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An in�nitely generated virtual cohomology group
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Abstract. Let G.OS/ be a noncocompact irreducible arithmetic group over a global func-

tion �eld K of characteristic p, and let � be a �nite-index, residually p-�nite subgroup of

G.OS /. We show that the cohomology of � in the dimension of its associated Euclidean

building with coe�cients in the �eld of p elements is in�nite.
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1. Introduction

Let K be a global function �eld that contains the �eld with p elements, Fp.

We let S be a �nite nonempty set of inequivalent valuations of K. �e ring

OS � K will denote the corresponding ring of S -integers. For any v 2 S , we

let Kv be the completion of K with respect to v so that Kv is a locally compact

�eld.

We denote by G a connected noncommutative absolutely almost simple K-

group, and we let

k.G; S/ D
X

v2S

rankKv
G

so that k.G; S/ is the dimension of the Euclidean building on which the arithmetic

group G.OS / acts as a lattice. �us for example, k.SLn; S/ D jS j.n� 1/.

If G isK-anisotropic, then G.OS / contains a torsion-free �nite-index subgroup

that acts freely and cocompactly on a Euclidean building of dimension k.G; S/.

Determining the �niteness properties of arithmetic groups G.OS / in the case that

1 �e author gratefully acknowledges the support of the National Science Foundation.
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G is K-isotropic has been more di�cult. �e model for the K-isotropic case was

provided by the following theorem of Stuhler [16].

�eorem 1. �e arithmetic group SL2.OS / is of type Fk.SL2;S/�1, and if � is any

�nite-index subgroup of SL2.OS / whose only torsion elements are p-elements,

then Hk.SL2;S/. � I Fp / is in�nite.

Recall that a group � is of type Fn if there exists a K.�; 1/ with �nite

n-skeleton.

It is well-known, by Selberg’s Lemma, that SL2.OS /, or that any arithmetic

group over function �elds G.OS / as above, contains a �nite-index subgroup whose

only torsion elements are p-elements.

Bux–Köhl–Witzel [6] completely generalized “half” of �eorem 1 with the

following theorem.

�eorem 2. If G is K-isotropic, then G.OS / is of type Fk.G;S/�1.

Important evidence for the theorem of Bux–Köhl–Witzel was contributed by

Behr [4], Abels [1], Abramenko [2], and Bux-Wortman [8].

�ere are now three proofs that G.OS / as in �eorem 2 is not of type Fk.G;S/

due to Bux-Wortman [7], Bux–Köhl–Witzel [6], and Kropholler [13] as observed

by Gandini [10]. However, outside of the case that k.G; S/ D 1, the “second half”

of Stuhler’s �eorem 1 had not been generalized to include any other arithmetic

groups. �is paper uses the results of Bux–Köhl–Witzel and Schulz [15] to further

generalize the results of Stuhler by proving

�eorem 3. Suppose G is K-isotropic. If � is a �nite-index subgroup of G.OS /

that is residually p-�nite, then Hk.G;S/. � I Fp / is in�nite.

A group� is residuallyp-�nite if for any nontrivial 
 2 �, there is a homomor-

phism of � onto a �nite p-group that evaluates 
 nontrivially. Such �nite-index

subgroups of G.OS/ are well-known to exist, by Platonov’s �eorem, and we pro-

vide a proof of their existence in Section 8 for completeness.

To compare �eorems 1 and 3, notice that any torsion element of a residually

p-�nite group has order a power of p. �e author does not know of an example of

a �nite-index subgroup � � G.OS / whose only torsion elements are p-elements,

but such that � is not residually p-�nite.

As an example of �eorem 3, there is a �nite-index subgroup of SLn.OS /

whose cohomology in dimension jS j.n � 1/ with coe�cients in Fp is in�nite.

In particular, there is a �nite-index subgroup � of SLn.Fp Œt �/ such that

Hn�1.�IFp/ is in�nite.
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1.1. Outline of the proof. To prove �eorem 1, Stuhler analyzed the cell sta-

bilizers of the SL2.OS /-action on the associated Euclidean building which is a

product of regular .p C 1/-valent trees. �e cell stabilizers of � as in �eorem 1

are products of the group Fp, but the cell stabilizers of a random arithmetic group

acting on its associated Euclidean building are more di�cult to describe and to

work with, so our proof of �eorem 3 proceeds in a di�erent direction.

�e main tool in our proof of �eorem 3 is the work of Bux–Köhl–Witzel, and

we spend a good portion of the beginning of our proof recalling their work. Let

k D k.G; S/ and let X be the Euclidean building that G.OS / acts on as a lat-

tice. Bux–Köhl–Witzel �nds a G.OS /-invariant, cocompact, .k � 2/-connected

complex Xk�2 �X . We attach k-cells and .k C 1/-cells to Xk�2 to produce

a k-connected complex Xk endowed with a �-action and a �-equivariant map

 W Xk ! X .

We �nd an unbounded sequence of points �yn 2 �nX , and a sequence of

normal subgroups �n of � with index a power of p such that each yn 2 X is con-

tained in a neighborhood of X that injects into �nnX , and such that the p-group

�=�n acts on the homology of the image of the neighborhood in the quotient, with

coe�cients in Fp . �e action of the p-group on the homology group produces a

functional that nontrivially, and �-invariantly, evaluates the image under  of the

attached k-cells in Xk . �erefore, for each n, we have an assignment of k-cells in

�nXk to elements of Fp. �is produces an in�nite sequence in Hk. �nXk I Fp /.

�e group � may not act freely on Xk , but the lack of freeness is con�ned to a

cocompact subspace of Xk , namely Xk�2, and that implies that Hk. � I Fp / is

in�nite.

1.2. Acknowledgements. �anks to Dan Margalit for a discussion that lead to

the proof of this result and to Kai-Uwe Bux for careful explanations of his work

with Köhl and Witzel.

�anks also to Mladen Bestvina, Morgan Cesa, Brendan Kelly, Amir Moham-

madi, and Dave Morris for helpful conversations, and to Stefan Witzel for pointing

out some improvements that were made to an earlier version of this paper.

2. Preliminaries on G.OS / and its action on a Euclidean building

�is section establishes some conventions for notation.

2.1. Basic group structure. Let K, OS , and G be as in �eorem 3. Because G

is K-isotropic, it contains a proper minimal K-parabolic subgroup J. Let A be a
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maximal K-split torus in J, and let P be a maximal proper K-parabolic subgroup

of G that contains J.

Recall the Langlands decomposition that

P D UHT

where U is the unipotent radical of P, H is a reductiveK-group withK-anisotropic

center, T is a 1-dimensional connected subtorus of A, and T commutes with H.

In the remainder of this paper we denote the product over S of local points of

a K-group by “unbolding,” so that, for example,

G D
Y

v2S

G.Kv/

2.2. Euclidean building. Let X be the Euclidean building for the semisimple

group G. We let k D k.G; S/ so that k D dim.X/.

For each v 2 S we choose a maximal Kv-split torus in J that contains A,

and name it Av . We let †�X be the apartment corresponding to the group
Q

v2S Av.Kv/.

3. Review of Bux–Köhl–Witzel

and an unbounded sequence

of points yn 2 X

Our proof makes use of two results from Bux–Köhl–Witzel [6]: the existence of

a G.OS /-invariant, .k � 2/-connected subcomplex Xk�2 �X that is cocompact

modulo G.OS /, and a lemma that will allow us to extend certain “local” k-disks

about neighborhoods of points in X to “global” k-disks in X – Lemma 9 and

Corollary 10 below. Most of this section is devoted to recalling the work of Bux–

Köhl–Witzel. For details omitted from the account in this paper, see [6].

We will use the notation of [6] in our Section 3 except for the following: we

will refer to cells in the spherical building for G by the parabolic groups they

represent. For example, if g 2 G and we write that g 2 P , then we are treating P

as a parabolic group, but if x is a point in the visual boundary of X and we write

that x 2 P , then we are treating P as the simplex in the visual boundary of X that

corresponds to P . �e correct interpretation should always be clear from context.

3.1. Busemann function for P . For each v 2 S , let Xv be the Euclidean build-

ing for G.Kv/, so that X D
Q

v2S Xv . If Ov �Kv is the ring of integers, then we

let xv be the vertex in Xv stabilized by G.Ov/.
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Let AK be the ring of adeles forK, and let AS be the subring of S -adeles. �e

group G.AS / has a natural left action on X . Given a point y 2 X we let G.AS /y

be the stabilizer of y in G.AS /.

Following Harder ([11]) and [6], for any y 2
Q

v2S G.Kv/xv we let

Q̌
P .y/ D logq ŒvolŒU.AK/ \ G.AS /y��

where q is the cardinality of the �eld of constants in K.

We let �P be the canonical character of P. (See Section 1.3 [11] for the de�nition

of �P.) �e essential feature of �P that will be used below is that the determinant

of conjugation by g 2 P on U is �P.g/.

If g 2 P , then we have the following transformation rule from Harder [11]

Satz 1.3.2:
Q̌
P .gy/ D Q̌

P .y/C logq.jj�P.g/jj/

where jj � jj denotes the idele norm. (�ere is a di�erence in sign in the line above

with [11] and [6] that comes from our convention of using left actions in this paper

rather than right actions as in [11] and [6].)

Recall that a Busemann function on the Euclidean building X is given by �rst

choosing a unit speed geodesic ��X and then assigning to any point x 2 X the

limit as t ! 1 of the di�erence between the distance between �.t/ and �.0/ and

the distance between �.t/ and x.

Proposition 4. �ere is some s > 0 and a Busemann function ˇP W X ! R such

that

ˇP .y/ D Q̌
P .y/

for all y 2
Q

v2S G.Kv/xv , and such that ˇP is nonconstant on factors of X .

Proof. �is is Proposition 12.2 of [6].

Lemma 5. �e Busemann function ˇP is invariant under the actions of U , H ,

and T.OS / on X , and thus is invariant under the action of P.OS / � UHT.OS/.

Proof. Any K-de�ned character on P, including the canonical character �P,

evaluates U trivially since it is unipotent and H trivially since it is reductive with

K-anisotropic center. �us the result for U andH follows from the transformation

rule above.

Similarly, we need to observe that jj�P.t /jj D 1 for any t 2 T.OS /. �is

follows from the product formula (since �P.t / 2 K) and from the fact that T.Kw/

is bounded if w … S .
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3.2. Descending chambers at a vertex. Given a vertex x 2 X , we let St.x/�X
denote the star of x, the union of all chambers in X that contain x. �us, the

boundary of the star – denoted as @St.x/ – is the link of x.

We let St#.x/ denote the union of chambers C�X containing x with the prop-

erty that ˇP .z/ < ˇP .x/ for all z 2 C with z ¤ x. We let

BSt#.x/ D St#.x/ \ @St.x/:

Recall that a special vertex x 2 † is a vertex that is contained in a represen-

tative from each parallel family of walls in the Coxeter complex †. �us, the

Coxeter complex of an apartment in the spherical building @St.x/ is isomorphic

to the Coxeter complex of an apartment in the boundary of X when x is special.

�e following result is due to Schulz [15].

Lemma 6. If x 2 X is a special vertex, then BSt#.x/ is homotopy equivalent to

a noncontractible wedge of .k � 1/-spheres.

Proof. Recall that the Busemann function ˇP is nonconstant on the factors of X .

Since x is a special vertex, the join factors of @St.x/ correspond to the factors of

X . �erefore, ˇP is nonconstant on the join factors of @St.x/. �at is to say, in the

terminology used in [6], the “vertical part” of @St.x/ is @St.x/ in its entirety.

Notice that BSt#.x/ is exactly the maximal subcomplex of @St.x/ that is sup-

ported on the complement of the closed ball of radius �
2

around the gradient di-

rection of ˇP in @St.x/. �us, by �eorem B of [15] – restated in �eorem 4.6

of [6] – BSt#.x/ is .k � 1/-dimensional, .k � 2/-connected, and noncontractible.

See also �eorem A.2 of Dymara–Osajda [9].

3.3. Reduction datum. If Ma is a maximal properK-parabolic subgroup of G,

then we can de�ne a Busemann function ˇMa
with respect to Ma similarly to how

we de�ned ˇP with respect to P.

In [6], and following [11], there are real constants r < R such that the collec-

tion of Busemann functions ˇMa
forms what is called a uniform G.OS /-invariant

and cocompact reduction datum. (See �eorem 1.9 of [6].) �e remainder of Sec-

tion 3.3 is a recollection of what this sort of datum entails. In Section 3.3 we will

use Ma to denote a maximal proper K-parabolic subgroup of G. We will use Mi

to denote a minimal K-parabolic subgroup of G.

For x 2 X and aK-parabolic subgroup Q � G, we let ˇQ.x/ be the maximum

of all ˇMa
.x/ with Q � Ma.
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Given an apartment†0 �X that containsQ as a cell in its boundary, and given

t 2 R, we let

Y†0;Q.t / D ¹ x 2 †0 j ˇQ.x/ � t º

�is set is convex in †0 as it is the intersection of the convex sets †0 \ ˇ�1
Ma
.R�t/

for Ma containing Q. �us, there is a closest point projection

prt
†0;Q W †0 ! Y†0;Q.t /

�e group �t .x;Q/ is de�ned to be the group of
Q

v2S Kv-points of the in-

tersection of all Ma that contain Q and such that ˇMa
.prt

†0;Q.x// D t . We have

that �t .x;Q/ � Q (as groups, not as cells in the boundary) and we say that Q

t -reduces x 2 X if �t .x;Q/ D Q.

To say that the collection of ˇMa
is an .r; R/ reduction datum for r < Rmeans

that if Mi is a minimal K-parabolic subgroup of G that r-reduces x 2 X , then

Mi � �R.x;Mi /.

To say that the reduction datum is uniform means that there exists a constant

d such that any point in a subset of X whose diameter is less than d can be

r-reduced by a common minimal K-parabolic. We can assume, as in [6], by per-

haps choosing a lesser r , that d is greater than the diameter of closed stars of cells

in X .

�e reduction datum is G.OS /-invariant since

ˇ
 Ma
.
x/ D ˇMa

.x/

for all x 2 X , 
 2 G.OS /, and maximal proper K-parabolic Ma. (Here

Ma D 
Ma


�1.)

�at the reduction datum is cocompact means that for any real number t � R,

the set of x 2 X for which ˇMi
.x/ � t for all minimal K-parabolics Mi that

r-reduce x is cocompact with respect to the action of G.OS /.

3.4. De�nition of height. In [6], the reduction datum is used to de�ne a height

function h W X ! R�0. In Section 3.4, we recall this de�nition.

Choose a special vertex z 2 †, and letWz be the spherical Coxeter group that

�xes z in †.

�e a�ne space † may be realized as a vector space with origin z. Let Vz be

the set of all di�erences of vertices in † whose closed stars intersect, where we

regard vertices in this context as vectors in †. Notice that Vz is �nite.

We letD D WzVz . Again, realizing points ofD as vectors of the vector space

† with origin z, we let

Z.D/ D
°

X

d2D

add j 0 � ad � 1 for all d 2 D
±
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�e set Z.D/�† depended on the choice of vertex z, but modulo isometric

translations of †, Z.D/ is de�ned intrinsically in terms of the geometry of †.

Furthermore, if†0 �X is any apartment inX , then†0 is isometric to† as Coxeter

complexes, and thus x CZ.D/ is a well-de�ned subset of †0 for any x 2 †0.

To de�ne a height function, a suitably large R� > R is chosen. For any apart-

ment †0 �X , any x 2 †0, and any minimal K-parabolic Mi such that Mi repre-

sents a cell in the boundary of†0 that r-reduces x; the point x�
†0;Mi

is de�ned to be

the closest point to x in Y†0;Mi
.R�/�Z.D/. �en h.x/ is de�ned as the distance

between x and x�
†0;Mi

, and it is shown in Proposition 5.2 of [6] to be independent

of †0 or Mi.

If h.x/ > 0, then e.x/ is de�ned as the point in the visual boundary of †0 that

is determined as the limit point of the geodesic ray in †0 from x�
†0;Mi

through x.

�e point e.x/ is also shown to be independent of †0 or Mi in Proposition 5.2

of [6]. If we let �.x/ denote the group of
Q

v2S Kv-points of the K-parabolic

subgroup of G that is minimal with respect to the property that �.x/ contains

every �R.x;Mi / for which Mi r-reduces x, then e.x/ 2 �.x/.
As the reduction datum used in this section is G.OS /-invariant, we have that

h.
x/ D h.x/ for any 
 2 G.OS /. And if h.x/ > 0, then e.
x/ D 
e.x/ and

�.
x/ D 
�.x/.

�e subsets of X whose values under h are bounded from above are shown

to have bounded quotient on G.OS /nX (See Proposition 2.4 and Observation 5.5

of [6]).

3.5. Choice of yn. We still have more to discuss about the results of [6], but we

take a short break from our account of [6] to establish a sequence of points in X

that will be used throughout our proof in this paper.

Lemma 7. Let N � > 0 be twice the maximum diameter of stars in X . We can

choose R� � 0 as above to satisfy the following: �ere is a constant C � 2 R,

and a geodesic ray `Y �† that limits to a point `Y .1/ in the simplex P and is

orthogonal to level sets ofˇP in†, such that every point z in theN �-neighborhood

of U`Y in X is r-reduced by J , has

h.z/ D ˇP .z/C C � > 0

and

e.z/ D `Y .1/ 2 P:

Furthermore, there is a sequence of special vertices yn 2 † that are contained

in chambers of † that intersect `Y , such that ˇP .yn/ is a strictly increasing se-

quence of numbers, and such that the set of all .yn/
�
†;P is a bounded set.
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Proof. �ere are rankKG � dim.†/maximal proper K-parabolic subgroups that

contain J. �e space Y†;J .R
�/�† is the intersection of one half-apartment of

† for every maximal proper K-parabolic subgroup that contains J, and the set

ˇ�1
P .R�/\Y†;J .R

�/ is an unbounded face of the boundary of Y†;J .R
�/. We call

this face FP;R� . It has dimension equal to dim.†/ � 1.
We let

�.r; R�; J; P / D ¹ x 2 † j �r .x; J / D J and �R�.x; J / D P º

For x 2 †, we let B†.xIN �/�† be the ball in † centered at x with radius

N �. Notice that by replacingR� with a greater constant, we may assume that there

is some x 2 FP;R� \�.r; R�; J; P / such that

FP;R� \ ŒB†.xIN �/CZ.D/��FP;R� \�.r; R�; J; P /

Furthermore, if y is contained in the geodesic ray `Y �† that begins at x, is

orthogonal to FP;R� , and is contained in �.r; R�; J; P /, then

B†.yIN �/CZ.D/��.r; R�; J; P /

as long as the distance between y and x is su�ciently large. We replace `Y with

a subray so that

B†.yIN �/CZ.D/��.r; R�; J; P / for any y 2 `Y .

If z is contained in the interior of �.r; R�; J; P /, then e.z/ is given by the

direction of the gradient of ˇP restricted to † – which is the direction of `Y .1/.

�us by Lemma 5,

UHe.z/ D UH`Y .1/ D `Y .1/ D e.z/:

And T � A acts trivially on the boundary of †, so we have

Pe.z/ D UHTe.z/ D e.z/

which implies that e.z/ 2 P .

We let d0 be the constant di�erence of the distance between y 2 `Y and

† \ ˇ�1
P .R�/ and the distance between y C Z.D/ and † \ ˇ�1

P .R�/.

(Note that the latter of the two distances is h.y/.) �en for z 2 B†.yIN �/,

h.z/ D ˇP .z/ �R� � d0:

�us we let

C � D �R� � d0:
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Again let y 2 `Y and now let z 2 BX .yIN �/, where BX .yIN �/ is the ball in

X of radius N � that is centered at y. We will show that z is r-reduced by J , has

h.z/ D ˇP .z/C C � > 0, and has e.z/ D `Y .1/ 2 P .

For every v 2 S , let Jv � G be a minimal Kv-parabolic subgroup of G such

that Av � Jv � J. We let Uv be the unipotent radical of Jv , so that Uv � J � P

and Uv � UH.

IfXv is the Euclidean building for G.Kv/, and†v is the apartment that Av.Kv/

acts on, then because any point in Xv is contained in a Jv.Kv/ translate of †v

Xv D Jv.Kv/†v D Uv.Kv/ZG.Av/.Kv/†v D Uv.Kv/†v

where ZG.Av/ is the centralizer of Av in G, and thus is a Levi subgroup of Jv.

�erefore,

X D
Y

v2S

Uv.Kv/†

and there is a distance nonincreasing retraction

% W X ! †

de�ned on each u† for u 2
Q

v2S Uv.Kv/ as the map u�1 W u† ! †.

So for z 2 BX.yIN �/ we choose u 2
Q

v2S Uv.Kv/ such that u�1z 2 †. Be-

cause % is distance nonincreasing and %.y/ D y, we have that u�1z 2 B†.yIN �/.

By Lemma 5

ˇP .z/C C � D ˇP .u
�1z/C C � D h.u�1z/ > 0

If Q is a proper K-parabolic subgroup of G containing J, then Q contains

Uv and thus u�1Qu D Q, so applying the clear analogue of Lemma 5 to each

maximal proper K-parabolic group containing J yields uY†;J .R
�/ D Yu†;J .R

�/

and that z 2 u�.r; R�; J; P / since u�1z 2 B†.yIN �/��.r; R�; J; P /. �us, z

is r-reduced by uJu�1 D J and u�1.z�
u†;J / D .u�1z/�†;J and

h.z/ D h.u�1z/ D ˇP .z/C C �:

Furthermore, as the set �.r; R�; J; P / limits to the cell P and u 2 P , the set

u�.r; R�; J; P / also limits to P and thus

e.z/ D e.u�1z/ D `Y .1/ 2 P:
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To review, we have shown that for any z in the N �-neighborhood of `Y in X

that z is r-reduced by J , has h.z/ D ˇP .z/CC � > 0, and has e.z/ D `Y .1/ 2 P .

We still need to show the same results apply to the weaker condition that z is con-

tained in the N �-neighborhood of U`Y in X . For that, recall that U is unipotent,

so U.OS / is a cocompact lattice in U . �at is, there is a compact set B �U such

that U.OS /B D U . Since `Y limits to P and U is the unipotent radical of P, any

element of U �xes pointwise a subray of `Y . �erefore, there is a common subray

of `Y that is �xed pointwise by every element of B . �us, by replacing `Y with a

subray we may assume that B �xes `Y and thus that

U`Y D U.OS /B`Y D U.OS /`Y

Hence, if z 2 UBX.`Y IN �/ D U.OS /BX .`Y IN �/ then uz 2 BX .`Y IN �/ for

some u 2 U.OS /, and since h is G.OS /-invariant and ˇP is U -invariant,

h.z/ D h.uz/ D ˇP .uz/C C � D ˇP .z/C C �

Since the reduction datum is G.OS /-invariant and uz is r-reduced by J , we see

that z is r-reduced by u�1Ju D J . Last, since u 2 U.OS / � P and e.uz/ 2 P

we have e.z/ D u�1e.uz/ D e.uz/ D `Y .1/.

To �nd the sequence of yn, just choose an unbounded sequence of chambers in

† that intersect `Y . Any chamber inX contains a special vertex, and this produces

the sequence of yn. Because each of the yn 2 † are a uniformly bounded distance

from `Y , each .yn/
�
†;P 2 FP;R� is a uniformly bounded distance from the point

x 2 FP;R� .

In the remainder of this paper, we shall abbreviate St.yn/ as Sn. Similarly, we

shall abbreviate St#.yn/ and BSt#.yn/ as S
#
n and BS

#
n respectively.

3.6. Morse function. Section 3.6 is the �nal section in which we recount the

work of Bux–Köhl–Witzel. In this section we recall the de�nition of a combina-

torial Morse function from [6] that is de�ned on the vertices of the barycentric

subdivision of X and used to deduce connectivity properties of subsets of X .

For any cell � 2 X we let dim.�/ be its dimension. �ere is also a number

de�ned in [6] as dp.�/ which refers to the “depth” of a cell. We refer the reader to

Section 8 of [6] for the de�nition of the depth of a cell.

We let VX be the barycentric subdivision of the Euclidean building X . For any

cell � �X , we let V� be its barycenter. Bux–Köhl–Witzel assigned to V� the triple

of real numbers

fBKW. V�/ D
�

max
x2�

.h.x//; dp.�/; dim.�/
�
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�e function fBKW is a combinatorial Morse function when triples of real numbers

are ordered lexicographically.

For any triple of real numbers s that is greater than or equal to the triple

s0 D .1; 0; 0/, we let VX.s/ be the subcomplex of VX spanned by the V� for which

fBKW. V�/ � s. Since fBKW is G.OS /-invariant, so too is VX.s/. Since VX.s/ is a

closed subset of VX whose height is bounded, it is cocompact modulo G.OS /. �e

values of fBKW are �nite below any given bound, and we let sC1 denote the least

value of fBKW that is greater than s.

We let Lk. V�/ be the link of V� in VX , and we de�ne the Morse descending link

of V� with respect to the Morse function fBKW to be the complex of simplices

� � Lk. V�/ such that

fBKW.v/ < fBKW. V�/

for every vertex v 2 � . To obtain VX.sC 1/we attach to VX.s/ the descending links

of cells V� � VX with fBKW. V�/ D s C 1. �e work of Bux–Köhl–Witzel is to have

de�ned fBKW in such a way as to utilize the work of Schulz [15] in showing that

the Morse descending links of vertices in VX are either contractible or spherical

of dimension .k � 1/. �us, up to homotopy equivalence, VX.s C 1/ is obtained

by attaching k-cells to VX.s/. �is process induces an isomorphism of homotopy

groups

�i . VX.s// Š �i . VX.s C 1// for i � k � 2.

Since X is contractible and the union of the VX.s/, we have that VX.s/ is

.k � 2/-connected for any s � s0. It is the existence of a G.OS /-cocompact

.k � 2/-connected space that can be viewed as the main result of [6] as it im-

mediately implies that G.OS / is of type Fk�1.

In what remains, we will let Xk�2 D X.s0/. In particular, Xk�2 is a

.k � 2/-connected subcomplex of X that is invariant and cocompact under the

action of G.OS /. We will also pass to a subsequence of the yn to assume that

Sn \Xk�2 D ; for all n.

�e following lemma demonstrates the compatibility of ˇP and fBKW on Sn.

Lemma 8. �e Morse descending link of yn with respect to fBKW equals BS
#
n .

Proof. As in Section 6 of [6], the height function h forces a decomposition of the

link of yn 2 X into a join of a “horizontal link” of yn and a “vertical link” of yn

where the horizontal link of yn is the join of all factors of the link of yn whose

points are evaluated by h as h.yn/.

By Lemma 7, the restriction of ˇP to the horizontal link of yn is constant.

But yn is a special vertex, so Proposition 4 implies that the horizontal link of yn

is trivial, and therefore, that the vertical link of yn equals the link of yn.



Cohomology of arithmetic groups 103

Now by Proposition 9.6 of [6], the Morse descending link of yn is the subcom-

plex of the link of yn in X that is spanned by all vertices v in the link of yn such

that h.v/ < h.yn/. (Keep in mind that any vertex of X is “signi�cant.”) Again,

by Lemma 7, this complex is equal to BS
#
n .

3.7. Extending local disks near yn. In addition to the existence of Xk�2,

we shall utilize the results of [6] to extend “local” disks near yn to “global” disks

in X . More precisely, we have

Lemma 9. Let � W Sk�1 ! X be a continuous map of a .k � 1/-sphere into X .

Suppose there is some triple s > s0 such that �.Sk�1/� VX.s/. �en there is a

homotopy

F W Sk�1 � Œ0; 1� �! X

such that, for all x 2 Sk�1,

F.x; t/ 2 VX.s/;

F.x; 0/ D �.x/;

and

F.x; 1/ 2 VX.s0/ D Xk�2:

Proof. Let c0
1 ; : : : ; c

0
m �X be the image under � of the 0-cells of Sk�1.

Let c0
i;F � VX.s/ be paths from c0

i to Xk�2. �e boundary of each c0
i;F is c0

i and b0
i

for some b0
i 2 Xk�2.

If k D 1, then m D 2, and c0
1;F [ c0

2;F is the image of the homotopy F .

If k � 2, then let c1
i � �.Sk�1/ be the image of the 1-cell with boundary c0

`

and c0
j . Since VX.s/ is obtained fromXk�2 by attaching k-cells, there is a homotopy

relative b0
`

and b0
j between c1

i [ c0
`;F

[ c0
j;F and a 1-cell b1

i �Xk�2. We name the

image of this homotopy c1
i;F .

If k D 2, then the union of the c1
i;F de�nes the homotopy F .

If k � 3, then we proceed as above by induction on the skeleta of Sk�1.

We let In D Sn � @Sn be the interior of Sn. As a consequence of the above

lemma, we have

Corollary 10. For n � 0, there is a k-disk Dk
n �S#

n [ .X � G.OS /In/ with

@Dk
n �Xk�2 and such that Dk

n \ S#
n is a k-disk that represents a noncontractible

k-sphere in the quotient space S
#
n =BS

#
n .
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Proof. Let sn be the triple such that fBKW.yn/ D sn. By Lemma 7, and the

de�nition of the Morse function fBKW, we have for any cell � �Sn that is not

contained in @Sn that fBKW.G.OS /�/ D fBKW.�/ � sn since yn 2 � . �at is,

G.OS /In \ VX.sn � 1/ D ;.

By Lemmas 6 and 8, there is a noncontractible .k � 1/-sphere �k�1
n �BS

#
n .

We let dk
n �S#

n be the cone at yn 2 S#
n on

�k�1
n �BS#

n � VX.sn � 1/

By Lemma 9, there is a homotopy F between @dk
n and a .k�1/-sphere inXk�2

whose image is contained in VX.sn �1/. We letDk
n be the union of dk

n and F . �en

Dk
n �S#

n [ VX.sn � 1/�S#
n [ .X � G.OS /In/

�atDk
n \S#

n D dk
n represents a noncontractible k-sphere in S

#
n =BS

#
n follows

from the natural identi�cation of dk
n =@d

k
n and S

#
n =BS

#
n with the suspensions of

�k�1
n and BS

#
n respectively.

Lemma 11. Suppose that Ca;Cb �S#
n are chambers in X , and that there is some


 2 G.OS / such that 
Ca D Cb. �en


yn D yn:

Proof. �e vertex yn is the only vertex of any chamber in S
#
n with

fBKW.v/ D fBKW.yn/:

Since fBKW is G.OS / invariant, we have for 
yn 2 Cb that

fBKW.
yn/ D fBKW.yn/

so that 
yn D yn.

4. Construction of a k-connected G.OS /-complex

Bux–Köhl–Witzel gives us a .k�2/-connected complex that G.OS / acts on prop-

erly and cocompactly, namely Xk�2. In order to determine the cohomology of

�nite-index subgroups of G.OS / in dimension k, we will create a k-connected

space that G.OS / acts on. In this section we will construct such a space by attach-

ing k-cells to Xk�2 and then attaching .k C 1/-cells after that.
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4.1. Construction of Xk. We let

 W Xk�2 �! X

be the inclusion. In the process of our construction of a k-connected space that

contains Xk�2, we will be extending  to a map from that k-connected space

into X .

Let

� W Sk�1 �! Xk�2

be a continuous map of a .k � 1/-sphere into the .k � 1/-skeleton of Xk�2. We

regard � as an attaching map for a k-cell that we name Dk
1;� .

For each nontrivial 
 2 G.OS /, we attach another k-cell Dk

;� to Xk�2 using

the attaching map 
 ı � . We assign a homeomorphism


 W Dk
1;� �! Dk


;�

that restricts to the 
-action on @Dk
1;� ; @D

k

;� �Xk�2. �en for any � 2 G.OS /,

we let

� W Dk

;� �! Dk

�
;�

be the homeomorphism de�ned by � D .�
/
�1. In this way, we have de�ned a

G.OS /-action on the complex

Xk�2 [
[


2G.OS /

Dk

;�

We repeat the process above for every continuous � W Sk�1 ! Xk�2 with im-

age in the .k�1/-skeleton ofXk�2. �e resulting union ofXk�2 with the union of

every Dk

;� for every pair of 
 and � is a k-complex that we will denote by Xk�1.

Notice that Xk�1 is a .k � 1/-connected, G.OS /-complex. �e group G.OS / will

not in general act freely on Xk�1, but any nontrivial point stabilizers correspond

to points in Xk�2 since the interiors of each of the Dk

;� are disjoint.

We extend  to each Dk

;� – and thus to all of Xk�1 – by assigning arbitrary

continuous maps  W Dk
1;� ! X that agree with  on @Dk

1;� �Xk�2 and then by

de�ning  W Dk

;� ! X as 
 ı  ı 
�1. Notice that 
 ı  D  ı 
 so that  is

G.OS /-equivariant.

Now repeat the above process, this time attaching .kC 1/-cellsDkC1

;� to Xk�1

with attaching maps � W Sk ! Xk�1 to obtain a k-connected complex Xk that

G.OS / acts on with a G.OS /-equivariant map  W Xk ! X that restricts to

Xk�2 �X as the inclusion map. �e action of G.OS / on Xk �Xk�2 is free.
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5. Assigning attaching disks to cycles in a �nite complex

In this section we will begin to focus some attention on a given �nite-index sub-

group � of G.OS / from the statement of our main result, �eorem 3. �at is, we

let � be any �nite-index subgroup of G.OS / that is residually p-�nite.

Our goal in proving our main result is to show that Hk.�nXk IFp/ is in�nite.

In the penultimate section of this paper we explain why this implies that Hk.�IFp/

is in�nite.

5.1. De�nition of �n. Our proof of our main result relies on forming a sequence

of �nite quotients of the group �. �ese quotients are described in the following

Lemma 12. For any n � 0, there is a normal subgroup �n E � such that �=�n

is a �nite p-group and �n acts cocompactly and freely on �Sn.

Proof. �e group � acts cocompactly on �Sn.

For any cell � �Sn, let �� be the �nite stabilizer of � in �, and let Zn �� be

the �nite set of the union of �� over the �nite set of cells � �Sn.

Since � is residually p-�nite, there is for each nontrivial 
 2 Zn a �nite

p-group, G
 , and a homomorphism

�
 W � �! G


such that

�
 .
/ ¤ 1:

Now let

� W � �!
Y




G


be the product of the �
 , and let �n be the kernel of �. �en �n E �, �=�n is a

�nite p-group, and Zn \ �n D ¹1º.
Since �n is �nite-index in �, it acts cocompactly on �Sn. Furthermore, if


 2 �n and 
g� D g� for some g 2 � and some cell � �Sn, then g�1
g 2 �n is

contained in �� �Zn, and thus g�1
g, and hence 
 , is trivial.

5.2. De�nition of �n. We de�ne

�n W X �! �nnX

to be the quotient map. Notice that � acts on �nnX since �n is normal in �.

Furthermore, �n is �-equivariant.
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Also note that � acts on the pair .X;X � �In/ and thus on the pair

.�n.X/; �n.X � �In//, and therefore on the homologies of these pairs. (All ho-

mologies of complexes in this paper are cellular.)

5.3. De�nition of ‚n.Dk

;� /. Given a k-cell Dk


;� attached to Xk�2 in the con-

struction of Xk , we have that  .@Dk

;�/�Xk�2.

By Lemma 7, the sequence of h.yn/, and hence of fBKW.�yn/ is unbounded.

�us we may assume that Xk�2 intersects each �Sn trivially, which implies

@ .Dk

;�/�X � �In and thus that  .Dk


;�/ represents a class in the homology

groupHk.X;X��InIFp/, and further, that �n ı .Dk

;�/ represents a class in the

homology group Hk.�n.X/; �n.X � �In/IFp/. In the remainder we shall let

‚n.D
k

;�/ D Œ�n ı  .Dk


;�/� 2 Hk.�n.X/; �n.X � �In/IFp/

Recall that  is �-equivariant, and that �n is �-equivariant. �erefore, the

group � acts on the set of all ‚n.D
k

;�/ by the rule that if g 2 �, then

g‚n.D
k

;�/ D gŒ�n ı  .Dk


;�/�

D Œ�n ı  .gDk

;�/�

D Œ�n ı  .Dk
g
;�/�

D ‚n.D
k
g
;�/

5.4. De�nition of Wn. We let Wn be the vector subspace of the space

Hk.�n.X/; �n.X � �In/IFp/ generated by the classes ‚n.D
k

;�/ for every pair


 and � .

By the above, the �-action on Hk.�n.X/; �n.X � �In/IFp/ restricts to a

�-action on Wn. Since �n acts trivially on �n.X/, the action of � on Wn factors

through the �nite p-group �=�n.

Lemma 13. �e vector spaceWn is �nite-dimensional and nonzero.

Proof. �e space X is the union of �Sn and X � �In, so �Sn surjects via �n

onto the quotient �n.X/=�n.X ��In/. Lemma 12 gives us that �n.�Sn/ is a �nite

complex, and thus, �n.X/=�n.X � �In/ is �nite. �e �nite dimensionality of Wn

now follows from the �nite dimensionality of Hk.�n.X/; �n.X � �In/IFp/.

LetDk
n �X be as in Corollary 10. We claim that �n.D

k
n/ represents a nonzero

class in Hk.�n.X/; �n.X � �In/IFp/. Indeed, BS
#
n �X � �In and it su�ces to

prove that

.�n/� W Hk.S
#
n ; BS

#
n IFp/ �! Hk.�n.X/; �n.X � �In/IFp/
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is injective. As �n.X/ is a k-dimensional complex, this reduces to showing that

�n.Ca/ ¤ �n.Cb/ for distinct chambers Ca;Cb �S#
n . In other words, we want to

show that 
Ca D Cb for any 
 2 �n and any pair of chambers Ca;Cb �S
#
n implies

that Ca D Cb. By Lemma 11, any such 
 2 �n �xes yn 2 �Sn, and by Lemma 12,


 is trivial so that Ca D Cb .

Now let �n W Sk�1 ! Xk�2 represent @Dk
n , and let Dk

1;�n
be the k-disk at-

tached to Xk�2 by �n in the construction of Xk . Since X is contractible and

k-dimensional, and since Dk
n and  .Dk

1;�n
/ share a common boundary, they are

equal in the group of cellular k-chains in X . �erefore, by the above paragraph,

‚n.D
k
1;�n

/ D Œ�n ı  .Dk
1;�n

/� D Œ�n.D
k
n/�

is a nonzero class in Wn � Hk.�n.X/; �n.X � �In/IFp/.

6. A sequence of cycles and cocycles for �nXk

�e action of � on Wn induces an action of � on the dual vector space W �
n by


�.x/ D �.
�1x/

for 
 2 �, � 2 W �
n , and x 2 Wn.

Lemma 14. For each n, there is a �-invariant 'n 2 W �
n and some �n 2 G.OS /

and �n W Sk�1 ! Xk�2 such that

'n.‚n.D
k
�n;�n

// ¤ 0:

Furthermore, after passing to a subsequence, if m > n then

'm.‚m.D
k
�n;�n

// D 0:

Proof. A linear transformation of a �nite-dimensional nonzero vector space of

characteristic p is unipotent if and only if it has order pk for some k (see e.g. 15.1

in [12]). Since the action of � on W �
n factors through the p-group �=�n, the el-

ements of � act on W �
n as unipotent transformations. By Kolchin’s �eorem (see

e.g. 2.5 in [3]), any group of unipotent transformations on a �nite-dimensional

nonzero vector space �xes a nonzero vector. �at is, there is some �-invariant

'n 2 W �
n and some k-disk Dk

�n;�n
from the construction of Xk such that

'n.‚n.D
k
�n;�n

// ¤ 0.

Given the diskDk
�n;�n

above, we may assume that the fBKW-values of the cells

in SnC1, and hence of those in �SnC1 exceed the fBKW-values of the �nitely many

cells in  .Dk
�n;�n

/. �us, if m > n we have that  .Dk
�n;�n

/�X � �Im and thus

‚m.D
k
�n;�n

/ D 0 in Wm.
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6.1. Cocycles. LetDk

;� be a k-cell that was attached to Xk�2 in the construction

of Xk. Recall that ‚n.D
k

;�/ represents a class in Wn and that 'n is a �-invariant

functional on Wn.

Lemma 15. For any n � 0, 
 2 G.OS /, g 2 �, and Dk

;� , we have

'n.‚n.D
k

;�// D 'n.‚n.gD

k

;�//:

Proof. �is is immediate since  is �-equivariant, �n is �-equivariant, and 'n is

�-invariant.

Let q W Xk ! �nXk be the quotient map. Note that any k-cell in �nXk is con-

tained in �nXk�2 or else is of the form q.Dk

;�/ for some Dk


;� �Xk .

We de�ne the k-cochain ˆn on k-chains in �nXk with values in Fp as 0 on

�nXk�2 and

ˆn.q.D
k

;�// D 'n.‚n.D

k

;�//

for any q.Dk

;�/, and then we extend linearly. �e previous lemma tells us that ˆn

is well-de�ned.

Lemma 16. ˆn is a cocycle.

Proof. �e .kC1/-cells of �nXk are of the form q.DkC1

;� /, so we must check that

ˆn evaluates the boundary of any q.DkC1

;� / trivially.

Let C1; : : : ;Cm be a collection of k-cells in Xk�2 such that the chain @DkC1

;�

equals
P

j Cj C
P

i D
k

i ;�i

for someDk

i ;�i

where we suppress in this notation the

orientation of k-cells. �en @q.DkC1

;� / D

P

j q.Cj /C
P

i q.D
k

i ;�i

/.

Note that .@DkC1

;� / is a k-sphere in the k-dimensional and contractibleX , and

hence it represents the 0-chain. �at is, the chain  .
P

j Cj C
P

i D
k

i ;�i

/ \ �Sn,

and hence  .
P

i D
k

i ;�i

/ \ �Sn, is the 0-chain. �erefore, ‚n.
P

i D
k

i ;�i

/ is the

0-chain, which implies

ˆn

�

@q.DkC1

;� /

�

D ˆn

�

X

j

q.Cj /C
X

i

q.Dk

i ;�i

/
�

D ˆn

�

X

i

q.Dk

i ;�i

/
�

D 'n ı‚n

�

X

i

Dk

i ;fi

�

D 'n.0/

D 0



110 K. Wortman

6.2. Cycles. Given Dk
�n;�n

as in Lemma 14, the k-chain Dk
�n;�n

� Dk
�0;�0

is the

di�erence of two k-disks in Xk . We let

Cn D q.Dk
�n;�n

/ � q.Dk
�0;�0

/

which is a k-chain in �nXk .

Lemma 17. After passing to a subsequence in n, each Cn is a k-cycle over Fp

in �nXk .

Proof. Notice that q.@Dk

n;�n

/ is a .k�1/-cycle in�nXk�2. Since�nXk�2 is com-

pact, there are only �nitely many cellular .k � 1/-chains in �nXk�2 with coe�-

cients in Fp . �erefore, we may pass to a subsequence and assume that q.@Dk
�n;�n

/

is a constant Fp-cycle for n � 0.

We can now prove

Proposition 18. H k.�nXk IFp/ and Hk.�nXkIFp/ are in�nite.

Proof. Let m � n > 0. By the de�nitions of ˆn and Cn, and by Lemma 14,

ˆm.Cn/ D ˆm.q.D
k
�n;�n

// �ˆm.q.D
k
�0;�0

//

D 'm.‚m.D
k
�n;�n

// � 'm.‚m.D
k
�0;�0

//

D 'm.‚m.D
k
�n;�n

//

does not equal 0 if m D n, but does equal 0 if m > n. �us, each of the terms in

the sequences Œˆn� 2 H k.�nXk IFp/ and ŒCn� 2 Hk.�nXk IFp/ are distinct.

7. Proof of �eorem 3

If � acts freely on Xk , then �eorem 3 is immediate from Proposition 18.

And one can always choose a �nite-index, residually p-�nite subgroup of G.OS /

that acts freely on Xk (see the following section). However, to show �eorem 3

holds for any, and not just some, �nite-index, residually p-�nite subgroup of

G.OS /, we need to apply one more technique. �at is the goal of this section.

By our construction of Xk , the group � acts freely on Xk �Xk�2, and while it

may not be true that � acts freely onXk�2, it does act cocompactly onXk�2. �at

is, there are only �nitely many k-cells in the quotient �nXk�2. �is will imply

�eorem 3 after the application of a spectral sequence.
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�e material from this section is taken from Chapter VII of Brown’s text on

Cohomology of Groups [5].

We begin by subdividingXk such that individual cells in Xk inject into �nXk .

We letH�
k
.XkIFp/ be the k-th equivariant homology group of � and Xk with

coe�cients in Fp. �at is, if C�.Xk IFp/ is the chain complex for the homology

of Xk with coe�cients in Fp , and if F� is a projective resolution of Z over Z�,

then

H�
k .Xk IFp/ D Hk.F� ˝� C�.XkIFp//

Lemma 19. H�
k
.XkIFp/ D Hk.�IFp/

Proof. �e complex F� ˝� C�.XkIFp/ is a double complex with an associated

spectral sequence

E1
`;q D Hq.F` ˝� C�.Xk IFp// D F` ˝� Hq.XkIFp/

and

E2
`;q D H`.�IHq.Xk IFp//

Notice that if 0 < q � k then E2
`;q

D H`.�I 0/ D 0 since Xk is k-connected.

It follows that Er
`;q

D 0 when r � 2 and 0 < q � k. Hence,

Hk.�IFp/ D E2
k;0 D E1

k;0 D
M

`CqDk

E1
`;q

�e lemma follows since the spectral sequence converges to H�
� .Xk IFp/.

�e complex F� ˝� C�.XkIFp/ is also a double complex with an associated

spectral sequence where E1
`;q

D Hq.F� ˝� C`.Xk IFp//. �e spectral sequence

converges to H�
� .Xk IFp/, and in particular,

Hk.�IFp/ D H�
k .Xk IFp/ D

M

`CqDk

E1
`;q

As in VII.7.7 of [5],

E1
`;q D

M

c2Y`

Hq.�c IFp/

where Y` is a set of representatives of `-cells in Xk modulo �, and �c is the sta-

bilizer in � of c.
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Lemma 20. If r; q � 1, then Er
`;q

is �nite.

Proof. Since � acts cocompactly onXk�2 and freely onXk �Xk�2, there are only

�nitely many c 2 Y` such that �c ¤ 1. �us, E1
`;q

is �nite as it is a �nite sum

of homology groups of �nite groups with coe�cients in a �nite �eld. �e lemma

follows since the dimension of Er
`;q

is bounded by that of E1
`;q

.

Lemma 21. E2
`;0

D H`.�nXk IFp/. In particular, by Proposition 18, E2
k;0

is

in�nite.

Proof. Let @0 be the boundary operator for C�.Xk IFp/, and for any .` � 1/-cell

d �Xk , let �d be the projection of C`�1.Xk IFp/ onto the coordinate represented

by d .

We let @ be the boundary operator for the chain complex of �nXk , denoted as

C�.�nXk IFp/.

Notice that E2
�;0 is the homology of the complex .E1

k;0
; d1/ where

d1 W E1
`;0 ! E1

`�1;0:

�ere is a natural identi�cation of

E1
`;0 D

M

c2Y`

H0.�c IFp/ D
M

c2Y`

Fp

with

C`.�nXkIFp/

given by

.ac/c2Y`
7�!

X

�c � �nXk

ac.�c/

where ac 2 Fp . Below we apply this identi�cation liberally.

Our goal is to show that d1 can be identi�ed with @. For this, if c 2 Y` then

we let Dc be the set of .`� 1/-cells in Xk contained in c. �en VII.8.1 of [5] tells

us that if ac 2 Fp D H0.�c IFp/ then, up to sign,

d1.ac/ D
X

d2Dc

vd ı ucd ı tc.ac/

where

tc W H0.�c IFp/ �! H0.�c IFp/

is transfer – and thus is the identity – and where

vd W H0.�d IFp/ �! H0.�d0
IFp/
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for d0 2 Y`�1 is such that �d D �d0 and vd is induced by conjugation in � – and

thus is the identity – and where

ucd W H0.�c IFp/ �! H0.�d IFp/

is induced by �c ,! �d and �d ı @0jc – and thus is identi�ed with

�d ı @0jc W ¹ acc j ac 2 Fp º �! ¹ add j ad 2 Fp º

�erefore,

d1.ac/ D
X

d2Dc

ucd .ac/

D
X

d2Dc

�d ı @0.ac/

D @.ac.�c//:

7.1. Proof of �eorem 3. By the two preceding lemmas, we have for each r � 2

that the kernel of

d r W Er
k;0 �! Er

k�r;r�1

is in�nite, which implies the in�niteness of

E1
k;0 �

M

`CqDk

E1
`;q D Hk.�IFp/ Š H k.�IFp/:

8. Existence of �nite-index, residually p-�nite subgroups of G.OS /

In this section we give a sketch of the well-known existence statement from the

title of this section. �e existence essentially follows from Platonov’s �eorem on

�nitely-generated matrix groups. We took our account below from Nica [14].

Letw be a valuation ofK that is not contained in S , and let m�OS be the ideal

¹ x 2 OS j jxjw < 1 º:Note that \km
k D 0. Furthermore, OS=m is identi�ed with

the values of elements of OS atw, and hence is �nite. Similarly, mk=mkC1 is �nite

for any k � 1, so that OS=m
k is a �nite ring.

For k � 1, let ƒk be the kernel of

˛k W GLn.OS / �! GLn.OS=m
k/

Since OS=m
k is a �nite ring, ƒk is a �nite-index normal subgroup of GLn.OS /.

Also note that if m > k then ƒm is a normal subgroup of ƒk since ƒm is the

kernel of ˛m restricted to ƒk .
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We claim thatƒk=ƒkC1 is ap-group. Indeed, if g 2 ƒk then the matrix entries

of g� 1 are contained in m
k . �us, the matrix entries of .g� 1/p are contained in

m
kC1. Since OS �K has characteristic p, gp � 1 D .g � 1/p so that gp 2 ƒkC1,

establishing our claim.

Note that \km
k D 0 implies \kƒk D 1. �us, if Z�ƒ1 is �nite we can

choose k � 0 such that Z \ƒk � ¹1º, and

Œƒ1 W ƒk� D
k�1
Y

iD1

Œƒi W ƒiC1�

is a power of p. �erefore, ƒ1 is a �nite-index, residually p-�nite subgroup of

GLn.OS /.

For general G.OS / we have an embedding of K-groups G � GLn and we

replace ƒk in the above with ƒk \ G.OS /.
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