$ of increasing homeomorphisms of F is either one-to-one or trivial. However, the group $Homeo_0(S^1)$ contains some non-trivial finite order elements whereas the group Homeo_{<(F)} does not: such a morphism is trivial. Hence any element of the group ψ (Homeo_Z(R)) fixes any point in Fix $(\psi(t))$: any element of this group preserves each connected component of the complement of $Fix(\psi(t))$. \Box

Proof of Claim [5.8](#page-16-0). We denote by φ : Homeo $\mathbb{Z}(\mathbb{R}) \to$ Homeo(\mathbb{R}) a morphism such that the group φ . (Homeo \overline{z} .(R)) of homeomorphisms of R has no fixed point.

By Claim [5.7,](#page-15-0) the homeomorphism $\varphi(t)$ has no fixed point. Changing coordinates if necessary, we can suppose that the homeomorphism $\varphi(t)$ is the translation $x \mapsto x + 1$. The morphism φ induces an action $\hat{\varphi}$ of the group Homeo $\chi(\mathbb{R})/\langle t \rangle \approx$ Homeo₀(S¹) on the circle R/\mathbb{Z} . This action is nontrivial: otherwise, there would exist a nontrivial group morphism $Homeo_0(S^1) \rightarrow \mathbb{Z}$. By the theorem by Matsumoto that we recalled earlier (see the introduction of this article), there exists a homeomorphism h of the circle \mathbb{R}/\mathbb{Z} such that, for any homeomorphism f in Homeo_{$\mathbb{Z}(\mathbb{R})/\langle t \rangle$ (which can be canonically identified with Homeo₀(\mathbb{R}/\mathbb{Z})):}

$$
\hat{\varphi}(f) = h f h^{-1}.
$$

Take a lift $\tilde{h} \colon \mathbb{R} \to \mathbb{R}$ of h. For any integer n, denote by $T_n \colon \mathbb{R} \to \mathbb{R}$ the translation $x \mapsto x + n$. For any homeomorphism f in Homeo_Z(R), there exists an integer $n(f)$ such that

$$
\varphi(f) = T_{n(f)} \tilde{h} f \tilde{h}^{-1}.
$$

However, the map n: Homeo $Z(\mathbb{R}) \to \mathbb{Z}$ is a group morphism: it is trivial by Lemma 5.1 . This completes the proof of Claim 5.8 . \Box

 \Box

References

- [1] A. Banyaga, *The structure of classical diffeomorphism groups*. Mathematics and its Applications, 400. Kluwer Academic Publishers Group, Dordrecht, 1997. [Zbl 0874.58005](http://zbmath.org/?q=an:0874.58005) [MR 1445290](http://www.ams.org/mathscinet-getitem?mr=1445290)
- [2] A. Bounemoura, Simplicité des groupes de transformations de surface. Ensaios Matemáticos, 14. Sociedade Brasileira de Matemática, Rio de Janeiro, 2008. [Zbl 1161.58007](http://zbmath.org/?q=an:1161.58007) [MR 2458739](http://www.ams.org/mathscinet-getitem?mr=2458739)
- [3] M. Brown and H. Gluck, Herman Stable structures on manifolds. I. Homeomorphisms of S ⁿ. *Ann. of Math.* (2) **79** (1964) 1–17.
- [4] D. Eisenbud, U. Hirsch, and W. Neumann, Transverse foliations of Seifert bundles and self-homeomorphisms of the circle. *Comment. Math. Helv.* **56** (1981), no. 4, 638–660. [Zbl 0516.57015](http://zbmath.org/?q=an:0516.57015) [MR 0656217](http://www.ams.org/mathscinet-getitem?mr=0656217)
- [5] G. M. Fischer, On the group of all homeomorphisms of a manifold. *Trans. Amer. Math. Soc.* **97** (1960), 193–212. [Zbl 0144.22902](http://zbmath.org/?q=an:0144.22902) [MR 0117712](http://www.ams.org/mathscinet-getitem?mr=0117712)
- [6] É. Ghys, Groups acting on the circle. *Enseign. Math.* (2) **47** (2001), no. 3-4, 329–407. [Zbl 1044.37033](http://zbmath.org/?q=an:1044.37033) [MR 1876932](http://www.ams.org/mathscinet-getitem?mr=1876932)
- [7] É. Ghys, Prolongements des diéomorphismes de la sphère. *Enseign. Math.* (2) **37** (1991), no. 1-2, 45–59. [Zbl 0738.57017](http://zbmath.org/?q=an:0738.57017) [MR 1115743](http://www.ams.org/mathscinet-getitem?mr=1115743)
- [8] R. C. Kirby, Stable homeomorphisms and the annulus conjecture. *Ann. of Math.* (2) **89** 1969 575–582. [Zbl 0176.22004](http://zbmath.org/?q=an:0176.22004) [MR 0242165](http://www.ams.org/mathscinet-getitem?mr=0242165)
- [9] K. Mann, Homomorphisms between diffeomorphism groups. *Ergodic Theory Dynam. Systems* **35** (2015), no. 1, 192–214. [Zbl 1311.57047](http://zbmath.org/?q=an:1311.57047) [MR 3294298](http://www.ams.org/mathscinet-getitem?mr=3294298)
- [10] J. N. Mather, Commutators of dieomorphisms. *Comment. Math. Helv.* **49** (1974), 512–528. [Zbl 0289.57014](http://zbmath.org/?q=an:0289.57014) [MR 0356129](http://www.ams.org/mathscinet-getitem?mr=0356129)
- [11] J. N. Mather, Commutators of diffeomorphisms II. *Comment. Math. Helv.* 50 (1975), 33–40. [Zbl 0299.58008](http://zbmath.org/?q=an:0299.58008) [MR 0375382](http://www.ams.org/mathscinet-getitem?mr=0375382)
- [12] J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms. *Topology* **10** (1971), 297–298. [Zbl 0207.21903](http://zbmath.org/?q=an:0207.21903) [MR 0288777](http://www.ams.org/mathscinet-getitem?mr=0288777)
- [13] S. Matsumoto, Numerical invariants for semiconjugacy of homeomorphisms of the circle. *Proc. Amer. Math. Soc.* **98** (1986), no. 1, 163–168. [Zbl 0598.57030](http://zbmath.org/?q=an:0598.57030) [MR 0848896](http://www.ams.org/mathscinet-getitem?mr=0848896)
- [14] S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms. *Proc. Amer. Math. Soc.* **94** (1985), no. 3, 539–544. [Zbl 0536.57023](http://zbmath.org/?q=an:0536.57023) [MR 0787909](http://www.ams.org/mathscinet-getitem?mr=0787909)
- [15] E. Militon, Continuous actions of the group of homeomorphisms of the circle on surfaces. Preprint 2012. [arXiv:1211.0846](http://arxiv.org/abs/1211.0846) [math.DS]
- [16] A. Navas, *Groups of circle dieomorphisms.* Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2011. [Zbl 1236.37002](http://zbmath.org/?q=an:1236.37002) [MR 2809110](http://www.ams.org/mathscinet-getitem?mr=2809110)
- [17] F. Quinn, Ends of maps III : Dimensions 4 and 5. *J. Differential Geom.* **17** (1982), no. 3, 503–521. [Zbl 0679069](http://zbmath.org/?q=an:0679069) [MR 0533.57009](http://www.ams.org/mathscinet-getitem?mr=0533.57009)

Actions of groups of homeomorphisms on one-manifolds 63

Received February 15, 2013

Emmanuel Militon, Université Côte d'Azur, Université de Nice Sophia Antipolis, Laboratoire de Mathématiques J. A. Dieudonné, UMR n° 7351 CNRS UNS, 06108 Nice Cedex 02, France

e-mail: emmanuel.militon@unice.fr