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Abstract. Following Gromov, the coboundary expansion of building-like complexes is

studied. In particular, it is shown that for any n � 1, there exists a constant �.n/ > 0

such that for any 0 � k < n the k-th coboundary expansion constant of any n-dimensional

spherical building is at least �.n/.

Mathematics Subject Classi�cation (2010). 55U10, 51E24.

Keywords. High dimensional expansion, spherical buildings.

1. Introduction

Expander graphs have been a focus of intensive research in the last four decades,

with many applications in combinatorics and computer science as well as pure

mathematics (see [6, 10, 11]). In recent years a high dimensional theory is emerg-

ing. �ere are several ways to extend the de�nition of expanders from graphs

to simplicial complexes (see [12] for a survey). Here we will be concerned with

the notion of "coboundary expansion" that came up independently in the work

of Linial, Meshulam and Wallach [9, 15] on homological connectivity of random

complexes and in Gromov’s work [5] on the topological overlap property. For

an application of coboundary expansion to property testing see [7]. �e rich the-

ory of expander graphs hints that high dimensional expanders can also be useful.

�e goal of this paper is to show, following Gromov [5], that spherical build-

ings, and more generally, "building-like complexes" (de�ned precisely below), are

expanders.

1 Supported by ERC, ISF and NSF grants.

2 Supported by ISF and GIF grants.

3 Supported by ISF and BSF grants.



156 A. Lubotzky, R. Meshulam, and S. Mozes

We proceed with some formal de�nitions (see also [16] for a general reference

on simplicial homology and cohomology). Let X be a �nite n-dimensional pure

simplicial complex. For k � 0, let X .k/ denote the k-dimensional skeleton of X

and letX.k/ be the family of k-dimensional faces ofX , fk.X/ D jX.k/j. De�ne a

positive weight function w D wX on the simplices ofX as follows. For � 2 X.k/,

let

c.�/ D j¹� 2 X.n/ W � � �ºj

and let

w.�/ D
c.�/

�
nC 1

k C 1

�
fn.X/

:

Note that X

�2X.k/

w.�/ D 1

and if � 2 X.k/ then

X

¹�2X.kC1/ W ���º

w.�/ D .k C 2/w.�/:

All homology and cohomology groups referred to in the sequel are with F2 coef-

�cients. Let Ck.X/ be the space of F2-valued k-chains of X with the boundary

map

@k W Ck.X/ �! Ck�1.X/:

Let C k.X/ denote the space of F2-valued k-cochains of X with the coboundary

map

dk W C k.X/ �! C kC1.X/:

As usual, the spaces of k-cycles and k-cocycles are denoted by Zk.X/

and Zk.X/ and the spaces of k-boundaries and k-coboundaries are denoted by

Bk.X/ and Bk.X/. Reduced k-dimensional homology and cohomology will be

denoted by zHk.X/ and zH k.X/. For � 2 C k.X/, let Œ�� denote the image of � in

C k.X/=Bk.X/. Let

k�k D
X

¹�2X.k/ W �.�/¤0º

w.�/

and

kŒ��k D min¹k� C dk�1 k W  2 C k�1.X/º:
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De�nition 1.1. �e k-th coboundary expansion constant of X is

hk.X/ D min

²
kdk�k

kŒ��k
W � 2 C k.X/ � Bk.X/

³
:

Remarks. 1. Note that hk.X/ D 0 if and only if zH k.X IF2/ ¤ 0.

2. Let �n denote the n-simplex and let 0 � k � n � 1. In [15, 5] it was shown

that the k-th coboundary expansion of �n satis�es

hk.�n/ �
nC 1

n � k
(1)

with equality when nC 1 is divisible by k C 2.

3. Let k < n and let � 2 X.k/ be a k-simplex of minimal weight. �en

kŒ1� �k D w.�/ and therefore

hk.X/ �
kdk1�k

kŒ1� �k
D

P
¹w.�/ W � 2 X.k C 1/; � � �º

w.�/
D k C 2: (2)

Equality in (2) is attained for X D �n and k D n � 1.

4. �e normalization we use for the norm inC k.X/ and hence for the de�nition

of hk.X/, takes into account the possibility that the k-faces of X may not all have

the same degrees. �is is particularly relevant for spherical buildings - see the

example following Corollary 3.6.

In this note we are concerned with the expansion of certain building-like

complexes. Let G be a subgroup of Aut.X/ and let S be a �nite G-set. For

0 � k � n � 1, let

Fk D S �X.k/

with a G-action given by

g.s; �/ D .gs; g�/:

Let

B D ¹Bs;� W � 1 � k < n; .s; �/ 2 Fkº

be a family of subcomplexes of X such that � 2 Bs;� � Bs;� 0 for all s 2 S and

� � � 0 2 X .n�1/.
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De�nition 1.2. A building-like complex is a 4-tuple .X; S; G;B/ as above with

the following properties:

(C1) G is transitive on X.n/.

(C2) gBs;� D Bgs;g� for all g 2 G and .s; �/ 2 S �X .n�1/;

(C3) zHi .Bs;� / D 0 for all .s; �/ 2 Fk and �1 � i � k < n;

Examples of building-like complexes include basis-transitive matroid com-

plexes and spherical buildings - see Section 3. Following Gromov [5], we give

a lower bound on the expansion of building-like complexes. For a simplex � 2 X ,

let G� denote the orbit of � under G. For 0 � k � n � 1, let

ak D ak.X; S; G;B/ D max¹jG�\ Bs;� .k C 1/j W � 2 X.k C 1/; .s; �/ 2 Fkº:

�eorem 1.3. Let .X; S; G;B/ be an n-dimensional building-like complex. �en

for 0 � k � n � 1,

hk.X/ �

��
nC 1

k C 2

�
ak

��1

: (3)

�e proof of �eorem 1.3 is given in Section 2. In Section 3 we use �eorem 1.3

to derive expansion bounds for basis-transitive matroid complexes and for spheri-

cal buildings. In Section 4 we discuss applications to topological overlapping and

to property testing. We conclude in Section 5 with some questions and comments.

2. A lower bound on expansion

Let .X; S; G;B/ be a building-like complex. For a k-simplex � D .v0; : : : ; vk/

and 0 � i � k, let

�i D .v0; : : : ; vi�1; viC1; : : : ; vk/:

�e proof of �eorem 1.3 depends on the following homological �lling property.

Proposition 2.1. �ere exists a family of chains

C D ¹cs;� 2 CkC1.Bs;� / W � 1 � k � n� 1 ; .s; �/ 2 Fkº

such that

@kC1cs;� D � C

kX

iD0

cs;�i
: (4)
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Proof. We de�ne the cs;� ’s by induction on k. First let k D �1 and let � be the

empty simplex. For each s 2 S , choose an arbitrary vertex vs 2 Bs;� and let

cs;� D vs:

For the induction step, let 0 � k � n � 1 and suppose that the cs;� ’s have been

de�ned for all .s; �/ 2 [j <kFj and that the family

¹cs;� W .s; �/ 2 Fj ;�1 � j < kº

satis�es (4). Let .s; �/ 2 Fk . �en

z D � C

kX

iD0

cs;�i
2 Ck.Bs;� /C

kX

iD0

Ck.Bs;�i
/ � Ck.Bs;� /:

We claim that z 2 Zk.Bs;� /. Indeed

@kz D @k� C

kX

iD0

@kcs;�i

D

kX

iD0

�i C

kX

iD0

�
�i C

X

j

cs;�ij

�

D
X

i;j

cs;�ij
D 0:

�e last equality follows from the fact that each cs;�ij
appears twice. As

zHk.Bs;� / D 0;

it follows that there exists a .k C 1/-chain cs;� 2 CkC1.Bs;� / such that

@kC1cs;� D z:

It is clear that the family ¹cs;� W .s; �/ 2 Fj ;�1 � j � kº satis�es (4).

For 0 � k � n and s 2 S , de�ne the contraction operator

�s W C k.X/ �! C k�1.X/

as follows. For ˛ 2 C k.X/ and � 2 X.k � 1/ let

�s˛.�/ D ˛.cs;� /:
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Claim 2.2. For 0 � k � n� 1 and ˛ 2 C k.X/

dk�1�s˛ C �sdk˛ D ˛: (5)

Proof. Let � 2 X.k/. �en

dk�1�s˛.�/C �sdk˛.�/ D �s˛.@k�/C dk˛.cs;� /

D

kX

iD0

�s˛.�i /C ˛.@kC1cs;� /

D

kX

iD0

˛.cs;�i
/C ˛

�
� C

kX

iD0

cs;�i

�

D

kX

iD0

˛.cs;�i
/C ˛.�/C

kX

iD0

˛.cs;�i
/

D ˛.�/:

Remark. If ˛ is a k-cocycle, then (5) gives a way of representing ˛ as a k-

cobounday, i.e. ˛ D dk�1�s˛. For a general ˛ 2 C k.X/, it provides a another

representative of Œ˛� 2 C k.X/=Bk.X/.

Proof of �eorem 1.3. Let 0 � k � n � 1 and ˛ 2 C k.X/. Fix s 2 S then by

Claim 2.2,

�sdk˛ D ˛ � dk�1�s˛:

�erefore

kŒ˛�k � k�sdk˛k: (6)

For � 2 X.k C 1/, let

�.�/ D
1

jS j � w.�/

X

¹.s;�/2Fk W �2supp.cs;� /º

w.�/

and

Q�.�/ D
1

jS j �w.�/

X

¹.s;�/2Fk W �2Bs;� º

w.�/:

Let

�k D �k.X;C/ D max
�2X.kC1/

�.�/: (7)
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Proposition 2.3. For 0 � k � n � 1,

hk.X/ �
1

�k

: (8)

Proof. Let ˛ 2 C k.X/. Summing (6) over all s 2 S we obtain

jS j � kŒ˛�k �
X

s2S

k�sdk˛k

D
X

s2S

X
¹w.�/ W � 2 X.k/ ; �sdk˛.�/ ¤ 0º

D
X

s2S

X
¹w.�/ W � 2 X.k/ ; dk˛.cs;� / ¤ 0º

�
X

s2S

X
¹w.�/ W � 2 X.k/ ; supp.dk˛/ \ supp.cs;� / ¤ ;º

�
X

�2supp.dk˛/

X

s2S

X
¹w.�/ W � 2 X.k/; � 2 supp.cs;� /º

D
X

�2supp.dk˛/

X

¹.s;�/2Fk W �2supp.cs;� /º

w.�/

D
X

�2supp.dk˛/

jS j �w.�/�.�/

� jS j � �k

X

�2supp.dk˛/

w.�/

D jS j � �k � kdk˛k:

To complete the proof of �eorem 1.3, it thus su�ces to show the following:

Claim 2.4. We have

�k �

�
nC 1

k C 2

�
ak: (9)

Proof. Fix an � 2 X.k C 1/. By the homogeneity condition (C2),

Q�.�/ D Q�.g�/ for all g 2 G.
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�e transitivity assumption (C1) implies that

fn.X/ � .G W stabG.�//c.�/

and hence

jstabG.�/j �
jGj � c.�/

fn.X/
D jGj �

�
nC 1

k C 2

�
w.�/:

�erefore

jGj�.�/ � jGj Q�.�/ D
X

g2G

Q�.g�/

D
X

g2G

1

jS j �w.g�/

X

¹.s;�/2Fk W g�2Bs;� º

w.�/

D
1

jS j �w.�/

X

.s;�/2Fk

w.�/j¹g 2 G W g� 2 Bs;�ºj

�
1

jS j �w.�/

X

.s;�/2Fk

w.�/ � jstabG.�/j � ak

D
ak � jstabG.�/j

w.�/
�
1

jS j

X

.s;�/2Fk

w.�/

D
ak � jstabG.�/j

w.�/

� jGj �

�
nC 1

k C 2

�
� ak :

3. Building-like complexes

In this section we give applications of �eorem 1.3 to two families of building-like

complexes.

3.1. Basis-transitive matroidal complexes. Let M be a matroid on the vertex

set V with rank function � and let n D �.V / � 1. We identify M with its n-

dimensional matroidal complex, namely the simplicial complex on V whose sim-

plices are the independent sets of the matroid. Matroidal complexes are charac-

terized by the property that their induced subcomplexes MŒS� are pure for every

S � V . It is well known (see e.g. �eorem 7.8.1 in [2]) that zHi .M/ D 0 for all

i < dimM D n.
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A matroidM is basis-transitive if its automorphism group Aut.M/ is transitive

on the bases (i.e. maximal faces) of M . One such example is the independence

matroid of a vector space. For a classi�cation of basis-transitive matroids see [3]

and the references therein. Let M be a basis-transitive matroid of rank nC 1 and

let G be a subgroup of Aut.M/ such that G is transitive on the facets. Let

S D M.n/

be the G-set of all n-faces of M . For .s; �/ 2 S �M.k/ D Fk let

Bs;� D MŒs [ ��:

�en

gBs;� D Bg�;g� for all g 2 G.

As �.s [ �/ D nC 1, it follows that

zHi .Bs;� / D zHi .MŒs [ ��/ D 0 for all i < n.

Letting

B D ¹Bs;� W � 1 � k < n; .s; �/ 2 Fkº

it follows that .M; S;G;B/ is an n-dimensional building-like complex. Now

ak D ak.M; S;G;B/

� max¹fkC1.Bs;� / W .s; �/ 2 Fkº

�

�
nC k C 2

k C 2

�
:

Writing

�1.n; k/ D

��
nC 1

k C 2

��
nC k C 2

k C 2

���1

;

�eorem 1.3 implies the following

Corollary 3.1. If M is basis-transitive matroid of rank n C 1 then for all

0 � k � n � 1,

hk.M/ � �1.n; k/:

Remark. �e bound given in Corollary 3.1 is in general weak and can some-

times be signi�cantly improved for speci�c classes of basis-transitive matroids

by explicitly constructing a family of chains ¹cs;�º satisfying (4) and then using

Proposition 2.3 directly. We illustrate this by the following example.
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�e partition matroid. Let V1; : : : ; VnC1 be n C 1 disjoint sets such that

jVi j D m and let X D Xn;m be the partition matroid with respect to V1; : : : ; VnC1,

i.e. � 2 Xn;m if and only if j� \ Vi j � 1 for all 1 � i � nC 1. Fix a vector

v D .v1; : : : ; vnC1/ 2 V D V1 � � � � � VnC1:

For an integer ` � 1 let

Œ`� D ¹1; : : : ; `º:

Let �1 � k � n � 1 and let

� D ¹ui W i 2 I º 2 Xn;m.k/

where ui 2 Vi and I 2
�

ŒnC1�
kC1

�
. De�ne

j D j.�/ D max¹` W Œ`� � I º

and let

� 0 D ¹ui W i 2 Œj �º 2 Xn;m.j � 1/;

and

� 00 D ¹ui W i 2 I � Œj �º 2 Xn;m.k � j /:

For T � Œj �, let

�T D ¹vt W t 2 T º [ ¹ut W t 2 Œj � � T º

and let

z� D
X

T �Œj �

�T :

If vi ¤ ui for all i 2 Œj �, then z� is the fundamental cycle of the octahedral

.j �1/-sphere ¹u1; v1º�� � ��¹uj ; vj º. Otherwise z� D 0. De�ne Qc� 2 CkC1.Xn;m/

as the concatenation z�vj C1�
00. For i 2 I , let

�i D � � ¹uiº:
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Claim 3.2.

@kC1 Qc� D � C
X

i2I

Qc�i
:

Proof. Note that for any i 2 Œj �,

X

¹T �Œj � W max T Diº

�T �
00 D Qc�i

:

As @j �1z� D 0 it follows that

@kC1 Qc� D @kC1.z�vj C1�
00/

D z�@kC1�j .vj C1�
00/

D z��
00 C

X

i2I�Œj �

z�vj C1.�
00 � ¹uiº/

D z��
00 C

X

i2I�Œj �

Qc�i

D � 0� 00 C
X

;¤T �Œj �

�T �
00 C

X

i2I�Œj �

Qc�i

D � C
X

i2Œj �

� X

¹T �Œj � W max T Diº

�T �
00
�

C
X

i2I�Œj �

Qc�i

D � C
X

i2Œj �

Qc�i
C

X

i2I�Œj �

Qc�i

D � C
X

i2I

Qc�i
:

Keeping the notation j D j.�/, we next note that

jsupp. Qc� /j D

8
<
:
2j if ut ¤ vt for all t 2 Œj �;

0 otherwise:
(10)
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�erefore

X

�2Xn;m.k/

jsupp. Qc� /j D

kC1X

j D0

2j �

�
.m � 1/j

�
n � j

k C 1 � j

�
mkC1�j

�

D mkC1

kC1X

j D0

�2.m � 1/

m

�j
�

n � j

n � k � 1

�
:

(11)

Let

S D Aut.Xn;m/

be the automorphism group of Xn;m. For s 2 S and � 2 Xn;m.k/, let

cs;� D s�1 Qcs� :

Claim 3.2 implies that the family

C D ¹cs;� 2 CkC1.Xn;m/ W � 1 � k � n � 1 ; .s; �/ 2 S � Xn;m.k/º

satis�es (4). We proceed to compute �k D �k.Xn;m;C/ as de�ned in (7). First

note that

cs;s0� D s0css0;� for all s0; s 2 S and � 2 Xn;m.k/.

�is, together with the transitivity of S on Xn;m.k/ and (11), imply that for all

s 2 S
X

�2Xn;m.k/

jsupp.cs;� /j D
X

�2Xn;m.k/

jsupp.cidentity;� /j

D
X

�2Xn;m.k/

jsupp. Qc� /j

D mkC1

kC1X

j D0

�2.m� 1/

m

�j
�

n � j

n � k � 1

�
:

(12)

Next note that

w.�/ D
1

fk.Xn;m/
for all � 2 Xn;m.k/.

�erefore for all � 2 Xn;m.k C 1/

�.�/ D
1

jS j �w.�/

X

¹.s;�/2Fk W �2supp.cs;� /º

w.�/

D
fkC1.Xn;m/

jS jfk.Xn;m/
j¹.s; �/ 2 Fk W � 2 supp.cs;� /ºj:

(13)
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�e transitivity of S on Xn;m.k C 1/ implies that �.�/ is independent of

� 2 Xn;m.k C 1/. Using (13), (12) and

fk.Xn;m/ D

�
nC 1

k C 1

�
mkC1

it thus follows that

�k D
1

fkC1.Xn;m/

X

�2Xn;m.kC1/

�.�/

D
1

fkC1.Xn;m/

X

�2Xn;m.kC1/

fkC1.Xn;m/

jS jfk.Xn;m/
j¹.s; �/ 2 Fk W � 2 supp.cs;� /ºj

D
1

jS jfk.Xn;m/

X

s2S

X

�2Fk

jsupp.cs;� /j

D
1�

nC1
kC1

�
kC1X

j D0

�
2.m� 1/

m

�j
 

n � j

n � k � 1

!
:

(14)

Proposition 2.3 and (14) imply the following:

�eorem 3.3. For 0 � k � n � 1,

hk.Xn;m/ �

�
nC 1

k C 1

�

kC1X

j D0

�2.m � 1/

m

�j
�

n � j

n � k � 1

� : (15)

We note some special cases of �eorem 3.3.

(i) Let m D 1. �en Xn;1 D �n and

hk.Xn;1/ �

�
nC 1

k C 1

�

�
n

k C 1

� D
nC 1

n � k

thereby recovering the bound (1).

(ii) Let m D 2. �en Xn;2 is the octahedral n-sphere and

hk.Xn;2/ �

�
nC 1

k C 1

�

kC1X

j D0

�
n � j

n� k � 1

� D

�
nC 1

k C 1

�

 
nC 1

n � k

! D 1:

�is coincides with the result of Proposition 5.5 in [4].
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(iii) For general m and k D n � 1,

hn�1.Xn;m/ �
nC 1

nX

j D0

�2.m � 1/

m

�j
:

�is is a small improvement over the bound

hn�1.Xn;m/ �
nC 1

2nC1 � 1

given in Proposition 5.7 in [4].

We conclude this section with an upper bound on the expansion of Xn;m.

Claim 3.4. Let 0 � k � n � 1. If k C 2 divides m then hk.Xn;m/ � 1.

Proof. Let

Vi D

kC2[

j D1

Vij

where

jVij j D
m

k C 2
:

Let ˛ 2 C k.Xn;m/ be the indicator function of the following set of k-simplices:

[

1�i1<���<ikC1�nC1

[

�2SkC1

Vi1;�.1/ � � � � � VikC1;�.kC1/:

�en

jsupp.˛/j D

�
nC 1

k C 1

�� m

k C 2

�kC1

.k C 1/Š:

�e support of the coboundary of ˛ is

B D supp.dk˛/ D
[

1�i1<���<ikC2�nC1

[

�2SkC2

Vi1;�.1/ � � � � � VikC2;�.kC2/

and so,

jBj D

�
nC 1

k C 2

�� m

k C 2

�kC2

.k C 2/Š:
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We claim that kŒ˛�k D k˛k. Indeed, suppose that ˛0 D ˛ C dk�1 where

 2 C k�1.Xn;m/. Let

C D ¹.�; �/ 2 supp.˛0/ � B W � � �º:

As B D supp.dk˛/ D supp.dk˛
0/, it follows that jC j � jBj. On the other hand,

any � 2 Xn;m.k/ is contained in at most

.n� k/ �
m

k C 2

simplices of B . It follows that

jBj � jC j � jsupp.˛0/j � .n � k/ �
m

k C 2
:

�erefore

jsupp.˛0/j � jBj
k C 2

m.n � k/
D jsupp.˛/j:

It follows that

kdk˛k

kŒ˛�k
D
fk.Xn;m/ � jsupp.dk˛/j

fkC1.Xn;m/ � jsupp.˛/j

D

�
nC 1

k C 1

�
mkC1 �

�
nC 1

k C 2

�� m

k C 2

�kC2

.k C 2/Š

�
nC 1

k C 2

�
mkC2 �

�
nC 1

k C 1

�� m

k C 2

�kC1

.k C 1/Š

D 1:

3.2. Spherical buildings. In this section we use �eorem 3 to recover Gro-

mov’s [5] uniform lower bound on the expansion of spherical buildings of rank

nC 1. Our notation and terminology follows [1]. Let

G D hB;N i

be a �nite group with a BN-pair of rank nC 1 and let

.W;S/

be the associated Coxeter system. Here W D N=.B \ N/ is the Weyl group and

S is the distinguished set of nC 1 generators of W . For J � S, let

WJ D hJ i
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and let

GJ D BWJB

be the associated standard parabolic group. For s 2 S, let

.s/ D S � ¹sº:

�e spherical building

� D �.GIB;N/

is the n-dimensional pure simplicial complex on the vertex set

V D
[

s2S

G=G.s/

whose maximal faces, called chambers, are

Cg D ¹gG.s/ W s 2 Sº:

Two chambers are adjacent if their intersection is .n � 1/-dimensional.

For g 2 G, let

Vg D ¹gwG.s/ W w 2 W; s 2 Sº:

�e apartmentAg is the induced complex�ŒVg �. It is a simplicial n-sphere whose

chambers are ¹Cgwºw2W , hence

fn.Ag/ D jW j:

Any two simplices �; � 2 � are contained in some apartment Ag .

Claim 3.5. Let g1; : : : ; gk 2 G and let Y D
Tk

iD1Agi
. If dimY D n then

zHi.Y / D 0 for all i � n � 1.

Proof. It is convenient to identify the complex � with its geometric realization.

Recall the following:

� A gallery connecting two simplices � and � is a sequence C0; C1; : : : ; Cr

of adjacent chambers so that � is a face of C0 and � is a face of Cr . �e

gallery is called minimal if it has minimal length among all possible galleries

connecting � and � .

� An apartment A which contains two simplices contains also every minimal

gallery connecting them.
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� Let x and y be two points in the geometric realization of �. Let A be an

apartment containing x and y. Consider the sequence of consecutive cham-

bers visited by a minimal geodesic on the sphere A connecting x and y. �is

sequence forms a minimal gallery and hence is contained in any apartment

containing both x and y.

Fix some x 2 Y D
Tk

iD1Agi
. If Y contains a point antipodal to x in some

apartment A0 containing x then it follows from the above that Y contains the

apartment A0 and hence it follows that Y D A0 which is an n-dimensional sphere

and the claim holds. Otherwise it follows that for each y 2 Y there is a unique

geodesic arc connecting x to y in all the apartments containing x and y and in

particular this geodesic arc is contained in Y . �is implies that Y is contractible.

Let S D �.n/ be the set of chambers of �. For .s; �/ 2 S ��.k/ D Fk, let

Bs;� D \¹Ag W s; � 2 Agº:

Letting

B D ¹Bs;� W � 1 � k < n; .s; �/ 2 Fkº

it follows from Claim 3.5 that .�; S; G;B/ satis�es conditions (C1), (C2), and (C3)

of De�nition 1.2. Clearly

ak D ak.�; S; G;B/ � fkC1.Ag/ �

�
nC 1

k C 2

�
fn.Ag/ D

�
nC 1

k C 2

�
jW j:

Let !n be the maximal size of a Weyl group of rank nC 1 and let

�2.n; k/ D

��
nC 1

k C 2

�2

!n

��1

:

�eorem 1.3 then implies

Corollary 3.6. If G D hB;N i is a �nite group with BN-pair of rank nC 1, then

for all 0 � k � n � 1

hk.�.GIB;N// � �2.n; k/:

Example. Let

G D GLnC2.Fq/ D hB;N i

where B is the group of upper diagonal matrices and N is the group of monomial

matrices. �e Weyl group of G is the symmetric group

W D SnC2:
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�e n-dimensional spherical building � D �.GIB;N/, denoted by AnC1.Fq/,

is isomorphic to the order complex of all nontrivial linear subspaces of FnC2
q .

Corollary 3.6 implies that for 0 � k � n � 1,

hk.AnC1.Fq// �

��
nC 1

k C 2

�2

.nC 2/Š

��1

: (16)

In particular

hn�1.AnC1.Fq// �
1

.nC 2/Š
: (17)

Remark. �e uniform lower bound (16) on the expansion ofAnC1.Fq/ depends on

the particular normalization used in the de�nition of the norm in C k.X/. Indeed,

inequality (16) fails to hold if the weight of a k-simplex is simply taken as 1
fk.X/

.

For example, let k D 0 and �x an n such that nC 2 be divisible by 12. If U is an
nC2

2
-dimensional subspace of FnC2

q , then the degree of U in the underlying graph

G of AnC1.Fq/ is at most

2f0.An
2
.Fq// D q

.nC2/2

16
.1Co.1//:

�is is much smaller than

f1.AnC1.Fq//

f0.AnC1.Fq//
D
q

.nC2/2

3
.1Co.1//

q
.nC2/2

4
.1Co.1//

D q
.nC2/2

12
.1Co.1//:

It follows that the 1-dimensional skeleton of AnC1.Fq/ is not an expander if one

uses the normalization giving the same weight to all i-simplices.

4. Applications

Lower bounds on coboundary expansion give rise to applications in two directions:

topological overlapping and property testing.

4.1. Topological overlapping. Let X be a �nite n-dimensional pure simplicial

complex and let M be an n-dimensional Z2-manifold. For a continuous map

f W X ! M and a point p 2 M , let


f .p/ D j¹� 2 X.n/ W p 2 f .�/ºj:

�e following result is due to Gromov [5]. See also [14] for a detailed exposition

(including some improved constants) for the case M D Rn and X D �
.n/
N .
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�eorem 4.1 ([5]). For any � > 0 there exists a ı D ı.M; �/ > 0 such that if

hk.X/ � � for all 0 � k � n � 1, then there exists a point p 2 M such that


f .p/ � ıfn.X/.

Let .X; S; G;B/ be an n-dimensional building-like complex and let

a.X; S; G;B/ D max
0�k�n�1

ak.X; S; G;B/:

�e following consequence of �eorem 1.3 was already noted by Gromov (Sec-

tion 2.13 in [5]) when X is a spherical building or a partition matroid.

Corollary 4.2. For any 0 < c and an n-dimensional Z2-manifold M , there exists

a constant

ı D ı.c;M/ > 0

such that if a.X; S; G;B/ � c, then for any continuous map f W X ! M there

exists a point p 2 M such that


f .p/ � ıfn.X/:

4.2. Property testing

De�nition 4.3. Let A be a �nite set, and let dist.�; �/ be a metric on Am.

Let Wm a subset of Am and Pm a subset of Wm. Let � > 0 and q 2 N be �xed.

We say that the membership of ˛ 2 Pm (given ˛ 2 Wm) is .q; �/-testable, if there

exists a randomized algorithm which queries only q (independent of m) coordi-

nates of ˛ and answers “yes” if ˛ 2 Pm, while it answers "no" with probability at

least � � dist.˛; Pm/.

In [7], it was observed that coboundary expansion implies that the subspace of

coboundaries is testable within the subspace of cochains. �e distance function

dealt with there was the Hamming distance, but the same applies to the norm used

the this paper, provided the algorithm chooses a face with probability equal to its

norm. �eorem 1.3 therefore implies the following.

Corollary 4.4. For any 0 < c and k < n there exist an � D �.c; k; n/ > 0 such

that if an n-dimensional building-like complex satis�es ak.X; S; G;B/ � c, then

checking whether a k-cochain ˛ is a k-coboundary is .k C 2; �/-testable.
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5. Concluding remarks

We mention some problems related to the results of this paper.

(1) It would be interesting to improve the bounds given in �eorem 1.3 and

its corollaries. One concrete question is the following. �e 1-dimensional build-

ing A2.Fq/ is the points vs. lines graph of the Desarguian projective plane of

order q. It is known that the normalized Cheeger constant of this graph satis�es

h0.A2.Fq// D 1 � o.1/ as q ! 1. It seems likely that for n � 2 the bound (17)

can similarly be improved.

Conjecture 5.1. For �xed n and q ! 1

hn�1.AnC1.Fq// D 1� o.1/:

(2) Let Ln be a geometric lattice of rank n with minimal elementb0 and max-

imal elementb1. Let X.Ln/ be the order complex of Ln � ¹b0;b1º. �en X.Ln/ is

.n� 2/-dimensional and zHk.X.Ln// D 0 for k � n� 3 (see e.g. [2]). It would be

interesting to �nd natural families ¹Lnº for which hn�3.X.Ln// remains uniformly

bounded away from zero. For example, is this the case when Ln is the lattice of

partitions of ŒnC 3�?

Acknowledgement. �e authors would like to thank Jake Solomon for helpful
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