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Abstract. Bader, Furman and Sauer have recently introduced the notion of integrable mea-

sure equivalence for �nitely-generated groups. �is is the sub-equivalence relation of mea-

sure equivalence obtained by insisting that the relevant cocycles satisfy an integrability

condition. �ey have used it to prove new classi�cation results for hyperbolic groups.

�e present work shows that groups of polynomial growth are also quite rigid under

integrable measure equivalence, in that if two such groups are equivalent then they must

have bi-Lipschitz asymptotic cones. �is will follow by proving that the cocycles arising

from an integrable measure equivalence converge under re-scaling, albeit in a very weak

sense, to bi-Lipschitz maps of asymptotic cones.
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1. Introduction

Measure equivalence is an equivalence relation on groups introduced by Gromov
in [13]. It has since become the object of considerable study: Furman’s survey [8]
provides a thorough overview. However, it is essentially trivial for countably in�-
nite amenable groups. �is is because two groups are measure equivalent when-
ever they have free orbit-equivalent probability-preserving ergodic actions. Such
actions exist for any in�nite group, since Bernoulli shifts give examples, and Orn-
stein and Weiss proved in [19] that any two such actions of any countably in�-
nite amenable groups are orbit-equivalent, generalizing the classical theorems of
Dye [6, 7] about Z-actions.

A measure equivalence between two groups implicity de�nes a pair of (equiv-
alence classes of) cocycles over probability-preserving actions of those groups.
In [1], Bader, Furman and Sauer have sharpened measure equivalence to a �ner
equivalence relation by allowing only measure equivalences for which these co-
cycles satisfy an integrability condition. �is sharper relation is called integrable
measure equivalence, henceforth abbreviated to IME.

�eir focus is on applications to rigidity of hyperbolic lattices. �e present
paper considers instead �nitely-generated groups of polynomial growth, and �nds
that these also exhibit considerable rigidity for IME, in sharp contrast to the orig-
inal notion of measure equivalence. �e rigidity for these ‘small’ groups is in
terms of Gromov’s notion of their asymptotic cones.

�eorem 1.1. If G and H are f.-g. groups of polynomial growth which are IME,
then there is a bi-Lipschitz bijection

Con1G �! Con1H

between their asymptotic cones.

Here the notation ‘Con1G’ refers to the asymptotic cone of a group G with a
given right-invariant word metric dG , as constructed in [13, Chapter 2].
By Gromov’s �eorem in [12] that f.-g. groups of polynomial growth are virtually
nilpotent, �eorem 1.1 is e�ectively a theorem about nilpotent groups. For general
groups, the construction of Con1G may depend on the choice of a non-principal
ultra�lter ([26]), but for nilpotent groups, and hence groups of polynomial growth,
it is known to be independent of that choice. (We will later invoke more precise
results of Pansu which imply this.)

One can see �eorem 1.1 as a generalization to polynomial-growth groups of
the result that an integrable measure equivalence betweenZd andZ

D must asymp-
totically de�ne an isomorphism R

d ! R
D, and hence requires that d D D.
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�is special case follows easily by applying the Norm Ergodic �eorem to the
cocycles de�ning the measure equivalence.

In the setting of more general groups, Lewis Bowen has shown that the growth
function of a f.-g. group is an IME-invariant. His exposition is given as a self-
contained appendix to the present paper. �at result already implies that the
amenable groups fall into many (indeed, uncountably many) distinct IME-classes,
and that the subclass of groups of polynomial growth is IME-closed. However, it
seems that more subtle arguments are needed, for example, to distinguish the dis-
crete Heisenberg group from Z

4 up to IME, since both of these groups having
quartic growth. �eorem 1.1 implies that they are not IME, because

Con1.discrete Heis;word metric/

Šbi-Lip .continuous Heis;Carnot–Carathéodory metric/

and
Con1Z

4 Šbi-Lip R
4;

and these are not bi-Lipschitz (for instance, because their dimensions as topolog-
ical spaces do not match).

More generally, Bowen’s result implies that if G is IME to Z
d then G must be

of polynomial growth, and then �eorem 1.1 implies that Con1G Šbi-Lip R
d . It is

known that Con1G is always a graded connected nilpotent Lie group, and it is a
Euclidean space only if G was virtually Abelian ([13, Chapter 2]), so our remarks
about the Heisenberg group generalize to the following.

Corollary 1.2. If a f.-g. groupG is IME to Z
d for some d , then G is virtually Z

d .

We will also need the invariance of the growth function for an auxiliary pur-
pose during our proofs later.

For nilpotent groups, the map

G 7�! Con1G

seems to retain a great deal of large-scale geometric information about G.
�e main result of Pansu’s work [22] is a precise characterization of those pairs
of f.-g. nilpotent groups whose asymptotic cones are bi-Lipschitz: this is equiva-
lent to isomorphism of their associated graded Lie algebras. Moreover, for Carnot
groups (that is, nilpotent groups which admit an endomorphism which enlarges all
distances by a �xed factor), such as any Z

d or the Heisenberg group, it is known
that G is quasi-isometric to Con1G (see example 2.C1(a) in [13]). For other f.-g.
nilpotent groups, the issue of just what geometric information is retained by the
construction of the asymptotic cone is still not completely understood.
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2. Background and �rst steps

2.1. Integrable measure equivalence. �is paper will largely assume the basic
facts about measure equivalence and integrable measure equivalence: we will re-
call only a brief statement of them here. We essentially follow the treatment in
Furman’s survey [8] (which is also similar to Section 1.2 and Appendix A of [1]).

Given countable discrete groupsG andH , a measure coupling between them is
a nonzero �-�nite measure space .�;m/ which admits commuting m-preserving
actions of G and H which both have �nite-measure fundamental domains.
We denote the actions of both G and H on � by �. By restricting attention to
an ergodic component, one may always assume that m is ergodic for the resulting
G�H -action on�. �e fundamental domains Y andX for the G- andH -actions
give rise to functions

ˇ W H � Y �! G and ˛ W G �X �! H;

de�ned uniquely by requiring that

h � y 2 ˇ.h; y/�1 � Y and g � x 2 ˛.g; x/�1 � X for all x 2 X; y 2 Y

(the inverses are inserted so that some other calculations come out simpler later).
�is also de�nes auxiliary �nite-measure-preserving actions

S W H Õ .Y;mjY / and T W G Õ .X;mjX /

by requiring that

h � y D ˇ.h; y/�1 � .Shy/ and g � x D ˛.g; x/�1 � .T gx/:

If m is ergodic for G � H , then mjX is ergodic for T and mjY is ergodic for S .
�ese are both �nite invariant measures, but at times it will be convenient to insist
on probability measures: for those situations, we will set

�X WD m.X/�1 �mjX and �Y WD m.Y /�1 �mjY :
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Now a standard calculation shows that ˇ and ˛ are cocycles over S and T
respectively: that is,

˛.g1g2; x/ D ˛.g1; T
g2x/˛.g2; x/ for all g1; g2 2 G; x 2 X;

and similarly for ˇ.
In this construction, we may always replace the fundamental domain Y with

one of its H -translates, and the cocycle ˇ will just be translated accordingly.
Since countably many translates of Y cover �, we may therefore ensure that
m.X \ Y / > 0. Now a simple calculation shows that if

x 2 X \ Y \ T g�1

.X \ Y / for some g 2 G;

then we may write

g�1 � .T gx/ D ˛.g�1; T gx/�1 � x

D ˇ.˛.g�1; T gx/�1; x/�1 � .S˛.g�1;T gx/�1

x/;

where the �rst equality holds because T gx 2 X , and the second because x 2 Y .
Since we also assume that T gx 2 Y , and the G-translates of Y are disjoint, this
implies that

ˇ.˛.g�1; T gx/�1; x/ D g and S˛.g
�1;T gx/�1

x D T gx:

Finally, the cocycle equation for ˛ gives that ˛.g�1; T gx/ D ˛.g; x/�1, so these
conclusions simplify to

ˇ.˛.g; x/; x/ D g and S˛.g;x/x D T gx: (1)

In particular, the orbit equivalence relations of T on X and S on Y have the
same restriction to X \ Y .

In the sequel, it will often be convenient to work instead with the functions

˛x WD ˛. � ; x/ W G �! H and ˇy WD ˇ. � ; y/ W H �! G:

�e cocycle equation for ˛ gives that x 7! ˛x is a map from X to

ŒG;H� WD ¹f W G �! H j f .eG/ D eH º

which intertwines the action T W G Õ X with the action of G on ŒG;H� de�ned
by

g W f .x/ 7�! f .xg/f .g/�1:
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Similarly, ˇ is a map from Y to ŒH;G� which intertwines S with the analagous
action of H on ŒH;G�. With this interpretation, the pushforward of �X under
x 7! ˛x is an invariant probability on ŒG;H�: such objects are discussed by
Monod in [18] under the term ‘randomorphisms’, and again by Furman [8, Sub-
section 2.3]. (Also, in the special case of ŒZ2;Z�, they have a long history in
statistical physics as models of random surfaces: see, for instance, [24] and the
many references there.)

Now, for x 2 X and y 2 Y , let

Dx WD ¹g 2 G j T gx 2 X \ Y º

and
Ey WD ¹h 2 H j Shy 2 X \ Y º:

�en x 7! Dx is a map
X �! ¹subsets of Gº

which is equivariant in the sense that

DT gx D Dx � g�1; (2)

and similarly for y 7! Ey .
Also, if m is ergodic for G �H , then mjY is ergodic for S and mjX is ergodic

for T . Using this, we may extend the de�nitions ofD� andE�, ˛� and ˇ� to almost
all of X [ Y . By ergodicity, for m-a.e. y 2 Y the set Ey is nonempty, so there is
some h 2 H such that Shy 2 X \ Y . �is now gives

y D Sh
�1

Shy D T ˇ.h
�1;Shy/Shy D T ˇ.h;y/

�1

Shy;

using (1) and the cocycle equation for ˇ. Setting

Dy WD DShy � ˇ.h; y/;

this is independent from the choice of h by the cocycle relations. Similarly,
for m-a.e. x 2 X there is g 2 G such that T gx 2 X \ Y , and now we may
set

Ex WD ET gx � ˛.g; x/:

For the cocycles, if y 2 Y and h is chosen as above, we set

˛y.g/ WD ˛Shy.gˇ.h; y/
�1/˛Shy.ˇ.h; y/

�1/�1;

and similarly

ˇx.h/ WD ˇT gx.h˛.g; x/
�1/ˇT gx.˛.g; x/

�1/�1:
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Once again, the consistency of these de�nitions follows from the cocycle relations
for ˛ and ˇ.

Having thus extended these objects, relation (1) now asserts that ˛x jDx is a
bijection

Dx �! Ex for every x 2 X [ Y ,

and its inverse equals ˇx jEx .
Our subsequent reasoning about measure equivalence will mostly be in terms

of these equivariant maps x 7! .˛x ; Dx/ and y 7! .ˇy; Ey/.
For any f.-g. groups G and H and a probability-preserving action

T W G Õ .X; �/, a cocycle ˛ W G � X ! H is integrable if, for any choice of
�nite, symmetric generating set BH � H , we have

kj˛.g; � /jHk1 D
Z

X

j˛.g; x/jH �.dx/ < 1 for all g 2 G;

where j � jH is the length function on H associated to BH . Since the length func-
tions arising from di�erent choices of BH are all equivalent up to constants, this
notion does not depend on the choice of BH . Moreover, the subadditivity of j � jH
gives

kj˛.g; � /jHk1 � jgjG � max
s2BG

kj˛.s; � /jHk1; (3)

where BG is a �nite, symmetric generating set for G, so it su�ces to check inte-
grability on this BG .

A measure coupling as above is integrable if one can choose fundamental do-
mains X and Y so that the cocycles ˛ and ˇ are integrable.

Finally, f.-g. groups G and H are integrably measure equivalent, or IME, if
they admit an integrable measure coupling. Standard arguments, given in [8],
show that this de�nes an equivalence relation on f.-g. groups, independent of the

choice of their generating sets. It will be denoted by
IME� .

2.2. Initial simpli�cation. In our setting, standard properties of IME lead to
an immediate, useful reduction of the task of proving �eorem 1.1. According to
Gromov’s famous result from [12], any f.-g. group G of polynomial growth has a
f.-g. nilpotent subgroup G1 of �nite index. Letting

�1 WD G

with counting measure, this de�nes a .G1; G/-coupling

.g1; g/ � ! WD g1!g
�1:
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Since G1 has a �nite fundamental domain in G, this measure coupling is trivially
integrable. �e same reasoning holds for some �nite-index nilpotent subgroup
H1 � H , giving an integrable .H;H1/-measure equivalence. �erefore, in the
setting of �eorem 1.1, we obtain

G1
IME� G

IME� H
IME� H1;

and hence G1
IME� H1, by transitivity.

On the other hand, since asymptotic cones are insensitive to passage to �nite-
index subgroups, we have

Con1G D Con1G1 and Con1H D Con1H1:

It therefore su�ces to prove �eorem 1.1 for the subgroups G1 andH1; equiv-
alently, in the special case with G andH themselves nilpotent. �is will simplify
some calculations later.

2.3. Asymptotic cones of nilpotent groups. Henceforth G and H will be
f.-g. nilpotent groups and BG and BH will be �nite, symmetric generating sets
for them. To the generating set BG we associate the word-length function j � jG
and the right-invariant word metric dG , and similarly for BH .

It is known that all such groups G with right-invariant word metrics dG have
the following properties:

(1) the asymptotic cone does not depend on the choice of ultra�lter ! up to
pointed isometry, and so may be written as Con1G;

(2) the sequence of re-scaled pointed metric spaces .G; eG ; n�1dG/ converges
as n ! 1 in the local Gromov-Hausdor� sense to the pointed metric space
.Con1G; NeG ; d1

G / for some limit metric d1
G on Con1G (whereas for many

groups Con1 exists only as an ultralimit);

(3) the asymptotic cone Con1G is a proper metric space under d1
G (that is, all

bounded sets are precompact).

An element of Con1G will be signi�ed by an overline, as in ‘ Ng’.
Most of these properties follow from Pansu’s results in [21]; the last already

follows from the theory in [12]. For the �rst, Pansu asserts only independence of
the cone from ! up to a pointed bi-Lipschitz map, but this is tightened to a pointed
isometry in [3]. On the other hand, in his discussion of asymptotic cones in Chap-
ter 2 of [13], Gromov analyses more general groups for which these properties
may fail, including (at least for the second property) some solvable examples.

�eorem 1.1 will be deduced from the following.
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�eorem 2.1. If G andH are f.-g. nilpotent groups and G
IME� H , then there is a

constant L > 0 for which the following holds. For every R > 0, there are a �nite
subset E � Con1G containing NeG and a map

' W E �! Con1H

with the following properties:

� '. NeG/ D NeH textup;

� E is .1=R/-dense in B1
G .R/ for the metric d1

G textup;

� ' is injective, and ' and '�1 W '.E/ ! E are both L-Lipschitz for the limit
metrics d1

G and d1
H textup;

� '.E/ is .L=R/-dense in B1
H .R=L/ for the metric d1

H .

Proof of �eorem 1.1 from �eorem 2.1. For each R 2 N, let ER and 'R be a set
and map as provided by �eorem 2.1, and let

�R WD ¹. Ng; 'R. Ng// j Ng 2 ERº;

a �nite subset of Con1G � Con1H which contains the point . NeG ; NeH /.
Since Con1G and Con1H are both proper, a diagonal argument gives a sub-

sequence R1 < R2 < : : : such that the intersections �Ri
\ .B1

G .r/ � B1
H .r//

converge in the Hausdor� topology as i ! 1 for every r 2 N. �is implies that
there is a well-de�ned closed set � � Con1G � Con1H such that

�Ri
\ .B1

G .r/ � B1
H .r// �! � \ .B1

G .r/ � B1
H .r// for all r > 0:

An easy check shows that that this � must satisfy

1

L
d1
G . Ng; Ng0/ � d1

H .
Nh; Nh0/ � Ld1

G . Ng; Ng0/ for all . Ng; Nh/; . Ng0; Nh0/ 2 �;

so it is the graph an L-bi-Lipschitz function between some subsets of Con1G and
Con1H . It also sends NeG to NeH .

To �nish, we must show that this function has domain the whole of Con1G

and image the whole of Con1H . We will prove the latter fact, the former being
similar. For any Nh 2 Con1H , the fourth assumed property of the sets 'Ri

.ERi
/

promises a sequence Ngi 2 ERi
such that 'Ri

. Ngi / ! Nh as i ! 1. Since every '�1
Ri

is L-Lipschitz and maps NeH to NeG , we must have Ngi 2 B1
G .Ld

1
H . NeH ; Nh// for all

i . �is closed ball is compact, so after passing to a further subsequence we may
assume that

. Ngi ; 'Ri
. Ngi // �! . Ng; Nh/ as i �! 1

for some Ng 2 Con1G. �is now implies that . Ng; Nh/ 2 �, so � is the graph of a
function onto the whole of Con1H .
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2.4. Invariance of growth. Our approach to �eorem 1.1 will make use of the
fact that the growth rate of a f.-g. group is an IME-invariant. �is follows from a
more general control of growth functions under ‘integrable measure embeddings’,
proved by Lewis Bowen in his appendix to the present paper (�eorem B.2).
�e consequence that we will need is as follows.

Lemma 2.2. If G and H are f.-g. polynomial-growth groups with word metrics

dG and dH andG
IME� H , then for anyM > 0 there is a constantD � 1 such that

D�1jBG.D�1Mr/j � jBH .r/j � DjBG.DMr/j for all r > 0:

Proof. In case M D 1, Bowen’s result gives this for arbitrary f.-g. groups.
For nilpotent groups, the case of generalM follows because the polynomial growth
of those groups implies that the metrics dG and dH are doubling.

3. A re�ned growth estimate for cocycles

If G and H are f.-g. groups with word metrics dG and dH , .X; �; T / is a prob-
ability G-space and � W G � X ! H is an integrable cocycle, then the cocycle
identity and an induction on word-length imply that

kj�.g; �/jHk1 � C jgjG

for some �xed constantC , which may be taken to be maxs2BG
kj�.s; �/jHk1. Using

Markov’s Inequality, this implies that

�¹j�.g; x/jH � MC jgjGº � 1=M for all M > 0:

A key tool in proving �eorem 1.1 will be a small but crucial improvement on
this estimate in the setting of nilpotent groups. �is is most cleanly formulated in
terms of the following abstract notion.

De�nition 3.1. Given any l.c.s.c. group G and probability G-space .X; �; T /, a
sub-cocycle over this G-space is a measurable function f W G �X ! Œ0;1/ such
that

f .gh; x/ � f .g; T hx/C f .h; x/ for a.e. x; for all g; h 2 G:

It is integrable if f .g; �/ is integrable for every g.
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�is nomeclature is not completely standard. Setting

�x.g; h/ WD f .gh�1; T hx/;

one can check that x 7! �x is an equivariant map from .X; T / to the space
of pseudometrics on G with the action of G given by translation on the right
(in particular, the sub-cocycle inequality becomes the triangle inequality). As with
‘randomorphisms’, important examples of such stationary random pseudometrics
forG D Z

d are classical objects in probability: in the study of �rst-passage perco-
lation models, the �rst passage times between pairs of points de�ne such a pseu-
dometric. Classic references for the asymptotic behaviour of this pseudometric
include [14, 4, 2], and a recent survey of this area can be found in [11].

In a sense, the next proposition can be seen as very weak nilpotent-groups ex-
tension of the convergence of the reachable sets to the limit shape (that is, of these
random pseudometrics to a deterministic limiting norm) in �rst-passage percola-
tion.

Proposition 3.2. IfG is a f.-g. nilpotent group, .X; �; T / is a probabilityG-space
and f W G � X ! Œ0;1/ is an integrable sub-cocycle, then there is some M � 1

(depending on G, BG and f ) such that

�¹jf .g; x/j � M jgjGº �! 0 as jgjG �! 1:

�at is, as one considers increasingly large distances in G, the function f is
vanishingly unlikely to blow up those distances by any factor greater than M .
Note the convention that we always chooseM � 1, even if one could actually use
a smaller M for some f .

�e proof of Proposition 3.2 rests on two basic geometric facts about nilpotent
groups.

Proposition 3.3 (approximation by straight-line segments). Suppose G is a
f.-g. nilpotent group with a �nite symmetric generating set BG . �en there is some
K > 0, depending on G and BG , with the following property. Whenever g 2 G

with jgjG D n, there is a BG-word of the form

s
a1

1 : : : s
ak

k
; a1; a2; : : : ; ak � 0;

which evaluates to g (where s1, s2, . . . , sk are members of BG but may not be
distinct) and such that

k � K and a1 C a2 C : : :C ak � Kn:
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Intuitively, this asserts that ‘any point in .G; dG/may be reached by a sequence
of at most K straight-line segments of length not much greater than the distance
to that point’. I have not been able to �nd a reference for Proposition 3.3, but it is
a fairly routine exercise in nilpotency, so its proof is deferred to Appendix A.

Remark. Conversely, any group G having this property for some generating set
BG must have polynomial growth with exponent at mostK, and hence be virtually
nilpotent, by Gromov’s �eorem. �is follows by counting how many possible
products there are of the form s

a1

1 : : : s
ak

k
.

�e second estimate we will need is the following.

Proposition 3.4 (commutators grow sub-linearly). Let G and j � jG be as before.
�en for any g; h 2 G one has

jgnhg�njG D o.n/ as n �! 1

(although, of course, not uniformly in the choice of g and h).

Proposition 3.4 is a special instance of de Cornulier’s Proposition 3.1, part (iii0),
and Corollary A.2 in [5]. �is is because, in his notation, the constant sequence
.h/ is an element of Sublin.G/, whose de�nition can be found in that paper. (Note
that his Corollary A.2 seems to be mis-labelled as ‘A.7’ in some versions.)

Assuming the above group-theoretic facts, the next step towards Proposition 3.2
is the following consequence of the Ergodic �eorem:

Lemma 3.5. If T W G Õ .X; �/ is ergodic then for any g 2 G the functions

1

n
f .gn; � /

converge �-a.e. as n ! 1 to a function which is �-a.s. constant with value at
most kf .g; � /k1.

Proof. Since one always has

f .gnCm; x/ � f .gn; T g
m

x/C f .gm; x/;

the a.s. convergence follows from the Subadditive Ergodic �eorem. �is also
gives that the limit is invariant under the subgroup gZ � G, but to prove a.s.
constancy we need invariance under the action of the whole of G. To this end,
observe that if h 2 G then

f .gn; T hx/ D f ..gnhg�n/gnh�1; T hx/

� f .gnhg�n; T g
n

x/C f .gn; x/C f .h�1; T hx/:
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�e last right-hand term here is bounded in L1, and the �rst term has L1-norm
which is O.jgnhg�njG/ D o.n/, by Proposition 3.4. �erefore, dividing by n and
letting n ! 1, we obtain

lim
n�!1

1

n
f .gn; T hx/ � lim

n�!1

1

n
f .gn; x/:

Since we may clearly reverse this argument, the limit is actually G-invariant and
hence a.s. constant.

�e bound by kf .g; �/k1 is obvious from the triangle inequality.

Proof of Proposition 3.2. LetK � 1 be the constant appearing in Proposition 3.3
for .G; dG/, and let

M WD 4K2 max
s2BG

kf .s; � /k1:

Let " > 0, and �rst choose n0 � 1 so large that

�¹f .sn; x/ � 2nkf .s; � /k1º � "=2K for all n � n0; s 2 BG I

this is possible by Lemma 3.5.
Now suppose that g 2 G, let n WD jgjG and invoke Proposition 3.3 to obtain a

BG-word
g D s

a1

1 s
a2

2 � � � sak

k

with k � K and length at most Kn that evaluates to g. We will show that

�¹f .g; x/ � Mnº < "

provided only that n is su�ciently large.
Using the BG-word above, we have

1

n
f .g; x/ �

k
X

jD1

1

n
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/ D

k
X

jD1

aj

n

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/:

Partition the set ¹1; 2; : : : ; kº as I [ I c with

I WD ¹j 2 ¹1; 2; : : : ; kº j aj � n0º;

and consider the right-hand sum above decomposed as

X

j2I

aj

n

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/C

X

j2I c

aj

n

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/:

We will show that each of these two sub-sums can take abnormally large values
only with very small probability.
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F irst term. Since j 2 I we have aj � n0, and hence

�¹f .saj

j ; y/ � 2ajkf .sj ; �; /k1º < "=2K:

From this it follows that

�
°

X

j2I

aj

n

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/ � M=2

±

� �
�

[

j2I

° 1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/ � .n=aj /M=2jI j

±�

�
X

j2I

�
° 1

aj
f .s

aj

j ; y/ � 2 max
s2BG

kf .s; � /k1
±

� K."=2K/ D "=2;

where the deduction of the third line uses that aj � Kn and hence

.n=aj /M=2jI j � .n=aj /M=2K � M=2K2 D 2 max
s2BG

kf .s; �/k1:

Second term. On the other hand, if j 2 I c, then aj � n0, and hence

X

j2I c

aj

n

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/ � n0

n

X

j2I c

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/:

Integrating and using the triangle inequality, this function has L1-norm at most

n0

n
� jI cj � 1

aj
� aj kf .sj ; � /k1 � Mn0

n
;

and so Markov’s Inequality gives

�
°

X

j2I c

aj

n

1

aj
f .s

aj

j ; T
s

aj C1

j C1
���s

ak
k x/ � M=2

±

� 2n0

n

Provided we chose n su�ciently large, this is at most "=2, and so combining this
with our bound for the �rst term gives that

�¹f .g; x/ � Mnº < "=2C "=2 D ";

as required. �is completes the proof.

It might be interesting to study the generalization of Proposition 3.2 to other
groups.
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Question 3.6. For which groups and word metrics .G; dG/ is it the case that for
any probability G-space .X; �; T / and any integrable sub-cocycle

f W G � X �! Œ0;1/

the functions f .g; �/must become asymptotically stable in distribution in the sense
given by Proposition 3.2 for some M?

We will make use of Proposition 3.2 mostly through the following.

Corollary 3.7. Let G and H be f.-g. nilpotent groups with word metrics dG and
dH , let .X; �; T / be a probability G-space, and let ˛ W G � X ! H be an inte-
grable cocycle over T . �en for any " > 0 and N 2 N there is some C D C."; N /

such that, whenever F � G has jF j D N and is C -separated for the metric dG ,
one has

�
®

dH .˛x.g/; ˛x.g
0// � 2MdG.g; g

0/ for all g; g0 2 F
¯

> 1 � ";

where M is the constant of Proposition 3.2 for f WD j˛jH .

Proof. �is follows by writing

�
®

dH .˛x.g/; ˛x.g
0// > 2MdG.g; g

0/ for some g; g0 2 F
¯

�
X

g;g02F

�
®

dH .˛x.g/; ˛x.g
0// > 2MdG.g; g

0/
¯

D
X

g;g02F

�
®

dH
�

˛x.g/; ˛T gx.g
0g�1/˛x.g/

�

> 2MdG.g; g
0/

¯

D
X

g;g02F

�
®

j˛T gx.g
0g�1/jH > 2M jg0g�1jG

¯

;

and now applying Proposition 3.2 with error tolerance "=N 2.

At one point, it will be more convenient to use Proposition 3.2 through the
following corollary.

Corollary 3.8. In the setting of Proposition 3.2, and with M the constant given
there, it holds that for any " > 0 there is some R D R."/ such that

�¹jf .g; x/j � M jgjG CRº < " for all g 2 G:

(�at is, we remove the assumption that jgjG be large by allowing an additive
error.)

Proof. Proposition 3.2 gives C > 0 such that if jgjG � C then the result holds
even withoutR. �e remaining cases follow by Markov’s Inequality applied to the
�nite collection of integrable random variables ¹f .g; �/ j g 2 BG.eG ; C /º.
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4. Completion of the proof

Now consider again two f.-g. nilpotent groups G;H and their asymptotic cones
Con1G and Con1H . It remains to prove �eorem 2.1: we must �nd some L > 0
such that for each R > 0 there are a set E and map ' with the properties asserted
there.

�is map ' will be obtained from the restriction of the cocycle ˛x to a suitable
�nite subset of G for a ‘typical’ point x.

As usual, we �x generating sets BG � G and BH � H , which will be-
come the 1-balls in the resulting metrics dG and dH . �e sequence of renormal-
ized metric spaces .G; n�1dG/ converges in the local Gromov-Hausdor� sense to
.Con1G; d

G
1/ as n ! 1, and similarly for .H; n�1dH /. �is implies that for

any �nite subset E � Con1G we can �nd a sequence of �nite subsets En � G,
jEnj D jEj, and bijections 'n W En ! E such that for any c > 1 one has

c�1n�1dG.'n. Ng/; 'n. Ng0// � dG1. Ng; Ng0/

� cn�1dG.'n. Ng/; 'n. Ng0// for all Ng; Ng0 2 E

for all su�ciently large n, and similarly forH and Con1H . Let us refer to such a
sequence of maps 'n as a sequence of asymptotic copies of E. SinceG andH are
groups, by translating if necessary we may always assume that E 3 NeG , En 3 eG
for each n, and 'n.eG/ D NeG ; we will refer to such E and 'n as pointed.

For the proof, �x R > 0, and let E be a pointed .1=R/-net in B1
G .R/ (that

is, an inclusion-maximal .1=R/-separated subset of this ball, which is therefore
also .1=R/-dense in the ball). Also, let 'n W E ! En be a pointed sequence of
asymptotic copies of E.

�eorem 2.1 will be a consequence of the following asymptotic behaviour of
the cocycle ˛. Recall that a sequence of eventsXn in a probability space .X; �/ is
said to occur with high probability (‘w.h.p.’) in � if �.Xn/ ! 1.

�eorem 4.1. Let M be the maximum of the two constants obtained by applying
Proposition 3.2 to ˛ and to ˇ. �en as n ! 1, all of the following hold w.h.p. in
�X :

i) ˛xjEn is .2M/-Lipschitz;

ii) ˛xjEn is .4M/-co-Lipschitz;

iii) ˛x.En/ is .6Mn=R/-dense in BH .nR=8M/.
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Proof of �eorem 2.1 from �eorem 4.1. In addition toE and 'n, letF be a pointed
.1=32MR/-net in B1

H .4MR/ and  n W F ! Fn � H a sequence of pointed as-
ymptotic copies of it.

By properties (i) and (ii) above, as n ! 1, it holds w.h.p. in �X that

˛x.En/ � BG.3MRn/

and

min
g;g02En distinct

dH .˛x.g/; ˛x.g
0// � 1

4MR
n:

For each n and x, let

�x W ˛x.En/ �! Fn

be a map such that, for every g 2 En, �x.˛x.g// is an element of Fn at minimal
distance from ˛x.g/. In view of the above properties of ˛x.En/, and by the density
of F , it holds w.h.p. that �x is injective, and that if g; g0 2 En are distinct then

1

2
dH .˛x.g/; ˛x.g

0// � dH .˛x.g/; ˛x.g
0// � 2

32MR
n

� dH .�x.˛x.g//; �x.˛x.g
0///

� dH .˛x.g/; ˛x.g
0//C 2

32MR
n

� 2dH .˛x.g/; ˛x.g
0//:

Having seen this, it follows that w.h.p. in �X the composition

' W E 'n�! En
˛x�! ˛x.En/

�x�! Fn
 �1

n�! F

is both .8M/-Lipschitz and .8M/-co-Lipschitz once n is su�ciently large. Also,

'. NeG/ D  �1
n .�x.˛x.eG/// D  �1

n .�x.eH // D  �1
n .eH / D NeH ;

because eH must be the unique point of Fn closest to itself.

�erefore, the proof will be completed upon showing that '.E/ is .32M=R/-
dense in B1

H .R=32M/. �is follows by property (iii), and the fact that �x does not
move any point of ˛x.En/ by a distance greater than .1=16MR/n, which implies
that �x.˛x.En// is still .16Mn=R/-dense in BH .nR=8M/.
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Property (i) of �eorem 4.1 follows directly from Corollary 3.7. Properties (ii)
and (iii) will need a little more work. For these we will also need to use related
estimates for the cocycle ˇ going in the other direction.

In case our original measure coupling givesX D Y D X\Y , so that ˇx D ˛�1
x

for all x, property (ii) looks very like property (i) with ˛ replaced by ˇ. However,
even in this special case, there is an extra subtlety here. Property (ii) is asserting
that

ˇxj˛x.En/ is .4M/-Lipschitz.

�is di�ers from property (i) in that the relevant domain, ˛x.En/, now also de-
pends on x. �is will force us to use a more careful argument than for Corol-
lary 3.7, because we must rule out the possibility that, as x varies, the set-valued
function x 7! ˛x.En/ always happens to choose a set on which ˇx behaves irregu-
larly. To rule this out, we will choose a new �xed set Fn � H which is .ın/-dense
for some ı � 1=R, and show that w.h.p. the restriction ˇx j˛x.En/ stays very
close to the restriction of ˇx to a set of points in Fn that lie nearby the points in
˛x.En/. On the other hand, the analog of (i) will give that ˇx is .2M/-Lipschitz on
the whole of Fn, and from this we can then gain control of the Lipschitz constant
of its restriction to ˛x.En/, notwithstanding that dependence on x. At the end
of this section we will present an example showing that cocycles such as ˛x can
have occasional ‘defects’ where their behaviour is very far from Lipschitz, which
suggests that this extra care is really needed.

A similar comparison with ˇx jFn W Fn ! G will also underly the proof of
property (iii).

�e �rst step is the following.

Lemma 4.2. Let x 7! Dx, y 7! Ey , �X and �Y be as in Subsection 2.1. �en

jDx \ BG.r/j
jBG.r/j

�! �X.X \ Y / as r �! 1

in L1.�X/ (regarding the left-hand side as a function of x), and similarly

jEy \ BH .r/j
jBH .r/j

�! �Y .X \ Y / as r �! 1

in L1.�Y /.
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Proof. For f.-g. nilpotent groups such as G and H , another result from [21] is
that the polynomial growth rate of radius-r balls is very exact, in the sense that
jBG.r/j=rdG tends to a �xed positive limit as r ! 1 for some integer dG > 0,
and similarly for jBH .r/j. �is implies that the balls BG.r/ (resp. BH .r/) form
a Følner sequence in G (resp. H ) as r ! 1. �e result now follows from the
Norm Ergodic �eorem for the G- (resp. H -) action and the fact that T (resp. S )
is ergodic.

�e next lemma asserts that once the radius R is su�ciently large, for most x
the ball-image ˛x.BG.g; R// � H must be mostly contained inside the slightly
larger ball BH .˛x.g/; 2MR/.

Lemma 4.3 (controlling images of balls). LetM be the maximum of the two con-
stants obtained by applying Proposition 3.2 to ˛ and to ˇ. �en for any " > 0 and
g 2 G, the following holds w.h.p. in �X as R ! 1:

ˇ

ˇBG.g; R/ \ ˛�1
x .BH .˛x.g/; 2MR//

ˇ

ˇ � .1 � "/jBG.g; R/j:

�e same holds with the rôles of .G; g; ˛x/ and .H; h; ˇx/ reversed.

Proof. �is will follow from Markov’s Inequality if we prove instead that
X

g02BG .g;R/

�X¹dH .˛x.g0/; ˛x.g// � 2MRº �
p
1� "jBG.g; R/j:

However, by the invariance of �X and the cocycle identity for ˛, the left-hand
summands here are equal to

�X¹j˛T gx.g
0g�1/jH � 2MRº D �X¹j˛x.g0g�1/jH � 2MRº

for g0 2 BG.g; R/, and to each of these summands we may apply Proposition 3.2.

We will now combine the estimates of the previous two lemmas into the fol-
lowing conclusion. It will be the key to controlling both the typical co-Lipschitz
constant of ˛x jEn and the density of its image.

Proposition 4.4. For every " > 0 there exists R0 such that for all g 2 G, h 2 H
and R � R0 one has

�X¹dH .˛x.g/; h/ � R; dG.g; ˇx.h// > 5MRº < ":

�e same holds with the rôles of .G; g; ˛x/ and .H; h; ˇx/ reversed.
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Proof. �e key to this is a volume comparison of certain balls around g and h
and their ˛x- or ˇx-images. It is easiest to explain the idea in the special case
X D Y D X \Y , so thatD� � G andE� � H . In that case, if R is large enough,
then ˛x typically maps most of the .R=2M/-ball around g into the R-ball around
˛x.g/, by Lemma 4.3. If dH .˛x.g/; h/ � R, then that ˛x-ball-image will occupy a
signi�cant fraction of the .2R/-ball around h, becausedG and dH are doubling and
have the same growth rate (Lemma 2.2). Now another appeal to Lemma 4.3, this
time for ˇx D ˛�1

x , shows that the ˇx-image of the .2R/-ball around h typically
lands almost entirely in the .4MR/-ball around ˇx.h/. Combining these facts,
it follows that some positive fraction of ˛x.BG.g; R=2M// usually also lands in
that last ball. �is implies, in particular, thatBG.g; R=2M/ andBG.ˇx.h/; 4MR/
must intersect, and this then implies that dG.g; ˇx.h// � 4MRCR=2M � 5MR.

In general we argue as follows. By Lemma 4.3, for any " > 0, all of the
following events occur w.h.p. in �X as R ! 1, uniformly in the choice of g
and h:

¹jBG.g; R=2M/ \ ˛�1
x .BH .˛x.g/; R//j � .1� "/jBG.g; R=2M/jº;

¹jBH .h; 2R/\ ˇ�1
x .BG.ˇx.h/; 4MR//j � .1� "/jBH .h; 2R/jº;

¹jDx \ BG.g; R=2M/j � .�X .X \ Y / � "/jBG.g; R=2M/jº;

and

¹jEx \ BH .h; R/j � .�Y .X \ Y / � "/jBH .h; R/jº:

We will show that on the intersection of these events, either

dH .˛x.g/; h/ > R

or

dH .˛x.g/; h/ � R and dG.g; ˇx.h// � 5MR:

�us, assume that x lies in this intersection and that dG.˛x.g/; h/ � R. �is
implies that BH .h; 2R/ � BH .˛x.g/; R/, and hence

jBH .h; 2R/\ ˛x.Dx \ BG.g; R=2M//j

D j˛�1
x .BH .h; 2R//\Dx \ BG.g; R=2M/j

� jDx \ BG.g; R=2M/j � "jBG.g; R=2M/j

� .�X .X \ Y / � 2"/jBG.g; R=2M/j;

(4)
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using the fact that ˛xjDx is an injection for the �rst equality. Using that ˇx jEx is
injective, for such x one similarly obtains

jEx \ BH .h; 2R/\ ˇ�1
x .BG.ˇx.h/; 4MR//j

� .�Y .X \ Y / � 2"/jBH .h; 2R/j;
(5)

and �nally

jEx \ BH .h; 2R/j � .�Y .X \ Y /C "/jBH .h; 2R/j: (6)

Now, by Lemma 2.2, there is some D > 0 such that

jBG.g; R=2M/j � DjBH .h; 2R/j for all R > 0:

�erefore, if " is small enough then the sum of the right-hand sides of (4) and (5)
is strictly greater than the right-hand side of (6), implying that

˛x.Dx \ BG.g; R=2M// \ Ex \ ˇ�1
x .BG.ˇx.h/; 4MR// ¤ ;:

Letting k D ˛x.ˇx.k// be an element of this set, the triangle inequality gives

dG.g; ˇx.h// � dG.g; ˇx.k//C dG.ˇx.k/; ˇx.h//

� R=2M C 4MR � 5MR;

as required.

Proof of �eorem 4.1. As remarked previously, property (i) follows from Corol-
lary 3.7, so it remains to prove (ii) and (iii).

Recall that E � G is a �xed pointed .1=R/-dense subset of the ball B1
G .R/,

and that 'n W E ! En are pointed asymptotic copies of it. Now choose in ad-
dition a pointed .1=100M 2R/-dense subset F of B1

H .100M
2R/, and a sequence

 n W F ! Fn of pointed asymptotic copies of it.

(ii) Since jEnj D jEj is �xed, it will su�ce to prove that for any " > 0 there is
some n0 > 0 such that

�X¹dG.g; g0/ � 4MdH .˛x.g/; ˛x.g
0//º > 1� "

whenever n � n0 and g; g0 2 En are distinct. Letting k WD g0g�1, and using the
cocycle relation, the right-invariance of the metrics, and the T -invariance of �X ,
this measure is equal to

�X¹jkjG � 4MdH .˛x.g/; ˛T gx.k/˛x.g//º

D �X¹jkjG � 4MdH .˛T gx.k/; e/º

D �X¹jkjG � 4M j˛x.k/jH º:
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�e length jkjG lies between n=3R and 3Rn for all su�ciently large n, so the result
will follow if we show that

n=3R � jkjG � 3Rn H) �X¹jkjG � 4M j˛x.k/jH º > 1� "

for all su�ciently large n.
To do this, observe that for n su�ciently large one can �nd h 2 Fn such that

dH .˛x.k/; h/ � n=99M 2R. Since jFnj D jF j is �xed, we may combine this fact
with Corollary 3.8 and Proposition 4.4 to deduce that the event

¹there exists h 2 Fn such that dH .˛x.k/; h/ � n=99M 2R;

dH .k; ˇx.h// � n=19MR; and

jˇx.h/jG � 2M jhjH C n=1000MRº

occurs w.h.p. in �X as n ! 1. On this event, choosing a suitable h 2 Fn, two
applications of the triangle inequality give

jkjG � jˇx.h/jG C dG.k; ˇx.h// � 2M jhjH C n=1000MR C n=19MR

� 2M j˛x.k/jH C 2MdH .˛x.k/; h/C n=18MR

� 2M j˛x.k/jH C n=10MR;

and hence
2M j˛x.k/jH � jkjG � n=10MR � jkjG=2;

as required.

(iii) Now �x h 2 BH .nR=2M/, and consider its image ˇx.h/ 2 G. Both of
the following hold w.h.p. as n ! 1:

� jˇx.h/jG � nR, and hence there exists g 2 En such that

dG.g; ˇx.h// � n=RI

� for all g0 2 En, one has

either dG.g
0; ˇx.h// > n=R or dH .˛x.g

0/; h/ � 5Mn=R:

On the intersection of these events, it follows that

h 2 BH .˛x.En/; 5Mn=R/ (7)

Letting  W F ! Fn be a sequence of asymptotic models for a .Mn=2R/-dense
subset of B1

H .R=2M/, and observing that jFnj D jF j is �xed, it follows that,
w.h.p. in �X as n ! 1, the containment (7) holds simultaneously for all h 2 Fn.
On this event, the image ˛x.En/ is .5Mn=R C Mn=2R C o.1/n/-dense, hence
.6Mn=R/-dense, in BH .nR=2M/, as required.
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�is completes the proof of our main theorems. Before leaving this section, it is
worth including an example of an IME in which the cocycle ˛x exhibits occasional
bad behaviour at arbitrarily large scales for a.e. x. �is justi�ed the care we have
taken over the proofs of properties (ii) and (iii) above.

Example 4.5. We will construct an integrable orbit equivalence between two
Z
2-actions (so D� D E� D Z

2). As recalled in Subsection 2.1, we can do this
by constructed instead a suitable probability measure � on

X WD ŒZ2;Z2� WD ¹˛ W Z2 �! Z
2 j ˛.0/ D 0º:

�is measure � should be supported on the subset of bijections, and be invariant
under the action T of Z2 de�ned by T v˛.w/ D ˛.w C v/ � ˛.v/, which we call
the adjusted translation action. For an integrable orbit equivalence, it must also
satisfy

max
iD1;2

Z

X

j˛.ei /j C j˛�1.ei/j�.d˛/ < 1; (8)

where e1; e2 is the standard basis in Z
2, and j � j is the `1-distance on Z

2.
�is random element of X will be constructed as a limit in the following way.

For each m, let �m be the law of a random subset Sm � Z
2 in which each point

is included independently with probability 4�m. �us, each �m is a translation-
invariant probability on ¹0; 1ºZ2

. Now, for each of these subsets Sm, let

�m W Z2 �! Z
2

be the bijection de�ned as follows:

� if v 2 Sm and v C 2me1 62 Sm, then �m swaps v and v C 2me1;

� �m �xes all other points.

Each �m is a random permutation of Z
2 with translation-invariant law. Letting

˛m.v/ WD �m.v/� �m.0/, this de�nes a random element of ŒZ2;Z2� whose law is
invariant under the adjusted translation action.

Finally, letting .˛1; ˛2; : : :/ be drawn at random from the product measure

� WD �1 ˝ �2 ˝ : : : ;

an easy estimate shows that for any �xed v 2 Z
2 the sequence

˛M ı � � � ı ˛3 ı ˛2 ı ˛1.v/; M D 1; 2; : : :



140 T. Austin

is eventually constant with probability 1 in the choice of .˛m/m. Calling its even-
tual value ˛.v/, this de�nes a random map Z

2 ! Z
2 which is a.s. bijection, sends

0 to 0, and has law that is invariant under the adjusted translation action. Also,
it satis�es

�¹.˛m0/m0 j j˛.ei/j > 2mº <
X

m0�m

4�m0 � 4�mC1

for i D 1; 2, and similarly for ˛�1, from which (8) follows.
Finally, however, observe that for each m, in the box Œ�2mC1; 2mC1�2, which

contains roughly 4mC2 points, one has a positive probability that ˛m will move at
least one point by distance 2m. Using the independence of ˛1, ˛2, . . . under �, a
simple Borel-Cantelli argument now implies that with �-probability 1, ˛ has the
following property:

�ere is an in�nite sequence of scales m1 < m2 < : : : and, for every
i , a pair of points u; v 2 Œ�2mi C1; 2mi C1� such that ju � vj D 1 but
j˛.u/ � ˛.v/j � 2mi .

�us, at every length scale, there can be a few pairs of neighbouring points at
which ˛ is as ‘far from Lipschitz’ as it could be. �e point of Proposition 4.4 was
to show that these bad points are so rare that we can simply work around them
in �eorem 4.1. It is worth contrasting this with the arguments of [5], which also
construct bi-Lipschitz maps between cones from non-quasi-isometries between
groups, but require a more uniform control on the bad behaviour of those maps of
the groups.

5. Remaining issues

Most obviously, it would be interesting to know whether the results of this pa-
per extend beyond the class of virtually nilpotent groups (I am con�dent that the
methods do not).

Question 5.1. For which pairs of amenable groups does an IME imply that the
asymptotic cones (for some non-principal ultra�lter) are bi-Lipschitz-equivalent?

Among nilpotent groups, �eorem 1.1 suggests another interesting line of en-
quiry. For simplicity, consider a case in which G and H are both quasi-isometric
to their asymptotic cones, say via maps ' W Con1G ! G and  W H ! Con1H .
Recall ([21]) that the asymptotic cones are graded connected nilpotent Lie groups
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equipped with dilations ıCon1G and ıCon1H . Given an integrable measure equiv-
alence implemented by the cocycles ˛ and ˇ as before, for each x 2 X and n � 1

one can consider the map

�x;n W Con1G �! Con1H W Ng 7! ı
1=n

Con1H
. .˛x.'.ı

n
Con1G. Ng/////:

Question 5.2. Is it true that for �-a.e. x 2 X , �x;n converges (say, in proba-
bility on bounded subsets of Con1G) to a bi-Lipschitz isomorphism of groups
Con1G ! Con1H?

If true, this would amount to a kind of ‘nilpotent-valued’ version of the Point-
wise Ergodic �eorem. It has the �avour of a large-scale analog for cocycles of
the problem of proving an analog of Rademacher’s �eorem for Lipschitz maps
between Carnot–Carathéodory metrics. Such a di�erentiation theorem has been
studied by Pansu in [22] and Margulis and Mostow in [15].

Appendixes

A. Approximation with straight-line segments

�e proof of Proposition 3.3 requires some preparations. Let

G1 WD G

and
GiC1 WD ŒG; Gi �

denote the descending central series of G, so that

GcC1 D ¹eGº

if c is the nilpotency class of G. �e following requires only a routine calculation
with commutators.

Lemma A.1. If BG is a �nite symmetric generating set for G, then for each m 2
¹2; 3; : : : ; cº a generating set for Gm is given by set of the m-fold commutators

Œs1; Œs2; Œ� � � Œsm�1; sm� � � � ���; s1; s2; : : : ; sm 2 BG

and their inverses.
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�e next calculation is slightly less standard, so we include a proof for com-
pleteness. A similar calculation in the setting of a nilpotent Lie algebra appears
as Lemma 4.1 in Pittet [23] and (see also Pansu [21]).

Lemma A.2. If G is a nilpotent group and s1; s2; : : : ; sm 2 G then for all n � 1

one has

Œsn1 ; Œs
n
2 ; Œ� � � Œsnm�1; s

n
m� � � � ��� D .Œs1; Œs2; Œ� � � Œsm�1; sm� � � � ���/n

m � rn
where rn 2 GmC1.

Proof. We �x n � 1 and prove this assertion by induction on m. For each m,
it su�ces to treat the case when G has nilpotency class at most m, since for gen-
eral G we may simply lift the desired result from the quotient G=GmC1 (because
r 2 GmC1 is allowed to be arbitrary).

�e result is trivial whenm D 1, so assume it is known for somem and consider
s1; s2; : : : ; smC1 2 G, where G has class at most mC 1. �e inductive hypothesis
gives

Œsn2 ; Œs
n
3 ; Œ� � � Œsnm; snmC1� � � � ��� D .Œs2; Œs3; Œ� � � Œsm; smC1� � � � ���/n

m � r

for some r 2 GmC1, so r is central in G. Let

g WD Œs2; Œs3; Œ� � � Œsm; smC1� � � � ���;

so this is in Gm, and now insert the above expression into the commutator with sn1
to obtain

Œsn1 ; Œs
n
2 ; Œ� � � Œsnm; snmC1� � � � ��� D Œsn1 ; g

nm

r�

D sn1g
nm

rs�n
1 g�nm

r�1 D sn1g
nm

s�n
1 g�nm

;

where the last equality uses that r is central. Now each appearance of s1 on the left
end of this word may be moved through the sub-word gn

m

to cancel an appearance
of s�1

1 , creating nm copies of the commutator Œs1; g�. Since that commutator is in
GmC1 and so is central, it may be placed at the far left end of the resulting word.
Repeating this manipulation n times, we obtain

sn1g
nm

s�n
1 g�nm D Œs1; g�

nm

sn�1
1 gn

m

s
�.n�1/
1 g�nm

D Œs1; g�
2�nm

sn�2
1 gn

m

s
�.n�2/
1 g�nm

D : : :

D Œs1; g�
nmC1

:

�is is the desired expression, so the induction continues.
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In order to make use of these results, we also need the following important
calculation relating the word metrics of a f.-g. nilpotent group and of one of its
subgroups. In fact, it is a special case of a rather more general results on the pos-
sible distortions of the word metrics on subgroups of nilpotent groups, obtained
by Osin as �eorem 2.2 in [20]; see also Pittet [23] and Subsection 3.B2 of Gro-
mov [13].

Lemma A.3. If G is a f.-g. nilpotent group of nilpotency class m, and B and B 0

are �nite generating sets of G andGm respectively, then there is some constant C
such that

jhjB0 � C jhjmB for all h 2 Gm:

Proof of Proposition 3.3. �is follows from an induction on the nilpotency class
of G. When G is Abelian the result is trivial, so suppose that G has class m � 2.
Let B � G be any �nite symmetric generating set, let xB be its image under the
quotient map G ! G=Gm, and let K be the constant implied by our assumption
of Proposition 3.3 for .G=Gm; d xB/. Let g 2 G, and let Ng D gGm. �en xB is �nite,
symmetric and generates G=Gm, and clearly j Ngj xB � jgjB , so by the inductive
hypothesis there are s1; : : : ; sk 2 B and a1, a2, . . . , ak � 0 such that k � K,
P

i ai � Kjgj and

Ng D Nsa1

1 Nsa2

2 � � � Nsak

k
:

Lifting back to G, this becomes

g D s
a1

1 s
a2

2 � � � sak

k
� h

for some

h D s
�ak

k
s

�ak�1

k�1
� � � s�a1

1 g 2 Gm:

It follows that jhjB � .K C 1/jgjB , and by Lemma A.1 it may be expressed as a
word in the m-fold commutators

Œu1; Œu2; Œ� � � Œum�1; um� � � � ���; u1; u2; : : : ; um 2 B

and their inverses. Let B 0 be the set of these commutators and their inverses.

Lemma A.3 promises some constant C such that

jhjB0 � C jhjmB for all h 2 Gm:
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Let K 0 be the constant promised by the statement our proposition for the Abelian
group .Gm; dT /. Since jhjB � .K C 1/jgjB , it follows that h may be expressed as

t
b1

1 t
b2

2 � � � tb`

`

for some distinct t1, t2, . . . , t` 2 B 0 and b1; : : : ; b` � 0 such that
X

i

bi � CK 0.K C 1/jgjm:

Now recall that according to the Hilbert–Waring �eorem, there is someL � 1

such that any positive integer may be written as a sum of at most L perfect mth

powers. Applying this to each bi , we may instead express h as a word

v
nm

1

1 v
nm

2

2 � � �vn
m
`

`
;

where now the vi are (not necessarily distinct) elements of B 0, each ni is at most
.CK 0.K C 1//1=mjgjB , and ` � LjB 0j.

Finally, if
v D Œu1; Œu2; Œ� � � Œum�1; um� � � � ��� 2 B 0

then Lemma A.2 enables one to write vn
m

as

Œun1; Œu
n
2; Œ� � � Œunm�1; u

n
m� � � � ���:

Inserting such multiple commutators into the place of each power v
nm

i

i appearing
in the word for h above, it follows that h can be expressed as a product of powers
of elements of B in which each power is at most .K 0.K C 1//1=mjgjB , and the
number of powers appearing in the product is at most 4mLjB 0j. �is completes
the proof.

B. L
1-measure equivalence and group growth

by Lewis Bowen1

B.1. Introduction

De�nition B.1 (Weak equivalence). Let f; g be two real-valued functions of the
natural numbers. We write f . g if there are positive constants C1; C2 such
that f .n/ � C1g.C2n/ for all su�ciently large n. We say f and g are weakly
equivalent, denoted f � g, if f . g and g . f .

1 supported in part by NSF grant DMS-0968762 and NSF CAREER Award DMS-0954606
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Let G be a �nitely generated group. Let grG.n/ D jBG.e; n/j be the number
of elements in the ball of radius n of G (with respect to a �xed word metric).
�e function grG depends on the choice of generating set only up to weak equiva-
lence. Its weak equivalence class is called the degree of growth of G. �is notion
was introduced by A. S. Schwarz (spelled also as Schvarts and Švarc) [25] and in-
dependently by Milnor [16, 17]. For a recent survey on growth of groups, see [9].

Our main result is:

�eorem B.2. Let G, H be two �nitely generated IME groups. �en grG � grH .

Corollary B.3. �ere is an uncountably family of non-IME countably in�nite
amenable groups.

Proof. In [10] it is shown that there exists an uncountable family of degrees of
growth of groups. �ese groups are amenable since all non-amenable groups have
the same degree of growth, namely exponential growth.

By contrast, it follows from work of Ornstein–Weiss [19] (extending
well-known results of Dye [6, 7]) that all countably in�nite amenable groups are
measure-equivalent.

We obtain �eorem B.2 as a corollary to a more general result relating growth
and integrable-embeddings of groups. �is notion is developed in the next two
sections.

Acknowledgements. �is note owes its inspiration and motivation from ongoing
discussions with Tim Austin, Uri Bader, Alex Furman and Roman Sauer. I am
grateful for their encouragement and helpful discussions.

B.2. Measurable embeddings

De�nition B.4 (Cocycles and cohomology). LetGÕT .X; �/ be a �nite-measure-
preserving (fmp) action. Recall that a measurable map ˛ W G�X ! H is a cocycle
over T if

˛.g2g1; x/ D ˛.g2; T
g1x/˛.g1; x/

for every g2; g1 2 G and a.e. x 2 X . We say that two such cocycles ˛; ˛0 are
cohomologous if there exists a measurable map ' W X ! H such that

˛0.g; x/ D '.T gx/˛.g; x/'.x/�1:
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De�nition B.5. LetGÕ.X; �/ be an fmp action and ˛ W G�X ! H a measurable
cocycle. We say ˛ is a measurable embedding if there is a measurable cocycle
˛0 W G � X ! H cohomologous to ˛ and a constant C > 0 such that for every
h 2 H and a.e. x 2 X ,

j¹g 2 G W ˛0.g; x/ D hºj � C:

Although we are primarily interested in theL1-version of this de�nition (given
in the next section) here we justify this de�nition by showing that any cocycle
associated to an ME-coupling is a measurable embedding.

�eorem B.6. Let � be an ME coupling of countable groups G and H with as-
sociated fundamental domains

X D �==H; Y D �==G

and cocycles

˛ W G � X �! H;ˇ W H � Y �! G

(as in Section 2.1). �en ˛ and ˇ are measurable embeddings. In fact the constant
C > 0 in De�nition B.5 can be taken to be

˙

m.X/
m.Y /

�

, the least integer greater than

or equal to m.X/
m.Y /

.

Proof. By symmetry, it su�ces to show ˛ is a measurable embedding. By decom-
posing� into ergodic components, we may assume without loss of generality that
G �HÕ� is ergodic. �erefore, there exists a measurable map ' W X ! G �H
such that if  W X ! � is de�ned by  .x/ D '.x/x then  is at most

˙

m.X/
m.Y /

�

-to-1
and the image of  lies in Y . Let �H W G � H ! H be the projection map and
de�ne

˛0 W G �X �! H

by

˛0.g; x/ D �H .'.T
gx//˛.g; x/�H .'.x//

�1:

We claim that ˛0
x is at most

˙

m.X/
m.Y /

�

-to-1 for a.e. x 2 X . To see this suppose
g1; : : : ; gn 2 G are distinct elements and ˛0.gi ; x/ D ˛0.gj ; x/ for 1 � i; j � n.
�en

�H .'.T
gix//˛.gi ; x/ D �H .'.T

gj x//˛.gj ; x/ 1 � i; j � n: (9)
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De�ne
ˆ W � �! Y

by
ˆ.x/ D gx;

where g 2 G is the unique element with gx 2 Y . Note that ˆ is G-invariant. Let

 0 W X �! �

be the map
 0.x/ D �H .'.x//x

so that
 .x/ D ˆ. 0.x//:

�en for any j

ˆ.�H .'.T
gj x//˛.gj ; x/x/ D ˆ.gj�H .'.T

gj x//˛.gj ; x/x/

D ˆ.�H .'.T
gj x//˛.gj ; x/gjx/

D ˆ.�H .'.T
gj x//T gj x/

D ˆ. 0.T gj x//

D  .T gj x/:

Since
ˆ.�H .'.T

gix//˛.gi ; x/x/ D ˆ.�H .'.T
gj x//˛.gj ; x/x/;

this implies

ˆ. 0.T gix// D  .T gix/ D  .T gj x/ D ˆ. 0.T gj x//:

Claim. For any i ¤ j ,  0.T gix/ ¤  0.T gj x/.

�is claim implies that if i ¤ j then T gix ¤ T gj x. Because  is at most
˙

m.X/
m.Y /

�

-to-1, this implies that n �
˙

m.X/
m.Y /

�

. So it su�ces to prove the claim.
So suppose that  0.T gix/ D  0.T gj x/. �en

�H .'.T
gix//˛.gi ; x/gix D �H .'.T

gix//T gix

D  0.T gix/

D  0.T gj x/

D �H .'.T
gj x//T gj x

D �H .'.T
gj x//˛.gj ; x/gjx:
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By (9) this implies gix D gjx which implies gi D gj since GÕ� is essentially
free. But gi and gj are distinct unless i D j . �is proves the claim and the
theorem.

B.3. Integrable embeddings. �e de�nition of integrable embedding is a bit
more complicated than measurable embedding because we only require that ˛x
is bounded-to-1 for a large subset of x and with ˛x is restricted to the associated
return time set.

De�nition B.7. For Z � X and x 2 X ,

RZ.x/ WD ¹g 2 G W gx 2 Zº

is the associated return time set.

De�nition B.8. LetGÕ.X; �/ be an fmp action and ˛ W G�X ! H a measurable
cocycle. �en ˛ is an integrable embedding if for � > 0 there exists a cocycle

˛0 W G �X �! H

which is cohomologous to ˛ such that

� ˛0 is integrable;

� there exists a subset X0 � X with �.X0/ > �.X/ � � and a constant
C D C.�/ > 0 such that for a.e. x 2 X0 and every h 2 H ,

j¹g 2 RX0
.x/ W ˛0.g; x/ D hºj � C:

�eorem B.9. Let� be an IME coupling ofG andH with associated fundamental
domains X D �==H and Y D �==G and cocycles

˛ W G � X �! H; ˇ W H � Y �! G:

�en ˛ and ˇ are integrable embeddings.

Proof. By symmetry, it su�ces to show that ˛ is an integrable embedding.
By �eorem B.6 there exists a cocycle ˛0 W G�X ! H and a constantC > 0 such
that that ˛0 cohomologous to ˛ and ˛0

x is at most C -to-1 for a.e. x 2 X . Because
˛0 is cohomologous to ˛, there exists a measurable map ' W X ! H such that

˛0.g; x/ D '.T gx/˛.g; x/'.x/�1:

Let SG be a �nite generating set for G. Choose a �nite subset W � H large
enough such that if

X0 D ¹x 2 X W '.x/ 2 W and '.T gx/ 2 W for all g 2 SGº

then m.X0/ > m.X/ � �.
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De�ne
'0 W X �! H

by

'0.x/ D

8

<

:

'.x/ if x 2 X0;

eH otherwise.

De�ne ˛00 W G �X ! H by

˛00.g; x/ D '0.T
gx/˛.g; x/'0.x/

�1:

For a.e. x 2 X0, ˛00
x restricted to RX0

.x/ equals ˛0
x and is therefore at most C -to-1.

To �nish the proof it su�ces to show that ˛00 is an integrable cocycle. Let

M D max
h2W

jhjH

and g 2 SG . �en
Z

j˛00.g; x/jH d�X .x/ �
Z

.2M C j˛.g; x/jH / d�X .x/ < 1

because ˛ is integrable. It now follows from sub-additivity that
Z

j˛00.g; x/jH d�X .x/ < 1

for every g 2 G.

B.4. Growth. Our main result is:

�eorem B.10. Let G, H be two �nitely generated groups. If there exists an L1-
embedding of G into H then grG . grH .

�is result and �eorem B.9 immediately imply �eorem B.2. To prove �eo-
rem B.10 we need the following simple lemma:

Lemma B.11. Let G be a �nitely generated group. Let GÕ.X; �/ be an fmp
action, X0 � X a set with positive measure and

RX0
.x/ WD ¹g 2 G W gx 2 X0º

the associated return time set. If BG.e; n/ denotes the ball of radius n centered at
the identity in G (with respect to a �xed word metric) then for every n

Z

X0

jRX0
.x/ \ BG.e; n/j
jBG.e; n/j

d�.x/ � 2�.X0/ � �.X/:
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Proof. By integrating over X in place of X0 and using that GÕX is measure-
preserving we see that

�.X0/ D
Z

X

jRX0
.x/ \ BG.e; n/j
jBG.e; n/j

d�.x/:

�erefore
Z

X0

jRX0
.x/ \ BG.e; n/j
jBG.e; n/j

d�.x/ D �.X0/ �
Z

XnX0

jRX0
.x/ \ BG.e; n/j
jBG.e; n/j

d�.x/

� �.X0/ � �.X nX0/

D 2�.X0/ � �.X/:

Proof of �eorem B.10. Let GÕ.X; �/ be an ess. free fmp action and let

˛ W G �X �! H

an L1-embedding. After replacing ˛ with a cohomologous cocycle if necessary
we may assume there exists a set X0 � X with �.X0/ � 0:9�.X/ and a constant
C > 0 such that for a.e. x 2 X0, ˛x restricted to the return time set RX0

.x/ is at
most C -to-1 (where ˛x W G ! H is de�ned by ˛x.g/ D ˛.g; x/).

For g 2 G, let

�.g/ WD
Z

j˛.g; x/jG d�.x/:

An easy exercise shows

�.gh/ � �.g/C �.h/:

Let

M D sup
g2S

�.g/

(where S � G is the �nite symmetric generating set de�ning the word metric).
Let BG.e; n/ denote the ball of radius n in G. Note that

X

g2BG .e;n/

�.g/ �
X

g2BG .e;n/

jgjGM:

By Markov’s inequality, for any t > 0,

�
�°

x 2 X W
X

g2BG .e;n/

j˛.g; x/jH
jgjG

� t
±�

� 1

t

X

g2BG .e;n/

�.g/

jgjG
� jBG.e; n/jM

t
:
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In particular, by setting

t D 10M jBG.e; n/j;

we have that

�.X1/ � 0:9�.X/;

where

X1 WD
°

x 2 X W
X

g2BG .e;n/

j˛.g; x/jH
jgjG

< 10M jBG.e; n/j
±

:

If x 2 X1 and

Gx D ¹g 2 BG.e; n/ W j˛.g; x/jG � 60M jgjGº

then

jGxj � .5=6/jBG.e; n/j:

Let

X2 D X0 \X1:

Observe that

�.X2/ D �.X0/C �.X1/ � �.X0 [ X1/

� �.X0/C �.X1/ � �.X/

� 0:8�.X/:

By Lemma B.11,

Z

X2

jRX2
.x/ \ BG.e; n/j
jBG.e; n/j

d�.x/ � 2�.X2/ � �.X/ � 0:6�.X/:

So
Z

X2

jRX2
.x/ \ Gxj d�.x/

�
Z

X2

jRX2
.x/ \ BG.e; n/j C jGx j � jBG.e; n/j d�.x/

� 0:6�.X/jBG.e; n/j C .5=6/jBG.e; n/j�.X2/ � jBG.e; n/j�.X2/

� jBG.e; n/j�.X/.0:6C 0:5� 1/ D 0:1�.X/jBG.e; n/j:
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On the other hand, for every x 2 X2, ˛x restricted to RX2
.x/ is at most C -to-1.

�erefore

0:1�.X/jBG.e; n/j �
Z

X2

jGx \ RX2
.x/j d�.x/

�
Z

X2

j¹g 2 RX2
.x/ W j˛.g; x/jH � 60Mnºj d�.x/

�
X

h2BH .e;60Mn/

Z

X2

j¹g 2 RX2
.x/ W ˛.g; x/ D hºj d�.x/

� C jBH .e; 60Mn/j�.X/:

So jBG.e; n/j � C jBH .e; 60Mn/j. Since this is true for all n, grG . grH .
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