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1. Introduction

�e problem to determine if a given system of equations in an algebraic system S

has a solution (the Diophantine problem for S ) is hard for most algebraic systems.
�e reason is that the problem is quite general and many natural speci�c decision
problems for S can be reduced to the Diophantine problem. For example, the
word and the conjugacy problems for a group G are very special cases of solving
equations in G. �is generality is a natural source of motivation for studying the
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problem. Furthermore, equations in S can be viewed as a narrow fragment of
the elementary theory of S . In many cases, solving the Diophantine problem and
providing a structural description of solution sets of systems of equations is the
�rst important step towards proving the solvability of the whole elementary theory.
In particular, this is the case for the famous Tarski problem on the solvability of
the elementary theory of a non-abelian free group, see [9]. �e positive solution
of the Diophantine problem for free groups [12] and a deep study of properties of
solution sets of systems of equations in free groups initiated in [13] are at the very
foundation of the known approach to the problem.

�ese two natural questions can be applied to any countable group G: solve
the Diophantine problem for G and �nd a good structural description of solutions
sets of systems of equations in G.

Among the whole class of equations in a group, a subclass of quadratic equa-

tions plays a special role. By de�nition, these are equations in which every vari-
able occurs exactly twice. Under this restriction, equations in groups are much
more treatable than in the general case, compare for example [2] and [12]. A rea-
son is that natural equation transformations applied to quadratic equations do not
increase their complexity. �is is related to the fact that quadratic equations in
groups have a nice geometric interpretation in terms of compact surfaces (this
may be attributed to folklore; see also [15] or [11]). Although being quadratic is
a rather restrictive property, it is still a wide class; for example, the word and the
conjugacy problems in a group are still special cases of quadratic equations. It is
worthwhile to mention that in many cases, the class of quadratic equations is one
of several types of “building blocks” for equations of a general form, see [8].

�ere are two classes of in�nite groups where equations are well understood.
�e �rst is �nitely generated abelian groups. In this case, systems of equations are
just linear Diophantine systems over Z. �e second is non-abelian free groups.
Equations in this case are more complicated but has been extensively studied.
Although there are many other classes of in�nite groups where some reasonably
general results on equations are known, at present they can be informally classi-
�ed into two types: groups with a “free-like” behavior (e.g. Gromov hyperbolic
groups) or groups with “abelian-like” behavior (e.g. nilpotent groups). (A number
of deep results is known also for groups of “mixed type”; see the monograph [1]
for equations in free partially commutative groups.)

In this paper, we make an attempt to study equations in groups which belong
to neither of these two types. Namely, we take the known 3-generated Grigorchuk
2-group [4] of intermediate growth and prove that the Diophantine problem for
this group in the special case of quadratic equations is solvable.
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�eorem 1. �ere exists an algorithm which for a given quadratic equation in

the Grigorchuk group �, determines if it has a solution or not.

A notable feature of the Grigorchuk group � is its self-similarity in the sense
that � is commensurable with its nontrivial direct power. More precisely, there is
a “splitting” homomorphism  of a subgroup St�.1/ of � of index 2 to the direct
product ��� of two copies of � such that the image of has index 8 in ��� (see
[7, Chapter VIII, �eorem 28]). �ere are two important properties of  which
give rise to a number of remarkable facts about �. �e �rst property is that each
component  i W

St�.1/ ! � of  D . 0;  1/ is a contracting map with respect to the word length
on � de�ned for a canonical set of generators for �. �is provides an e�ective
solution of the word problem for � and is a key assertion in the proof that � is
a 2-group. �e second property is a stronger version of the �rst one: the split-
ting homomorphism  itself is a contracting map with respect to a certain length
function de�ned on �. A corollary is that the growth function of � is neither
polynomial nor exponential.

Our proof of �eorem 1 is based essentially on the stronger version of the con-
tracting property of the splitting homomorphism  . We use also the fact that � is
a torsion group though we think that this is not essential. We hope that the theorem
could be generalized to a wider class of groups of a self-similar nature (though,
of course, much technical work for this generalization has to be done).

Our main technical tool is de�ning a special splitting map ‰ on equations in
� which simulates application of the homomorphism  when arbitrary values
of variables are substituted into the equation. It is not hard to see that for a qua-
dratic equation, application of‰ produces two equations which are also quadratic.
Because  is contracting, the coe�cients of new equations are shorter than the
coe�cients of the original one. Although the complexity of the non-coe�cient
part of the equation may increase, this is su�cient to apply an induction.

We apply our technique to prove another non-trivial property of �:

�eorem 2. �ere is a number N such that any element of � belonging to the

commutator subgroup Œ�; �� is a product of at most N commutators in �.

It is well-known that two quadratic words x2y2z2 and x2Œy; z� are equivalent
up to a substitution of variables induced by an automorphism of the free group
F.x; y; z/. �is implies equivalence x2

1x
2
2 : : : x

2
2nC1 � x2

1 Œx2; x3� : : : Œx2n; x2nC1�

and we have the following immediate consequence.
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Corollary. �ere is a number N such that any element of � belonging to the

verbal subgroup generated by squares is a product of at most N squares in �.

Note that we do not provide a bound on N in �eorem 2. Note also that the
procedure in �eorem 1, described in Section 5, is not fully explicit since it relies
on existence of �nite data (a �nite set of integer-valued vectors in Proposition 5.5
below) which we do not compute.

2. �e Grigorchuk group

For a survey on the Grigorchuk group and its remarkable properties, we refer the
reader to [5] and [7]. In this section, we recall the de�nition and formulate several
facts about the group which we will need in the sequel.

Let T be an in�nite rooted regular binary tree. By de�nition, the vertex set of
T is the set ¹0; 1º� of all �nite binary words with the empty word " at the root.
Two words u and v are connected by an edge in T if and only if one of them is
obtained from the other by adding one letter x 2 ¹0; 1º at the end. �e tree T is
shown in Figure 1.

Figure 1. �e in�nite rooted regular binary tree T.

By Aut.T/ we denote the group of automorphisms of T. Any automorphism
˛ 2 Aut.T/ can be viewed as a permutation on the set ¹0; 1º� which preserves the
length and initial segments, i.e., j˛.x/j D jxj for all x and if ˛.xy/ D x0y0 and
jxj D jx0j then ˛.x/ D x0. In particular, for every n � 0, ˛ induces a permutation
on the set ¹0; 1ºn of words of length n (the n-th level of T). We denote by St.n/
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the stabilizer in Aut.T/ of the set ¹0; 1ºn. In particular,

St.1/ D ¹˛ 2 Aut.T/ j ˛.0/ D 0 and ˛.1/ D 1º

is the subgroup of Aut.T/ of index 2.
Let T0 and T1 be the subtrees of T spanned by the vertices starting with 0 and 1,

respectively. By a we denote the automorphism of T which swaps T0 and T1:

˛.xw/ D Nxw for x 2 ¹0; 1º

where Nx denotes 1 � x.
By de�nition, the Grigorchuk group � is the subgroup of Aut.T/ generated by

four automorphisms a; b; c and d , where b; c; d 2 St.1/ are de�ned recursively as
follows:

b.0w/ D 0a.w/; b.1w/ D 1c.w/;

c.0w/ D 0a.w/; c.1w/ D 1d.w/;

d.0w/ D 0w; d.1w/ D 1b.w/:

It is easy to see that the generators a; b; c and d satisfy the relations

a2 D b2 D c2 D d2 D bcd D 1: (1)

In particular,

hai D ¹1; aº ' Z=2Z and hb; c; d i D ¹1; b; c; dº ' Z=2Z � Z=2Z:

Hence every element of � can be represented by a word of the form

Œa�x1ax2a : : : axnŒa� (2)

where xi 2 ¹b; c; dº and the �rst and the last occurrences of a are optional.
Every automorphism g 2 St.1/ induces automorphisms g0 and g1 on the sub-

trees T0 and T1 of T. Since T0 and T1 are naturally isomorphic to T the mapping
g 7! .g0; g1/ gives a group isomorphism

 W St.1/ �! Aut.T/� Aut.T/:

We denote by  i .i D 0; 1/ the components of  :

 .g/ D . 0.g/;  1.g//:

Observe that conjugation by a swaps the components of  .g/:

 .aga/ D . 1.g/;  0.g//:
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Let St�.1/ D St.1/ \ � be the set of automorphisms in � stabilizing the �rst
level of T, i.e., stabilizing the vertices 0 and 1. Since b; c; d 2 St.1/ and a swapsT0

and T1, the subgroup St�.1/ has index 2 in � and a word w represents an element
of St�.1/ if and only if w has an even number of occurrences of a˙1. �is implies
that St�.1/ has a generating set ¹b; c; d; aba; aca; adaº. From the de�nition of b,
c and d we can write immediately the images under of the generators of St�.1/:

 .b/ D .a; c/;  .aba/ D .c; a/;

 .c/ D .a; d/;  .aca/ D .d; a/;

 .d/ D .1; b/;  .ada/ D .b; 1/:

�e monomorphism

 W St�.1/ ! � � �

plays a central role in our analysis of equations in �. Note that computation of
 is e�ective (for example, we can represent an element of St�.1/ by a reduced
word (2) as a concatenation of generators ¹b; c; d; aba; aca; adaº and then apply
the formulas above).

We will need a description of the image of  as well as an extra technical
tool, the “subgroup K trick” (Proposition 2.2) used in [14] for a solution of the
conjugacy problem for � (see also [10]). Let K be the normal closure in � of the
element abab,

K D hababi� :

Lemma 2.1. �e following holds:

(i) K has index 16 in � and the quotient group �=K has the presentation

�=K D ha; b; d j b2 D a2 D d2 D 1; .ab/2 D .bd/2 D .ad/4 D 1iI

(ii) �=K is the direct product of the cyclic group of order 2 generated by bK and

the dihedral group of order 8 generated by aK and dKI

(iii) K �K �  .K/.

Proof. (ii) follows from (i). (iii) is Proposition 30(v) in [7, Chapter VIII]. Proposi-
tion 30(ii) in [7, Chapter VIII] says thatK is of index 16. To verify the presentation
for �=K in (i) we �rst check that all de�ning relations hold in �=K and then com-
pute that the presented group is of order 16.
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By �K we denote the natural epimorphism � ! �=K. A straightforward
consequence of Lemma 2.1(iii) is the following proposition.

Proposition 2.2. �ere is a �nite set F of pairs .u; v/ 2 �=K � �=K and a map

! W F �! �=K

such that

(i) a pair .g0; g1/ 2 � � � belongs to the image of  if and only if the pair

.�K.g0/; �K.g1// belongs to FI

(ii) if .�K.g0/; �K.g1// 2 F then for any g 2 � with  .g/ D .g0; g1/,

�K.g/ D !.�K.g0/; �K.g1//:

3. Quadratic equations

3.1. Equations in groups. Let G be a group and X a countable set of variables.
An equation in G is a formal equality

W D 1

where W is a word u1u2 : : : uk of letters ui 2 G [ X˙1. We view the left-hand
side W of an equation as an element of the free product G � FX . A solution of
W D 1 is a homomorphism

˛ W G � FX �! G

which is identical on G (i.e. ˛ is a G-homomorphism) and satis�es

˛.W / D 1:

Similarly, a solution of a system of equations ¹Wi D 1ºi2I is a G-homomorphism

˛ W G � FX ! G

such that

˛.Wi/ D 1 for all i .

For the Diophantine problem in a group G, it is usually assumed that G is
�nitely or countably generated; in this case equations in G can be represented by
words in a countable alphabet A˙1 [X˙1 where A is a generating set for G.
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A word W 2 G � FX and an equation W D 1 are called quadratic if every
variable x 2 X occurring in W occurs exactly twice (where occurrences of both
x and x�1 are counted). For a word W 2 G � FX by Var.W / � X we denote
the set of all variables occurring in W (again, occurrences of x˙1 are counted as
occurrences of a variable x).

We denote AutfG.G �FX / the group of �nitely supportedG-automorphisms of
G�FX , i.e., automorphisms � 2 Aut.G�FX /which are identical onG and change
�nitely many elements ofX . We say that two words V;W 2 G�FX are equivalent

if there is an automorphism � 2 AutfG.G �FX / such that �.V / is conjugate toW .
Clearly, if V andW are equivalent then equation V D 1 has a solution if and only
if equation W D 1 has a solution.

It is well known that every quadratic word is equivalent to a word of one of the
following forms:

Œx1; y1�Œx2; y2� : : : Œxg ; yg � .g � 0/; (3a)

Œx1; y1�Œx2; y2� : : : Œxg ; yg � c1 z
�1
2 c2z2 : : : z

�1
m cmzm .g � 0; m � 1/; (3b)

x2
1x

2
2 : : : x

2
g .g > 0/; (3c)

x2
1x

2
2 : : : x

2
g c1 z

�1
2 c2z2 : : : z

�1
m cmzm .g > 0; m � 1/; (3d)

where xi ; yi ; zi 2 X are variables and ci 2 G (see [2] or [6]). With a slight
change of these canonical forms (introducing a new variable z1, for technical con-
venience), we call the following quadratic words Q and the corresponding qua-
dratic equations Q D 1 standard:

Œx1; y1�Œx2; y2� : : : Œxg ; yg � z
�1
1 c1z1 z

�1
2 c2z2 : : : z

�1
m cmzm .g � 0; m � 0/;

x2
1x

2
2 : : : x

2
g z

�1
1 c1z1 z

�1
2 c2z2 : : : z

�1
m cmzm .g > 0; m � 0/:

Words in the �rst and in the second series are called standard orientable and
standard non-orientable, respectively. More generally, a quadratic word Q (and
a quadratic equation Q D 1) are called orientable if the two occurrences in Q of
each variable x 2 Var.Q/ have the opposite signs x and x�1 and non-orientable

if there is a variable x occurring in Q twice with the same signs x or x�1.

�e number g is called the genus of a standard quadratic wordQ. �e elements
c1, : : : , cm of G occurring in Q are called the coe�cients of Q.



Quadratic equations in the Grigorchuk group 209

Proposition 3.1. Every quadratic word Q is equivalent to a standard quadratic

word R which is orientable if and only if Q is orientable. Moreover, there is an

algorithm which, for a given Q, computes R and the equivalence automorphism

˛ 2 AutfG.G � FX / that sendsQ to a conjugate of R.

Proof. Due to the reduction to the classical standard form (3) (the procedure in [2]
or in [6] is e�ective and preserves orientability), it is enough to prove that removal
of the variable z1 in a standard quadratic word (in our sense) leads to an equivalent
quadratic word. �e following G-automorphism does the job:

Œx1; y1� : : : Œxg ; yg � � z
�1
1 c1z1 � : : : � z�1

m cmzm

�
�! z�1

1 .Œx1; y1� : : : Œxg ; yg � � c1z
�1
2 c2z2 � : : : � z�1

m cmzm/z1

where

� D .xi 7�! z�1
1 xiz1; i D 1; : : : ; g;

yj 7�! z�1
1 yj z1; j D 1; : : : ; g;

zk 7�! zkz1; k D 2; : : : ; m/:

3.2. Equations with constraints modulo a subgroup. LetH be a normal sub-
group of a group G. By �H we denote the canonical epimorphism G ! G=H .

De�nition 3.2. An equation inG with a constraint moduloH is a pair .W D 1; /

where

W 2 G � FX

and

 W Var.W / �! G=H:

A solution of such an equation is a G-homomorphism

˛ W G � FX �! G

satisfying

˛.W / D 1

and

�H .˛.x// D .x/

for every variable x 2 Var.W /.
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�is notion naturally extends to systems of equations in G. A constraint mod-
ulo H for a system of equations ¹Wi D 1º is a map

 W
[

i

Var.Wi / �! G=H:

A solution of a constrained system .¹Wi D 1º; / is a G-homomorphism

˛ W G � FX �! G

such that
˛.Wi / D 1 for all i

and
�H .˛.x// D .x/

for every x 2
S

i Var.Wi /.
If Y � X is a set of variables then a map

 W Y �! G=H

extends naturally to a group homomorphism

G � FY �! G=H

by de�ning
.g/ D �H .g/ for g 2 G.

We use the same notation  for this homomorphism (implicitly identifying the two
maps). In particular, a constraint  for a system of equations ¹Ri D 1º is identi�ed
with the induced homomorphism

G � FY ! G=H;

where Y D
S

i Var.Wi /.
Observe that existence of a solution of a system of equations .¹Ri D 1º; /

with a constraint  automatically implies that .Ri / D 1 for all i .
We introduce equivalence of constrained equations in the following way.

De�nition 3.3. Equations .W D 1; / and .V D 1; �/with constraints moduloH
are equivalent if  and � can be extended to homomorphisms

N; N� W G � FX �! G=H

so that for some G-automorphism � 2 AutfG.G � FX /, �.W / is conjugate to V
and

N� D N ı �:
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�e following simple observation shows that a constraint is naturally induced
by equivalence of equations.

Lemma 3.4. LetW and V be equivalent words inG�FX . �en for any constraint

 W Var.W / ! G=H there exists another constraint

� W Var.V / �! G=H

such that equations .W D 1; / and .V D 1; �/ are equivalent. Moreover, there

is an algorithm which, for givenW ,  and a G-automorphism � 2 AutfG.G �FX/

sending W to a conjugate of V , computes the constraint �.

Proof. To compute �, we �rst extend  to a homomorphism

N W G � FX �! G=H

in an arbitrary way, then take
N� D N ı �

and compute � by restricting N� to FX . Since � is �nitely supported, the procedure
is e�ective.

As an immediate consequence of the lemma and Proposition 3.1 we get

Corollary 3.5. For any quadratic equation .Q D 1; / with a constraint modulo

H there is an equivalent equation .S D 1; �/ where S is a standard quadratic

word equivalent to Q.

Assume thatW1 andW2 are two words in G �FX and there is a variable x 2 X

which occurs in eachWi exactly once. Let

Wi D Uix
"iVi where "i D ˙1:

We can express x in W2 as x D .V2U2/
�"2 and then substitute the expression in

W1 obtaining a new word denoted W1#xW2 in which x no longer occurs:

W1#xW2 D U1.V2U2/
�"1"2V1:

Sometimes we simply write W1#W2 if the choice of x is irrelevant (see also
Remark 3.7). It is obvious that a system ¹W1 D 1;W2 D 1º is solvable in G
if and only if a single equation W1#xW2 D 1 is solvable in G. We will need a
similar statement for the case of equations with constraints.
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Lemma 3.6. Let W1; W2 2 G � FX and assume that a variable x 2 X occurs in

each Wi exactly once. Let .¹W1 D 1;W2 D 1º; / be a system of equations in G

with a constraint  modulo H and .Wi / D 1 for i D 1; 2. �en this system has a

solution if and only if the equation .W1#xW2 D 1;  0/ has a solution where  0 is

the restriction of  on Var.W1#xW2/.

Proof. �e “only if” part is obvious.

For the “if” part, we use the condition .Wi / D 1 which implies that any
solution ˛0 of the constrained equation .W1#xW2 D 1;  0/ extends to a solution
of the system ¹W1 D 1;W2 D 1º with �H .˛.x// D .x/.

Remark 3.7. It is easy to see that if y is another variable which occurs in eitherW1

and W2 exactly once then W1#yW2 and W1#xW2 are equivalent. However, we do
not need this fact and the notationW1#W2 means a particular choice of a variable
x which is clear from the context.

4. Splitting equations

4.1. Splitting words in � �FX . LetW D 1 be an equation in �. If we substitute
the values of a solution to W and apply the splitting homomorphism  then we
get two new equalities. �ese equalities lead in a natural way to a system

¹W0 D 1;W1 D 1º

of two equations in� formally de�ned below in this section. �e main idea of split-
ting an equation is that we get a new equivalent system which, in a certain sense,
is simpler than the initial equation. Equivalence, however, cannot be achieved in
a straightforward way. An obstruction appears because the image of St�.1/ un-
der  is a proper subgroup of � � � and, in general, a solution of the system
¹W0 D 1;W1 D 1º can not be lifted to a solution ofW D 1. �is is the reason why
we engage equations with constraints modulo K: since we have  .K/ � K �K,
for constrained equations the transition from W D 1 to ¹W0 D 1;W1 D 1º

is equivalent (see Corollary 4.3).

Starting from this point, we consider only equations in � with constraints mod-
ulo K (often omitting mentioning the constraints). Since K is a subgroup of � of
�nite index, any equation in � is reduced to a �nite disjunction of equations with
constraints modulo K.
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On the set of words W 2 � � FX we de�ne two maps ‰0 and ‰1 which sim-
ulate application of the homomorphisms  0 and  1 after substituting values of
the variables in W . Since  is de�ned on the subgroup St�.1/ of � of index 2,
‰0.W / and ‰1.W / depend on the prede�ned cosets modulo St�.1/ of all values
of variables occurring in W . We observe that a constraint modulo K determines
these cosets in a unique way. For this reason, we formally de�ne maps ‰i with
respect to a given constraint  W Var.W / ! �=K (though denoting them ‰i by
abuse of notations).

Given a constraint  W Y ! �=K on a set of variables Y � X , we use the
notation � for the induced group homomorphism

� W � � FY �! �=St�.1/

into the group �=St�.1/ of order 2 which gives the coset mod St�.1/ of every
word U 2 � � FY .

For an element u 2 �, let Nu denote the closest element in St�.1/ de�ned by

Nu D

´

u if u 2 St�.1/;

ua otherwise.

For each variable x 2 X we introduce two variables x0 and x1 which we call
the descendants of x. Since we operate on a single set of variables X (and the
splitting procedure will be applied to an equation recursively) we may formally
assume that X is partitioned into two in�nite disjoint sets X0 and X1 and two
bijections X ! X0, X ! X1 are �xed which provide the descendants of x 2 X .

Now, given a word

W D u1u2 : : : uk 2 � � FX ; ui 2 � [X˙1;

and a constraint  W Var.W / ! �=K we de�ne a word

‰0.W / D v1v2 : : : vk 2 � � FX ;

where for ui 2 �,

vi D

8

<

:

 0. Nui / if � .u1 : : : ui�1/ D 1;

 0.a Nuia/ if � .u1 : : : ui�1/ ¤ 1;



214 I. Lysenok, A. Miasnikov, and A. Ushakov

and for ui D x" 2 X˙1,

vi D

8

<

:

x0 if � .u1 : : : ui�1/ D 1;

x1 if � .u1 : : : ui�1/ ¤ 1;
for " D 1;

vi D

8

<

:

x�1
0 if � .u1 : : : ui / D 1;

x�1
1 if � .u1 : : : ui / ¤ 1;

for " D �1:

Similarly one de�nes ‰1.W / by taking  1 instead of  0 in the de�nition of vi

for ui 2 � and interchanging x0 and x1 in the de�nition of vi for ui 2 X˙1.
We denote also

‰.W / D .‰0.W /; ‰1.W //:

Note that in the de�nition of ‰i .W / we do not assume that � .W / D 1

(i.e. thatW de�nes an element in St�.1/ after substituting values for all variables)
and thus ‰i .W / is de�ned for any word W 2 � � FX . In particular, we have a
function

‰ W � � F.X/ �! .� � F.X// � .� � F.X//:

Note also that
‰i .W / D ‰i .Wa/ for any W ,

which can be seen directly from the de�nition.
Let W 2 � � F.X/ and

 W Var.W / �! �=K

be a constraint on Var.W / (remember that ‰.W / is formally de�ned with respect
to a given ). For any �-homomorphism ˛ W � � FVar.W / ! � we can de�ne the
induced map

˛� W � � FVar.‰0.W //[Var.‰1.W // �! �

by
˛�.xi / D  i .˛.x// for x 2 Var.W / and i D 0; 1:

�e next proposition follows from the construction by induction on the length
of W .

Proposition 4.1 (main property of ‰). For any �-homomorphism

˛ W � � FVar.W / �! �

satisfying the constraint  (that is, �K.˛.x// D .x/ for any x 2 Var.W /),

 i .˛.W // D ˛�.‰i .W // .i D 0; 1/:
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We are in position to de�ne splitting of an equation in � with a constraint
modulo K. Since the images  i .gK/ of a coset gK do not belong to a unique
coset modulo K, a constraint modulo K generates a family of constraints under
splitting. To de�ne this family, we use a notation Ng for an element g 2 �=K which
plays the role of “the closest element in the stabilizer St�.1/” (similar to the case
of notation Ng for g 2 �):

Ng D

´

g if g 2 St�.1/=K;

g �K.a/ otherwise,

where �K.a/ denotes the natural image of a in �=K.

De�nition 4.2. Given a word W 2 � � FX and a map  W Var.W / ! �=K, we
de�ne a set VW; of maps

� W Var.‰0.W // [ Var.‰1.W // �! �=K

by
VW; D ¹� j !.�.x0/; �.x1// D .x/ for all x 2 Var.W /º (4)

where ! is given in Proposition 2.2.

An immediate consequence of Propositions 4.1 and 2.2 is the following corol-
lary.

Corollary 4.3 (splitting reduction). Let .W D 1; / be an equation in � and

� .W / D 1. �en .W D 1; / is solvable if and only if the system

.¹‰0.W / D 1; ‰1.W / D 1º; �/

is solvable for some � 2 VW; .

4.2. Splitting quadratic equations. In this subsection, we apply ‰ to standard
quadratic equations in �.

It follows from the de�nition of ‰i that for any U; V 2 � � FX :

‰i .U � V / D

8

<

:

‰i .U / � ‰i .V / if � .U / D 1;

‰i .U / � ‰1�i .V / if � .U / ¤ 1:

Hence the image of a standard quadratic word under ‰i is factored into blocks of
the form

‰i .Œx; y�/; ‰i .x
2/; and ‰j .z

�1cz/ .j D 0; 1/:

(Note that � .Œx; y�/ D � .x
2/ D 1.)
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We write explicit expressions for these factors (we assume that commutators
Œx; y� are written as x�1y�1xy):

� if � .x/ D � .y/ D 1,

‰0.Œx; y�/ D x�1
0 y�1

0 x0y0;

‰1.Œx; y�/ D x�1
1 y�1

1 x1y1;

� if � .x/ ¤ 1, � .y/ D 1,

‰0.Œx; y�/ D x�1
1 y�1

1 x1y0;

‰1.Œx; y�/ D x�1
0 y�1

0 x0y1;

� if � .x/ D 1, � .y/ ¤ 1,

‰0.Œx; y�/ D x�1
0 y�1

1 x1y1;

‰1.Œx; y�/ D x�1
1 y�1

0 x0y0;

� if � .x/, � .y/ ¤ 1,

‰0.Œx; y�/ D x�1
1 y�1

0 x0y1;

‰1.Œx; y�/ D x�1
0 y�1

1 x1y0;

and

� if � .x/ D 1,

‰0.x
2/ D x2

0 ;

‰1.x
2/ D x2

1 ;

� if � .x/ ¤ 1,

‰0.x
2/ D x0x1;

‰1.x
2/ D x1x0;
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and, �nally,

� if c 2 St�.1/, � .z/ D 1,

‰0.z
�1cz/ D z�1

0 c0z0;

‰1.z
�1cz/ D z�1

1 c1z1;

� if c … St�.1/, � .z/ D 1,

‰0.z
�1cz/ D z�1

0 c0z1;

‰1.z
�1cz/ D z�1

1 c1z0;

� if c 2 St�.1/, � .z/ ¤ 1,

‰0.z
�1cz/ D z�1

1 c1z1;

‰1.z
�1cz/ D z�1

0 c0z0;

� if c … St�.1), � .z/ ¤ 1,

‰0.z
�1cz/ D z�1

1 c1z0;

‰1.z
�1cz/ D z�1

0 c0z1;

where
ci D  i .c/; i D 0; 1:

For a standard quadratic wordQ, denote by C.Q/ the set of coe�cients ofQ.

Lemma 4.4. Let .Q D 1; / be a standard quadratic equation in � and

‰.Q/ D .Q0; Q1/. �en the following assertions are true.

(i) Var.Q0/ \ Var.Q1/ D ; if and only if C.Q/ � St�.1/ and either

� .xi / D � .yi / D 1 for every commutator Œxi ; yi � in the commutator part

of Q (if Q is standard orientable) or � .xi / D 1 for every square x2
i in the

square part of Q (if Q is standard non-orientable).

(ii) If Var.Q0/ \ Var.Q1/ D ;, then both Q0 and Q1 are standard quadratic

words of the same genus g and the same orientability as ofQ. Furthermore,

C.Q0/ [ C.Q1/ D ¹ i .c/ j c 2 C.Q/; i D 0; 1;  i .c/ ¤ 1º:

(iii) If x 2 Var.Q0/ \ Var.Q1/, then Q0#xQ1 is a quadratic word. If Q is ori-

entable then Q0#xQ1 is also orientable.

Proof. Straightforward veri�cation.



218 I. Lysenok, A. Miasnikov, and A. Ushakov

In Lemma 4.5 we collect all necessary computations which we will use
later to describe the standard form of the quadratic word Q0#Q1 in the case
Var.Q0/\Var.Q1/ ¤ ;. We writeU � V for equivalence of wordsU; V 2 ��FX .

Lemma 4.5. LetQ be a quadratic word, x0; x1; y0; y1; z1; z2; z3; z4 be variables

not occurring in Q, and c1; c2; c3; c4 2 �. �e following holds.

(i) If Q D UV then

U Œx0; y0�V � Œx0; y0�Q;

Ux2
0V � x2

0Q;

and

Uz�1
1 c1z1V � Qz�1

1 c1z1:

(ii) If Q D UVW and .R; S/ is one of the pairs

.x�1
1 y�1

1 x1y0; x
�1
0 y�1

0 x0y1/;

.x�1
0 y�1

1 x1y1; x
�1
1 y�1

0 x0y0/;

or

.x�1
1 y�1

0 x0y1; x
�1
0 y�1

1 x1y0/;

then

URVSW � Œx0; y0�Œx1; y1�Q:

(iii) If Q D UVW then

Ux0x1Vx1x0W � x2
0x

2
1Q:

(iv) If Q D UVW then

U � z�1
1 c1z2 � z�1

3 c3z4 � V � z�1
2 c2z1 � z�1

4 c4z3 �W

� Œx0; y0�Q � z�1
1 c1c2z1 � z�1

2 c3c4z2:

(v) If .R; S/ is one of the pairs in (ii), then

R#S � Œx0; x1�:

(vi) Finally,

z�1
1 c1z2 � z�1

3 c3z4 # z�1
2 c2z1 � z�1

4 c4z3 � z�1
1 c1c2z1 � z�1

2 c3c4z2:
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Proof. Straightforward computations.
(i) We get

U Œx0; y0�V
.x0 7!U �1x0U; y0 7!U �1y0U /
��������������������! Œx0; y0�UV;

Ux2
0V

.x0 7!U �1x0U /
����������! x2

0UV;

Uz�1
1 c1z1V

.z1 7!z1V �1/
���������! UVz�1

1 c1z1:

(ii) Assume R D x�1
1 y�1

1 x1y0 and S D x�1
0 y�1

0 x0y1. �en,

Ux�1
1 y�1

1 x1y0Vx
�1
0 y�1

0 x0y1W

.x0 7!x0V; x1 7!V �1x1; y1 7!V �1y1V /
��������������������������! Ux�1

1 y�1
1 x1y0x

�1
0 y�1

0 x0y1V W

.xi 7!U �1xi U; yi 7!U �1yi U /; iD0;1
�������������������������! x�1

1 y�1
1 x1y0x

�1
0 y�1

0 x0y1UVW

.x0 7!y1x0y�1
1

; y0 7!y1y0y�1
1

/

���������������������! Œx0; y1�Œy
�1
0 ; x1�UV W

� Œx0; y0�Œx1; y1�UV W:

�e other two cases for .R; S/ are similar.

(iii) �e quadratic word Ux0x1Vx1x0W can be modi�ed as follows:

Ux0x1Vx1x0W

.x0 7!x0V; x1 7!V �1x1/
����������������! Ux0x

2
1x0VW

.x0 7!U �1x0U; x1 7!Ux1U �1/
��������������������! x0x

2
1x0UVW

.x0 7!x0x�2
1

; x1 7!x�1
1

/

����������������! x2
0x

2
1UVW:

(iv) �e quadratic word Uz�1
1 c1z2z

�1
3 c3z4V z

�1
2 c2z1z

�1
4 c4z3W can be modi-

�ed as follows:

Uz�1
1 c1z2z

�1
3 c3z4V z

�1
2 c2z1z

�1
4 c4z3W

.z2 7!z2V; z3 7!z3V /
��������������! Uz�1

1 c1z2z
�1
3 c3z4z

�1
2 c2z1z

�1
4 c4z3VW

.z1 7!z1U; z4 7!z4U /
��������������! z�1

1 c1z2z
�1
3 c3z4Uz

�1
2 c2z1z

�1
4 c4z3VW

.z2 7!z2U; z3 7!z3U /
��������������! z�1

1 c1z2z
�1
3 c3z4z

�1
2 c2z1z

�1
4 c4z3UVW:
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A reduction of z�1
1 c1z2z

�1
3 c3z4z

�1
2 c2z1z

�1
4 c4z3 to the standard form gives

z�1
1 c1z2z

�1
3 c3z4z

�1
2 c2z1z

�1
4 c4z3Q � Œx0; y0�z

�1
1 c1c2z1z

�1
2 c3c4z2Q:

We then move the factor z�1
1 c1c2z1z

�1
2 c3c4z2 to the end of Q by (i).

Equivalences (v) and (vi) are similar.

Proposition 4.6 (non-disjoint orientable case). Let .Q D 1; / be a quadratic

equation where

Q D Œx1; y1�Œx2; y2� : : : Œxg ; yg � � z
�1
1 c1z1 � : : : � z�1

m cmzm

is a standard orientable quadratic word and � .Q/ D 1. Let ‰.Q/ D .Q0; Q1/.

Assume that Var.Q0/ \ Var.Q1/ ¤ ;. �en Q0#Q1 is equivalent to a standard

quadratic word

R D Œx1; y1�Œx2; y2� : : : Œxh; yh� � z
�1
1 d1z1 � : : : � z�1

l dlzl

satisfying the following:

(i) h D 2gC 1
2
ı.Q/�1, where ı.Q/ is the cardinality of the set ¹i j ci … St�.1/ºI

(ii) C.R/ D [m
iD1Ki n ¹1º, where

8

<

:

Ki D ¹ 0.ci /;  1.ci /º if ci 2 St�.1/;

Ki D ¹ 0.cia/ 1.cia/º or Ki D ¹ 1.cia/ 0.cia/º if ci … St�.1/:

Proof. �e assumption � .Q/ D 1 implies that the number ı.Q/ is even.
By Lemma 4.4(i), we have � .xi / ¤ 1 or � .yi / ¤ 1 for some commutator Œxi ; yi �

in Q or cj … St�.1/ for some j . We compute the standard form of Q0#Q1.

Case 1 . � .xi / ¤ 1 or � .yi / ¤ 1 for some i . Let Q D U Œxi ; yi �V . �en

� if � .xi / ¤ 1, � .yi / D 1,

Q0 D U0x
�1
i1 y

�1
i1 xi1yi0V0;

Q1 D U1x
�1
i0 y

�1
i0 xi0yi1V1;

� if � .xi / D 1, � .yi / ¤ 1,

Q0 D U0x
�1
i0 y

�1
i1 xi1yi1V0;

Q1 D U1x
�1
i1 y

�1
i0 xi0yi0V1;
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� if � .xi / ¤ 1, � .yi / ¤ 1,

Q0 D U0x
�1
i1 y

�1
i0 xi0yi1V0;

Q1 D U1x
�1
i0 y

�1
i1 xi1yi0V1;

where

Uk D ‰k.U /; Vk D ‰k.V / for k D 0; 1.

We have the corresponding cases for Q0#Q1:

Q0#yi0
Q1 D U0x

�1
i1 y

�1
i1 xi1xi0yi1V1U1x

�1
i0 V0;

or

Q0#xi1
Q1 D U0x

�1
i0 y

�1
i1 y

�1
i0 xi0yi0V1U1yi1V0;

or

Q0#xi0
Q1 D U0x

�1
i1 y

�1
i0 y

�1
i1 xi1yi0V1U1yi1V0:

Assume that � .xi / ¤ 1 and � .yi/ D 1 (the other two cases are similar). Using
Lemma 4.5 we reduce Q0#yi0

Q1 to a standard form R:

� By statements (i) and (ii) of the lemma, collect words ‰k.Œxj ; yj �/ for each
commutator Œxj ; yj � in UV to the left; each commutator Œxj ; yj � in UV con-
tributes then two commutators to R.

� By statement (i) of the lemma, collect words‰k.z
�1
j cj zj / for each coe�cient

factor z�1
j cj zj with cj 2 St�.1/ to the right; each factor z�1

j cj zj contributes
to R at most two coe�cient factors of a similar form (if  k.cj / D 1 then the
factor with  k.cj / disappears).

� By statement (iv) of the lemma, collect words ‰k.z
�1
j cj zj / for the remain-

ing coe�cient factors z�1
j cj zj with cj … St�.1/ to the right (they are now

paired as in the left-hand side of the equivalence in (vi)). Each pair of fac-
tors z�1

j cj zj with cj … St�.1/ contributes one commutator and at most one
coe�cient factor to R;

� Finally, replace the remaining non-reduced subword with a commutator by
Lemma 4.5(v).
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Case 2. cj … St�.1/ for some j . Let Q D Uz�1
j cj zjV . Without loss of gener-

ality, assume that � .U / D 1 (the case � .U / ¤ 1 is similar).�en

� if � .zj / D 1,

Q0 D U0z
�1
j 0 cj 0zj1V1;

Q1 D U1z
�1
j1 cj1zj 0V0;

� if � .zj / ¤ 1,

Q0 D U0z
�1
j1 cj1zj 0V1;

Q1 D U1z
�1
j 0 cj 0zj1V0;

where

Uk D ‰k.U /; Vk D ‰k.V /; cjk D  k. Ncj /; k D 0; 1:

We have

Q0#zj 0
Q1 D

8

<

:

U0V0U1z
�1
j1 cj1cj 0zj1V1 if � .zj / D 1

U0z
�1
j1 cj1cj 0zj1V0U1V1 if � .zj / ¤ 1:

�en we proceed similarly to Case 1.
Statements (i) and (ii) of Proposition 4.6 now easily follow from the reduction

process and right hand sides of the equivalences in Lemma 4.5(i,iv,vi).

Proposition 4.7 (non-disjoint non-orientable case). Let .Q D 1; / be a quadratic

equation where

Q D x2
1x

2
2 : : : x

2
g � z�1

1 c1z1 � : : : � z�1
m cmzm

is a standard non-orientable quadratic word and

� .Q/ D 1:

Let ‰.Q/ D .Q0; Q1/ and Var.Q0/ \ Var.Q1/ ¤ ;. �en Q0#Q1 is equivalent

to a standard quadratic word (which is non-orientable if g > 0 and orientable

otherwise)

R D x2
1x

2
2 : : : x

2
h � z�1

1 d1z1 � : : : � z�1
l dlzl

satisfying the following:

(i) h D 2g C ı.Q/� 2I

(ii) C.R/ D ¹d1; d2; : : : ; dlº is the same as in Proposition 4.6.
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Proof. Similar to the proof of Proposition 4.6. �ere is a slight di�erence in com-
puting the genus h: in case of a single square Q D x2

0 we get

R D x0x1#x1x0 D 1

and each commutator coming from the coe�cients by Lemma 4.5(iv) contributes
2 to h by the equivalence x2Œy; z� � z2y2z2.

We summarize properties of the splitting operation for constrained quadratic
equations in � in the following proposition.

Proposition 4.8. Let .Q D 1; / be a standard quadratic equation in � with a

constraint modulo K. Assume that � .Q/ D 1 and let ‰.Q/ D .Q0; Q1/.

(i) Suppose that Var.Q0/ \ Var.Q1/ D ;. �en Q0 and Q1 are standard qua-

dratic words of the same genus and orientability asQ. �e coe�cients ofQi

are nontrivial elements  i .cj /, where c1; : : : ; cm are the coe�cients of Q.

�ere are �nitely many pairs of constraints .0j ; 1j / such that the equation

.Q D 1; / is solvable if and only if, for some j , both equations .Q0 D 1; 0j /

and .Q1 D 1; 1j / are solvable.

�e set ¹.0j ; 1j /º of pairs of constraints ij is de�ned by restricting each

constraint in VQ; (see De�nition 4.2) to Var.Q0/ and Var.Q1/. In other

words, a pair .0; 1/ belongs to this set if and only if

!.0.x0/; 1.x1// D .x/ for each x 2 Var.Q/;

where x0; x1 are the descendants of a variable x and ! is given by Proposi-

tion 2.2.

(ii) Suppose that Var.Q1/\Var.Q2/ ¤ ;. �ere is a standard quadratic word R

equivalent toQ0#Q1 and �nitely many constraints ıj W Var.R/ ! �=K such

that the equation .Q D 1; / is solvable if and only if, for some j , the

equation .R D 1; ıj / is solvable. If Q is orientable then R is orientable.

�e genus and the coe�cients of R are as in Propositions 4.6 and 4.7.

�e set ¹ıj º is de�ned in the following way. Let � 2 Autf�.� � FX / be

a �-automorphism sending Q0#Q1 to a conjugate of R. We take the set

VQ; of constraints for Q0#Q1 de�ned in (4), and the subset U of VQ; of

those � 2 VQ; which satisfy �.Q0/ D �.Q1/ D 1. �en for each � 2 U, we

take its restriction on Var.Q0/ [ Var.Q1/ and produce a constraint

ı W Var.R/ ! G=K using � by Lemma 3.4.

All the data provided by assertions (i) and (ii) can be e�ectively computed from

the equation .Q D 1; /.



224 I. Lysenok, A. Miasnikov, and A. Ushakov

Proof. Follows from Lemmas 3.6, 4.4, Corollaries 3.5, 4.3 and Propositions 4.6
and 4.7.

Remark 4.9. �e transformation automorphism � in Proposition 4.8(ii) that sends
Q0#Q1 to its standard form R can be chosen in such a way that �.Q0#Q1/ D R

without conjugation. �is can be seen in a straightforward way from the proofs
of Propositions 4.6 and 4.7 and the fact that conjugation in not needed in equiva-
lences (v) and (vi) of Lemma 4.5.

5. Solution of the Diophantine problem for quadratic equations

In this section we prove �eorem 1 by presenting an algorithm which for a given
(unconstrained) quadratic equation Q D 1 in � determines if the equation has a
solution. �e algorithm consists of Steps 1–5 below. To simplify notations, we
assume thatQ is an orientable quadratic word (the non-orientable case is literally
the same, with commutators replaced by squares). By jgj we denote the word
length of an element g 2 � in the generators ¹a; b; c; dº, i.e. the length of the
shortest word in these generators which represents g.

Step 1 . We reduce Q to the standard form according to Proposition 3.1. �us,
from now on we write Q as

Q D Œx1; y1� : : : Œxg ; yg �z
�1
1 c1z1 : : : z

�1
m cmzm:

Step 2. We reduce the problem to constrained equations. For a givenQ, we write
a �nite list of all possible constraints i W Var.Q/ ! �=K. �en the equation
Q D 1 is solvable if and only if the constrained equation .Q D 1; i/ is solvable
for some i .

We assume now that we are given a constrained standard quadratic equation
.Q D 1; /.

Step 3. Given a standard equation .Q D 1; /, we start recursive application of
the splitting procedure described in Proposition 4.8. We use the following fact.

Proposition 5.1 (coe�cient reduction). Let .g0; g1; : : : / be a sequence of ele-

ments in � satisfying the following condition

giC1 2

8

<

:

¹ 0.gi /;  1.gi /º if gi 2 St�.1/;

¹ 0.gia/ 1.gia/;  1.gia/ 0.gia/º if gi … St�.1/:
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�en there exists M D M.g0/ such that jgnj � 3 for every n � M . In fact, one

can take

M D 200C log1:22 max¹1; jg0j � 200º:

Proof. Follows from Proposition 3.6 in [10].

After applying the splitting operation at most M times, we �nd a �nite set
F of systems of equations such that the solvability of .Q D 1; / is equivalent
to the solvability of at least one system in F. Each system in F is a �nite set
¹.Qi D 1; i /º of mutually independent quadratic equations .Qi D 1; i/ written
in the standard form where the length of each coe�cient is at most 3. De�ne a set

S D ¹g 2 � j jgj � 3º:

Denote by ES the set of all standard orientable quadratic equations .Q D 1; /with
coe�cients in S. Now we may assume that we are given an equation .Q D 1; /

in ES.

Step 4. We �x a linear ordering on �nite sets �=K and S. Given an equation
.Q D 1; / in ES, we transform it to the ordered form according to the following
lemma:

Lemma 5.2 (ordering factors). For every equation .Q D 1; / in ES, there exists

(and can be e�ectively computed) an equivalent equation .Q D 1; �/ satisfying

.�.x1/; �.y1// � .�.x2/; �.y2// � : : : � .�.xg/; �.yg// (5)

and

.c1; �.z1// � .c2; �.z2// � : : : � .cm; �.zm// (6)

where “�” is the lexicographic order induced by the orderings on �=K and S.

Proof. If ..xiC1/; .yiC1// � ..xi /; .yi// then applying to Q an automor-
phism:

.xi 7�! ŒxiC1; yiC1�xi ŒxiC1; yiC1�
�1; yi 7�! ŒxiC1; yiC1�yi ŒxiC1; yiC1�

�1/

swaps Œxi ; yi � and ŒxiC1; yiC1� and, possibly, changes .xi / and .yi /. For the
new equation, the sequence of pairs

...x1/; .y1//; ..x2/; .y2//; : : : ; ..xg/; .yg///

is lexicographically smaller than that for Q. �erefore, after applying a �nite
sequence of such automorphisms we get an equation satisfying (5).
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If .ciC1; .ziC1// � .ci ; .zi//, then applying to Q an automorphism

.zi 7�! zi � z�1
iC1c

�1
iC1ziC1/

swaps z�1
i c�1

i zi and z�1
iC1c

�1
iC1ziC1 and, possibly, changes .zi /. For the new equa-

tion, the sequence of pairs

..c1; .z1//; .c2; .z2//; : : : ; .cm; .zm///

is lexicographically smaller than that for Q. �erefore, a sequence of such trans-
formations stops in �nitely many steps with an equation satisfying also (6).

Step 5. Denote

B D .�=K � �=K/ [ .�=K � S/:

Note that B is �nite since both �=K and S are �nite. Every ordered equation
.Q D 1; / in ES can be encoded as a function �Q; 2 N

B (N is the set of
non-negative integers) which associates

� to every pair .g; h/ 2 �=K � �=K the number of factors Œxi ; yi � in Q such
that .xi / D g and .yi / D h;

� to every pair .g; c/ 2 �=K � S the number of factors z�1
i cizi in Q such that

.zi/ D g and ci D c.

Let P be a set of all functions �Q; encoding equations .Q D 1; / that have
solutions. All we need to show is that P is recursive.

We �x any set of representatives in � of all elements of �=K, so for any
h 2 �=K we have Oh 2 � with �K. Oh/ D h. Denote by Order.g/ the order of
an element g 2 � (it is �nite since � is a 2-group, see �eorem 17 in [7, Chapter
VIII]).

Let L � N
B be the set of all non-negative linear combinations of the following

functions �g;h and �g;c where .g; h/ and .g; c/ run over �=K ��=K and �=K�S

respectively:

�g;h..g; h// D Order.Œ Og; Oh�/; �.u/ D 0 for all other u 2 B

and

�g;c..g; c// D Order.c/; �.u/ D 0 for all other u 2 B:
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Lemma 5.3. P C L � P.

Proof. It is enough to prove that P C � � P where � is either �g;h or �g;c.
Let .Q D 1; / and .Q1 D 1; 1/ be two equations such that

�Q1;1
D �Q; C �g;h:

�en Q1 is obtained from Q by inserting (at an appropriate place) the product
Œx1; y1� : : : Œxr ; yr � of r D Order. Og; Oh/ commutators Œxi ; yi � and de�ning the con-
straint 1 on the new variables by

1.x1/ D 1.x2/ D � � � D 1.xr/ D g

and

1.y1/ D 1.y2/ D � � � D 1.yr/ D h:

If ˛ is a solution of .Q D 1; / then we can de�ne a solution ˛1 of .Q1 D 1; 1/

by extending ˛ on the new variables ¹xi ; yiº by setting ˛1.xi / D Og and ˛1.yi / D Oh

for all i . �e case when � D �g;c is similar.

Lemma 5.4. Let R be a subset of Nn such that R C N
n � R. �en there exist

�nitely many vectors v1; : : : ; vm 2 R such that

R D .v1 C N
n/ [ : : :[ .vm C N

n/:

Proof. We proceed by induction on n. For n D 1 the statement is obvious.
Assume that the lemma is true in dimension n � 1. Denote by

� W Nn ! N
n�1

the projection map

.k1; : : : ; kn�1; kn/ 7! .k1; : : : ; kn�1/:

By the inductive assumption, there are �nitely many vectors Nv1; : : : ; Nvt 2 �.R/

such that

�.R/ D . Nv1 C N
n�1/ [ . Nv2 C N

n�1/ [ � � � [ . Nvt C N
n�1/:
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Let vi 2 R, i D 1; : : : ; t , be any vectors such that Nvi D �.vi/. Obviously, if

.k1; k2; : : : ; kn/ 2 R n
[

i

.vi C N
n/

then kn < Mn where Mn is the maximal n-th coordinate of all vi . Proceeding
in a similar way for all other coordinates i D 1; 2; : : : ; n � 1, we �nd �nitely
many vectors v1, v2, : : : , vr in R such that every vector .k1; k2; : : : ; kn/ in the
complement

T D R n
[

i

.vi C N
n/

satis�es ki < Mi for all i D 1; : : : ; n and hence T is �nite. To get the required set
¹viº, it remains to add to the set of already chosen vi ’s all vectors in T .

Proposition 5.5. �ere exist �nitely many functions v1; : : : ; vm 2 N
B such that

P D .v1 C L/ [ : : : [ .vm C L/

and therefore, P is recursive.

Proof. Functions in N
B may be viewed as vectors whose coordinates are indexed

by elements of B. For u 2 B, the u-th coordinate of a function � 2 N
B is �.u/.

Let ¹�uºu2B be the corresponding basis where, by de�nition, �u.v/ D 1 if u D v

and �u.v/ D 0 otherwise. �en N
B is the set of all non-negative integer linear

combinations of the vectors �u. By the de�nition of L, it is the set of all non-
negative integer linear combinations of vectors in a set ¹nu�uº for some positive
integers nu, u 2 B. �is implies that NB can be partitioned into �nitely many
subsets � C L (where � runs over the corresponding “parallelepiped” of vectors
whose coordinates ku satisfy 0 � ku < nu for each u).

By intersecting each � C L with P, we partition P into �nitely many subsets
� C P� with P� � L. By Lemma 5.3, we have P� C L � P� for each � . �en we
apply Lemma 5.4 to each P� (writing vectors in the basis ¹nu�uº instead of ¹�uº).
�is proves the �rst statement.

�e second statement obviously follows from the �rst.

6. Boundness of the commutator width

In this section, we apply the technique developed in Sections 4 and 5 and prove
�eorem 2. �roughout the section, we use the notation:

Rn D Œx1; y1�Œx2; y2� : : : Œxn; yn�

for a standard coe�cient-free orientable quadratic word of genus n � 1.
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In terms of quadratic equations, the statement of the theorem can be formulated
in the following way: there is a number N such that if an equation Rnc D 1 is
solvable in � and n > N then the equation Rn0c D 1 is solvable in � for some
n0 � N . �e idea of the proof (described in more detail in Section 6.2) is to apply
the splitting operation described in Section 4 and to show that it does not depend
on the number of commutators in the commutator part of the equation.

6.1. Reduced constraints on Rn. �e main goal of this subsection is to prove
that any constraint  on Rn modulo K can be simpli�ed and turned into some
form called the reduced form. By Stab.Rn/ we denote the subgroup of all auto-
morphisms ˛ 2 Aut.FVar.Rn// with

˛.Rn/ D Rn:

Lemma 6.1. For any homomorphism

 W FVar.Rn/ �! Z

there exists an automorphism ˛ 2 Stab.Rn/ such that

˛.x1/ D gcd¹.x1/; : : : ; .xn/; .y1/; : : : ; .yn/º;

˛.xi / D 0 for i � 2;

˛.yi / D 0 for all i D 1; : : : ; n:

Proof. Let xF be the abelian quotient of FVar.Rn/ over the commutator subgroup.
We write elements of xF as vectors in the basis ¹ Nx1; Ny1; : : : ; Nxn; Nynº where Nxi and
Nyi are natural images of xi and yi in xF . Any automorphism ˛ 2 Aut.FVar.Rn//

acts on xF as an element of GL.2n;Z/.

We need to show that any vector Nt D .t1; t2; : : : ; t2n/ 2 xF can be transformed
by an automorphism in Stab.Rn/ to .d; 0; : : : ; 0/ where d D gcd¹t1; t2; : : : ; t2nº.

�e following automorphisms

.xi 7�! yixi /; .yi 7�! xiyi /

generate a subgroup of Stab.Rn/which acts on eachZ
2-block as SL.2;Z/. Hence

we may assume that Nt is of the form .t1; 0; t3; 0; : : : ; t2n�1; 0/.
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�e following chain

x�1
1 y�1

1 x1y1 � x�1
2 y�1

2 x2y2

.x1 7!x�1
2

x1x2; y1 7!x�1
2

y1x2/

���������������������! x�1
2 � x�1

1 y�1
1 x1 � y1 � y�1

2 x2y2

.x1 7!x1x�1
2

; y2 7!y2y1/

����������������! x�1
1 y�1

1 x1 � x�1
2 � y�1

2 x2y2 � y1

.x2 7!y1x2y�1
1

; y2 7!y1y2y�1
1

/

���������������������! x�1
1 y�1

1 x1y1 � x�1
2 y�1

2 x2y2

sends .t1; 0; t3; 0/ to .t1 � t3; 0; t3; 0/ and we can permute two neighboring
Z

2-blocks by

.xiC1 7�! x
Œxi ;yi �
iC1 ; yiC1 7�! y

Œxi ;yi �
iC1 /

�is easily implies that we can act on the coordinates with odd indices of vectors
of the form .t1; 0; t3; 0; : : : ; t2n�1; 0/ as GL.n;Z/.

Remark 6.2. �e action of Stab.Rn/ on Z
2n is equivalent to the action of ex-

tended mapping class group Mod˙.Sn/ of the closed surface Sn of genus n on its
homology group H1.Sn;Z/. �en the statement of the lemma can be easily seen
from the fact that Mod.Sn/ acts on H1.Sn;Z/ as the symplectic group Sp.n;Z/,
see for example [3, �eorem 6.4].

Lemma 6.3. Let G be a polycyclic group of degree d . �en for any homomor-

phism  W FVar.Rn/ ! G, there exists an automorphism ˛ 2 Stab.Rn/ such that

˛.xi / D 1 for i > d;

˛.yi / D 1 for all i � d:

Proof. We use induction on d . If G is cyclic then the statement follows from the
previous lemma by taking instead of  any lift FVar.Rn/ ! Z of  . Assume that
d > 1. �en G has a normal polycyclic subgroupH of degree d � 1 with a cyclic
quotient G=H . By taking the projection

FVar.Rn/


�! G �! G=H

and using the cyclic case we �nd ˛ 2 Stab.Rn/ such that ˛.xi / 2 H for i > 2

and ˛.yi / 2 H for all i . �en we apply the inductive hypothesis with ˛ instead
of  and the product Œx2; y2� : : : Œxn; yn� instead of Rn.
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By Lemma 2.1(ii), �=K is the direct product of cyclic group of order 2 gener-
ated by bK and the dihedral group of order 8 generated by aK and dK. Hence,
�=K is polycyclic of degree 3 with the subnormal series:

�=K D G0 > G1 > G2 > G3 D 1;

G0=G1 ' G1=G2 ' Z=2Z;

G2 ' Z=4Z; k

where
G1 D hK; b; ad i and G2 D hK; ad i:

Applying Lemma 6.3 we immediately get

Corollary 6.4 (reducing commutator part). For any n � 3 and any homomor-

phism  W FVar.Rn/ ! �=K there is an automorphism ˛ 2 Stab.Rn/ such that all

the values ˛.xi / and ˛.yi / are trivial except, possibly, ˛.x1/, ˛.x2/, ˛.x3/,

˛.y1/ and ˛.y2/.

By Corollary 6.4, every constraint  W FVar.Rn/ ! �=K is equivalent (with the
equivalence de�ned as lying in one orbit under the action of Stab.Rn/) to a re-

duced constraint  0 trivial on Var.Rn/ except maybe variables x1; x2; x3; y1; y2.
Reduced constraints are represented by quintuples of elements of �=K;
for � D .h1; h2; h3; h4; h5/ 2 .�=K/5 by �;n we denote the constraint

FVar.Rn/ �! �=K

de�ned by

�;n.xi / D hi for i D 1; 2; 3; �;n.xi / D 1 for i � 4;

�;n.yi / D hiC3 for i D 1; 2; �;n.yi / D 1 for i � 3:

Fix any total order on the �nite set .�=K/5. For n 2 N de�ne the set of minimal
(relative to the �xed order) representatives of reduced constraints for Rn:

‚n D ¹� 2 .�=K/5 j for all � 0 2 .�=K/5; � 0 � �; �;n � � 0;n H) � 0 D �º:

Note that Stab.Rn/ acts on the constraints  W FVar.RnC1/ ! �=K as a subgroup
of Stab.RnC1/ changing the values .xi / and .yi / for i � n. Hence �;n � � 0;n

implies �;nC1 � � 0;nC1. �en ‚nC1 � ‚n for any n � 3 and the sequence
¹‚iº

1
iD1 eventually stabilizes, i.e., there exists N0 such that

‚
def
D ‚N0

D ‚N0C1 D ‚N0C2 D : : : :
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For  W FVar.Rn/ ! �=K by �./ we denote the tuple in ‚ representing  up to
equivalence; so we have  � �./;n.

�e e�ect of eventual stabilization of ascending chains of constraints (referred
below as constraint saturation) plays a key role in the proof of �eorem 2.

6.2. Stability of splitting. In this subsection we describe the general proof strat-
egy for �eorem 2. We consider quadratic equations of the form RnS D 1 where
the left-hand side RnS is formally divided into the product Rn of n commutators
and an orientable quadratic word S with Var.Rn/ \ Var.S/ D ; (so if RnS is
standard then Rn does not need to be all of its commutator part). Constrained
equations of this form are written as

.RnS D 1; ; ı/

where  and ı are constraints de�ned on Var.R/ and Var.S/, respectively.
If  D �;n then the equation is reduced and we abbreviate it as

.RnS D 1; �; ı/:

Every quadratic equation RnS D 1 in � is equivalent to a disjunction of re-
duced constrained equations:

_

�2‚;
ı2�

.RnS D 1; �; ı/; (7)

where � is a set of all possible constraints on S .
Now let .RnS D 1; �; ı/ be a standard constrained orientable quadratic equa-

tion. Applying a splitting operation as described in Proposition 4.8 we obtain an
equivalent disjunction of systems of (one or two) standard equations of the same
form .Rn0S 0 D 1; � 0; ı0/. (At the moment we assume that an equation Rn0S 0 D 1

is divided into two parts Rn0 and S 0 in an arbitrary way; the exact procedure will
be described in 6.4.)

�us, applying to (7) a �nite sequence of splittings we obtain an equivalent
disjunction of systems of quadratic equations of the form

Q D
_

i

^

j

�

Rni;j
Si;j D 1; �i;j ; ıi;j

�

: (8)

Two systems of the form (8),
_

i

^

j

�

Rni;j
Si;j D 1; �i;j ; ıi;j

�
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and
_

i

^

j

�

Rki;j
Si;j D 1; �i;j ; ıi;j

�

which di�er only in the genera of their commutator parts Rni;j
are called similar.

For a system (8), de�ne
�.Q/ D min

i;j
ni;j :

By C.Q/ denote the set of coe�cients involved in Q. Recall that in Section 5
we introduced a set S of “short” elements of � which has the property that after
�nitely many applications of splittings, the coe�cients of any system (8) eventu-
ally belong to S (see Proposition 5.1).

We will prove a fact which is formally more general than �eorem 2.
(�eorem 2 follows if we take for Q1 and Q2 the systems (7) obtained from equa-
tions RN D g and Rn D g, n > N , where g is an element of �.)

�eorem 3. �ere exists a number N with the following property. If Q1 and Q2

are similar systems with �.Q1/; �.Q2/ � N then Q1 is solvable if and only if Q2 is

solvable.

�e proof of �eorem 3 uses induction and consists of two major steps.

Proposition 6.5 (Base of induction). �ere exists a number N1 such that for any

two similar systems Q1 and Q2 with �.Q1/; �.Q2/ � N1 and C.Qi/ � S, Q1 is

solvable if and only if Q2 is solvable.

Proposition 6.6 (Stability of splitting). �ere exists a number N2 such that

application of the splitting operation to similar systems Q1 and Q2 with

�.Q1/; �.Q2/ � N2 results in similar systems Q0
1 and Q0

2 with �.Q0
i/ � �.Qi /.

Let us check that Propositions 6.5 and 6.6 imply �eorem 3. Take

N D max.N1; N2/:

Let Q1 and Q2 be two similar systems of the form (8) with �.Qi / � N . By Propo-
sition 6.6 splitting of Q1 and Q2 results in similar systems Q0

1 and Q0
2. Each Q0

i is
equivalent to Qi and since �.Q0

i/ � N , we are again under conditions of Proposi-
tion 6.6. Continuing the splitting process we eventually obtain two similar systems
with coe�cients in S (by Proposition 5.1). �en by Proposition 6.5 one is solvable
if and only if the other is solvable. Q.E.D.

We prove Propositions 6.5 and 6.6 in subsections 6.3 and 6.4, respectively.
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6.3. Base of induction. For the proof of Proposition 6.5, it is enough to consider
the case of a single equation:

Lemma 6.7. �ere is a number N1 with the following property. Assume that

n0 > n � N1 and all coe�cients of S have length at most 3. �en the equation

.RnS D 1; �; ı/ is solvable if and only if the equation .Rn0S D 1; �; ı/ is solvable.

Proof. �e equation .Rn0S D 1; �;n0; ı/ is obtained from .RnS D 1; �;n; ı/

by inserting a word
W D ŒxnC1; ynC1� : : : Œxn0 ; yn0�

and extending the constraint by setting

�;n0.xi / D �;n0.yi / D 1

for all xi ; yi 2 Var.W /.
Let .Q D 1; �/ be an ordered form of the equation .RnS D 1; ; ı/

(see Step 4 in Section 5). As described in the proof of Lemma 5.2, to get this form
we
apply automorphisms toRnS to re-order the commutator and the coe�cient parts.
To get an ordered form of .Rn0S D 1; �;n0; ı/ we can use automorphisms

UxW V
.xi 7!x�1xi x; yi 7!x�1yi x; iDnC1;:::;n0/
����������������������������! UWxV;

UWxV
.xi 7!xxi x�1; yi 7!yi x�1; iDnC1;:::;n0/
���������������������������! UxW V

which can moveW at any position inRn0S without changing the constraint on the
variables xi ; yi 2 Var.W /. �is easily implies that an ordered form of the equation
.Rn0S D 1;  0; ı/ can be written as .Q0 D 1; �0/ where Q0 is obtained from Q by
inserting W at an appropriate position in Q and extending � by de�ning

�0.xi / D �0.yi / D 1

for xi ; yi 2 Var.W /.
Let �Q;� and �Q0;� 0 be corresponding codes de�ned in Step 5, Section 5.

We see immediately that �Q0;� 0 and �Q;� di�er in a single coordinate by m, i.e.

�Q0;� 0 D �Q;� Cm�

where � is is de�ned by �..1; 1// D 1 on .1; 1/ 2 �=K � �=K and �.u/ D 0

for all other u 2 B. Now Proposition 5.5 implies that there exist positive numbers
N1 and M such that if n � N1 and m is a multiple of M then the solvability of
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.Q D 1; �/ is equivalent to the solvability of .Q0 D 1; �0/. Since the solvability of

.Q D 1; �/ implies the solvability of .Q0 D 1; �0/ with n0 changed to any n00 with
n < n00 (we can substitute xi D yi D 1 for any extra commutator Œxi ; yi �) we can
drop the condition that m is a multiple of M .

Finally, we observe that N1 can be chosen independently on the choice of the
equation .RnS D 1; ; ı/ (we can takeN1 as the maximal coordinate of all vectors
vi in Proposition 5.5.)

6.4. Constraint saturation. Here we prove Proposition 6.6. It is enough to con-
sider the case when Q1 and Q2 consist of a single equation.

Fix an arbitrary S , a constraint ı for S , a tuple � 2 ‚ and consider an equation

Q
.n/ D

�

R3

n
Y

iD1

Œxi ; yi � � S D 1; �; ı
�

:

Splitting this equation (without subsequent reduction to the standard form) we
obtain an equivalent disjunction

Q
.n/
1 D

_

�2ƒ;

�1;:::;�n;

ı02�

0

B

B

B

B

B

@

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Q0

n
Y

iD1

Œxi ; yi �S0 D 1;

Q1

n
Y

iD1

Œx0
i ; y

0
i �S1 D 1;

�; �1; : : : ; �n; ı
0

1

C

C

C

C

C

A

;

where:

� ‰.R3/ D .Q0; Q1/ and � are constraints on Var.Q0/ [ Var.Q1/;

� each �i is a constraint on ¹xi ; yi ; x
0
i ; y

0
iº;

� ‰.S/ D .S0; S1/ and ı0 are constraints on Var.S0/ [ Var.S1/;

� ƒ and � are sets of constraints which do not depend on n;

� up to renaming variables, each �i runs over a �xed set … of constraints on
¹x; y; x0; y0º.

Saturation in the disjoint case. If the two equations in Q
.n/
1 have disjoint sets

of variables then both are in the standard form. In this case, reducing the set of
constraints on Q0

Qn
iD1Œxi ; yi � and on Q1

Qn
iD1Œx

0
i ; y

0
i � we obtain a new system

Q
.n/
2 D

_

.�0;�1/2ˆn.ƒ/;

ı02�

0

B

B

B

B

B

@

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Q0

n
Y

iD1

Œxi ; yi � � S0 D 1;

Q1

n
Y

iD1

Œx0
i ; y

0
i � � S1 D 1;

�0; �1; ı
0

1

C

C

C

C

C

A

;
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where each �i de�ne a constraint on Var.Qi/, ‰n.ƒ/ � ‚2 and all variables
¹xi ; yi ; x

0
i ; y

0
iº are trivially constrained. �e set… contains, in particular, the triv-

ial constraint on ¹x; y; x0; y0º. �is implies ‰n.ƒ/ � ‰nC1.ƒ/. Since there
are �nitely many possible choices of ƒ, starting from some n � N 0

2 we get
‰n.ƒ/ D ‰nC1.ƒ/ for any n. �en systems Q.n/

2 are similar for di�erent values
of n � N 0

2 and thus Proposition 6.6 holds in this case.

Saturation in the non-disjoint case. If the two equations in Q
.n/
1 have a shared

variable, we need to compute

�

Q0

n
Y

iD1

Œxi ; yi �S0

�

#
�

Q1

n
Y

iD1

Œx0
i ; y

0
i �S1

�

(9)

and then take it to the standard form. Up to interchanging the two commutator
subsequences, (9) is of the form

U

n
Y

iD1

Œxi ; yi � V

n
Y

iD1

Œx0
i ; y

0
i � W:

Applying

.xi 7�! U�1xiU;

yi 7�! U�1yiU;

x0
i 7�! .UV /�1x0

iUV;

y0
i 7�! .UV /�1y0

iUV /

we obtain a word
n

Y

iD1

Œxi ; yi �

n
Y

iD1

Œx0
i ; y

0
i � UV W;

which is the same as

n
Y

iD1

Œxi ; yi �

n
Y

iD1

Œx0
i ; y

0
i � �Q0S0#Q1S1:
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�us, Q.n/
1 is equivalent to the disjunction

_

�1;:::;�n2…0;

�2ƒ;

ı02�

�

n
Y

iD1

Œxi ; yi �

n
Y

iD1

Œx0
i ; y

0
i � �Q0S0#Q1S1 D 1; �1; : : : ; �n; �; ı

0
�

;

where …0 is a set of constraints on ¹x; y; x0; y0º (and inclusions �i 2 …0 are as-
sumed up to renaming variables). Note that …0 contains the trivial constraint on
R2 since it is obtained from … by an appropriate conjugation of values of vari-
ables.

After reduction to the standard form, we obtain a disjunction

Q
.n/
3 D

_

� 02‰n;

�2„

.R2nS
0 D 1; � 0; �/;

where S 0 is the standard form of Q0S0#Q1S1, � 0 is a constraint on Var.R2n/ and
� is a constraint on Var.S 0/ (we do not change constraints on R2n by Remark 4.9).
�e sequence ¹‰nº is ascending and since there are �nitely many possible choices
of such sequences (determined by the possible choices of …0), for some N 00

2 we
have stabilization: ‰n D ‰nC1 for all n � N 00

2 and any starting equation Q
.n/
0 .

�en, again, systems Q.n/
3 are similar for di�erent values of n.

Proposition 6.6 is proved for N2 D max.3; N 0
2; N

00
2 /. �is �nishes the proof of

�eorem 3.
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