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Product-quotient surfaces: new invariants and algorithms
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Abstract. In this article we suggest a new approach to the systematic, computer-aided con-

struction and to the classi�cation of product-quotient surfaces, introducing a new invariant,

the integer 
 , which depends only on the singularities of the quotient model

X D .C1 � C2/=G. It turns out that 
 is related to the codimension of the subspace of

H 1;1 generated by algebraic curves coming from the construction (i.e., the classes of the

two �bers and the Hirzebruch-Jung strings arising from the minimal resolution of singu-

larities of X ).

Pro�ting from this new insight we developed and implemented an algorithm in the

computer algebra program MAGMA which constructs all regular product-quotient surfaces

with given values of 
 and geometric genus. Being far better than the previous algorithms,

we are able to construct a substantial number of new regular product-quotient surfaces of

geometric genus zero. We prove that only two of these are of general type, raising the

number of known families of product-quotient surfaces of general type with genus zero

to 75. �is gives evidence to the conjecture that there is an e�ective bound �.pg; q/ � 


(cf. Conjecture 4.5).

Finally we introduce a duality among product-quotient surfaces and prove that the dual

surface of a surface of geometric genus zero has maximal Picard number, thus providing

several new examples of surfaces with maximal Picard number.
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1. Introduction

Let G be a �nite group acting on two compact Riemann surfaces C1, C2 of re-

spective genera g1; g2 � 2. We shall consider the diagonal action of G on C1 �C2

and in this situation we say for short: the action of G on C1 � C2 is unmixed.

By [8] we may assume without loss of generality that G acts faithfully on both

factors.

De�nition 1.1. �e minimal resolution S of the singularities of X D .C1�C2/=G,

where G is a �nite group with an unmixed action on the product of two compact

Riemann surfaces C1, C2 of respective genera at least two, is called a product-

quotient surface.

X is called the quotient model of the product-quotient surface.

In the last years several people have been studying product-quotient surfaces

and quite some literature is nowadays available (cf. e.g. [8, 23, 1, 2, 13, 15, 16, 9, 3,

6, 10, 14, 11]...).

�e authors (partially in collaboration with F. Catanese, D. Frapporti and F.

Grunewald) have been focusing mainly on the systematic construction and classi-

�cation of product-quotient surfaces of general type with geometric genus pg D 0.

Our previous results may be summarized as follows.
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�eorem 1.2 ([1], [2] [3],[6]). 1) Product-quotient surfaces isogenous to a prod-

uct (i.e., G acts freely) with pg.S/ D q.S/ D 0 form 13 irreducible connected

components of the Gieseker moduli space of surfaces of general type.

2) Minimal product-quotient surfaces with pg D 0 of general type form 72

irreducible families, including the 13 families in point 1.

3) �ere is exactly one product-quotient surface with pg D 0, K2
S > 0 which

is not minimal.

Even if quite some e�ort has been put and new techniques have been devel-

oped, the following problem remains open:

Problem 1.3. Classify all product-quotient surfaces of general type with pg D 0.

By �eorem 1.2 it remains to classify all non-minimal product-quotient sur-

faces of general type with geometric genus zero. In [6] the authors wrote a MAGMA

script producing all regular product-quotient surfaces with pg D 0 and �xed K2
S .

As already noticed in loc. cit, one approach to solve the above problem is

1) prove that K2
S � �C implies that S is not of general type for some explicit

integer C ;

2) use a suitable algorithm to construct all regular product-quotient surfaces

with pg D 0 and �C < K2 < 0.

At the moment, not only an explicit bound is out of reach, but also the algo-

rithm used in [6] is very slow for K2
S < 0, hence far from being good enough to

make step 2 work even for small C .

In the present article we suggest a di�erent approach to solve Problem 1.3.

�e key observation is the following: inspecting the list of surfaces in �eo-

rem 1.2 (cf. [6], Tables 1, 2), one notices that all minimal product-quotient surfaces

with pg D 0 have the property that H 1;1.S/ is generated by the �bres of the two �-

brations and the irreducible components of the exceptional divisor of the minimal

resolution of singularities � , whereas for the single non-minimal product-quotient

surface with K2
S > 0, this is not the case. Here the �bres and the exceptional curves

generate a subspace of codimension 2.

�is remark led us to study the subspace of H 1;1.S/ generated by the �bres

of the two �brations and the irreducible components of the exceptional divisor of

the minimal resolution of singularities � for a general product-quotient surface S .
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We shall prove in this article, that its codimension is even, and equal to

2.pg.S/ C 
/ (cf. Proposition 4.2), where 
 is an invariant depending only on

some numerical data of the singularities of X .

Note that then in particular: pg D 0 H) 
 � 0.

Remark 1.4. Looking at the program used in [6] for the case pg D 0, one

notices that almost half of the computations had to deal with the case 
 < 0.

�is information could be used now to speed up the computations quite a bit.

Instead, we chose to write a di�erent MAGMA script, substituting (as input)


 to K2. �e result is a much quicker program, producing dozens of new regular

product-quotient surfaces with pg D 0 (and several with pg > 0, on which we do

not report here).

Our computations suggest the following

Conjecture 1.5. Let S be a product-quotient surface. �en S is minimal if and

only if pg.S/ C 
 D 0.

We shall prove the conjecture for surfaces with vanishing geometric genus

(cf. �eorem 6.2).

Running our program for 
 D 1; 2; 3, produces three examples of surfaces of

general type, two with 
 D 1 (including the surface in �eorem 1.2, 4), and one

with 
 D 2: the two new examples, both Numerical Godeaux surfaces, are de-

scribed in Section 7. Together with the results [6] we have 75 families of product-

quotient surfaces of general type with pg D q D 0 and we conjecture that this is

a complete list.

What we can prove, is the following:

Proposition 1.6. Let S be a product-quotient surface of general type with pg D 0

not among the 75 families just mentioned. �en

� either 
 � 4,

� or 
 D 3 and X has a singular point of multiplicity at least 14,

� or 
 D 2 and X has a singular point of multiplicity at least 45.

On the way to prove the above we construct a substantial number of product-

quotient surfaces not of general type, collected in the Tables 1, 2, 3, 4, and 5.

Coming back to Problem 1.3, Our new approach allows to substitute part 1) of

the proposed solution of Problem 1.3 by the following:
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Conjecture 4.5.�ere is an explicit function � D �.pg ; q/ such that, for the quo-

tient model X of every product-quotient surface S of general type


.X/ � �.pg.S/; q.S//:

We give some motivation for this Conjecture in Section 8, proving the above con-

jecture under some additional hypotheses.

Finally in Section 9 we construct a duality among regular product-quotient

surfaces allowing, among other things, to give a new interpretation of the “half-

codimension” pg C 
 , which in fact turns out to be equal to the geometric genus

of the dual product-quotient surface.

An interesting result in this last section is Corollary 9.4, showing that the dual

of every product-quotient surface of geometric genus zero has automatically max-

imal Picard number. �us the dual surfaces of the surfaces in Tables 2, 3, 4, and 5

provide more than 100 families of surfaces with 1 � pg � 3 and maximal Picard

number.

2. Notation

In this chapter we �x the notation, which will be valid throughout the paper.

Let C be an algebraic curve, G a �nite group acting faithfully on it, C 0 D C=G.

We associate to the pair .C; G/, after certain choices on C=G ([5, Section 4]

for details), an

� appropriate orbifold homomorphism ' W T.g.C=G/I m1; : : : ; mr / ! G,

which allows (up to the above made choices) to reconstruct .C; G/.

Equivalently, one can give

� a generating vector ([16, De�nition 1.1]) of G of signature (or type)

.g.C=G/I m1; : : : ; mr /,

where g.C=G/ is the genus of the quotient curve.

We will say that the action of G on C has signature .g.C=G/I m1; : : : ; mr/.

We will also need the number

� ‚ WD ‚.g.C=G/I m1; : : : ; mr/ WD 2g.C=G/ � 2 C
P

�

1 � 1
mi

�

> 0,

which relates the genus of C and the order of G by the Hurwitz formula

2g.C / � 2 D jGj‚: (1)
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In the following C1, C2 will be two algebraic curves of respective genera

g1; g2 � 2, G a �nite group acting faithfully on both curves.

We consider the quotient surface X WD .C1 � C2/=G by the diagonal action,

and the minimal resolution of its singularities � W S ! X . We will refer to S as

� a product-quotient surface and

� to X as its quotient model.

We will denote by xS the minimal model of S .

As usual, pg .S/ (or simply pg) will be the geometric genus h2.OS /, and q.S/

(or simply q) will be the irregularity h1.OS /. We will also denote by � or �.S/ D
1 � q C pg the Euler characteristic of the structure sheaf OS of S .

We will say that the quotient model X has type

..g.C1=G/I m1; : : : ; mr/; .g.C2=G/I n1; : : : ; ns// ;

if the action of G on C1 has signature .g.C1=G/I m1; : : : ; mr/ and the action of

G on C2 has signature .g.C2=G/I n1; : : : ; ns/; we will write ‚1 for ‚.g.C1=G/I
m1; : : : ; mr/ and ‚2 for ‚.g.C2=G/I n1; : : : ; ns/.

All singularities of X are cyclic quotient singularities, locally isomorphic to

the quotient of C2 by the cyclic group generated by .x; y/ 7! .e
2�i

n x; e
2q�i

n y/

for two relatively prime positive integers q; n with q < n. We will say that the

singularity is of type q
n
, instead of using the classical notation 1

n
.1; q/.

We denote by q0 the integer between 1 and n � 1 which is the multiplicative

inverse of q modulo n, whence a singularity of type q
n

is also of type q1

n1
if and

only if n D n1 and q1 is either q or q0.

We associate four numbers to each cyclic quotient singularity, depending only

on its type.

De�nition 2.1. For each rational number 0 < q
n

< 1 we consider its continued

fraction
n

q
D b1 � 1

b2 � 1
b3����

DW Œb1; : : : ; bl �I

writing q
n

D Œb1; : : : ; bl �, bi 2 N, bi � 2.

We de�ne:

� l
�

q
n

�

is the length of the continued fraction;

� 

�

q
n

�

WD 1
6

�

qCq0

n
C

Pl.
q
n

/

iD1 .bi � 3/
�

;

� �
�

q
n

�

D 1 � 1
n
.

� I
�

q
n

�

D n
gcd.n;qC1/

.
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It is well known that if q
n

D Œb1; : : : ; bl �, then q0

n
D Œbl ; : : : ; b1�. It follows

immediately that l; 
 , � and I do not change when substituting q with q0, and

therefore the following de�nition is well posed.

De�nition 2.2. Let x be a singular point of X , of type q
n
. �en we de�ne

lx WD l
�q

n

�

; 
x WD 

�q

n

�

; �x WD �
�q

n

�

; Ix WD I
�q

n

�

:

A representation of the basket of singularities of the quotient model X is a

multiset

B.X/ WD
°

� � a

n
W X has exactly � singularities of type

a

n

±

:

E.g., B D
®

2 � 1
3
; 3

4

¯

means that the singular locus of X consists of two 1
3
-points

and one 3
4
-point.

Consider the equivalence relation generated by “a
n

is equivalent to a0

n
,” where

a0 D a�1 in .Z=nZ/�, on the multisets of the above form. A basket of singularities

B is then an equivalence class.

We globalize l , 
 , � and I as follows.

De�nition 2.3 (invariants of the basket B). Let B be the basket of singularities

of the quotient model X of a product-quotient surface S . �en

l.X/ WD
X

x2B

lx ; 
.X/ WD
X

x2B


x ; �.X/ WD
X

x2B

�x; I.X/ WD lcmx2B Ix:

Remark 2.4. I is the index of X , the minimal positive integer such that IKX is a

Cartier divisor. It is the only number, among the numbers de�ned in De�nition 2.1,

which was already considered in [6]. �e numbers l ,
 and � are convenient

substitutes of the numbers e, k, and B considered in [6]. For the convenience of

the reader, we recall the de�nition of e, k and B in terms of the new invariants:

e D l C �; k D 6
 C l � 2�; B D 3.2
 C l/: (2)
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3. Hodge theory of Product-Quotient Surfaces

We start with the following:

Proposition 3.1. We have

(1) for all k ¤ 2, H k.S;C/ Š H k.X;C/I

(2) H 2.S;C/ Š H 2.X;C/ ˚ Cl.X/.

Proof. 1) Let Xı be the smooth locus of X . For each singular point x of X , choose

a small neighbourhood Ux of x which may be retracted to the point x and set

U WD
[

Ux ;

U ı
x WD Ux n ¹xº D Ux \ Xı;

U ı D U \ Xı:

We also consider

Sı WD ��1.Xı/;

Vx WD ��1.Ux/; V ı
x WD ��1.U ı

x /;

V WD ��1.U /; V ı WD ��1.U ı/:

�e Mayer–Vietoris exact sequences corresponding to the decompositions

X D Xı [ U; S D Sı [ V

give a commutative diagram

H k�1.Xı/ ˚ H k�1.U / //

bk�1˚ck�1

��

H k�1.U ı/ //

dk�1

��

H k.X/ //

ak

��

H k�1.Sı/ ˚ H k�1.V / // H k�1.V ı/ // H k.S/ //

// H k.Xı/ ˚ H k.U / //

bk˚ck

��

H k.U ı/

dk

��

// H k.Sı/ ˚ H k.V / // H k.V ı/ :

(3)

�e vertical maps are induced by suitable restrictions of � .
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Since �jSı and �jV ı are homeomorphisms, all the maps bq and dq are iso-

morphisms. Moreover, since Ux retracts to a point and Vx to a tree of lx rational

curves, ck is an isomorphism for all k ¤ 2, and c2 is the (injective) map 0 ! Cl .

By the Five Lemma, it follows that all maps ak with k ¤ 2; 3 are isomorphisms,

while the Four Lemma implies that a2 is injective and a3 is surjective.

Let A1; : : : ; Al be the exceptional divisors of � . Since V retracts to the union

of the Ai , the inclusions yield an isomorphism

H 2.V / Š
l

M

1

H 2.Ai/;

so

H 2.V / Š Cl :

Moreover, identifying by Poincaré duality H 2.S/ with H2.S/�, the map

H 2.S/ �! H 2.Ai / Š C

induced by inclusion sends each linear form � to �.Ai /. Since the intersection

form on the Ai is negative de�nite, it follows that the map

H 2.S/ �! H 2.V / Š
M

H 2.Ai/

is surjective.

�en standard diagram chasing shows that a3 is injective, hence an isomor-

phism.

2) We have just shown that all maps ak ,bk, ck and dk are isomorphisms with

the exception of a2 and c2. Moreover, a2 and c2 are injective, and

dim.coker c2/ D l:

Since the alternating sum of the dimensions of the vector spaces in a �nite

exact sequence is zero, comparing the two long exact sequences in (3) we obtain

dim H 2.S/ D dim H 2.X/ C l .

For H 2.X;C/ we can prove the following:

Proposition 3.2. We have

1) dim H 2.X;C/ � 0 mod 2I

2) dim H 2.X;C/ � 2.
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Proof. By the Hodge decomposition we know that

H 2.C1 � C2;C/ ŠH 0.�2
C1�C2

/ ˚ H 1.�1
C1�C2

/ ˚ H 2.OC1�C2
/

ŠH 0.�2
C1�C2

/ ˚ H 1.�1
C1�C2

/ ˚ H 0.�2
C1�C2

/�:

�erefore the G-invariant part of H 2.C1 � C2;C/ decomposes as

H 2.X;C/ ŠH 2.C1 � C2;C/G

ŠH 0.�2
C1�C2

/G ˚ H 1.�1
C1�C2

/G ˚ .H 0.�2
C1�C2

/�/G

ŠH 0.�2
C1�C2

/G ˚ H 1.�1
C1�C2

/G ˚ .H 0.�2
C1�C2

/G/�:

�erefore, writing as usual hq for the dimension of H q ,

h2.X;C/ D 2 � h0.�2
C1�C2

/G C h1.�1
C1�C2

/G ;

whence the claim is proven once we show that

h1.�1
C1�C2

/G � 0 mod 2:

By Künneth’s formula (cf. e.g. [12]) and Hodge theory,

H 1.�1
C1�C2

/ Š.H 1.�1
C1

/ ˝ H 0.OC2
// ˚ .H 1.�1

C2
/ ˝ H 0.OC1

//

˚.H 0.�1
C1

/ ˝ H 1.OC2
// ˚ .H 0.�1

C2
/ ˝ H 1.OC1

//

Š.H 1.�1
C1

/ ˝ H 0.OC2
// ˚ .H 1.�1

C2
/ ˝ H 0.OC1

//

˚.H 0.�1
C1

/ ˝ H 0.�1
C2

// ˚ .H 0.�1
C1

/ ˝ H 0.�1
C2

//:

It is well known that if � is the character of the G-module H 0.�1
C1

/, then N� is

the character of the G-module H 0.�1
C1

/. From this fact it follows that

.H 0.�1
C1

/ ˝ H 0.�1
C2

//G ˚ .H 0.�1
C1

/ ˝ H 0.�1
C2

//G Š V ˚ NV ;

where

V WD .H 0.�1
C1

/ ˝ H 0.�1
C2

//G :

Since the fundamental class of Ci is G-invariant,

.H 1.�1
C1

/ ˝ H 0.OC2
// ˚ .H 1.�1

C2
/ ˝ H 0.OC1

//

D .H 1.�1
C1

/ ˝ H 0.OC2
//G ˚ .H 1.�1

C2
/ ˝ H 0.OC1

//G

Š C2:

�is proves the claim.
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Consider the inclusion

j W Xı WD X n Sing.X/ �! X

and de�ne

z�p
X WD j��

p
Xı :

�eorem 3.3 ([20], (1.10),(1.11), (1.12)). We have

(1) z�p
X is coherent for all pI

(2) z�p
X D ���

p
S , for all pI

(3) z�p
X D .���

p
C1�C2

/G I

(4) there is a morphism of spectral sequences

E
pq
1 D H q.X; z�p

X/

��

��

H) H pCq.X;C/

��

��

E
0pq
1 D H q.S; �

p
S/ H) H pCq.S;C/;

which is injective at the E1-level.

Proposition 3.4. If pg.S/ D 0, then

H 0.C1 � C2; �2
C1�C2

/G D 0:

In particular,

H 2.X;C/ Š H 1.C1 � C2; �1
C1�C2

/G :

Proof. By �eorem 3.3,

H 0.X; z�2
X/ �! H 0.S; �2

S/ D 0

is injective, and

H 0.X; z�2
X/ D H 0.C1 � C2; �2

C1�C2
/G :
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We recall the following version of Schur’s lemma (cf. e.g. [18, Proposition 4]):

Lemma 3.5. Let G be a �nite group and let W be an irreducible G-representation.

�en

(1) dim.W ˝ W �/G D 1I

(2) if W 0 is an irreducible G-representation not isomorphic to W �, then

dim.W ˝ W 0/G D 0:

Remark 3.6. (1) Proposition 3.4 shows that the singularities of the quotient-

model X give no conditions of adjunction for canonical forms, even if the sin-

gularities are not canonical. �is is not true for bicanonical forms.

(2) �e above results (especially the proof of Proposition 3.2) make clear that

the condition that S has vanishing geometric genus gives strong restrictions on

the G-modules H 0.Ci ; �1
Ci

/. For example, using Schur’s lemma, we can list the

following properties:

(a) if � is an irreducible character of G, then H 0.�1
C1

/� D 0 or H 0.�1
C2

/ N� D 0;

(b) dim H 2.X;C/ > 2 if and only if there is an irreducible non selfdual character

� of G such that H 0.�1
C1

/� ¤ 0 and H 0.�1
C2

/� ¤ 0.

Each time that such a situation occurs, the dimension of dim H 2.X;C/ is raised

by two.

An immediate consequence of the above considerations is the following:

Proposition 3.7. Let X D .C1 � C2/=G be the quotient model of a regular

product-quotient surface with pg D 0. Assume moreover that all irreducible rep-

resentations of G are selfdual (e.g. G D Sn). �en

h2.X;C/ D 2:

4. �e invariant 


�e formulas for K2
S , � and q in [6] translate, in the notation of the present paper,

as follows.

Proposition 4.1 ([6], Proposition 1.6 and Corollary 1.7 and [19]). We have

K2
S D 8� � 2
 � l; � D .g1 � 1/.g2 � 1/

jGj C � � 2


4
; q D g1 C g2:
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Observe that the new invariant 
 is (as de�ned in 2.1 and 2.3) a priori a rational

number.

But, in fact, we are going to show in the next proposition that 
 is an integer,

bounded from below by �pg.S/.

Proposition 4.2. We have


.X/ C pg.S/ 2 N:

Moreover, if 
.X/ C pg.S/ D 0, then S has maximal Picard number.

Proof. �e intersection form on H 2.S;C/ shows that the �bres of the two �bra-

tions S ! Ci=G, and the l irreducible exceptional curves of � form a set of l C 2

linearly independent classes in H 1.S; �1
S/. �erefore we have

h1;1.S/ � l � 2 2 N:

By Proposition 3.1,we know that dim H 2.S;C/ D l C dim H 2.X;C/ and, by

Proposition 3.2, we see that h1;1 has the same parity as l . �erefore h1;1 � l � 2 2
2N.

�e claim follows, using Noether’s formula, Hodge theory and Proposition 4.2,

since

2.
 C pg/ D �K2
S C 8� � l C 2pg

D c2.S/ � 4� � l C 2pg

D 2 � 2b1 C b2 � 4 C 4q � 4pg � l C 2pg

D h1;1 � l � 2:

In particular, if 
.X/C pg.S/ D 0, then H 1;1.S/ is generated by algebraic curves

(the �bres of the two �brations and the exceptional curves of �) and therefore S

has maximal Picard number.

Remark 4.3. From Proposition 3.1 and the proof of Proposition 4.2, we get that

h2.X;C/ D 2.
 C 2pg C 1/:

In particular, by Proposition 3.7, if X D .C1 � C2/=G is the quotient model of

a regular product-quotient surface with pg D 0, and if all irreducible representa-

tions of G are selfdual, then 
 D 0.

�e next proposition implies that the possible values of 
 distribute symmet-

rically around zero.
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Proposition 4.4. We have



�q

n

�

D �

�n � q

n

�

:

Proof. Write
n

q
D Œb1; : : : ; bl �;

n

n � q
D Œa1; : : : ; ak�:

�en by [17, Lemma 4]

k
X

1

.ai � 1/ D
l

X

1

.bi � 1/ D k C l � 1:

�erefore

6
�



�q

n

�

C 

�n � q

n

��

D q C q0

n
C n � q C n � q0

n
C

l
X

iD1

.bi � 3/ C
k

X

iD1

.ai � 3/

D 2 C
l

X

iD1

.bi � 1/ � 2l C
k

X

iD1

.ai � 1/ � 2k

D 0:

What concerns an upper bound for 
 in terms of the invariants of S , we have

the following

Conjecture 4.5. �ere is an explicit function � D �.pg ; q/ such that, for the

quotient model X of every product-quotient surface S of general type


.X/ � �.pg.S/; q.S//:

5. A classi�cation algorithm for surfaces of general type

with given pg , q and 


In [6] we developed an algorithm producing all product-quotient surfaces with

given values of K2
S , and �.OS / (as input).

In the following we shall show that we can substitute 
 to K2
S ; in other words,

�xing � and 
 2 N, we also get a �nite problem. In particular, answering in the

a�rmative Conjecture 4.5 we would have an algorithm constructing all product-

quotient surfaces with �xed values of q and pg .
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To ease the forthcoming formulas, we also introduce the following:

De�nition 5.1. We set

� WD �.X/ WD 4� C 2
 � � 2 Q:

Remark 5.2. Observe that � only depends on � and on the basket B. Moreover,

�.X/ D 4.g1 � 1/.g2 � 1/

jGj D
K2

X

2
:

We recall the following theorem due to Xiao Gang:

�eorem 5.3 ([21]). Let T be a minimal surface of general type and G a �nite

group of automorphisms of T , such that T=G is of general type. Let Y be the

minimal model of a resolution of singularities of T=G. �en

1 � K2
Y �

K2
T

jGj :

Using remark 5.2 we immediately get the following lower bound for �.

Corollary 5.4. We have

�.X/ � 1

2
K2

NS
� 1

2
:

Proof. �is follows immediately, since

K2
C1�C2

jGj D K2
X D 2�:

We consider the two natural �brations

f1 W S �! C1=G; f2 W S �! C2=G;

and denote the generic �bre of fi by Fi . Observe that F1 is isomorphic to C2 and

F2 is isomorphic to C1.

�ese �brations have been studied in detail in [16]. If the type of X is

..g1I m1; : : : ; mr /; .g2I n1; : : : ; ns//;

then f1 has exactly r reducible �bers, all non reduced, of the form

F1 � mi F
.i/
1 C

X

aj Aj ; 1 � i � r;

where the Aj ’s are contracted by � . Similarly the second �bration f2 W S ! C2=G

with general �bre F2 isomorphic to C1, has s reducible �bers of the form

ni F
.i/
2 C

X

bj Aj :



334 I. Bauer and R. Pignatelli

Remark 5.5 (cf. [19], �eorem 2.1). Each singular point x of X lies on �.F
.i/
1 /

for one i . Moreover, if x is of type q
n
, then n divides mi .

We will need the following result by F. Polizzi, computing the self intersection

.F
.i/
1 /2 from the types of the singularities of X along �.F

.i/
1 /.

Proposition 5.6 ([16], Proposition 2.8).

X

x2Sing X\�.F
.i/

1
/

q

n
.x/ D �.F

.i/
1 /2 2 N;

where x is a singular point of type q
n
.x/.

Moreover, if x 2 �.F
.i/
1 / \ �.F

.j /
2 / and the contribution of x to .F

.i/
1 /2 is q

n
,

then its contribution to .F
.j /
2 /2 is q0

n
.

We shall show now (Proposition 5.11) that for �xed 
 , pg and q there is a

�nite list containing all possible signatures involved in the construction of product-

quotient surfaces with those values of 
 , pg and q.

Before doing this, we need to recall further invariants, the integers ˛i , which

were already considered in our previous papers.

De�nition 5.7. We set

˛1 WD 4� C 2
 � �

2‚1

D �

2‚1

;

˛2 WD 4� C 2
 � �

2‚2

D �

2‚2

:

In fact, we have (cf. e.g. [3])

Proposition 5.8. ˛i D giC1 � 1 2 N.

Proof. Without loss of generality we can assume i D 1. �en

˛1 D �

2‚1

D 2.g1 � 1/.g2 � 1/

jGj‚1

D g2 � 1 2 N:

�e following inequality allows to bound the multiplicities in the signatures in

terms of the genera of the involved curves.

�eorem 5.9 ([22]). Let H be a cyclic group of automorphisms of a compact

Riemann surface C of genus g � 2. �en jH j � 4g C 2.
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In fact, an immediate consequence of Wiman’s inequality is the following:

Corollary 5.10. For all 1 � i � r , 1 � j � s,

mi ; nj � 2 min
�� �

‚1

C 3
�

;
� �

‚2

C 3
��

:

�e next proposition gives upper bounds for r; s, mi and nj in terms of � and

g.Ci =G/.

Proposition 5.11. �e following inequalities hold:

a) r � � C 4 � 2g.C1=G/I

b) if g.C1=G/ > 0 or r > 3, then for all 1 � i � r it holds

mi �3 C 2� C 1 C
p
S

4g.C1=G/ C r � 3

<6 C 4� C 2

4g.C1=G/ C r � 3
;

where

S WD .3.4g.C1=G/ C r � 3/ C 2� C 1/2 � 12.4g.C1=G/ C r � 3/I

c) if g.C1=G/ D 0 and r � 3, then r D 3 and

mi � 6Œ� C 1 C
p

�.� C 2/� < 12.� C 1/

for 1 � i � 3.

Analogous bounds hold for s; nj .

Proof. a) By 1 � ˛1 D �
2‚1

, 2‚1 � �. Since by de�nition

‚1 � 2g.C1=G/ � 2 C r

2
;

we get

r � 2‚1 C 4 � 2g.C1=G/ � � C 4 � 2g.C1=G/:
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b) If r D 0 there is nothing to prove, so we may assume r � 1. Let m1 be the

maximum of the mi . Note that by de�nition

‚1 � 2g.C1=G/ C r � 3

2
� 1

m1

D m1.4g.C1=G/ C r � 3/ � 2

2m1

:

By assumption m1.4g.C1=G/ C r � 3/ � 2 � 0. Moreover

m1.4g.Ci / C r � 3/ � 2 D 0

implies that the signature is .0I 2; 2; 2/, which implies ‚1 D �1
2

< 0, a contradic-

tion. So

m1.4g.C1=G/ C r � 3/ � 2 > 0;

whence, from corollary 5.10,

m1 � 2
� �

‚1

C 3
�

� 2
� 2m1�

m1.4g.C1=G/ C r � 3/ � 2
C 3

�

;

so

m2
1.4g.C1=G/ C r � 3/ � 2m1.3.4g.C1=G/ C r � 3/ C 2� C 1/ C 12 � 0:

�is immediately implies the desired inequality.

c) By corollary 5.4 we have � � 1
2

> 0, and therefore the claimed upper bound

for mi is > 6. �erefore we can assume without loss of generality that m1 > 6.

Since ‚1 > 0 it follows r � 3 (so r D 3) and ‚1 C 1
m1

� 1
6

with equality if

and only if the signature is .0I 2; 3; m1/. So ‚1 � m1�6
6m1

and

m1 � 2
� �

‚1

C 3
�

� 2
� 6m1�

m1 � 6
C 3

�

which is equivalent to

m2
1 � 12.� C 1/m1 C 36 � 0

and we can conclude as before.

We are now prepared to give the necessary bounds in order to show that given


 , pg and q, there is a �nite number of families of product-quotient surfaces with

these invariants.

Recall that g.Ci=G/, i D 1; 2, is bounded by q (Proposition 4.1), whence it is

enough to produce upper bounds for the remaining natural numbers involved, i.e.,

we need to bound r; s, mi and nj in terms of pg and q.
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Remark 5.12. If S is of general type then

# Sing X D #B.X/ � 8� C 4
 � 1:

Proof. �e inequality follows by Corollary 5.4 since, by the de�nition of �,

#B.X/ � 2�.

We now give an upper bound for the multiplicity of each singularity of X

in terms of pg , q and 
 . �is, together with remark 5.12, produces a �nite list

of possibilities for the basket of singularities of the quotient model of a product

quotient surface with given values of pg , q and 
 .

Proposition 5.13. Let S be of general type. �en

a) if q
n

2 B, then n � 12.4� C 2
 � 1/;

b) if moreover 
 ¤ 0, then n � 12.4� C 2
 � 3
2
/.

Proof. a) If the basket is empty, then the claim is empty. Otherwise assume that

there is a singular point x of type q
n
, and let mi be the multiplicity of the central

component of the �bre of f1 containing it. �en by lemma 5.6 there is at least one

further singular point on the same �bre, and, if there is only one, it is of type n�q
n

.

It follows � � 2 � 2
n
.

By proposition 5.11 and remark 5.5 we know that

n � mi

< 12.4� C 2
 � � C 1/

� 12
�

4� C 2
 � 1 C 2

n

�

:

�erefore

n � 24

n
< 12.4� C 2
 � 1/:

If 4� C 2
 � 1 � 2, then the right-hand side is bigger than 24, hence

n � 12.4� C 2
 � 1/: (4)

By Proposition 4.2 and Corollary 5.4, 4� C 2
 � 1 is a positive integer, so it

remains to consider only the case 4� C 2
 � 1 D 1. In this case Corollary 5.4

yields � � 3
2
, and therefore either there are three points of multiplicity 2 or there

are exactly two singular points, both of multiplicity n � 4. In all cases (4) hold.
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b) If the basket contains exactly 2 elements, they are by Proposition 5.6 of

respective type q
n

and n�q
n

and then by Proposition 4.4 
 D 0. �erefore 
 ¤ 0

implies that there are at least three singular points, and a straightforward compu-

tation gives � � 5
2

� 3
n
, whence

n � 36

n
< 12

�

4� C 2
 � 3

2

�

:

�e claim follows by the same argument as in the previous case.

Remark 5.14. We have shown that the classi�cation problem is �nite. In fact,

we know that there are �nitely many possibilities for the basket of singularities.

If we �x a basketB, then we have to show that there are �nitely many possibilities

for

� the order of the group G, and for

� the two types t1 D .g.C1=G/I m1; : : : ; mr/ and t2 D .g.C2=G/I n1; : : : ; ns/.

Note that by Proposition 5.15 a), jGj is determined by t1 and t2. �e length r

(resp. s) of t1 (resp. t2) is bounded by proposition 5.11, a), whereas a bound for the

mi (resp. nj ) is given by loc. cit. b), c).

We are now ready to write an algorithm producing, for each �xed value of the

triple .pg ; q; 
/, all product quotient surfaces with those values of pg , q and 
 .

Still, for implementing a reasonable (quick) algorithm it is convenient to use also

the following additional information which we have proved in [6].

Proposition 5.15. We have

a) jGj D 4˛1˛2

�
D �

‚1‚2
I

b) for each i , I�
‚1mi

2 NI

c) there are at most jBj
2

indices such that I�
2‚1mi

62 NI

d) mi � 1CI�
f

, where f WD max
�

1
6
; r�3

2

�

I

e) except for at most jBj
2

indices, it holds: mi � 2CI�
2f

.

Similar statements as b), c), d) obviously hold for .n1; : : : ; ns/.



Product-quotient surfaces: new invariants and algorithms 339

Proof. a) It follows by Remark 5.2 and Proposition 5.8.

b-c) See [6], Proposition 1.13.

d) Let m1 be the biggest of the mi ’s. �en ‚1 C 1
m1

� f whence,

mi � m1 � 1 C ‚1m1

f
� 1 C I�

f
;

where f WD max
�

1
6
; r�3

2

�

.

�e proof of e) is similar.

We describe now explicitly an algorithm producing all product quotient sur-

faces of general type with �xed pg , q and 
 .

Indeed, Corollary 5.12 and Proposition 5.13 produce, once �xed pg , q and 
 ,

a �nite list of possible baskets. �e basket determines also �, l and �.

Moreover, 0 � g.C1=G/ � q varies also in a �nite set (and determines

g.C2=G/ D q � g.C1=G/).

For each basket in the list, and for each choice of g.C1=G/, Proposition 5.11

gives a �nite list of possible signatures for the action of G on C1 (and similarly

on C2). Most of the signature obtained can be excluded by using the other condi-

tions we know:

� Remark 5.5 ensures that for each singularity of type q
n

there is an i such that

njmi ;

� ˛ 2 N;

� Proposition 5.15, b), c), d), e).

Finally, for each pair of signatures, we can run a search over all groups of the

order predicted by Proposition 5.11, a), whether there is a pair of generating vectors

of the prescribed signatures.

We have implemented this algorithm in MAGMA ([4]) in the case q D 0.

�e interested reader may download the commented script from

http://www.science.unitn.it/~pignatel/papers/RegP-QByPgGamma.magma

�e command ExistingSurfaces(pg,
,M) has two outputs: a list of regular

product-quotient surfaces with the given values of pg and 
 , and quotient model

whose singularity of maximal multiplicity has multiplicity M , and a list of skipped

cases, pairs (group,signature) which the computer could not handle (for technical

reasons): if there is a regular product-quotient surface with those values of pg and


 which is not in the �rst output, group and signature are in the second output.

http://www.science.unitn.it/~pignatel/papers/RegP-QByPgGamma.magma
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To get all product-quotient surfaces with given values of pg and 
 one should

run it with M up to the maximum predicted in Proposition 5.13, and then check the

second output for missing surfaces. In all cases we run we could show, by argu-

ment similar to those used in [6], that the �rst list is complete; in other words, that

the computation skipped by the computer do not give rise to a product-quotient

surface.

6. Does 
 detect minimality?

In [6] the authors ran a computer program whose output lists all product-quotient

surfaces with pg D 0 and K2
S � 1. Inspecting the output it turned out that all

surfaces are minimal (hence of general type) with the exception of one case. All

minimal product-quotient surfaces satisfy 
.S/ D 0, while the only non-minimal

surface in the list has 
 D 1. It seems therefore natural to conjecture that 
 is

related to the minimality of a product-quotient surface. Or, more ambitiously, that

one can bound the number of exceptional (-1)-cycles on a product-quotient surface

in terms of 
 .

We make the following

Conjecture 6.1. Let S be a regular product-quotient surface of general type. �en


.S/ C pg.S/ D 0 () S is minimal:

In the sequel we shall give a proof of this conjecture in the special case pg D 0.

In fact, we have

�eorem 6.2. Let S be a product-quotient surface of general type with pg D 0.

�en


.S/ D 0 () S is minimal:

Remark 6.3. Unfortunately, we do not have a conceptional proof of the above the-

orem, which could shed some light on a possible connection between the number

of exceptional cycles on a product-quotient surface and the invariant 
 , or 
 Cpg .

�e proof is just a case by case inspection of the output of the MAGMA script

listing all product-quotient surfaces with pg D 
 D 0.

Proof. Running the MAGMA script ExistingSurfaces(0,0,M) for M � 36,

we only have to take care of the surfaces S with K2
S � 0. In fact, if K2

S > 0, it

has already been proven in [6] (cf. also �eorem 1.2 and the corresponding tables)

that in these cases 
 D 0.
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�erefore the proof is �nished once we show that the cases with KS � 0 in the

output of ExistingSurfaces(0,0,M) for M � 36 are not of general type.

�is will be taken care of in the remaining part of the section.

First of all we list the output of the surfaces with K2
S � 0 in Table 1.

Table 1. Product-quotient surfaces with 
 D pg D 0 not of general type

K2
S Sing X t1 t2 G

1) 0 1
6

; 5
6

; 2 � 1
2

2; 4; 6 2; 4; 6 SmallGroup(192,955)

2) 0 1
6

; 5
6

; 2 � 1
2

2; 4; 6 2; 5; 6 SmallGroup(120,34)

3) 0 1
6

; 5
6

; 2 � 1
2

2; 4; 6 2; 2; 2; 6 SmallGroup(48,48)

4) -2 2 � 1
5

; 2 � 4
5

2; 5; 5 2; 5; 5 SmallGroup(80,49)

5) 0 4 � 2
5

2; 5; 5 2; 5; 5 SmallGroup(80,49)

6) 0 2 � 1
4

; 2 � 3
4

2; 4; 5 3; 4; 4 SmallGroup(120,34)

7) 0 2�; 1
4

; 2 � 3
4

2; 2; 2; 4 2; 2; 2; 4 SmallGroup(16,11)

8) 0 2 � 1
4

; 2 � 3
4

2; 2; 2; 4 3; 4; 4 SmallGroup(24,12)

9) 0 2 � 1
4

; 2 � 3
4

3; 4; 4 3; 4; 4 SmallGroup(36,9)

10) -1 1
5

; 2 � 2
5

; 4
5

2; 5; 5 3; 3; 5 SmallGroup(60,5)

We need the following:

Proposition 6.4. Let S be a product-quotient surface and let A1; : : : Al be the

exceptional curves of � of respective sel�ntersection bi . Assume that

E � �1

jGjF1 C �2

jGjF2 �
l

X

iD1

aiAi 2 H 2.S;Q/:

�en �i 2 N. Moreover, let M be the intersection matrix of the basket (i.e., of

the Ai ’s), and set

b WD

0

B

B

B

B

B

B

B

@

KSA1

KSA2

�
�
�

KSAl

1

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

@

b1 � 2

b2 � 2

�
�
�

bl � 2

1

C

C

C

C

C

C

C

A

; e WD

0

B

B

B

B

B

B

B

@

EA1

EA2

�
�
�

EAl

1

C

C

C

C

C

C

C

A

:
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�en

KSE D �1‚2 C �2‚1 C eT M �1b; (5)

E2 D 2�1�2

jGj C eT M �1e: (6)

Proof. Note that �1 D EF2; in particular �1 2 N. Similarly �2 2 N.

Since

��KX � 1

jGj ..2g1 � 2/F1 C .2g2 � 2/F2/ � ‚1F1 C ‚2F2;

then

KS � ‚1F1 C ‚2F2 � A;

where A is of the form
Pl

iD1 ˛iAi for some ˛i 2 Q. Set

a WD

0

B

B

B

B

B

B

B

@

a1

a2

�
�
�

al

1

C

C

C

C

C

C

C

A

; ˛ WD

0

B

B

B

B

B

B

B

@

˛1

˛2

�
�
�

˛l

1

C

C

C

C

C

C

C

A

:

Since for all i ,

AiF1 D AiF2 D 0;

then

AAi D �KSAi D �.bi � 2/I

in other words

M˛ D �b:

Similarly

Ma D �e:

Since M is invertible, we can also write

b D �M �1˛

and

e D �M �1a:
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�en

KSE D �1‚2 C �2‚1 C
X

ai AiA

D �1‚2 C �2‚1 C aT M˛

D �1‚2 C �2‚1 C eT M �1b:

Similarly

E2 D 2�1�2

jGj �
�

l
X

iD1

aiAi

�2

D 2�1�2

jGj C aT Ma

D 2�1�2

jGj C eT M �1e:

Remark 6.5. By the proof of Proposition 4.2, if pg C 
 D 0, the set ¹Ai ; Fj º is a

basis of H 2.X;Q/, so the assumption of Proposition 6.4 is automatically veri�ed

by every curve E.

To show that the surfaces in Table 1 are not of general type we argue by con-

tradiction, assuming that they are of general type, and showing that the minimal

model has K2
xS

< 0. To do that, we look for rational curves E with sel�ntersection

�1, and study their image �.E/ in the quotient model X .

We recall that

Proposition 6.6. Let ˛ W P1 ! X be a generically injective map (i.e., ˛.P1/ � X

is a rational curve). �en ˛�1.Sing.X// has cardinality at least three.

Proof. �is has been shown in the proof of [6, Proposition 4.7]

Proposition 6.7. Let S be a smooth surface of general type and let C � S be an

irreducible curve with KSC � 0. �en C is smooth and rational.

Proof. See [6, Remark 4.3]

Corollary 6.8. If S is a surface of general type, E a .�1/�curve on S and C a

curve with C 2 D �b. �en CE � max.1; b � 3/.

Proof. Else, contracting E, we obtain a surface of general type with a curve,

the image of C , contradicting Proposition 6.7.
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We will also need the following

Lemma 6.9. Let S be a product-quotient surface of general type. Suppose that

the exceptional locus of � consists of

i) curves of self intersection .�3/ and .�2/, or

ii) at most two smooth rational curves of self-intersection .�3/ or .�4/, and

.�2/-curves.

�en S is minimal.

Proof. i) �is is [10, Corollary 4.8].

ii) Assume that S contains a (-1)-curve E. Note that E cannot intersect two

di�erent (-2)-curves or, contracting it, we would get two (-1)-curves intersecting

transversally, impossible on a surface of general type. �en by Proposition 6.6

and Corollary 6.8 the exceptional locus contains two curves of self-intersection

(-3) or (-4), say E1 and E2, EE1 D EE2 D 1 and moreover E intersects exactly

one (-2)-curve, transversally. After contracting E, then the image of the (-2)-curve

we get two rational curves of self intersections (-1) or (-2), intersecting each other

with multiplicity bigger than one, which is impossible on a surface of general

type.

Remark 6.10. Observe that if we arrive, after contracting one or more exceptional

curves, to a con�guration as in the previous lemma with maybe singular (-4) resp-

(-3)-curves, the same argument applies, showing that on a surface of general type

there cannot be more (-1)-curves.

We can now prove that all surfaces in Table 1 are not of general type.

Lemma 6.11. �e product-quotient surfaces 1), 2), 3) in Table 1 are not of general

type.

Proof. In this case the basket is ¹1
6
; 5

6
; 2 � 1

2
º. We have 8 curves A; : : : ; A8, which

we order in a natural way, such that A2
1 D �6, and A7, A8 are the inverse images

of the nodes.

Assume that there exist a (-1)-curve E. In the notation of Proposition 6.4

b D

0

B

B

B

B

B

B

B

@

4

0

�
�
�
0

1

C

C

C

C

C

C

C

A

:
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We notice again that E cannot intersect two di�erent (-2)-curves, so by Proposi-

tion 6.6 and corollary 6.8, BA1 � 2. But then E cannot intersect A2; : : : ; A6 since

else, after contracting it we could contract enough other curves intersecting the

image of A1 to contradict proposition 6.7. �e possibilities left for e are thus

a/

0

B

B

B

B

B

B

B

@

3

0

�
�
�
0

1

C

C

C

C

C

C

C

A

; b/

0

B

B

B

B

B

B

B

@

2

0

�
�
0

1

1

C

C

C

C

C

C

C

A

; c/

0

B

B

B

B

B

B

B

@

2

0

�
�
1

0

1

C

C

C

C

C

C

C

A

:

Note that the second and third case are symmetric, one obtained from the other

exchanging the two nodes. �erefore it su�ces to treat only the cases a) and b).

Applying proposition 6.4 and substituting EKS D E2 D �1 in equations 6

and 5 we get in each of the three cases:

(1) here ‚1 D ‚2 D 1
12

and

a) �1 C �2 D 12, �1�2 D 48,

b) �1 C �2 D 4, �1�2 D 16;

(2) here ‚1 D 1
12

, ‚2 D 2
15

and

a) 8�1 C 5�2 D 60, �1�2 D 30,

b) 8�1 C 5�2 D 20, �1�2 D 10;

(3) here ‚1 D 1
12

, ‚2 D 1
3

and

a) 4�1 C �2 D 12, �1�2 D 12,

b) 4�1 C �2 D 4, �1�2 D 4.

In all cases there are no integral solutions, a contradiction.

Lemma 6.12. �e product-quotient surface 4) in Table 1 is not of general type.

Proof. Here the basket is ¹2 � 1
5
; 2 � 4

5
º. Assume that S is of general type.

Since K2
S D �1 there must be a (-1)-curve E on S . E has to intersect at least

one (-5)-curve, and cannot intersect any rational (-2)-curve (or, as in the previous

proof, after contracting it, we could contract enough curves to contradict Propo-

sition 6.7).

So E passes twice through one of the (-5)-curves and at least once through the

other. After contracting E we get a surface S 0 with a con�guration of

rational curves as in Remark 6.10. �erefore S 0 is minimal, a contradiction,

since K2
S 0 D �1.
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Lemma 6.13. �e product-quotient surfaces 5), 6), 7), 8), 9) in Table 1 are not of

general type.

Proof. Here the basket is ¹2 � 1
4
; 2 � 3

4
º or ¹4 � 2

5
º. In all cases, if S was of

general type, it would be minimal by Lemma 6.9. A contradiction, since in all

casesK2
S D 0.

Lemma 6.14. �e product-quotient surface 10) in Table 1 is not of general type.

Proof. Here the basket is ¹1
5
; 2 � 2

5
; 4

5
º. Assume that S is of general type. �en

S contains a (-1)-curve E. After contracting E, which has to pass at least once

through the (-5)-curve and at least once through a (-3)-curve, we get a surface S 0

with a con�guration of rational curves as in Remark 6.10 and we get a contradiction

since K2
S 0 D 0.

�is concludes the proof of �eorem 6.2.

7. Surfaces of general type with pg D 0 and 
 > 0

We shall give now a detailed description of the minimal models of the three

product-quotient surfaces of general type with pg D 0 and 
 > 0 which we

found running our computer program. In fact, we believe that there are no more

non-minimal product-quotient surfaces of general type with pg D 0 left.

7.1. A numerical Godeaux surface with torsion of order 4. �e group G is the

subgroup of order 96 of the permutation group S8 generated by .123/, .12/.34/,

.57/ and .5678/.12/.

Its action on ¹1; : : : ; 8º has two orbits, ¹1; : : : ; 4º and ¹5; : : : ; 8º. Indeed G is an

index 2 subgroup of S4 �D4 where S4 is the permutation group of ¹1; 2; 3; 4º, and

D4 is the isometry group of the square, embedded in S8 by considering its action

on the vertices of the square and labeling them counterclockwise as 5; 6; 7; 8.

�e curves C1 and C2 are very similar, they are both G-covers of P1 branched

on ¹p1 D 1; p2 D 0; p3 D 1º with respective generating vectors

� ¹g1 WD .123/.57/; g2 WD .4321/.56/.78/; g3 WD .g1g2/�1/º;

� ¹g0
1 WD .123/.57/; g0

2 WD .4321/.5678/; g0
3 WD .g0

1g0
2/�1/º.

�eir respective signatures are .0I 6; 4; 4/ and .0I 6; 4; 2/.

Our computer program shows that
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Proposition 7.1. �e product-quotient surface S with quotient model

X D .C1 � C2/=G

above has

pg D q D K2
S D 0;

�1.X/ Š Z4;

and


 D 1:

�e basket of singularities of X is

°

2 � 1

6
;
2

3
; 2 � 1

2

±

:

All singular points of X are mapped onto .1; 1/ by the natural map

X D .C1 � C2/=G �! P1 � P1 D C1=G � C2=G:

We consider the map

P1 z 7!z4

����! P1;

and the normalization of the �bre product as in the following commutative dia-

gram (for i D 1; 2):

C 0
i

�i
//

�i

��

Ci

��

P1 // P1

�en �i is a G�cover of P1 branched in the 4�th roots of unity. Lifting loops as

in the following picture
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we see that �1 is the G�cover with generating vector

¹g1; g2g1g�1
2 ; g2

2g1g�2
2 ; g3

2g1g�3
2 º

and �2 is the G�cover with the analogous generating vector obtained substituting

gi with g0
i .

Remark 7.2. It is worth mentioning that here the word “generating” is a slight

abuse of notation, since the above elements do not generate the whole group G.

�is implies that C 0 is not connected, the number of connected components being

the index of the subgroup generated by ¹g1; g2g1g�1
2 ; g2

2g1g�2
2 ; g3

2g1g�3
2 º in G;

this does not a�ect in any way our argument.

�e reader can easily check that the two generating vectors coincide, so �1 and

�2 are isomorphic G�covers. In particular, we have a map

�0 W � Š C 0
1 Š C 0

2

.�1;�2/����! C1 � C2

which is G�equivariant, hence induces a morphism on the quotient

� W �=G Š P1 �! X D .C1 � C2/=G

and

E 0 WD �.P1/

is a rational curve on X .

Denote by A1, A2 the inverse images of the singularities 1
6

in S , and by E the

strict transform of E 0.

Proposition 7.3. E is a smooth rational curve with

KSE D E2 D �1:

Moreover,

E.A1 C A2/ D 4;

and

EAi D 0

for every further exceptional curve Ai of � .
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Proof. First of all, let us show that � is generically injective. In fact, composing

with the map

X �! P1 � P1

we get the map

P1 z 7!z4

����! P1 � P1I

this shows that � is d-to-1 for a positive integer d which is a divisor of 4.

On the other hand, since all singular points of X lie over .1; 1/, this also shows

that only the 4th roots of unity may be mapped to singular points of X . So E 0 will

pass at most 4
d

times through singular points of X , and we get by Proposition 6.6

that d D 1.

�e smoothness of E follows easily by a local computation. �e only points of

E 0 contained in Sing X , the 4th roots of unity, have stabilizer of order 6, so they

are mapped to singular points of multiplicity 6. �is implies E.A1 C A2/ D 4 and

EAi D 0 for every further exceptional curve of � .

�en

E D ��E 0 � a1

6
A1 � a2

6
A2

with a1 C a2 D 4. Moreover

KXE 0 D KC1�C2
�0.�/

jGj D 4jGj‚1 C 4jGj‚2

jGj D 4.‚1 C ‚2/ D 5

3
:

�erefore

KSE D KX E 0 � a1

6
KSA1 � a2

6
KSA2 D 5

3
� 4

6
.a1 C a2/ D �1:

Finally we can prove

�eorem 7.4. Contracting E we get a minimal surface. In particular the minimal

model of S is a numerical Godeaux surface with torsion of order 4.

Proof. Since K2
xS

> 0, q D 0, �1. xS/ ¤ 0, by the Enriques–Kodaira classi�cation

xS is of general type.

By corollary 6.8, EA1; EA2 � 3, so .EA1; EA2/ equals either .2; 2/, or .3; 1/,

or .1; 3/.

In the �rst case, the following picture describes how the con�guration of curves

changes after the contraction.
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�e minimality follows then directly by remark 6.10. A similar argument gives the

minimality in the other two cases.

7.2. A numerical Godeaux surface with torsion of order 5. �e group G is

Z2
5. �e curves C1 and C2 are two G-covers of P1 branched on ¹p1 D 1, p2 D 0,

p3 D 1º with respective generating vectors

� ¹g1 WD .1; 0/; g2 WD .0; 1/; g3 WD .g1g2/�1/º;
� ¹g0

1 WD .1:0/; g0
2 WD .1; 1/; g0

3 WD .g0
1g0

2/�1/º.
Both signatures are .0I 5; 5; 5/. Our computer program shows that

Proposition 7.5. �e product-quotient surface S with quotient model

X D .C1 � C2/=G

above has

pg D q D K2
S D �1;

�1.X/ Š Z5

and


 D 2:

�e basket of singularities of X is

°

5 � 1

5

±

:

All singular points of X are mapped onto .1; 1/ by the natural map

X D .C1 � C2/=G �! P1 � P1 D C1=G � C2=G:

Since all singularities lie over .1; 1/, they all lie in the same �bre of each

of the two isotrivial �brations, whose central components we denote by E1 and

E2 respectively. �ey are Z5-quotients of C2 resp. C1 with 5 branching points;

Hurwitz’ formula shows that both E1 and E2 are rational. By Proposition 5.6,

E2
1 D E2

2 D �51
5

D �1. So both curves are exceptional divisors of the �rst kind.
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�eorem 7.6. Contracting E1 and E2 we get a minimal surface. In particular,

the minimal model of S is a numerical Godeaux surface with torsion of order 5.

Proof. Since K2
xS

> 0, q D 0, �1. xS/ ¤ 0, by the Enriques–Kodaira classi�cation

xS is of general type.

�e following picture describes how the con�guration of curves changes after

the contraction.

�e minimality follows then directly by remark 6.10.

7.3. Are there more product-quotient surfaces of general type with pg D 0?

By the results in[6] and �eorem 6.2 there are exactly 72 families of surfaces of

general type with pg D 
 D 0. By Proposition 4.2 all missing product-quotient

surfaces of general type have 
 > 0. We know three examples of them, the fake

Godeaux described in [6] (with K2
S D 
 D 1, K2

NS
D 3), and the two numerical

Godeaux surfaces described in this section.

We can prove the following

Proposition 7.7. Let S be a product-quotient surface of general type with pg D 0

not among the 75 families just mentioned. �en

� either 
 � 4,

� or 
 D 3 and X has a singular point of multiplicity at least 14,

� or 
 D 2 and X has a singular point of multiplicity at least 45.

�e proof is obtained by running our program for 
 D 1 and multiplicity up

to 54 (the maximal possible value by Proposition 5.13), 
 D 2 and multiplicity up

to 44 (here the maximal value by 5.13 is 78, 
 D 3 and multiplicity up to 13, and

then by showing case by case that the resulting surface is not of general type.

�e full list of the cases to consider is the Tables 2, 3, 4 and 5. Note that in

the last column we list only the SmallGroup identi�er of the MAGMA database

of groups up to order 2000, i.e. (n,m) means the m-th group of order n.
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We skip the details of the proof, which is rather long (since the cases are many)

and most of the times straightforward, repeating arguments already used in this

paper. Still in a few cases quite some e�ort is needed to show that the surface is

not of general type. Unfortunately, we do not know a systematic way to prove that

certain product-quotient surfaces cannot be of general type.

Remark 7.8. Note that the surfaces of general type we have found have singular

points of multiplicity much smaller than the bounds in Proposition 7.7, giving

some evidence to the conjecture that there are no other examples. Still, we cannot

prove it without proving �rst Conjecture 4.5 at least in the case pg D q D 0,

�nding �.0; 0/ explicitly.

Table 2. Product-quotient surfaces not of general type with pg D q D 0, 
 D 1


 K2
S Sing X t1 t2 G

1 -2 4 � 1
2

; 4 � 1
4

4; 4; 4 4; 4; 4 (16,2)

1 -3 2 � 1
2

; 1
3

; 2 � 2
3

; 2 � 1
6

2; 6; 6 2; 6; 6 (48,49)

1 -3 4 � 1
2

; 1
7

; 2 � 2
7

2; 3; 7 4; 4; 7 (168,42)

1 -3 4 � 1
2

; 1
4

; 1
8

; 5
8

2; 4; 8 4; 4; 8 (32,11)

1 -4 6 � 1
2

; 2
3

; 2 � 1
6

2; 4; 6 2; 2; 2; 6 (24,8)

1 -4 2 � 1
3

; 3 � 2
3

; 2 � 1
6

3; 3; 6 3; 3; 6 (36,11)

1 -4 2 � 1
2

; 1
3

; 2
3

; 1
7

; 2 � 2
7

2; 3; 7 3; 4; 7 (168,42)

1 -4 7 � 1
2

; 1
8

; 3
8

2; 3; 8 2; 2; 2; 8 (48,29)

1 -4 2 � 1
2

; 1
3

; 2
3

; 1
4

; 1
8

; 5
8

2; 3; 8 3; 4; 8 (96,64)

1 -5 2 � 1
3

; 2 � 2
3

; 1
7

; 2 � 2
7

2; 3; 7 3; 3; 7 (168,42)

1 -5 2 � 1
3

; 2 � 2
3

; 1
7

; 2 � 2
7

3; 3; 7 3; 3; 7 (21,1)

1 -5 2 � 1
2

; 2 � 1
4

; 3
4

; 1
8

; 5
8

2; 4; 8 2; 4; 8 (64,32)

1 -8 2 � 3
4

; 2 � 1
8

; 2 � 5
8

2; 8; 8 2; 8; 8 (16,5)

1 -8 4 � 1
2

; 2 � 3
4

; 1
12

; 5
12

2; 4; 12 2; 4; 12 (24,5)
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Table 3. Product-quotient surfaces not of general type with pg D q D 0, K2 � �8, 
 D 2

and singularities of multiplicity at most 44


 K2
S Sing X t1 t2 G

2 -3 1
2

; 1
3

; 2
3

; 1
4

; 2 � 1
8

2; 3; 8 4; 6; 8 (192,181)

2 -4 5 � 1
2

; 1
4

; 2 � 1
8

2; 4; 8 4; 4; 8 (64,8)

2 -5 3 � 1
2

; 3 � 1
3

; 3 � 1
6

3; 6; 6 3; 6; 6 (18,5)

2 -6 8 � 1
3

; 2 � 1
6

3; 3; 6 3; 3; 6 (36,11)

2 -6 7 � 1
2

; 1
4

; 2 � 1
8

2; 4; 8 2; 4; 8 (128,75)

2 -6 1
4

; 3
4

; 2 � 1
8

; 2 � 3
8

2; 4; 8 2; 2; 8; 8 (32,9)

2 -6 1
2

; 2 � 1
3

; 2 � 2
3

; 1
4

; 2 � 1
8

2; 3; 8 3; 4; 8 (192,181)

2 -6 3 � 1
2

; 2 � 1
4

; 3
4

; 2 � 1
8

2; 4; 8 2; 2; 4; 8 (32,9)

2 -6 7 � 1
2

; 2 � 1
5

; 1
10

2; 5; 10 2; 5; 10 (50,3)

2 -6 4 � 1
2

; 2 � 1
4

; 1
12

; 5
12

2; 4; 12 2; 2; 4; 12 (24,5)

2 -6 2 � 1
2

; 4 � 1
3

; 1
12

; 7
12

2; 3; 12 3; 6; 12 (72,42)

2 -7 2 � 1
3

; 2 � 2
3

; 5 � 1
5

3; 3; 5 3; 3; 5 (75,2)

2 -7 5 � 1
2

; 3 � 1
3

; 3 � 1
6

2; 6; 6 2; 6; 6 (36,12)

2 -7 5 � 1
2

; 1
3

; 2
3

; 1
4

; 2 � 1
8

2; 3; 8 2; 6; 8 192,181)

2 -7 2 � 1
2

; 1
3

; 2
3

; 2 � 1
4

; 1
12

; 5
12

2; 3; 12 4; 12; 12 (48,33)

2 -8 4 � 1
2

; 2 � 2
3

; 4 � 1
6

2; 4; 6 2; 2; 6; 6 (24,8)

2 -8 4 � 1
2

; 2 � 2
3

; 4 � 1
6

2; 6; 6 2; 2; 6; 6 (12,5)

2 -8 6 � 1
2

; 2 � 1
8

; 2 � 3
8

2; 4; 8 2; 2; 8; 8 (16,8)

2 -8 6 � 1
2

; 2 � 1
8

; 2 � 3
8

2; 3; 8 2; 2; 8; 8 (48,29)

2 -8 9 � 1
2

; 1
4

; 2 � 1
8

2; 4; 8 2; 4; 8 (64,8)

2 -8 2 � 1
2

; 2 � 1
4

; 2 � 1
8

; 2 � 5
8

2; 8; 8 2; 8; 8 (32,5)

2 -8 2 � 1
2

; 1
4

; 3
4

; 2 � 1
8

; 2 � 3
8

2; 8; 8 4; 8; 8 (16,5)

2 -8 6 � 1
2

; 4
5

; 2 � 1
10

2; 4; 10 2; 2; 2; 10 (40,8)

2 -8 4 � 1
2

; 4 � 1
3

; 1
12

; 7
12

2; 6; 12 2; 6; 12 (24,10)

2 -8 2 � 1
2

; 4 � 1
3

; 2 � 2
3

; 1
4

; 1
12

2; 3; 12 2; 3; 12 (192,194)

2 -8 4 � 1
3

; 1
4

; 3
4

; 1
12

; 7
12

2; 3; 12 3; 4; 12 (72,42)

2 -8 2 � 3
20

; 2 � 1
4

; 6 � 1
2

2; 4; 20 2; 4; 20 (40,5)
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Table 4. Product-quotient surfaces not of general type with pg D q D 0, K2 � �9, 
 D 2

and singularities of multiplicity at most 44


 K2
S Sing X t1 t2 G

2 -9 5 � 1
5

; 4 � 2
5

5; 5; 5 5; 5; 5 (5,1)

2 -9 1
3

; 2
3

; 2 � 1
7

; 4 � 2
7

2; 3; 7 3; 7; 7 (168,42)

2 -9 4 � 1
2

; 5 � 1
4

; 1
8

; 5
8

2; 4; 8 2; 4; 8 (32,11)

2 -9 1
3

; 2
3

; 2 � 1
4

; 2 � 1
8

; 2 � 5
8

2; 3; 8 3; 8; 8 (96,64)

2 -9 7 � 1
2

; 1
3

; 2
3

; 2 � 1
5

; 1
10

2; 3; 10 2; 3; 10 (150,5)

2 -9 4 � 1
2

; 1
3

; 2
3

; 2 � 1
4

; 1
12

; 5
12

2; 12; 12 3; 4; 12 (12,2)

2 -9 2 � 1
3

; 2 � 2
3

; 1
13

; 2 � 3
13

3; 3; 13 3; 3; 13 (39,1)

2 -9 1
13

; 2 � 3
13

; 2 � 1
3

; 2 � 2
3

3; 3; 13 3; 3; 13 (39,1)

2 -10 2 � 1
3

; 4 � 2
3

; 4 � 1
6

3; 6; 6 3; 6; 6 (6,2)

2 -10 4 � 1
2

; 2 � 1
7

; 4 � 2
7

2; 3; 7 2; 7; 7 (168,42)

2 -10 2 � 1
2

; 2 � 1
3

; 2 � 2
3

; 2 � 1
8

; 2 � 3
8

2; 3; 8 3; 8; 8 (48,29)

2 -10 7 � 1
2

; 2 � 1
4

; 3
4

; 2 � 1
8

2; 4; 8 2; 4; 8 (32,9)

2 -10 8 � 1
2

; 2 � 1
8

; 2 � 3
8

2; 8; 8 2; 8; 8 (8,1)

2 -10 4 � 1
2

; 2 � 1
4

; 2 � 1
8

; 2 � 5
8

2; 8; 8 2; 8; 8 (16,6)

2 -10 4 � 1
2

; 1
4

; 3
4

; 2 � 1
8

; 2 � 3
8

2; 8; 8 4; 8; 8 (8,1)

2 -10 5 � 1
2

; 2 � 1
3

; 2 � 2
3

; 1
4

; 2 � 1
8

2; 3; 8 2; 3; 8 (192,181)

2 -10 2 � 1
2

; 2 � 1
5

; 3 � 2
5

; 1
10

; 3
10

2; 5; 10 5; 10; 10 (10,2)

2 -10 6 � 1
2

; 4 � 1
3

; 1
12

; 7
12

2; 3; 12 2; 3; 12 (72,42)

2 -10 5 � 1
2

; 3 � 2
3

; 1
4

; 1
6

; 1
12

2; 3; 12 2; 6; 12 (48,33)

2 -10 8 � 1
2

; 2 � 1
4

; 1
12

; 5
12

2; 4; 12 2; 4; 12 (24,5)

2 -11 4 � 1
2

; 1
5

; 2 � 4
5

; 2 � 1
10

2; 10; 10 2; 10; 10 (20,5)

2 -12 6 � 1
2

; 1
4

; 3
4

; 4
5

; 2 � 1
10

2; 4; 10 2; 4; 10 (40,8)

2 -12 2 � 1
2

; 4 � 2
5

; 4
5

; 2 � 1
10

2; 5; 10 5; 10; 10 (10,2)

2 -12 7 � 1
2

; 1
16

; 1
4

; 7
16

; 3
4

2; 4; 16 2; 4; 16 (32,19)

2 -14 2 � 5
6

; 2 � 1
12

; 2 � 7
12

2; 12; 12 2; 12; 12 (24,9)

2 -14 5 � 1
2

; 2 � 3
4

; 5
6

; 2 � 1
12

2; 4; 12 2; 4; 12 (48,14)

2 -14 6 � 1
2

; 2 � 3
4

; 9
20

; 1
20

2; 4; 20 2; 4; 20 (40,5)
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Table 5. Product-quotient surfaces not of general type with pg D q D 0, 
 D 3 and

singularities of multiplicity at most 13


 K2
S Sing X t1 t2 G

3 -9 7 � 1
3

; 4 � 1
6

3; 6; 6 3; 6; 6 (18,3)

3 -10 12 � 1
4

4; 4; 4 4; 4; 4 (16,2)

3 -10 3 � 2
3

; 6 � 1
6

3; 3; 6 3; 3; 6 (108,22)

3 -12 2 � 1
2

; 3 � 2
3

; 6 � 1
6

2; 6; 6; 6 3; 6; 6 (6,2)

3 -12 7 � 1
2

; 2 � 1
3

; 5 � 1
6

2; 6; 6 2; 6; 6 (36,12)

3 -15 5 � 1
7

; 4 � 3
7

7; 7; 7 7; 7; 7 (7,1)

3 -13 3 � 1
7

; 6 � 2
7

2; 3; 7 7; 7; 7 (168,42)

3 -13 3 � 1
7

; 6 � 2
7

7; 7; 7 7; 7; 7 (7,1)

3 -12 3 � 1
8

; 3 � 3
8

; 5 � 1
2

2; 3; 8 2; 8; 8; 8 (48,29)

3 -10 2 � 1
8

; 5 � 1
4

; 5 � 1
2

2; 4; 8 2; 4; 8 (128,75)

3 -16 4 � 1
8

; 2 � 3
4

; 8 � 1
2

2; 8; 8 2; 8; 8 (16,5)

3 -12 2 � 1
8

; 5 � 1
4

; 7 � 1
2

2; 4; 8 2; 4; 8 (64,8)

3 -6 2 � 1
8

; 5 � 1
4

; 1
2

2; 8; 8 2; 8; 8 (64,6)

3 -10 4 � 1
8

; 2 � 3
4

; 2 � 1
2

2; 4; 8; 8 2; 8; 8 (16,5)

3 -12 4 � 1
8

; 2 � 3
4

; 4 � 1
2

2; 4; 8 2; 2; 8; 8 (32,9)

3 -12 4 � 1
8

; 2 � 3
4

; 4 � 1
2

2; 8; 8 2; 2; 8; 8 (16,5)

3 -8 4 � 1
8

; 2 � 3
4

2; 4; 8 2; 2; 2; 8; 8 (32,9)

3 -16 4 � 1
8

; 2 � 1
4

; 4 � 3
4

4; 8; 8 4; 8; 8 (8,1)

3 -12 2 � 1
8

; 6 � 1
4

; 2 � 5
8

4; 8; 8 4; 8; 8 (8,1)

3 -13 2 � 1
9

; 2 � 2
9

; 5 � 1
3

; 2 � 2
3

3; 9; 9 3; 9; 9 (9,1)

3 -9 3 � 1
9

; 2 � 1
3

; 3 � 2
3

3; 3; 9 3; 3; 9 (81,9)

3 -13 2 � 1
9

; 3 � 2
9

; 3 � 1
3

; 4
9

3; 9; 9 9; 9; 9 (9,1)

3 -6 3 � 1
9

; 2 � 2
3

; 1
3

3; 9; 9 3; 9; 9 (27,2)

3 -12 1
12

; 5 � 1
4

; 4 � 1
3

; 2 � 2
3

3; 4; 12 3; 4; 12 (12,2)

3 -11 1
12

; 2 � 1
6

; 1
4

; 3
4

; 3 � 1
3

; 7
12

3; 12; 12 4; 6; 12 (12,2)

3 -14 2 � 1
12

; 2 � 1
3

; 2 � 7
12

; 8 � 2
3

2; 3; 12 3; 12; 12 (72,42)

3 -12 2 � 1
12

; 2 � 5
12

; 6 � 1
2

2; 4; 12 2; 2; 12; 12 (24,5)

3 -12 1
12

; 1
6

; 1
4

; 6 � 1
3

; 5 � 1
2

2; 3; 12 2; 3; 12 (144,27)

3 -16 2 � 1
12

; 2 � 1
4

; 9 � 1
2

; 5
6

2; 4; 12 2; 4; 12 (48,14)

3 -16 2 � 1
12

; 2 � 5
12

; 10 � 1
2

2; 12; 12 2; 12; 12 (12,2)

3 -13 1
12

; 2 � 1
6

; 3 � 1
3

; 6 � 1
2

; 7
12

2; 6; 12 2; 6; 12 (24,10)

3 -13 1
12

; 2 � 1
6

; 3 � 1
3

; 6 � 1
2

; 7
12

2; 3; 12 2; 3; 12 (216,92)

3 -15 1
12

; 2 � 1
4

; 1
3

; 6 � 2
3

2; 3; 12 3; 12; 12 (48,33)

3 -14 2 � 1
12

; 2 � 1
4

; 2 � 1
3

; 1
2

; 2 � 2
3

; 5
6

3; 4; 12 6; 12; 12 (12,2)

3 -16 2 � 1
12

; 1
6

; 2 � 5
12

; 4 � 1
2

; 5
6

2; 12; 12 6; 12; 12 (12,2)

3 -8 2 � 1
12

; 2 � 1
4

; 1
2

; 5
6

2; 4; 12 2; 2; 4; 12 (48,14)

3 -11 2 � 1
12

; 2 � 1
4

; 1
2

; 1
3

; 2
3

; 5
6

2; 12; 12 4; 6; 12 (24,9)
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8. Upper bounds for 
 under some additional hypotheses

In this section we will give some evidence to Conjecture 4.5, establishing an upper

bound �.pg ; q/ for 
 for product-quotient surfaces of general type under some

additional hypotheses.

Write

KS D P C N D ��KX � A;

where P CN is the Zariski decomposition of the canonical divisor of the product-

quotient surface S .

Remark 8.1. By construction P , ��KX are nef, N , A are e�ective; and

PN D ��KXA D 0:

In particular,

K2
S D P 2 C N 2 D K2

X C A
2:

Recall that

� K2
S D 8� � 2
 � l ;

� 1 � P 2 2 N;

� � WD �N 2 is the number of (-1)-cycles on S ;

� �A2 D KSA D 6
 C l � 2� � 0.

Lemma 8.2. For all ı � 0 such that ı� � N��KX ,

8� C
� 6

1 C ı
� 2

�


 � ı

1 C ı
l � 2�

1 C ı
� 1 (7)

Proof. From the assumption N��KX � �ı follows

KSA � NA D N.��KX � KS / � �.1 C ı/

and therefore

� � 6
 C l � 2�

1 C ı

so

1 � P 2 D K2
S � N 2 � 8� C

� 6

1 C ı
� 2

�


 � ı

1 C ı
l � 2�

1 C ı
:
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Remark 8.3. Since KX is nef, we can set ı D 0 in (7) obtaining a further proof

of Corollary 5.4.

If S is minimal, all ı > 0 verify the assumptions, and the statement gives just,

when ı ! 1, the well known K2
S � 1. In the more complicated case N > 0, the

maximal possible ı is the average of the values of E��KX where E varies over

the exceptional divisors of the �rst kind.

Writing E 0 for the unique irreducible component with self intersection .�1/

of an exceptional divisor of the �rst kind E, we note that, since �.E 0/ is a curve,

KX is ample and IKX is Cartier, E��KX � E 0��KX � 1
I

. So equation (7) holds

for ı D 1
I

.

Remark 8.4. When N��KX � .2 C "/�, " > 0, Lemma 8.2 implies Conjec-

ture 4.5, since then (7) implies

2"

3 C "

 � 8� � 1 � 2 C "

3 C "
l � 2�

3 C "
� 8� � 1

so


 � 3 C "

2"
.8� � 1/ (8)

Unfortunately, in the fake Godeaux case described in [6] we have � D 2,

E1��KX D 1, E2��KX D 11=7, hence

N��KX D 9=7�:

Lemma 8.2 gives further evidence to Conjecture 4.5 under the assumption that

the ‚i are not too small. In fact, we have the following result.

Proposition 8.5. If both ‚1 and ‚2 are not smaller than 1 C "
2
, " > 0 then (8)

holds.

Proof. Let again E be an exceptional divisor of the �rst kind, E 0 a component of

E with self intersection �1. If E 0 is not contained in one of the �bres, then

��KXE � ��KX E 0 D KC1�C2
���.E 0/

jGj � 2.˛1 C ˛2/
‚1‚2

�
� ‚1 C ‚2:

Else �.E 0/ is the central component of a singular �bre F
.i/
1 with multiplicity mi ,

then

��KX E � ��KXE 0 D KC1�C2
mi C2

jGj � ‚1‚2

�
2mi˛1 � mi ‚1 � 2‚1:

We conclude E��KX � 2 C " and therefore N��KX � .2 C "/� and then (8)

follows from Lemma 8.2.
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A third type of hypothesis under which Lemma 8.2 implies Conjecture 4.5 is

the assumption that E.F1 C F2/ is big enough. For example, we can show the

following.

Proposition 8.6. Assume that for every exceptional divisor of the �rst kind E,

E.F1 C F2/ � 42.2 C "/:

�en (8) holds.

Proof. Arguing as in the previous proposition

��KX E D KC1�C2
���.E 0/

jGj

� ‚1‚2

�
84.2 C "/˛min

� 42.2 C "/‚min

� 2 C "

and we conclude as in the previous case.

9. �e dual surface of a product-quotient surface

In this section we assume furthermore that S is regular, i.e., q.S/ D 0.

Suppose that S is given by the generating vectors .a1; : : : ; as/, .b1; : : : ; bt /

of G.

De�nition 9.1. �e dual surface S 0 of S is the product-quotient surface given by

the pair of generating vectors: .a1; : : : ; as/, .b�1
t ; : : : ; b�1

1 /.

Similarly we will denote by X 0 the quotient model of S 0.

Remark 9.2. It is easy to see that

1

n
.1; q/ 2 B.X/ () 1

n
.1; n � q/ 2 B.X 0/:

�e numbers of S 0 are then immediately computed by those of S as follows.
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Proposition 9.3. Let S be a regular product-quotient surface, and denote by S 0

its dual surface. Set


 WD 
.X/; � WD �.X/; l WD l.X/;


 0 WD 
.X 0/; �0 WD �.X 0/; l 0 WD l.X 0/:

�en,

(1) 
 D �
 0,

(2) � D �0,

(3) � D � 0,

(4) pg.S 0/ D pg.S/ C 
 .

Proof. Remark 9.2 describes the basket of the singularities of X 0 in terms of the

basket of X .

Directly by the de�nition, and proposition 4.4


 D �
 0; � D �0; � D � 0

�en

�.S 0/ D .g1 � 1/.g2 � 1/

jGj C 1

4
.� � 2
 0/

D .g1 � 1/.g2 � 1/

jGj C 1

4
.� C 2
/

D �.S/ C 
:

In particular, since we assumed q.S/ D 0, then

pg.S 0/ D pg.S/ C 
:

Note that this gives an independent proof of Proposition 4.2. Moreover, using

Proposition 4.2, we obtain the following:

Corollary 9.4. �e dual surface of a product-quotient surface with pg D 0 has

maximal Picard number.

�us the dual surfaces of the surfaces in Table 2 are surfaces with pg D 1 and

maximal Picard number. Similarly the dual surfaces of the surfaces in Table 3,

4, and 5 are surfaces with maximal Picard number and geometric genus 2 and 3.

Summing up, we get more than 100 families of surfaces with maximal Picard

number and low genus.
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For the index of S resp. S 0,

Proposition 9.5. We have

�.S/ WD 1

3
.K2

S � 2e.S// D �1

3
B.B.X// D �2
 � l;

and

�.S 0/ WD 1

3
.K2

S 0 � 2e.S 0// D 2
 � l 0:

Proof. Note that

e.S/ D 2 C 2pg .S/ C h1;1.S/

D 2 C 2pg .S/ C 2 C 2.
 C pg.S// C l

D 4.1 C pg.S// C 2
 C l

D 4�.S/ C 2
 C l:

�erefore

�.S/ WD 1

3
.K2

S � 2e.S//

D 1

3
.8�.S/ � 2
 � l � 2e.S//

D 1

3
.8�.S/ � 2
 � l � 8�.S/ � 4
 � 2l/

D 1

3
.�6
 � 3l/ D �2
 � l:

From the previous calculation it follows that �.S 0/ D �2
 0�l 0. Using 
 0 D �


we get the second equation.

Remark 9.6. Let NS be the minimal model of S , then �.S/ C .�N 2/ D �. NS/.

Moreover, by [19, Proposition 5.1 or 5.3], we know that for the minimal model of

a product-quotient surface, the inequality �. NS/ < 0 holds.

In particular, we get that l 0 > 2
 .

It follows immediately from the above:

1

3
.B.B/ C B.B0// D l C l 0 D �.�.S/ C �.S 0//:
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It is also easy to see that

1

3
B.B/ D l C l 0 C �.S 0/;

and

1

3
B.B0/ D l C l 0 C �.S/:

Remark 9.7. Observe that when we go from S to the dual surface S 0, we consider

on C1 the same action of G as for S , whereas for C2 we replace the action

y 7�! g.y/ by y 7�! g. Ny/:

Similarly we can replace

y 7�! g.y/ by y 7�! g˛.y/

for any (holomorphic) automorphism ˛ of C2, getting many new surfaces from

this construction (depending on the representation theory of G).
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