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1. Introduction

In this paper, we discuss some basic properties of median metric spaces. One of

the main objectives will be show that, under certain hypotheses, such a metric is

bi-lipschitz equivalent to a CAT.0/ metric. Median metrics have been studied by

a number of authors; see for example, [20, 11] and the references therein. �ey
arise, up to bi-lipschitz equivalence, as asymptotic cones of certain classes of
groups, and the fact that these admit such a metric has various consequences for
the structure of the group. We begin with some basic de�nitions (cf. [20, 11]),
which will be elaborated upon in later sections.

Let .M; �/ be a metric space. Given a; b 2 M let

I.a; b/ D I�.a; b/ D ¹x 2 M j �.a; x/C �.x; b/ D �.a; b/º:

De�nition. We say that .M; �/ is a median metric space if, for all a; b; c 2 M ,
I.a; b/ \ I.b; c/ \ I.c; a/ consists of exactly one element of M .

We will denote this element by �.a; b; c/. We refer to � as the median induced
by �. It turns out that .M; �/ is a median algebra. �is follows by a result of
Sholander [18] (see [11], and Section 2 here). For a general discussion of median
algebras, see for example, [14, 2, 17]. Some further discussion relevant to this
paper can be found in [6, 7]. Examples of median metric spaces include Rn in the
l1 metric, R-trees, l1 products of median metric spaces, and median subalgebras
of such spaces.

We de�ne the rank of a median algebra, M , to be the maximal n such that M
contains a subalgebra isomorphic to the n-cube, ¹�1; 1ºn. If such cubes exist for
all n, we say that the rank is in�nite.

In the case where rank.M/ � n, we will construct a new metric, � D ��,
canonically associated to �, and satisfying �=

p
n � �� � �. Among other things,

we will show:

�eorem 1.1. If .M; �/ is a complete connected median metric space, then .M; ��/

is a CAT.0/ space.

Given that the construction is canonical, any isometry of .M; �/ is also an
isometry of .M; ��/.

�e de�nition of a CAT.0/ space will be given in Section 8. For a general dis-
cussion of such spaces, see for example, [10]. Connections with median algebras
in a more combinatorial setting are described in [12].
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I suspect that the assumption of completeness in �eorem 1.1 is unnecessary,
and I will give a variation without this assumption (see �eorem 8.3).

We will prove a number of other results in this paper (mostly on the way
to proving �eorem 1.1). For example, every complete connected median met-
ric space is geodesic (Lemma 4.6). �e convex hull of any cube of maximal
(�nite) rank in a median metric space is isometric to real l1 cube (see Proposi-
tion 5.6). We also give a description of the geometry of a �nite median subalgebra
of a median metric space (see Section 6).

Median algebras arise in various contexts. We give some examples in Sec-
tion 3. Our main motivation arises from geometric group theory, in particular,
asymptotic cones of certain �nitely generated groups.

An asymptotic cone of a �nitely generated group is a complete metric space
which captures much of the large-scale geometry of the group (see [19, 13]).
It is known, for example, that any asymptotic cone of the mapping class group
of a compact surface is bi-lipschitz equivalent to a median metric space [4]. More
generally, the notion of a “coarse median group” was proposed in [6]. When such
a group is “�nitely colourable,” any asymptotic cone admits a bi-lipschitz embed-
ding into a �nite product of R-trees [7]. Its image is a connected median metric
space. It follows that the asymptotic cone is bi-lipschitz equivalent to a CAT.0/
space, though the CAT.0/metric might not be canonically determined by the met-
ric on the asymptotic cone. (In fact, we can relax “�nitely colourable” to “�nite
rank” for this particular statement [8].) In particular, it follows that the asymp-
totic cone is contractible. From this one can deduce that the group is FP1 and
has polynomial isoperimetric functions in all dimensions, [16]. (For the mapping
class groups, these follow by automaticity [15]. See also [3] for some more re�ned
results.)

More generally, knowing that a space is (bi-lipschitz equivalent to) a CAT.0/
space makes it easier to work with in several respects. For example, for various
rigidity results, one needs information about local homology groups (Čech or sin-
gular), which require certain “straightening” constructions for continuous maps
into the space, as well as the construction of homotopies between maps. Con-
structions of this sort are generally straightforward in a CAT.0/ space, but can be
technically quite complicated otherwise. �ese facts are exploited, for example,
in [8], to give quasi-isometric rigidity results for the mapping class groups. �ese
arguments can also be adapted to Teichmüller space [9].

We also note that median metric spaces are special cases of those discussed
in [7], and so the results there also apply here. However, apart from some of the
basic theory, these papers are largely independent.
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We brie�y outline the strategy for proving �eorem 1.1. We �rst consider the
construction of the metric, ��. To motivate this, we note that the l1 metric on
R

n is a median metric, and that the euclidean metric is CAT.0/. To get from the
former to that latter, we can apply the Pythagorean formula to the l1 distances
in the coordinate directions. To do something similar in a general median metric
space .M; �/we need to identify local “coordinate directions” in some sense. �is
will be based on the fact (Lemma 5.4) that any two points a; b 2 M are the di-
agonal of a unique maximal cube in M . Applying the Pythagorean formula to its
edge-lengths in the metric �, we get a new “diagonal distance,” !.a; b/, between
these two points. To obtain the metric ��.a; b/, we consider any �nite sequence of
points inM , starting at a and ending at b, and sum the diagonal distances between
consecutive points. We now take the in�mum over all such sequences. �is is the
formula for �� given in Section 7. In Section 7, we check that this is indeed a
metric bi-lipschitz equivalent to �.

We now need to verify (under appropriate connectedness and completeness
assumptions) that .M; ��/ is a CAT.0/ space. For this, we show that .M; ��/

is locally approximated by certain compact CAT.0/ spaces. More precisely,
if A � M is �nite, then A lies inside a compact CAT.0/ space, .‡; �‡/,
embedded in M , so that the metrics �� and �‡ agree on A to arbitrary preci-
sion (Lemma 7.8). From this, it is not hard to derive the relevant comparison
statements (see Section 8).

In fact, the space .‡; �‡/ will be a CAT.0/ cube complex, generalised so
that the cells are rectilinear euclidean parallelepipeds (instead of just unit cubes).
It is obtained by taking a su�ciently large �nite subalgebra… � M containing A,
and putting an appropriate metric on the realisation, ‡.…/, of …. To get an em-
bedding of‡.…/ intoM , we need to analyse more carefully the geometry of �nite
subalgebras of M . �is is done in Section 6, using constructions from Section 3.

Our argument will entail some more general discussion of median algebras and
median metric spaces – in particular in Sections 2 and 4. �e geometry of cubes
will be discussed in some detail in Section 5.

Acknowledgements. I thank Urs Lang and Hans Bandelt for their interest,
and comments on earlier drafts of this paper.

2. Median metrics and median algebras

In this section, we give some basic de�nitions and review formulations of the no-
tions of a median metric. Some of this can be found, expressed a little di�erently,
in [20, 11]. We refer to [14, 2, 17, 1, 6] for further background.
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First, we recall that a median algebra is a set, M , with a ternary operation

� W M 3 �! M

satisfying the following for all a; b; c; d; e 2 M :

(M1) �.a; b; c/ D �.b; c; a/ D �.b; a; c/,

(M2) �.a; a; b/ D a, and

(M3) �.a; b; �.c; d; e//D �.�.a; b; c/; �.a; b; d/; e/.

Given a; b 2 M we will write

Œa; b� D Œa; b�M D ¹x 2 M j �.a; b; x/ D xº

for the median interval from a to b. One veri�es that

(I1) for all a 2 M , Œa; a� D ¹aº;

(I2) for all a; b 2 M , Œa; b� D Œb; a�;

(I3) for all a; b 2 M , if c 2 Œa; b�, then Œa; c� � Œa; b�;

(I4) for all a; b; c 2 M , there is a unique m 2 M such that

Œa; b�\ Œb; c�\ Œc; a� D ¹mº:

In fact, in (I4), we have m D �.a; b; c/.

It turns out that (I1)–(I4) provide an alternative way of de�ning a median al-
gebra, as follows. If we have a set M , and a map Œ.a; b/ 7! Œa; b�� which assigns
to any pair a; b 2 M a subset Œa; b� � M satisfying the above properties, then
.M; �/ is a median algebra, where � W M 3 �! M is the ternary operation de�ned
by setting

�.a; b; c/ D m

in (I4). �is follows from work of Sholander [18].
In fact, one only needs part of Sholander’s paper for this. Since the logic might

not be immediately apparent, a few comments are in order. To begin, we have
included axiom (I2), so as not to worry about the order of a and b. (With judicious
formulation of the remaining axioms, this can probably be circumvented.) We will
ignore this issue henceforth. Note that Postulate †1 of [18] is the conjunction of
Postulates D, B1 and F , which are respectively implied by our axioms (I4), (I1)
and (I3). Now Paragraph (4.9) of [18] tells us that †1 implies Postulate I of that
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paper. From Paragraph (3.8) we now get that †1 implies Postulates M and N ,
which are essentially the axioms of a median algebra (or a “median semilattice”
in the terminology of that paper). �is is observed in Paragraph (4.10) of [18]. In
fact, for the purposes of the present paper, we could strengthen our axiom (I3) to
say in addition that if c 2 Œa; b� and d 2 Œa; c� then c 2 Œd; b�. �is property is
formulated as (3.4) in [18], where its derivation from the original axioms is cited
from a paper of Pitcher and Smiley. However, this assertion is almost immediate
in the situation where we will want to apply it, that is in the case of a median
metric. (Some further discussion of this can be found in [20].)

Note, in particular, that the median structure is completely determined by the
set of intervals (though this fact can also be seen more directly).

A subalgebra of M is a subset closed under �. Any �nite subset of M is
contained in a �nite subalgebra. (�is follows from the fact that the free median
algebra on a �nite set is �nite.) A subset C � M is convex if Œa; b� � C for all
a; b 2 C . �e convex hull,

hull.A/ D hullM .A/;

of a subset A � M is the intersection of all convex subsets of M containing A.
Clearly hull.A/ is convex. A wall in M is an (unordered) partition of M into two
disjoint non-empty convex subsets. A homomorphism between median algebras
is a map respecting medians. Note also that a direct product of median algebras
is itself a median algebra.

Given a; b 2 M , we can de�ne a projection map, Œx 7! �.a; b; x/�, from
M to Œa; b�. One can verify that this is a median homomorphism. Moreover, if
c; d 2 Œa; b�, then projection to Œa; b� followed by projection to Œc; d � � Œa; b�

agrees with projection directly to Œc; d �.

�e two-point set, ¹�1; 1º, admits a unique median structure. By an n-cube

in M , we mean a subalgebra isomorphic to ¹�1; 1ºn. (�roughout this paper,
the term “cube,” unless otherwise quali�ed, will be used in this particular me-
dian sense.) �e rank of M is the maximal n such that M contains an n-cube.
�e rank is deemed in�nite if it contains cubes of all �nite dimensions. We will
refer to 2-cube as a square. (�is is termed a “rectangle” in [11].) �e following is
a trivial, though useful observation:

Lemma 2.1. A subset of Q � M a square if and only if has exactly four ele-

ments, and we can cyclically order them mod 4 as Q D ¹a1; a2; a3; a4º so that

ai 2 Œai�1; aiC1� for all i .
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We will generally simply say that “a1; a2; a3; a4 is a square”. We refer to the
pairs ai ; aiC1 as its sides, and to the pairs ai ; aiC2 as the diagonals. We say that
two ordered pairs, a; b and c; d are parallel if either a; b; d; c is a square, or else,
a D c and b D d . One can check that the parallel relation is transitive, so one can
speak of “parallel classes”.

More generally, if Q is a cube, we can de�ne an edge of Q as a two-element
subset of Q, which is intrinsincally convex in the subalgebra Q. A diagonal of
Q is a two-element subset, ¹a; bº � Q, with Q � Œa; b�. (Both these notions
coincide with the obvious geometrical interpretations.) We remark that if a0; b0

is another diagonal of Q, then Œa; b� D Œa0; b0�, since clearly each of these sets in
included in the other. In fact, this set is precisely hullM .Q/.

Now suppose that .M; �/ is a metric space, with metric �. Given a; b; c 2 M ,
write

ha; bic D 1

2
.�.a; c/C �.b; c/ � �.a; b// 2 Œ0;1/

for the “Gromov product” of a; b based at c. �us,

I.a; b/ D ¹x 2 M j ha; bix D 0º:

We write

S.a; b; c/ D 1

2
.�.a; b/C �.b; c/C �.c; a// D ha; bic C hb; cia C hc; aib:

If a; b; c; d 2 M , we write

T .a; b; cI d/ D �.d; a/C �.d; b/C �.d; c/:

Clearly T .a; b; cI d/ � S.a; b; c/.

It is easily veri�ed that the following are equivalent for a; b; c; m 2 M :

(C1) m 2 I.a; b/ \ I.b; c/ \ I.c; a/;

(C2) T .a; b; cIm/ D S.a; b; c/;

(C3) �.a;m/ D hb; cia, �.b;m/ D hc; aib, and �.c;m/ D ha; bic .

De�nition. We say that .M; �/ is a median metric space, if, for all a; b; c 2 M ,
there is exactly one m 2 M such that any (hence all) of the conditions (C1), (C2)
or (C3) above hold.
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In this case, we see easily that the maps Œ.a; b/ 7! I.a; b/� satisfy condi-
tions (I1)–(I4) above, and so .M; �/ has the structure of a median algebra on setting
�.a; b; c/ D m.

We will refer to a �nite sequence a0; a1; : : : ; ap as a monotone sequence if
�.a0; ap/ D

Pp
iD1 �.ai�1; ai/. Note that this is equivalent to the median condition

that ai 2 Œa0; aiC1� for all i . (In [11], this is referred to as a “geodesic sequence.”
We use the term “monotone” since we will eventually be dealing with more than
one metric.)

As in [11], we note that squares are rectangular:

Lemma 2.2. Suppose that .M; �/ is a median metric space, and that a1; a2; a3; a4

is a square. �en

�.a1; a2/ D �.a3; a4/ and �.a2; a3/ D �.a4; a1/:

Proof. Let ti D �.ai ; aiC1/. �en aiC1 2 Œai ; aiC2� and so �.ai ; aiC2/ D ti CtiC1,
and we get t1 C t2 D t3 C t4 and t2 C t3 D t4 C t1. It follows that t1 D t3 and
t2 D t4.

Note that the diagonal lengths are also equal: �.a1; a3/ D �.a2; a4/.

Lemma 2.2 can, of course, be expressed by saying that if a; b and c; d are
parallel pairs in M , then �.a; b/ D �.c; d/.

One can reformulate the discussion of metrics starting instead with median
algebras. Suppose that .M; �/ is a median algebra admitting a metric � with the
property that ha; bic D 0 whenever c 2 Œa; b�; that is, Œa; b� � I.a; b/. It fol-
lows that Œa; b� D I.a; b/. For suppose x 2 I.a; b/, and let m D �.a; b; x/.
Now ha; bim D ha; xim D hb; xim D 0, so �.x;m/ D ha; bix D 0, and so x D m.
It follows that x 2 Œa; b� as claimed. In other words, we see that a median met-
ric space is the same thing as a median algebra .M; �/ with a metric � satisfying
�.a; b/ D �.a; c/C �.c; b/ whenever a; b; c 2 M with c 2 Œa; b�.

3. Examples of median metric spaces

In this section, we give some examples of median metric spaces which will feature
in later discussions. Some related constructions have been discussed elsewhere,
or have analogues in a combinatorial setting. For a recent survey, see [1].

�e eventual aim of this section will be to construct a space,ˆ, starting with a
�nite median algebra, …, together with a collection .ˆW /W of median algebras,
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one for each wall, W , of…. In the particular case where each of the ˆW is a non-
trivial compact real interval, we get the realisation of… as a (real) cube complex.
We begin with a general discussion of cube complexes.

Let ‡ be a CAT.0/ cube complex, thought of as the topological realisation of
a combinatorial cell complex. It is known that the vertex set

… D V.‡/

is a median algebra. We write

W D W.…/

for the set of walls of …. (Alternatively, we can think of this as the set of hy-
perplanes of ‡ .) We can also think of an element of W as corresponding to a
parallel class of edges of …. (�e set of edges which cross any given wall will
constitute such a parallel class.) Suppose we have a function, � W W �! .0;1/.
�is gives rise to a path-metric on the 1-skeleton, so that if a; b 2 … D V.‡/ then
�.a; b/ D

P

W �.W / whereW ranges over the set of walls of… which separate a
from b. �is naturally extends to a path-metric, �, on all of ‡ , where each n-cell
is given the structure of a rectilinear parallelepided inRn with the l1 metric. Note
that .‡; �/ is uniquely determined up to a cell-preserving isometry.

A more formal way to describe this is as follows. Let Q.…/ be the cube con-
sisting of the direct product

Q

W, where eachW 2 W is viewed formally as a two-
point median algebra. (We will only really need to consider the case where … is
�nite.) �ere is a natural embedding of… intoQ.…/. In this way,‡ can be seen as
the full subcomplex ofQ.…/with vertex set…. Given our map � W W �! .0;1/,
let

P D
Y

W 2W

Œ0; �.W /�:

�is is a median metric space in the l1 metric, and ‡ is a subalgebra, and itself a
median metric in the induced path-metric.

Note that we could also put a euclidean structure on ‡ . For this, we start in
the same way, putting the same metric on the 1-skeleton, but instead of taking the
l1 metric on each cell, we take the euclidean metric. (Or in the formulation of the
previous paragraph, we take the path-metric induced from the euclidean metric
on P .) �is gives us a path-metric � with � � �. It is also easy to see that it
is CAT.0/. (�us usual construction demands that we take all sides to be of unit
length, but the same holds in this more general situation. �e links are all CAT(1)
spaces.) Note also that, if… has rank n (or equivalently, ‡ has dimension n) then
� � �

p
n.
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Terminology. Before continuing, we clarify the following terminology used
throughout this paper. As noted, a cube, Q, is a direct product of two-point me-
dian algebras. An edge of Q is a convex two-element subset (a factor of Q).
We refer to the realisation, P , ofQ as a product of non-trivial compact real inter-
vals as a real cube, which we can again view as a median algebra. We refer to the
elements of Q � P as the corners of Q. Given any edge ¹a; bº � Q, we refer to
Œa; b� � P as a side of P ; that is, a 1-face of the real cube.

In fact, any �nite median algebra, …, can be identi�ed with the vertex set of
a �nite CAT.0/ cube complex, as follows. Let W D W.…/ be the set of walls
in W . �ere is a natural embedding of … into Q.…/, and we can think of ‡.…/
as the full subcomplex with vertex set…. Note that‡ is unique up to isomorphism.
We will denote it by ‡.…/. (�us, ‡.…/ is a subcomplex of ‡.Q.…//.)
Note that each face of … corresponds to a cell of ‡.…/.

If … is a �nite median metric space, then we also have a function
� W W �! .0;1/ which assigns the distance between the vertices of any edge
crossing a given wall. By Lemma 2.2, this is well de�ned. From this we see that
any �nite median metric space can be embedded in such a complex. We will return
to this construction at the end of Section 7, see Lemma 7.6.

We now proceed to a more general construction. We will need a formal de-
scription of “binary subdivision” as follows. To begin, let

Q D ¹�1; 1ºn

be the standard n-cube. Its realisation, ‡.Q/, is a real n-cube. Let

F.Q/ D ¹�1; 0; 1ºn:

�en F.Q/ is also a median algebra, containingQ as a subalgebra. We will think
of F.Q/ as corresponding to the set of faces of ‡.Q/. (It might also be thought
of as the vertex set of the binary subdivision of ‡.Q/.) Given s; t 2 F.Q/ we
will write t � s to mean that t corresponds to a face of s. (Formally, this means
that s can be obtained from t be resetting some of the ˙1 coordinates equal to 0.)
Given s 2 F.Q/, let

Q.s/ D ¹t 2 Q j t � sº:

In other words,Q.s/ is the face ofQ corresponding to s. Note that if r; s 2 F.Q/,
then r � s if and only if Q.r/ � Q.s/.



Some properties of median metric spaces 289

Now let … be any �nite median algebra, and let

Q.…/ D
Y

W

be as above. Given W 2 W, we write

W D ¹HC.W /;H�.W /º;

where the ˙ signs are assigned arbitrarily. In this way, the formal product,
Q.…/ D

Q

W, can be identi�ed with ¹�1; 1ºW. Let F.…/ � F.Q.…//

correspond to the set of faces of …. Formally, we can set

F.…/ D ¹s 2 F.Q.…// j Q.s/ � …º:

Note that if s 2 F.…/ and t 2 F.Q.…// with t � s, then t 2 F.…/.
We now proceed to the main construction of this section. It will be used in

Section 6 – see, in particular, Lemma 6.2. �e general idea is that, to each wall,
W , of…, we are prescribed a median algebra,ˆW (which is intrinsically a median
interval). From this data, we construct a space, ˆ, which can be thought of as a
kind of cell complex. �e cells will be direct products of the ˆW : one cell for
each cell of ‡.…/, and glued together in the same combinatorial pattern. Indeed,
if we take each ˆW to be a non-trivial compact real interval, then we recover
precisely ‡.…/.

Suppose, then that to each W 2 W.…/, we have been assigned a median al-
gebra, ˆW , together with elements p�

W ; p
C
W 2 ˆW with p�

W ¤ pC
W and with

ˆW D Œp�
W ; p

C
W �. Let

P D
Y

W 2W

ˆW

be the product median algebra. We can identifyQ.…/ � ¹�1; 1ºW as a subalgebra
Q

W 2W¹p�
W ; p

C
W º � P . In this way, each element s 2 F.…/ gets canonically

associated to a convex subset P.s/ of P , namely, P.s/ D hullP .Q.s//. (�is is a
direct product of those ˆW which correspond to the walls crossing Q.s/.) Let

ˆ D
[

s2F .…/

P.s/:

We claim that ˆ is a subalgebra of P .
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To see this, de�ne a map

hW W ˆW �! ¹�1; 0; 1º

for each W 2 W, by setting

hW .p
˙
W / D ˙1

and

hW .x/ D 0 for all x 2 ˆW n ¹p�
W ; p

C
W º.

(Note that hW might not be a median homomorphism: for example, if a; b 2 ˆW

with �.a; b; pC
W / D pC

W , then

�.hW a; hW b; hW p
C
W / D �.0; 0;C1/ D 0 ¤ C1 D hW .pW /:

�is is however, essentially the only way it can fail.)
�e maps hW give rise to a map

h W P �! F.Q.…// � ¹�1; 0; 1ºW;

by taking hW on each coordinate. By construction,

ˆ D h�1.F.…//:

Now (as we have observed) h need not be a median homomorphism. Neverthe-
less, if a; b; c 2 P , then h.�P .a; b; c// � �F .ha; hb; hc/. �us, if a; b; c 2 ˆ,
then ha; hb; hc 2 F.…/, so �F .ha; hb; hc/ 2 F.…/, since F.…/ is a subalgebra
of F.Q.…//. Also h.�P .a; b; c// � �F .ha; hb; hc/, so h.�P .a; b; c// 2 F.…/,
and we get �P .a; b; c/ 2 h�1.F.…// D ˆ as required.

Note that if each ˆW is a median metric space, then one can put a geodesic
metric on P so that its restriction to each cell is the l1 metric on the product. It is
not hard to see that, in this structure, P is also median metric space, inducing the
same median. (We omit details, since we will not formally need this fact.)

As an example of this construction, if each ˆW is a non-trivial compact real
interval, we recover the realisation,

ˆ D ‡.…/

of …. In fact, if � W W.…/ �! .0;1/ is any map (as above), we can set

ˆW D Œ0; �.W /�

with p�
W D 0 and pC

W D �.W /. �is gives ˆ D ‡.…/ naturally equipped with
the l1 metric � as described earlier.
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4. Basic properties of median metric spaces

We discuss some of the basic properties of median metric spaces. We begin with
the following general construction in a median algebra .M; �/.

Suppose that a; b; c; d 2 M . Let

a0 D �.b; c; d/; b0 D �.c; d; a/;

c0 D �.d; a; b/; d 0 D �.a; b; c/;

and

a00 D �.b0; c0; d 0/; b00 D �.c0; d 0; a0/;

c00 D �.d 0; a0; b0/ d 00 D �.a0; b0; c0/:

Now,
Q D ¹a0; b0; c0; d 0; a00; b00; c00; d 00º

is a (possibly degenerate) cube, with diagonals ¹a0; a00º, ¹b0; b00º, ¹c0; c00º and
¹d 0; d 00º. Moreover, Q [ ¹a; b; c; dº is a subalgebra of M (Figure 1).

a

b

c

d

a0

b0

c0

d 0
a00

b00

c00

d 00

Figure 1. �e median subalgebra generated by ¹a; b; c; d º

Of course, this can be veri�ed directly from the axioms, but it is more nat-
urally viewed as follows. �e free median algebra, F , on a set of four elements,
¹a0; b0; c0; d0º, is the vertex set of a CAT.0/ cube complex, consisting of a
central 3-cube with four “free” sides attached to alternating corners. �e points
a0; b0; c0; d0 are identi�ed with the terminal vertices of these free sides. We write
a00

0 for the vertex of the cube adjacent to a0, and a0
0 for the vertex of the cube

opposite a00
0 etc. �us, the central 3-cube is

Q0 D ¹a0
0; b

0
0; c

0
0; d

0
0; a

00
0; b

00
0 ; c

00
0 ; d

00
0 º:
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�e homomorphism fromF toM sending a0 to a etc. mapsQ0 toQ in the obvious
way. In general, this map might not be injective. For example,Q0 might collapse
to a lower dimensional cube. (�is is what we meant by a “possibly degenerate”
cube.)

We now assume that .M; �/ is a median metric space. �e sides of the cubeQ
fall into three parallel classes, with all sides in a parallel class of equal length.

One immediate consequence is the following fact, proven in [11]:

Lemma 4.1. If a; b; c; d 2 M , then

�.�.a; b; c/; �.a; b; d//� �.c; d/:

Proof. In the above notation, c; c00; d 00; d is a monotone sequence, and the pairs
c00; d 00 and d 0; c0 are parallel. �erefore �.c0; d 0/ D �.c00; d 00/ � �.c; d/ as
required.

In particular, we see that if c; d 2 Œa; b�, then �.c; d/ � �.a; b/.

We also note that this implies that � W M 3 �! M is continuous. In other
words, .M; �/ is a topological median algebra.

Recalling the notation of Section 2, we also have:

Lemma 4.2. If a; b; c; d 2 M , then �.d; �.a; b; c// � T .a; b; cI d/� S.a; b; c/.

Proof. In the above notation, d 0 D �.a; b; c/. Let A D �.a0; d 00/, B D �.b0; d 00/

and C D �.c0; d 00/; that is, A;B; C are the three side-lengths of the central cube.
Let A0 D �.a; a00/, B0 D �.b; b00/, C0 D �.c; c00/ and D0 D �.d; d 00/; that is, the
lengths of the four free sides (Figure 2)

Now,

�.a; b/ D A0 C B0 C AC B

etc. and so

S.a; b; c/ D A0 C B0 C C0 C AC B C C:

Also,

�.d; a/ D D0 C A0 C B C C

etc. and so

T .a; b; cI d/D 3D0 C A0 C B0 C C0 C 2.AC B C C/
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a

b

c

d
A

A

A

A
B

B
B

BC C

C C

A0

B0

C0

D0

Figure 2. Distances in the metric �

Finally,

�.d; d 0/ D D0 C AC B C C

� 3D0 C AC B C C

D T .a; b; cI d/� S.a; b; c/:

We obtain the following, proven in [20] and [11].

Lemma 4.3. �e metric completion of a median metric space is a median metric

space.

Proof. Let .M; �/ be a median metric space, and let . xM; N�/ be its completion.
Let a; b; c 2 xM , and choose sequences, ai ; bi ; ci in M , with ai ! a, bi ! b and
ci ! c. Let mi D �.ai ; bi ; ci /. By Lemma 4.1,

�.mi ; mj / � �.ai ; aj /C �.bi ; bj /C �.ci ; cj /;

so .mi /i is Cauchy, so mi tends to some m 2 xM . By continuity, we see that
m 2 I N�.a; b/\ I N�.b; c/\ I N�.c; a/. Suppose that d 2 I N�.a; b/\ I N�.b; c/\ I N�.c; a/.
Now

T .ai ; bi ; ci I d/ ! T .a; b; cI d/D S.a; b; c/:

By Lemma 4.2,

�.d;mi / � T .ai ; bi ; ci I d/ � S.ai ; bi ; ci / ! 0;

so �.d;m/ D 0, so d D m.
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Finally, we consider connectedness of a median metric space, M . If J � R

is an interval, we say that a continuous path, 
 W J �! M is monotone if

.v/ 2 Œ
.t /; 
.u/� whenever t; u; v 2 J with t � v � u. (�is ties in with
the notion of a “monotone sequence” de�ned in Section 2.) Note that if such a
path exists, we can assume that it is injective, and we can reparametrise so that it
is a �-geodesic, that is, �.
.t/; 
.u// D jt � uj for all t; u 2 J . Conversely, any
�-geodesic will be monotone. Recall that a geodesic space is a metric space in
which any pair of points can be connected by a geodesic. We see that a metric
median space is geodesic if and only if every pair of points can be connected by a
monotone path.

�e following is an easy consequence of the fact that the projection
Œx 7! �.a; b; x/� from M to Œa; b� is 1-lipschitz for all a; b 2 M , and the fact
that Œc; d � � Œa; b� for all c; d 2 Œa; b� (that is, intervals are convex).

Lemma 4.4. Let .M; �/ be a median metric space. �en .M; �/ is connected

(respectively path connected; respectively geodesic) if any only if, for all a; b 2 M ,

the interval Œa; b� is connected (respectively path connected; respectively geo-

desic).

We suspect that these notions are all equivalent. We can certainly make the
following observation:

Lemma 4.5. Let .M; �/ be a connected median metric space. Suppose that

a; b 2 M and that 0 < t < �.a; b/. �en there exists c 2 M with

�.a; c/ D t

and

�.b; c/ D �.a; b/� t:

Proof. Suppose not. Let

U D ¹x 2 M j �.a; �.a; b; x// < tº
and

V D ¹x 2 M j �.b; �.a; b; x// < �.a; b/ � tº:

�en U and V are open, M D U t V , a 2 U and b 2 V , contradicting the fact
that M is connected.
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In particular, setting t D 1
2
�.a; b/, we see that any pair of points of M must

have a midpoint. A standard completion argument now shows:

Lemma 4.6. Any complete connected median metric space is geodesic.

In fact, as was pointed out to me by Hans Bandelt, a complete median metric
space, M , is geodesic if and only if it has the “Menger property,” which in this
context means that Œa; b� ¤ ¹a; bº for all distinct a; b 2 M . Indeed, any complete
metric space .M; �/ is geodesic if and only if I�.a; b/ ¤ ¹a; bº for all distinct
a; b 2 M .

5. Cubes in median algebras

In the next two sections we describe some general median algebra constructions
which we apply to median metric spaces in Sections 7 and 8. In the present sec-
tion we make some observations about cubes in median algebras. Some related
statements can found in, or derived from, the literature on distributive lattices.
However, since much of this is presented in a form not so readily accessible to
geometers, we give a self-contained account here.

Let .M; �/ be a median algebra, and let a; b 2 M . In this section, we will
adopt the convention that the interval denoted Œa; b� has a preferred “initial point,”
a, and “terminal point,” b. Given x; y 2 Œa; b�, we write

x ^ y D �.a; x; y/

and

x _ y D �.b; x; y/:

�en .Œa; b�;^;_/ is a distributive lattice. We write

x � y to mean that x ^ y D x,

or equivalently x _ y D y. �en � is a partial order on Œa; b�, with minimum a

and maximum b. We can recover the median on Œa; b� from the lattice structure as

�.x; y; z/ D .x ^ y/ _ .y ^ z/ _ .z ^ x/ D .x _ y/ ^ .y _ z/ ^ .z _ x/:

In particular, any lattice homomorphism will be a median homomorphism.
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Suppose that e1; e2; : : : ; en 2 Œa; b�. We write

I D ¹1; 2; : : : ; nº:

Given J � I write
eJ D

_

i2J

ei ;

with the convention that e; D a. We say that .ei /i spans Œa; b� if eI D b. In this
case, if x 2 Œa; b�, then x D x ^ b D

W

i2I .x ^ ei/.
Let P D

Q

i2I Œa; ei � be the product median algebra. We de�ne a map

� W Œa; b� �! P;

by setting
�.x/ D .x ^ e1; x ^ e2; : : : ; x ^ en/;

and a map
� W P �! Œa; b�

by setting
�.x1; x2; : : : ; xn/ D

_

i2I

xi :

Now, by the above, if .xi /i spans Œa; b�, then � ı � is the identity on Œa; b�. Note
that P is itself intrinsically an interval, namely

P D Œ�.a/; �.b/�;

and hence also a distributive lattice. Indeed the lattice structure is the same as that
induced from those on Œa; ei � by de�ning ^ and _ coordinatewise. Note that for
all x; y 2 Œa; b�, we have

�.x ^ y/ D �.x/ ^ �.y/ and �.x _ y/ D �.x/ _ �.y/:

It follows that � is a monomorphism from Œa; b� into P .
We say that .ei /i is independent if ei ^ ej D a whenever i ¤ j . In this case,

if x 2 Œa; ei � and y 2 Œa; ej �, then

x ^ y D .x ^ ei / ^ .y ^ ej / D x ^ y ^ .ei ^ ej / D a:

Now, if x D .x1; : : : ; xn/ 2 P , then

�.x/ ^ ej D
�

_

i2I

xi

�

^ ej D xj :

We now see that
� ı �.x/ D x;

and so � and � are inverse homomorphisms. We have shown:
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Lemma 5.1. Suppose a; b 2 M and that e1; : : : ; en 2 Œa; b�, where .ei /i are

independent and span Œa; b�. �en Œa; b� is naturally isomorphic to the product

median algebra
Q

i2I Œa; ei �.

In particular, this gives a monomorphism

� W
Y

i2I

¹a; eiº �! Œa; b�;

with image

Q D ¹eJ j J � I º:

�us, Q is an n-cube in Œa; b� � M . Intrinsically, Q is the interval Œa; b� \Q. In
other words, a; b is a diagonal of the cube. Note that

eJ ^ eK D eJ \K and eJ _ eK D eJ [K

for J;K � I .
Suppose that ei D c _ d , with c ^ d D a, for some c; d 2 Œa; b� n ¹aº. �en

a; c; ei ; d is a square, and we could replace ei by c; d to obtain a larger independent
spanning set for Œa; b�. With this in mind, we say that .ei /i is maximal if no ¹a; eiº
is the diagonal of a square.

De�nition. A basis for Œa; b� is a maximal independent spanning set for Œa; b�.

Lemma 5.2. Suppose that e1; : : : ; en is a basis for Œa; b�, and that e0
1; : : : ; e

0
m is an

independent spanning set. �en we can partition I into non-empty subsets as

I D I1 t � � � t Im

such that for all i we have

e0
i D eIi

D
_

j 2Ii

ej :

Proof. Given j 2 I , we have

ej D
m

_

iD1

.ej ^ e0
i /:

In particular, there must be some i 2 ¹1; : : : ; mº with

ej ^ e0
i ¤ a:
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Note that

ej D c _ d and a D c ^ d;

where

c D ej ^ e0
i and d D

_

k¤i

.ej ^ e0
k/:

Since c ¤ a, we must have

d D a

(otherwise, ¹a; c; ej ; dº would be a square), and so

ej ^ e0
k D a for all k ¤ i .

It now also follows that

ej D c:

In other words, for all j 2 I , there is a unique i.j / 2 ¹1; : : : ; mº with

ej ^ e0
i.j / D ej and ej ^ e0

i D a whenever i ¤ i.j /.

Given i 2 ¹1; : : : ; mº, let

Ii D ¹j 2 I j i.j / D iº:

Clearly

Ii \ Ik D ; if i ¤ k.

Moreover, if i 2 I , then since ej ^ e0
i D a for all j … Ii , we have

e0
i D

_

j 2I

.ej ^ e0
i / D

_

j 2Ii

.ej ^ e0
i / D eIi

:

Finally note that

b D
m

_

iD1

e0
i D

m
_

iD1

eIi
D eS

i Ii
:

It follows that I D
S

i Ii , for if k 2 I n
S

i Ii , we would get the contradiction that
ek D b ^ ek D e¹kº\

S

i Ii
D e; D a.
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Corollary 5.3. Any two bases for Œa; b� agree up to permutation.

Proof. Let .ei /
n
iD1 and .e0

i /
m
iD1 be bases. By Lemma 5.2, we see that m D n, and

that each Ii is a singleton.

Suppose now that a; b 2 M , and that Q � Œa; b� is a cube with a; b 2 Q, that
is a; b is a diagonal ofQ. If e1; : : : ; en 2 Q are the points adjacent to a inQ (that
is the sets ¹a; eiº are the edges of Q containing a), then .ei/i are an independent
spanning set of Œa; b� inM . Conversely, we have already observed that if e1; : : : ; en

are independent and span a; b, then Q is isomorphic to
Qn

iD1¹a; eiº. We see that
a; b is not the diagonal of a strictly larger cube. (In other words, ifQ � Q0 where
Q0 is a cube containing a; b, then Q D Q0.) �is is the same as saying that .ei/i

is a basis for Œa; b�. As a consequence of Corollary 5.3, we have:

Lemma 5.4. Given a; b 2 M , there is at most one maximal cube in M with

diagonal a; b.

If M has �nite rank, then such a cube must always exist – take a cube of max-
imal possible rank which has diagonal a; b.

Note also that Lemma 5.2 can be interpreted as saying that if Q is a maximal
cube with diagonal a; b, then any other cube with diagonal a; b must be a subcube
of Q.

If we start with a cube, Q, then hullM .Q/ D Œa; b� where a; b is any diagonal
of Q. We can associate to each wall W 2 W.Q/, a median algebra ˆW , well
de�ned up to isomorphism (and inclusion intoM up to the relation of parallelism).
In fact, we can let ˆW D Œa; ei � D hull¹a; eiº, where ¹e1; : : : ; enº is the basis
for Q D Œa; b� \ Q, and where ¹a; eiº is the edge crossing Q. From the above,
we see:

Lemma 5.5. �e convex hull, hull.Q/, of the cube Q � M is naturally isomor-

phic to the product median algebra
Q

W 2W.Q/ˆW .

Although it is not needed for the proof of the main theorem, for applications
elsewhere, we will show that the convex hulls of cubes of maximal dimension are
isomorphic to real cubes.

First note that if c; d 2 Œa; b�, then Œc; d � � Œa; b�. Moreover, if c D a then the
order on Œa; d � is precisely the restriction of the partial order on Œa; b�. We also
note that an interval Œc; d � � M has (intrinsic) rank 1 if and only if the partial
order on Œc; d � is a total order. In this case, we will say that the interval Œc; d � is
linear.
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Now if .ei/i is an independent spanning set of Œa; b� and that Œa; ei � is linear for
each i . Clearly, this implies that .ei/i is a basis.

In fact, suppose rankM D n < 1, and e1; : : : ; en in an independent basis for
Œa; b�, then, Œa; ei � is linear for each i . For if not, we can �nd a square S � Œa; ei �

for some i . Using Lemma 5.1, we see that S �
Q

j ¤i¹a; ej º is a cube of dimension
nC 1, giving a contradiction.

Putting the above facts together we conclude:

Proposition 5.6. Suppose that M is a connected metrisable topological median

algebra and thatQ � M is a cube in M whose dimension equals rank.M/ < 1.

�en hull.Q/ is isomorphic to a real n-cube.

Proof. �is follows from the topological characterisation of a real interval as a
connected metrisable space with exactly two non-cut points.

Note that if M is a connected median metric space, then this cube will be
isometric to a compact real n-cube with an l1 metric. (We have already noted that
a median metric space is a topological median space, by Lemma 4.1.)

6. Finite subalgebras of median algebras

In this Section, we show how to associate, to any �nite subalgebra,…, of any me-
dian algebra, M , a larger subalgebra, M.…/ � …, which has a kind of “cellular”
structure, where the “cells” are product median spaces in bijective correspondence
with the faces of the complex … (or equivalently, the cells of ‡.…/). �is con-
struction will be used in the proof of Lemma 7.6.

First we make the following de�nition. Suppose that A;B � M . A parallel

map betweenA andB is a bijection W A �! B such that, for all x; y 2 A, x;  y
is parallel to x; y. Clearly its inverse is also parallel. It is not hard to see that, if
A is a subalgebra, then so is B , and  is a median isomorphism between them
(though this will be clear in the case of interest here). In particular, if a; b; d; c is
a square in M , then the projection of M to Œa; b� de�ned by

�.x/ D �.a; b; x/

restricted to Œc; d � is a parallel map from Œc; d � to Œa; b�. Moreover, the projection
of M to Œc; d � composed with  jŒc; d � is also equal to  .
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Suppose that… � M is a �nite subalgebra, and let F.…/ be the set of faces as
described in Section 3. Let

M.…/ D
[

s2F .…/

hull.Q.s//:

We claim:

Lemma 6.1. M.…/ is a subalgebra of M .

In fact, we can describe the structure of M.…/ in terms of the construction of
Section 5. Given W 2 W.…/, let ¹p�

W ; p
C
W º be an edge of … which crosses W .

Let

ˆW D Œp�
W ; p

C
W �:

Note that ˆW is well de�ned up to a parallel map in M , and that there is a well
de�ned projection,

�W W M �! ˆW

(namely, �W .x/ D �.p�
W ; p

C
W ; x/). Note that �W is an epimorphism. Letˆ be the

subalgebra of P D
Q

W 2W.…/ˆW , as de�ned in Section 3.

We also get a natural map

� W ˆ �! M

as follows. Note that if s 2 F.…/, then by Lemma 5.5, there is a natural isomor-
phism,

�s W P.s/ �! hull.Q.s//:

In fact, this is naturally isomorphic to
Q

W 2Ws
ˆW , whereWs D W.Q.s// � W is

the set of walls crossing s. Note that if t � s, then P.t/ � P.s/ and �t D �sjP.s/.
Assembling these, we get a map � W ˆ �! M . By construction,

�.ˆ/ D M.…/:

We claim:

Lemma 6.2. � W ˆ �! M is a monomorphism.

Clearly this implies Lemma 6.1.
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Lemma 6.2 will follow from the following observation. Note that if
W 2 W.…/, we have a projection,  W W P �! ˆW , namely the median pro-
jection (de�ned as forM ), or equivalently, simply the coordinate projection to the
factor ˆW of P . We claim:

Lemma 6.3. If W 2 W.…/, then

 W D �W ı �:

Proof. Let x 2 ˆ, and set s D h.x/ 2 F.…/, where h W ˆ �! F.…/ is the map
de�ned in Section 3. We distinguish two cases.

Suppose W 2 Ws. In this case, the statement follows from the fact that
�s W P.s/ �! hull.Q.s// is an isomorphism.

Suppose that W … Ws. In this case, without loss of generality, we have

Q.s/ � H�.W / \…:

Let ¹p�
W ; p

C
W º be an edge of … crossing W with p˙

W 2 H˙.W /. Since … is a
subalgebra of M , we see that �W .Q.s// D ¹p�

W º (since the projection of Q.s/ to
¹p�

W ; p
C
W º in … is ¹p�

W º). Now �.x/ D �s.x/ 2 hull.Q.s//, by the construction
of �, and so �W .�.x// D p�

W . (�is follows from the fact that �W is a monomor-
phism.) But, by the construction of ˆ � P , we also have  W .x/ D p�

W , so the
result follows.

Proof of Lemma 6.2. First, to see that � is injective, suppose that a; b 2 ˆ with
�a D �b. By Lemma 6.3, we get  W a D  W b for all W 2 W, so a D b

(since . W /W is the full set of coordinate projections to P ).
To see that � is a homomorphism, suppose that a; b; c 2 ˆ with c 2 Œa; b�ˆ.

Suppose, for contradiction, that �c … Œ�a; �b�M . LetW0 2 W.M/ be a wall ofM
separating �c from �M .�a; �b; �c/. Without loss of generality, we have

�a; �b 2 H�.W0/ and �c 2 HC.W0/:

Note that

Q.h.a// \H�.W0/ ¤ ;; and Q.h.c// \HC.W0/ ¤ ;:

In particular, H˙.W / ¤ ;, where H˙.W / D H˙.W0/ \ …, and so we de-
duce that W D ¹H�.W /;HC.W /º is a wall of …. Let ˆW D Œp�

W ; p
C
W �, with

p˙
W 2 H˙.W /, and with ¹p�

W ; p
C
W º an edge of …. (We have chosen some edge,

¹p�
W ; p

C
W º, of … crossing W , so we have p�

W ; p
C
W 2 … \ ˆW � M . �e exact

choice does not matter to this discussion.) See Figure 3.



Some properties of median metric spaces 303

pC
W

p�
W

ˆW

�a
�b

�c

HC.W0/

H�.W0/

Figure 3. �e wall W0

Now,

 W a D �W �a D �.p�
W ; p

C
W ; �a/ 2 Œp�

W ; �a� � H�.W0/;

so
 W a 2 H�.W0/:

Similarly,
 W b 2 H�.W0/ and  W c 2 HC.W0/:

But  W is just coordinate projection in P to an interval, hence a homomorphism,
so

 W c 2  W .Œa; b�/ � Œ W a;  W b� � H�.W0/;

giving a contradiction.

7. Cubes in median metric spaces

In this section, we will describe how to de�ne a metric associated to a median
metric space of �nite rank. In Section 8, we will show this to be CAT.0/.

Let .M; �/ be a median metric space. Suppose that Q � M is an m-cube
with edge-lengths t1; : : : ; tm (that is, ti D �.a; ei/, where ¹a; e1º : : : ¹a; emº are the
edges containing a). Set

!.Q/ D
s

X

i

t2i :

Note that, if a; b is a diagonal of Q, then �.a; b/ D
P

i ti , and so

�.a; b/=
p
m � !.Q/ � �.a; b/:
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Suppose thatQ0 � Q is a cube in Q containing a; b (that is, a subalgebra isomor-
phic to a cube). Its edge-lengths have the form

P

j 2Ii
tj , where I D

F

i Ii is a
partition of I D ¹1; : : : ; mº. It follows that !.Q0/ � !.Q/.

Suppose that rankM D n < 1. Given a; b 2 M , write Q.a; b/ � M for the
unique maximal cube in M with diagonal a; b. We write

!.a; b/ D !.Q.a; b//:

�us,

�.a; b/=
p
n � !.a; b/ � �.a; b/:

Moreover, if Q0 � M is any other cube with diagonal a; b, then Lemma 5.2 tells
us that Q0 is a subcube of Q, and so

!.Q0/ � !.Q/:

Suppose a; b; c; d 2 M , and Q is a cube with diagonal a; b. �en �.Q/ is a
cube of diagonal �a, �b, where � is the projection map Œx 7! �.c; d; x/�. Since
� is 1-lipschitz, the edge-lengths of �Q are at most those of Q and so

!.�Q/ � !.Q/:

By taking Q to be maximal, and applying the above, we see that

!.�a; �b/ � !.a; b/:

We now de�ne a metric � D �� on M as follows. If a D a0; a1; : : : ; ap is a
sequence in M , we write

!.a/ D
p

X

iD1

!.ai�1; ai /:

See Figure 4.

Given a; b 2 M , let �.a; b/ D inf¹!.a/º as a ranges over all sequences
(of any �nite length) with a0 D a and ap D b. Clearly � is (at least) a pseu-
dometric. In fact, we have:

Lemma 7.1. �.a; b/ D inf¹!.a/º as a ranges over all monotone sequences from

a to b.
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a0

a1

a2

a3

a4

Figure 4. De�ning the metric ��

Proof. Let c D c0; : : : ; cp be any sequence with c0 D a and cp D b. First, project
c to Œa; b� to give another sequence, d , from a to b; that is, set

di D �.a; b; ci/:

From the above observation, we have!.d/ � !.c/. Now project to d1; : : : ; dp D b

to give a sequence e1; : : : ; ep from d1 to b. Project e2; : : : ; ep to Œe2; b� to give
f2; : : : ; fp, etc. After p steps, we arrive at a monotone sequence,

a D a; d1; e2; f3; : : : ; b;

with !.a/ � !.c/.

If a is monotone, then

�.a; b/ D
p

X

iD1

�.ai�1; ai/;

and so it follows that

�.a; b/=
p
n � �.a; b/ � �.a; b/:

In particular, it now follows that � is a metric on M .
To motivate the following, note that if c is a point in a rectilinear euclidean

parallelepiped with diagonal (opposite corners) a; b, then in the euclidean metric,
we have

�.a; c/2 C �.c; b/2 � �.a; b/2

(since the euclidean angle acb is at least �=2). We can view Lemma 7.3 below as
a generalisation of this fact. First, we note:
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Lemma 7.2. Let Q � M be a cube with diagonal a; b, and let c 2 Œa; b�.

Let Q�; QC be, respectively, the projections of Q to Œa; c� and Œc; b�. �en

!.Q�/2 C !.QC/2 � !.Q/2:

Proof. Let ti be the i th side-length of Q. On projecting c to the interval of M
corresponding to the i th side of Q, we can write

ti D t�i C tCi ;

where t˙i is either 0 or a side-length of Q˙
i . From this we get that

!.Q�/2 C !.QC/2 D
X

i

.t�i /
2 C

X

i

.tCi /
2 �

X

i

t2i D !.Q/2:

Lemma 7.3. Suppose a; b 2 M and c 2 Œa; b�, then

��.a; c/
2 C ��.b; c/

2 � ��.a; b/
2:

Proof. Let ı > 0, and let

a D d0; d1; : : : ; dp D b

be a monotone sequence with
X

i

!.di�1; di / � ��.a; b/C ı:

Let
Qi D Q.di�1; di /

be the maximal cube with diagonal di�1; di . Let

!i D !.Qi /:

Let
d�

i D �.a; c; di/ and dC
i D �.c; b; di/:

�us
a D d�

0 ; d
�
1 ; : : : ; d

�
p D c and c D dC

0 ; d
C
1 ; : : : ; d

C
p D b

are monotone sequences. Let Q�
i and QC

i be the projections of Qi to Œa; c� and
Œc; b� respectively. Since projection is a homomorphism, these are also cubes with
diagonals d�

i�1; d
�
i and dC

i�1; d
C
i respectively (Figure 5).
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Q�
i

yQ�
i

Qi
yQC

i QC
i

di�1

d�
i�1 d�

i

di

c

ci
dC

i�1

dC
i

a

b

Figure 5. Cubes in the interval Œa; b�

Let

!˙
i D !.Q˙

i /:

�en

��.a; c/ �
X

i

!�
i and ��.c; b/ �

X

i

!C
i :

Let

ci D �.c; di�1; di /:

Now di�1; ci is parallel to d�
i�1; d

�
i . (In the notation of Section 5 applied to the

interval Œa; b�, note that

di�1 � di ;

ci D .c _ di�1/ ^ di D .c ^ di / _ di�1;

d�
i�1 D c ^ di�1

and

d�
i D c ^ di :

Now

d�
i ^ di�1 D .c ^ di / ^ di�1 D c ^ di�1 D d�

i�1 and d�
i _ di�1 D ci ;

and so also,

d�
i�1 � di � ci and d�

i�1 � di�1 � ci :
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It follows that di�1; ci ; d
�
i ; d

�
i�1 is a square.) We see that di�1; ci is the diagonal

of a cube, yQ�
i (not necessarily maximal) parallel to Q�

i . Similarly, ci ; di is the
diagonal of a cube, yQC

i , parallel toQC
i . Note that yQ�

i and yQC
i are the projections

of Qi respectively to Œdi�1; ci � and to Œci ; di �. By Lemma 7.2, we therefore see
that,

.!�
i /

2 C .!C
i /

2 � !2
i :

Now
�

X

i

!�
i

�2

C
�

X

i

!C
i

�2

�
�

X

i

!i

�2

:

(Note that .!�
i !

�
j C !C

i !
C
j /

2 � ..!�
i /

2 C .!C
i /

2/..!�
j /

2 C .!C
j /

2/ � !2
i !

2
j ,

so !�
i !

�
j C !C

i !
C
j � !i!j , and the inequality follows on expanding both sides.)

We get that ��.a; c/
2 C ��.b; c/

2 � .��.a; b/C ı/2. Since this holds for all ı > 0,
the statement follows.

In particular, we see that if a; b 2 M and c 2 Œa; b� n ¹bº, then

��.a; c/ < ��.a; b/:

Recall that, by de�nition of the median structure, I�.a; b/ D Œa; b�.

Corollary 7.4. For all a; b 2 M , I��
.a; b/ � I�.a; b/.

Proof. Suppose x 2 M n I�.a; b/. Let

c D �.a; b; x/;

so x ¤ c. Now

c 2 Œa; x� n ¹xº;

so

��.a; c/ < ��.a; x/:

Similarly,

��.b; c/ < ��.b; x/;

so

��.a; b/ � ��.a; c/C ��.c; b/ < ��.a; x/C ��.x; b/;

so

x … I��
.a; b/:
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As an example of the above construction, if � is the l1 metric on Rn, then
cubes are the vertex sets of rectilinear parallelepipeds, and we see that �� is the
euclidean metric on Rn. More generally, if .‡; �/ is a CAT.0/ cube complex, and
we are given � W W.‡/ �! .0;1/, we get a median metric on ‡ as discussed in
Section 2. In this case, �� coincides with the corresponding euclidean structure,
� , on ‡ . (First note that one easily sees that �� and � agree on each cell of ‡ .
From the fact that .‡; �/ is geodesic, we can deduce that �� � � , and directly
from the de�nition of ��, we see that � � ��.)

Now, as discussed in Section 2, any �nite median metric space arises as the
vertex set of such a complex. We therefore get:

Lemma 7.5. Suppose that .…; �/ is a �nite median metric space. �en we can

canonically identify … as the vertex set of a CAT.0/ cube complex, ‡.…/, ad-

mitting a CAT.0/ metric �…. Moreover, ‡.…/ also canonically admits a median

metric �…, which agrees with � on …, and is such that �… D ��…
. In fact, any

cell, P , of ‡.…/, of any dimension n, can be embedded into Rn as a rectilinear

parallelepiped in such a way that �… and �… on P respectively agree with the

usual l1 metric and the euclidean metric induced from Rn.

Now suppose that .M; �/ is a median metric space. Given any �nite subalgebra
… � M , the metric restricted to … is an intrinsic median metric, and so we can
construct ‡.…/, as in Lemma 7.5.

For the rest of this section, we will be assuming that .M; �/ is a geodesic space.
Note that Corollary 7.4 implies that any ��-geodesic inM can be reparameterised
to give a �-geodesic.

Lemma 7.6. If .M; �/ is a geodesic median metric space, and … � M a �nite

subalgebra, then there is a median monomorphism

f W ‡.…/ �! M

extending the inclusion of … into M . Moreover, f is an isometric embedding as

a map .‡.…/; �…/ �! .M; �/. Also, if M has �nite rank, then f is 1-lipschitz as

a map .‡.…/; �…/ �! .M; ��/.

Here, in general, f is not canonically de�ned. Note that, in the last clause,
we need that M is �nite rank just so that �� is de�ned.
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Proof. We begin by describing how to construct f . If Q � … � M is a face of
…, we can choose a diagonal, a; b, and let e1; : : : ; en be the adjacent vertices to a
in Q. By Lemma 5.1, hullM .Q/ is isomorphic as a median algebra to the direct
product

Q

i Œa; ei �. Now the cell, PQ, of ‡.…/ is isometric to
Q

i Œ0; ri � � R
n in

the l1 metric, where ri D �.a; ei/. Since M is a geodesic space, we can �nd a
�-geodesic


i W Œ0; ri � �! Œa; ei �;

with


i .0/ D 0 and 
i .ri / D ei :

Combining these, we get a distance-preserving map

fQ W PQ �! hullM .Q/:

In fact, we can assume that all the paths of the form 
i crossing any given wall of
… are parallel, and so the maps fQ �t together to give a map

f W ‡.…/ �! M:

We need to check that this is a monomorphism. To do this, we start again with a
more formal description of f in terms of the constructions of Sections 5 and 6.

By Lemma 6.2, there is an isomorphism,

� W ˆ �! M.…/;

where ˆ is the subalgebra of the product P D
Q

W 2WˆW , as described in
Section 5, and where M.…/ is the subalgebra of M described in Section 5. We
can write ˆW D Œp�

W ; p
C
W �, and set

ıW W Œ0; �.W /� �! ˆW

to be a �-geodesic from p�
W to pC

W . Doing this on every coordinate, we get a
product map

Y

W 2W

Œ0; �.W /� �! P:

Restricting to ‡.…/, we get a median homomorphism,

ı W ‡.…/ �! ˆ:
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Let

f D � ı ı W ‡.…/ �! M.…/:

From this description, it is clear that f is a median monomorphism. �is in turn
implies that f is an isometric embedding from .‡.…/; �…/ to .M; �/.

Finally, to see that

f W .‡.…/; �…/ �! .M; ��/

is 1-lipschitz, let a; b 2 ‡.…/ and let

a D a0; a1; : : : ; ap D b

now be a sequence of points, in order, along the geodesic from a to b in
.‡.…/; �…/, and with ai�1; ai lying in some cell of ‡.…/ for all i . (�is is also a
monotone sequence.) LetQi be the maximal cube in‡.…/with diagonal ai�1; ai .
Now f .Qi/ is a cube in M with diagonal f .ai�1/; f .ai/, so by the earlier obser-
vation, and the fact that f is a median monomorphism, we have

!.f .ai�1/; f .ai // � !.f .Qi// D !.Qi / D �….a; b/:

�us,

��.f .a/; f .b// �
X

i

!.f .ai�1/; f .ai //

�
X

i

�….ai�1; ai /

D �….a; b/:

Lemma 7.7. Suppose that M is a geodesic median metric space of �nite rank.

Suppose that A � M is any �nite subset, and ı > 0. �en there is a �nite subal-

gebra,… � M with A � …, such that if .‡.…/; �…/ is the CAT.0/ cube complex

with vertex set … as given by Lemma 7.5, then

�….a; b/ � �.a; b/C ı

for all a; b 2 A.
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Proof. For each pair, a; b 2 A, let

a D a0; a1; : : : ; ap D b

be a monotone sequence with

p
X

iD1

!.ai�1; ai / � �.a; b/C ı:

Let Q.ai�1; ai / be the maximal cube in M with diagonal ai�1; ai . �us,

!.ai�1; ai / D !.Q.ai�1; ai//:

Let

B.a; b/ D
p

[

iD1

Q.ai�1; ai/;

and let

B D
[

a;b2A

B.a; b/:

Let … � M be a �nite subalgebra containing B .
Now suppose that a; b 2 A. Let a D a0; a1; : : : ; ap D b be as above.

Now Q.ai�1; ai / � …, and �… agrees with � on …. Since �… D ��…
, we have

�….ai�1; ai/ � !.Q.ai�1; ai // D !.ai�1; ai /;

and so

�….a; b/ �
p

X

iD1

�….ai�1; ai / �
p

X

iD1

!.ai�1; ai / � �.a; b/C ı:

Putting Lemmas 7.5, 7.6 and 7.7 together, we have shown:

Lemma 7.8. Suppose that .M; �/ is a geodesic median metric space of �nite rank.

Given any �nite A � M , and any ı > 0, there is a compact CAT.0/ space .‡; �‡/

with A � ‡ , and a 1-lipschitz map,

f W .‡; �‡/ �! .M; ��/

extending the inclusion of A into M , such that for all a; b 2 A, we have

�‡ .a; b/ � ��.a; b/C ı:
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8. CAT.0/ spaces

Let .M; �/ be a geodesic metric space. Suppose ı � 0. By a ı-kite in M we mean
an ordered quadruple of points,

K D ¹a; b; c; dº

with
�.a; d/C �.d; b/ � �.a; b/C ı:

Given � � 0, an �-comparison of K is a map

� W K �! R
2;

into the plane with euclidean metric �0 such that

j�0.�.x/; �.y// � �.x; y/j � �;

whenever x; y 2 K and ¹x; yº ¤ ¹c; dº. Note that �.K/ is then a .ı C 3�/-kite
in R2.

If K is a 0-kite, then we can always �nd a 0-comparison, �, of K, and �.K/ is
then a 0-kite. Moreover, the image is uniquely determined up to isometry of R2.
In this case, we can speak of “the” 0-comparison to R2.

Since we do not know a-priori that our space is geodesic, we begin with the
following:

De�nition. A metric space, .M; �/, is weakly CAT.0/ if given any 0-kite,
a; b; c; d 2 M , and if � is the 0-comparison of a; b; c; d in R2, then

�.c; d/ � �0.�.c/; �.d//:

�e following is now the standard de�nition of a CAT.0/ space:

De�nition. A CAT.0/ space is a weakly CAT.0/ geodesic metric space.

�e following assertion about comparisons is a simple exercise in euclidean
geometry:

Lemma 8.1. Given �; r > 0, there is some ı � 0 with the property that if .M; �/

is any weakly CAT.0/ space,K D ¹a; b; c; dº � M is any ı-kite inM of diameter

at most r , and � W K �! R
2 is any ı-comparison of K, then

�.c; d/ � �0.�.c/; �.d//C �:
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We can now prove the following:

Lemma 8.2. If .M; �/ is a median metric space of �nite rank, then .M; ��/ is

weakly CAT.0/.

Proof. Suppose that K D ¹a; b; c; dº � M is a 0-kite (in the metric ��).
Let

� W K �! R
2

be a 0-comparison. Let r D diamK. Given any � > 0, let ı be as given by
Lemma 8.1. Let f W .‡; �‡/ �! .M; ��/ be as given by Lemma 7.8 with A D K

and ı as given. In particular, for each x; y 2 K, we have

��.x; y/ � �‡.x; y/C ı:

�erefore K is a ı-kite in .‡; �‡/ and � is a ı-comparison with respect to the
metric �‡ . Since .‡; �‡/ is CAT.0/, it follows from Lemma 8.1 that

�‡ .c; d/ � �0.�.c/; �.d//C �:

It follows that

��.c; d/ � �0.�.c/; �.d//C �:

Since this holds for all � > 0, and � is �xed, we have

��.c; d/ � �0.�.c/; �.d//:

�us, by de�nition, .M; ��/ is weakly CAT.0/ as claimed.

If M is complete, then it is enough to assume that it is connected:

�eorem 8.3. Suppose that .M; �/ is a median metric space of �nite rank, and

that .M; ��/ is geodesic. �en .M; ��/ is CAT.0/.

Proof. Note that using Corollary 6.2, any ��-geodesic can be reparameterised as
a �-geodesic, and so .M; �/ is also a geodesic space. �us, by Lemma 8.2, .M; ��/

is weakly CAT.0/, hence CAT.0/.

Lemma 8.4. If .M; �/ is a complete connected median metric space of �nite rank,

then .M; ��/ is geodesic.



Some properties of median metric spaces 315

Proof. Note that, by Lemma 4.6, we already know that .M; �/ is geodesic. Since
the metrics � and �� are bi-lipschitz equivalent, .M; ��/ is also complete. �ere-
fore, it is enough to prove the existence of midpoints in .M; ��/.

Let a; b 2 M . Given ı > 0, we �rst claim that there is some c 2 M with

��.a; c/; ��.b; c/ � 1

2
.��.a; b/C ı/:

To this end, let f W .‡; �‡/ �! .M; ��/ be the map given by Lemma 7.8, with
A D ¹a; bº. Let x be a midpoint of a; b in .‡; �‡/, and let c D f .x/. Now,

��.a; c/ � �‡ .a; x/ D 1

2
�‡ .a; b/ � 1

2
.��.a; b/C ı/:

Similarly,

��.b; c/ � 1

2
.��.a; b/C ı/

as claimed.

Suppose d is another such point. We can view K D ¹a; b; c; dº as a ı-kite
in M . We have a ı-comparison, � W K �! R

2, such that �.c/ D �.d/ is the
midpoint of �.a/; �.b/. Now, by Lemma 8.2, .M; ��/ is weakly CAT.0/. �erefore,
if � > 0, then by choosing ı > 0 su�ciently small depending on �; r , Lemma 8.1
tells us that ��.c; d/ � �.

In this way we obtain a sequence of points .ci /i in M with

��.a; ci / ! 1

2
��.a; b/

and

��.b; ci / ! 1

2
��.a; b/;

and with .ci /i Cauchy. �us ci converges to a midpoint of a; b in .M; ��/ as
required.

Now we already know by Lemma 8.2 that, under these assumptions, .M; ��/

is weakly CAT.0/, hence it is CAT.0/. �is proves �eorem 1.1.

Finally, it is worth observing that if C is a closed convex subset of .M; �/, then
C is also a complete connected median metric space in the restricted metric, �.
It is a simple consequence of the construction that C is a totally geodesic subset of
.M; �/, and that the metric � restricted to C is the same as the metric ��, obtained
intrinsically from � in C .
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