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Abstract. We show that a relatively hyperbolic graph with uniformly hyperbolic peripheral

subgraphs is hyperbolic. As an application, we show that the disk graph and the electri�ed

disk graph of a handlebody H of genus g � 2 are hyperbolic, and we determine their

Gromov boundaries.
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1. Introduction

Consider a connected metric graph G in which a family H D ¹Hc j c 2 Cº of
complete connected subgraphs has been speci�ed. Here C is a countable, �nite or
empty index set. �e graph G is hyperbolic relative to the family H if the following
properties are satis�ed.

1 Partially supported by the Hausdor� Center Bonn and ERC Grant Nb. 10160104.
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De�ne the H-electri�cation EG of G to be the graph which is obtained from
G by adding for every c 2 C a new vertex vc which is connected to each vertex
x 2 Hc by an edge and which is not connected to any other vertex. We require that
the graph EG is hyperbolic in the sense of Gromov and that moreover a property
called bounded penetration holds true (see [8] for perhaps the �rst formulation
of this property). We refer to [25] for a consolidation of the various notions of
relative hyperbolicity found in the literature.

If G is a hyperbolic metric graph and if H is a family of connected uniformly
quasi-convex subgraphs of G whose �xed size neighborhoods intersect in set of
uniformly bounded diameter then G is hyperbolic relative to H. �is fact is prob-
ably folklore; implicitly it was worked out in a slightly modi�ed form in [17].

Vice versa, Farb showed in [8] that if G is the Cayley graph of a �nitely gener-
ated group and if the graphs Hc are ı-hyperbolic for a number ı > 0 not depending
on c 2 C then G is hyperbolic. In [6] it is noted that using a result of Bowditch [3],
the argument in [8] can be extended to arbitrary (possibly locally in�nite) rela-
tively hyperbolic metric graphs.

Our �rst goal is to give a di�erent and self-contained proof of this result which
gives e�ective estimates for the hyperbolicity constant as well as explicit control
on uniform quasi-geodesics. We show

�eorem 1. Let G be a metric graph which is hyperbolic relative to a family

H D ¹Hc j c 2 Cº of complete connected subgraphs. If there is a number ı > 0

such that each of the graphs Hc is ı-hyperbolic then G is hyperbolic. Moreover,

the subgraphs Hc .c 2 C/ are uniformly quasi-convex.

�e control we obtain allows to use the result inductively. Moreover, the
Gromov boundary of G can easily be determined from the Gromov boundaries
of the H-electri�cation EG and the Gromov boundaries of the quasi-convex sub-
graphs Hc .

We next discuss applications of �eorem 1.

Let S be a closed surface of genus g � 2. For a number k < g de�ne the
graph of non-separating k-multicurves to be the following metric graph NC.k/.
Vertices are k-tuples of of essential pairwise non-homotopic simple closed curves
on S which cut S into a single connected component. Two such non-separating
multicurves c1; c2 are connected by an edge if c1 [ c2 is a non-separating multic-
urve with k C 1 components. In [13] we used �eorem 1 to show

�eorem 2. For k < g=2 C 1 the graph NC.k/ is hyperbolic.
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We also observed that the bound k < g=2 C 1 is sharp. �e same argument
applies to the graph of non-separating multicurves on a surface with punctures.

In this article we use �eorem 1 to investigate the geometry of graphs of disks
in a handlebody. A handlebody of genus g � 1 is a compact three-dimensional
manifold H which can be realized as a closed regular neighborhood in R

3 of an
embedded bouquet of g circles. Its boundary @H is an oriented surface of genus g.

An essential disk in H is a properly embedded disk .D; @D/ � .H; @H/ whose
boundary @D is an essential simple closed curve in @H .

A subsurface X of the compact surface @H is called essential if it is a comple-
mentary component of an embedded multicurve in @H . Note that the complement
of a non-separating simple closed curve in @H is essential in this sense, i.e. the
inclusion X ! @H need not induce an injection on fundamental groups.

De�ne a connected essential subsurface X of the boundary @H of H to be
thick if the following properties hold true.

(1) Every disk intersects X .

(2) X is �lled by boundaries of disks.

�e boundary surface @H of H is thick. An example of a proper thick sub-
surface of @H is the complement in @H of a suitably chosen simple closed curve
which is not diskbounding.

De�nition. Let X � @H be a thick subsurface. �e electri�ed disk graph of X

is the graph EDG.X/ whose vertices are isotopy classes of essential disks in H

with boundary in X . Two vertices D1; D2 are connected by an edge of length one
if there is an essential simple closed curve in X which can be realized disjointly
from both @D1; @D2.

If X D @H then we call EDG.X/ the electri�ed disk graph of H . Using
�eorem 1 we show

�eorem 3. �e electri�ed disk graph EDG.X/ of a thick subsurface X � @H of

the boundary @H of a handlebody H of genus g � 2 is hyperbolic.

�e electri�ed disk graph of the thick subsurface X is moreover of in�nite
diameter [11].

For the investigation of the handlebody group, i.e. the group of isotopy classes
of homeomorphisms of H , a more natural graph to consider is the so-called disk
graph which is de�ned as follows.
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De�nition. �e disk graph DG of H is the graph whose vertices are isotopy
classes of essential disks in H . Two such disks are connected by an edge of length
one if and only if they can be realized disjointly.

Since for any two disjoint essential simple closed curves c; d on @H there is
a simple closed curve on @H which can be realized disjointly from c; d (e.g. one
of the curves c; d ), the electri�ed disk graph is obtained from the disk graph by
adding some edges. �is observation allows to apply �eorem 1 inductively to
the graphs EDG.X/ where X passes through the thick subsurfaces of @H and
deduce in a bottom-up inductive procedure hyperbolicity of the disk graph from
hyperbolicity of the electri�ed disk graph. In this way we obtain a new, completely
combinatorial and signi�cantly simpler proof of the following result which was
�rst established by Masur and Schleimer [22].

�eorem 4. �e disk graph DG of a handlebody H of genus g � 2 is hyperbolic.

We also determine the Gromov boundary of the disk graph. Namely, recall
from [18, 9] that the Gromov boundary of the curve graph of an essential subsur-
face X of @H can be identi�ed with the space of minimal geodesic laminations �

in X which �ll X , i.e. are such that every essential simple closed curve in X has
non-trivial intersection with �. �e Gromov topology on this space of geodesic
laminations is the coarse Hausdor� topology which can be de�ned as follows.
A sequence �i converges to � if and only if every limit in the usual Hausdor�
topology of a subsequence of �i contains � as a sublamination. Notice that the
coarse Hausdor� topology is de�ned on the entire space L.@H/ of geodesic lam-
inations on @H , however it is not Hausdor�.

We observe that for every thick subsurface X of @H the Gromov boundary
@EDG.X/ of the electri�ed disk graph EDG.X/ can be identi�ed with a subspace
of the space of geodesic laminations on X , equipped with the coarse Hausdor�
topology. Moreover we show

�eorem 5. �e Gromov boundary @DG of the disk graph equals the subspace

@DG D
[

X

@EDG.X/ � L.@H/

equipped with the coarse Hausdor� topology. �e union is over all thick subsur-

faces X of @H .
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�ere is no analog of this result for handlebodies with spots, i.e. with marked
points on the boundary. Indeed, we showed in [12] that the disk graph of a han-
dlebody with one or two spots on the boundary is not hyperbolic. �e electri�ed
disk graph is not hyperbolic for handlebodies with one spot on the boundary, and
the same holds true for sphere graphs.

�e organization of this paper is as follows. In Section 2 we show �eorem 1.
Section 3 discusses some relative version of results from [11]. In Section 4, we
show the �eorem 3. In Section 5 we construct a graph whose vertices are disks
and which is obtained from the electri�ed disk graph by removing some edges and
from the disk graph by adding edges. We show that this graph is hyperbolic. �e
argument can be used inductively and yields the proof of �eorem 4 as well as of
�eorem 5 in Section 6.

Acknowledgement. I am grateful to the anonymous referee for a careful reading
of the manuscript and for many valuable suggestions which improved the read-
ability.

2. Hyperbolic thinnings of hyperbolic graphs

In this section we show �eorem 1 from the introduction. Consider a (not nec-
essarily locally �nite) metric graph G (i.e. edges have length one) and a family
H D ¹Hc j c 2 Cº of complete connected subgraphs, where C is any countable,
�nite or empty index set.

De�ne the H-electri�cation of G to be the metric graph .EG; dE/ which is ob-
tained from G by adding vertices and edges as follows. For each c 2 C there is a
unique vertex vc 2 EG � G. �is vertex is connected with each of the vertices of
Hc by a single edge of length one, and it is not connected with any other vertex.

In the sequel all parametrized paths 
 in G or EG are supposed to be simplicial.
�is means that the image of every integer is a vertex, and the image of an integral
interval Œk; k C 1� is an edge or a single vertex.

Call a simplicial path 
 in EG e�cient if for every c 2 C we have 
.k/ D vc

for at most one k. Note that if 
 is an e�cient simplicial path in EG which passes
through 
.k/ D vc for some c 2 C then 
.k � 1/ 2 Hc ; 
.k C 1/ 2 Hc .

�e following de�nition is an adaptation of a de�nition from [8].

De�nition 2.1. �e family H has the bounded penetration property if for every
L > 1 there is a number p.L/ > 0 with the following property. Let 
 be an
e�cient L-quasi-geodesic in EG, let c 2 C and let k 2 Z be such that 
.k/ D vc.
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If the distance in Hc between 
.k � 1/ and 
.k C 1/ is at least p.L/ then every
e�cient L-quasi-geodesic 
 0 in EG with the same endpoints as 
 passes through
vc . Moreover, if k0 2 Z is such that 
 0.k0/ D vc then the distance in Hc between

.k � 1/; 
 0.k0 � 1/ and between 
.k C 1/; 
 0.k0 C 1/ is at most p.L/.

�e de�nition below of relative hyperbolicity for a graph is taken from [25]
where it is shown to be equivalent to other de�nitions of relative hyperbolicity
found in the literature.

De�nition 2.2. Let H be a family of complete connected subgraphs of a metric
graph G. �e graph G is hyperbolic relative to H if the H-electri�cation of G is
hyperbolic and if moreover H has the bounded penetration property.

From now on we always consider a metric graph G which is hyperbolic relative
to a family H D ¹Hc j c 2 Cº of complete connected subgraphs.

We say that the family H is r-bounded for a number r > 0 if

diam.Hc \ Hd / � r for c 6D d 2 C,

where the diameter is the minimum of the diameters for the intrinsic path metrics
on Hc and Hd . A family which is r-bounded for some r > 0 is simply called
bounded.

�e following is a consequence of the main theorem of [25] (the equivalence
of de�nition RH0 and RH2).

Proposition 2.3. If G is hyperbolic relative to the family H then H is bounded.

Let H be as in De�nition 2.1. De�ne an enlargement O
 of an e�cient simpli-
cial L-quasi-geodesic 
 W Œ0; n� ! EG with endpoints 
.0/; 
.n/ 2 G as follows.
Let 0 < k1 < � � � < ks < n be those points such that 
.ki / D vci

for some ci 2 C.
�en 
.ki � 1/; 
.ki C 1/ 2 Hci

. For each i � s replace 
Œki � 1; ki C 1� by a
simplicial geodesic in Hci

with the same endpoints.

For a number k > 0 de�ne a subset Z of the metric graph G to be k-quasi-

convex if any geodesic with both endpoints in Z is contained in the k-neighborhood
of Z. In particular, up to perhaps increasing the number k, any two points in Z

can be connected in Z by a (not necessarily continuous) path which is a k-quasi-
geodesic in G. �e goal of this section is to show
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�eorem 2.4. Let G be a metric graph which is hyperbolic relative to a family

H D ¹Hc j cº of complete connected subgraphs. If there is a number ı > 0 such

that each of the graphs Hc is ı-hyperbolic then G is hyperbolic. Enlargements of

geodesics in EG are uniform quasi-geodesics in G. �e subgraphs Hc are uniformly

quasi-convex.

For the remainder of this section we assume that G is a graph which satis�es
the assumptions in �eorem 2.4.

By Proposition 2.3 there is some r > 0 so that the family H is r-bounded.
In the sequel we always assume that for L > 1 the constant p.L/ as in De�ni-
tion 2.1 is bigger than 2r .

For a number R > 2r call c 2 C R-wide for an e�cient L-quasi-geodesic 


in EG if the following holds true. �ere is some k 2 Z such that 
.k/ D vc, and
the distance between 
.k � 1/; 
.k C 1/ in Hc is at least R. Note that since H is
r-bounded, c is uniquely determined by 
.k � 1/; 
.k C 1/. If R D p.L/ is as in
De�nition 2.1 then we simply say that c is wide.

Lemma 2.5. Let L � 1 and let 
1; 
2 be two e�cient L-quasi-geodesics in EC

with the same endpoints. If c 2 C is 3p.L/-wide for 
1 then c is wide for 
2.

Proof. By de�nition, if c is 3p.L/-wide for 
1 then there is some k so that

1.k/ D vc and that the distance in Hc between 
1.k � 1/ and 
1.k C 1/ is at
least 3p.L/. Since 
2 is an e�cient L-quasi-geodesic with the same endpoints
as 
1, by the bounded penetration property there is some k0 so that 
2.k0/ D vc,
moreover the distance in Hc between 
1.k�1/ and 
2.k0�1/ and between 
1.kC1/

and 
2.k0 C 1/ is at most p.L/. �us by the triangle inequality, the distance in Hc

between 
2.k0 � 1/ and 
2.k0 C 1/ is at least p.L/ which is what we wanted to
show.

De�ne the Hausdor� distance between two closed subsets A; B of a metric
space to be the in�mum of the numbers b > 0 such that A is contained in the
b-neighborhood of B and B is contained in the b-neighborhood of A.

�e following lemma was known before in the context of relatively hyperbolic
groups. We refer to [16] (Corollary 8.14 and Corollary 8.15) and [23] for such
versions and more.

Lemma 2.6. For every L > 0 there is a number �.L/ > 0 with the following

property. Let 
1; 
2 be two e�cient simplicial L-quasi-geodesics in EG connecting

the same points in G, with enlargements O
1; O
2. �en the Hausdor� distance in G

between the images of O
1; O
2 is at most �.L/.
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Proof. Let 
 W Œ0; n� ! EG be an e�cient simplicial L-quasi-geodesic with end-
points 
.0/; 
.n/ 2 G. Let R > p.L/ and assume that c 2 C is not R-wide for 
 .
If there is some u 2 ¹1; : : : ; n�1º such that 
.u/ D vc then 
.u�1/; 
.uC1/ 2 Hc.
Since c is not R-wide for 
 , 
.u�1/ can be connected to 
.uC 1/ by an arc in Hc

of length at most R. In particular, if no c 2 C is R-wide for 
 then an enlargement
O
 of 
 is an yL-quasi-geodesic in EG for a universal constant yL D yL.L; R/ > 0.
�en O
 is a yL-quasi-geodesic in G as well (note that the inclusion G ! EG is
1-Lipschitz).

Let 
i W Œ0; ni � ! EG be e�cient L-quasi-geodesics .i D 1; 2/ with the same
endpoints in G. Assume that no c 2 C is wide for 
1. By Lemma 2.5, no
c 2 C is R D 3p.L/-wide for 
2. Let O
i be an enlargement of 
i . By the above
discussion, the arcs O
i are yL D yL.L; 3p.L//-quasi-geodesics in EG. In particular,
by hyperbolicity of EG, the Hausdor� distance in EG between the images of O
i is
bounded from above by a constant b � 1 > 0 only depending on L.

We have to show that the Hausdor� distance in G between these images is also
uniformly bounded. For this let x D O
1.u/ be any vertex on O
1 and let y D O
2.w/

be a vertex on O
2 of minimal distance in EG to x. �en dE.x; y/ � b (here as
before, dE is the distance in EG, and we let d be the distance in G). Let � be a
geodesic in EG connecting x to y. Since y is a vertex on O
2 of minimal distance
to x, � intersects O
2 only at its endpoints.

We claim that there is a universal constant � > 0 such that no c 2 C is �-wide
for �. Namely, since O
1 does not pass through any of the special vertices in EG,
the concatenation � D � ı O
1Œ0; u� is e�cient (here O
1Œ0; u� is the restriction of
the arc O
1 to its initial subsegment connecting O
1.0/ D 
1.0/ to O
1.u/). �us �

is an e�cient L0-quasi-geodesic in EG with the same endpoints as O
2Œ0; w� where
L0 > yL > L only depends on L. Hence by the bounded penetration property, if
c 2 C is p.L0/-wide for � then the yL-quasi-geodesic O
2Œ0; w� passes through the
vertex vc which is a contradiction.

As a consequence of the above discussion, the length of an enlargement of �

is bounded from above by a �xed multiple of dE. O
1.u/; O
2.w//, i.e. it is uniformly
bounded. �is shows that d. O
1.u/; O
2.w// is uniformly bounded. �us the image
of O
1 is contained in a neighborhood of uniformly bounded diameter in G of the
image of O
2.

Now 
2 is such that no c 2 C is 3p.L/-wide for 
2. �us up to adjusting
constants, we can exchange 
1 and 
2 in the above argument. �is shows that
indeed the Hausdor� distance in G between the images of the enlargements O
1; O
2

is bounded by a number only depending on L.
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Let 
j W Œ0; nj � ! EG be arbitrary e�cient L-quasi-geodesics .j D 1; 2/ con-
necting the same points in G. �en there are numbers 0 < u1 < � � � < uk < n1

such that for every i � k, 
1.ui / D vci
where ci 2 C is wide for 
1, and there are

no other wide points for 
1. Put u0 D �1 and ukC1 D n1 C 1.
By the bounded penetration property, there are numbers wi 2 ¹1; : : : ; n2 � 1º

such that 
2.wi/ D 
1.ui / D vci
for all i . Moreover, the distance in Hci

between

1.ui � 1/ and 
2.wi � 1/ and between 
1.ui C 1/ and 
2.wi C 1/ is at most
p.L/. Since 
1; 
2 are L-quasi-geodesics by assumption, we may assume that the
special vertices vci

appear along 
2 in the same order as along 
1, i.e.
that 0 < w1 < � � � < wk < n2. Namely, for each i the concatenation

2Œwi ; n2� ı 
1Œ0; ui � is an L0-quasi-geodesic with the same endpoints as 
1 for
a number L0 > 0 only depending on L. If there is some j > i so that wj < wi

then this quasi-geodesic does not pass through vcj
which violates the bounded

penetration property, once again up to adjusting constants. Put w0 D �1 and
wkC1 D n2 C 1.

For each i � k, de�ne a simplicial edge path �i W Œai ; aiC1� ! EG connecting
�i .ai / D 
1.ui C 1/ 2 Hci

to �i .aiC1/ D 
1.uiC1 � 1/ 2 HciC1
as the conca-

tentation of the following three arcs. A geodesic in Hci
connecting 
1.ui C 1/ to


2.wi C 1/ (whose length is at most p.L/), the arc 
2Œwi C 1; wiC1 � 1� and
a geodesic in HciC1

connecting 
2.wiC1 � 1/ to 
2.uiC1 � 1/. Let moreover
�i D 
1jŒui C1; uiC1�1� .i � 0/. �en �i ; �i are e�cient uniform quasi-geodesics
in EG with the same endpoints, and �i does not have wide points.

For each i let O�i be an enlargement of the arc �i D 
2Œwi C1; wiC1�1�. By con-
struction, there is an enlargement O�i of the e�cient quasi-geodesic �i which con-
tains O�i as a subarc and whose Hausdor� distance in G to O�i is uniformly bounded.
Let O�i be an enlargement of �i . �en O�i ; O�i are enlargements of the e�cient uni-
form quasi-geodesics �i ; �i in EG with the same endpoints, and �i does not have
wide points. �erefore by the �rst part of this proof, the Hausdor� distance in G

between O�i and O�i is uniformly bounded. Hence the Hausdor� distance between
O�i and O�i is uniformly bounded as well.

�ere is an enlargement O
1 of 
1 which can be represented as

O
1 D O�k ı �k ı � � � ı �1 ı O�0

where for each i , �i is a geodesic in Hci
connecting 
1.ui � 1/ to 
1.ui C 1/.

Similarly, there is an enlargement O
2 of 
2 which can be represented as

O
2 D O�k ı �k ı � � � ı �1 ı O�0

where for each i , �i is a geodesic in Hci
connecting 
2.wi � 1/ to 
2.wi C 1/.
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For each i the distance in Hci
between 
1.ui � 1/ and 
2.wi � 1/ is at most

p.L/, and the same holds true for the distance between 
1.ui C1/ and 
2.wi C1/.
Since Hci

is ı-hyperbolic for a constant ı > 0 not depending on ci , the Hausdor�
distance in Hci

between any two geodesics connecting 
1.ui � 1/ to 
1.ui C 1/

and connecting 
2.wi � 1/ to 
2.wi C 1/ is uniformly bounded. Together with the
above discussion, this shows the lemma.

Let for the moment X be an arbitrary geodesic metric space. Assume that for
every pair of points x; y 2 X there is a �xed choice of a path �x;y connecting x to
y. �e thin triangle property for this family of paths states that there is a universal
number C > 0 so that for any triple x; y; z of points in X , the image of �x;y is
contained in the C -neighborhood of the union of the images of �y;z; �z;x.

For two vertices x; y 2 G let �x;y be an enlargement of a geodesic in EG con-
necting x to y. We have

Proposition 2.7. �e thin triangle property holds true for the paths �x;y .

Proof. Let x1; x2; x3 be three vertices in G and for i D 1; 2; 3 let 
i W Œ0; ni � ! EG

be a geodesic connecting xi to xiC1.
By hyperbolicity of EG there is a number L > 0 not depending on the points

xi , and there is a vertex y 2 EG with the following property. For i D 1; 2; 3

let ˇi W Œ0; pi � ! EG be a geodesic in EG connecting xi to y. �en for all i ,
˛i D ˇ�1

iC1 ı ˇi is an L-quasi-geodesic connecting xi to xiC1.
We claim that without loss of generality we may assume that the quasi

geodesics ˛i are e�cient. Namely, since the arcs ˇi are geodesics, they do not
backtrack. �us if ˛1 is not e�cient then there is a common point y on ˇ1 and ˇ2.
Let s1 < p1 be the smallest number so that ˇ1.s1/ D ˇ2.s2/ for some s2 2 Œ0; p2�.
�en the distance between y and ˇi .si / .i D 1; 2/ is uniformly bounded, and
Q̨1 D .ˇ2Œ0; s2�/�1 ı ˇ1Œ0; s1� is an e�cient L-quasi-geodesic connecting x1 to x2.
Replace y by ˇ1.s1/, replace ˇi by Q̌

i D ˇi Œ0; si � .i D 1; 2/ and replace ˇ3 by
a geodesic Q̌

3 W Œ0; Qp3� ! EG connecting x3 to ˇ1.s1/. �us up to increasing the
number L by a uniformly bounded amount we may assume that the quasi-geodesic
˛1 is e�cient.

Assume from now on that ˇ1; ˇ2; ˇ3 are such that the quasi-geodesic
˛1 D ˇ�1

2 ı ˇ1 is e�cient. Using the notation from the second paragraph of
this proof, if there is some s < p3 such that ˇ3.s/ is contained in ˛1 then let s3 be
the smallest number with this property. Replace the point y D ˇi .pi / by ˇ3.s3/,
replace ˇ3 by ˇ3Œ0; s3� and for i D 1; 2 replace ˇi by the subarc of ˛1 connecting
xi to ˇ3.s3/. With this construction, up to increasing the number L by a uni-
formly bounded amount and perhaps replacing ˇ1; ˇ2 by uniform quasi-geodesics
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rather than geodesics we may assume that all three quasi-geodesics Q̨ i D Q̌�1
iC1 ı Q̌

i

.i D 1; 2; 3/ are e�cient.
Resuming notation, assume from now on that the quasi-geodesics ˛i are e�-

cient. By Lemma 2.6, the Hausdor� distance between an enlargement of the geo-
desic 
i and any choice of an enlargement of the e�cient uniform quasi-geodesic
˛i with the same endpoints is uniformly bounded. �us it su�ces to show the thin
triangle property for enlargements of the quasi-geodesics ˛i .

If y 2 G then an enlargement of the quasi-geodesic ˛i is the concatenation of
an enlargement of the quasi-geodesic ˇi and an enlargement of the quasi-geodesic
ˇ�1

iC1 which have endpoints in G. Hence in this case the thin triangle property
follows once more from Lemma 2.6.

If y D vc for some c 2 C then we distinguish two cases.

Case 1 . c 2 C is wide for each of the quasi-geodesics ˛i .

Recall that y D ˇi .pi /. By hyperbolicity of Hc , there is a number R > 0 not
depending on c such that for all i 2 ¹1; 2; 3º the image of any geodesic in Hc

connecting ˇi .pi �1/ to ˇiC1.piC1 �1/ is contained in the R-neighborhood of the
union of the images of any two geodesics connecting ǰ .pj �1/ to ǰ C1.pj C1 �1/

for j 6D i and where indices are taken modulo three. In other words, the thin
triangle property holds true for such geodesics.

Now let Ǫ i be an enlargement of ˛i and let �i be the subarc of Ǫ i which connects
ˇi .pi �1/ to ˇiC1.piC1 �1/. By the de�nition of an enlargement, �i is a geodesic
in Hc. �us by the discussion in the previous paragraph and by the fact that we
may use the same enlargement of the arc ˇiC1Œ0; piC1 � 1� for the construction
of an enlargement of ˛i and ˛iC1, the thin triangle property holds true for some
suitable choice of an enlargement of the quasi-geodesics ˛i . It then holds true for
every chocie which is what we wanted to show.

Case 2. For at least one i , c 2 C is not wide for the quasi-geodesic ˛i .

Assume that this holds true for the quasi-geodesic ˛1. �en the distance in Hc

between ˇ1.p1 � 1/ and ˇ2.p2 � 1/ is uniformly bounded (depending on the
quasi-geodesic constant for ˛1). Replace the point y by ˇ1.p1 � 1/, replace the
quasi-geodesic ˇ1 by Q̌

1 D ˇ1Œ0; p1 � 1�, replace the quasi-geodesic ˇ2 by the
concatentation Q̌

2 of ˇ2Œ0; p2 � 1� with a geodesic in Hc connecting ˇ2.p2 � 1/

to ˇ1.p1 � 1/, and replace the geodesic ˇ3 by the concatentation Q̌
3 of ˇ3 with

the edge connecting vc to ˇ1.p1 � 1/. �e resulting arcs Q̌
i are e�cient uniform

quasi-geodesics in EG, and they connect the points xi to y 2 G. Moreover, the
quasi-geodesics Q̌�1

iC1 ı Q̌
i are e�cient as well and hence we are done by the above

proof for the case y 2 G.
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Now we are ready to show

Corollary 2.8. G is hyperbolic. Enlargements of geodesics in EG are uniform

quasi-geodesics in G.

Proof. For any pair .x; y/ of vertices in G let �x;y be a reparametrization on Œ0; 1�

of the path �x;y . By Proposition 3.5 of [10] and �eorem 3.15 of [22] (which is
essentially due to Bowditch), it su�ces to show that there is some n > 0 such that
the paths �x;y have the following properties (where d is the distance in G).

(1) If d.x; y/ � 1 then the diameter of �x;yŒ0; 1� is at most n.

(2) For all vertices x; y; z the set �x;y Œ0; 1� is contained in the n-neighborhood
of �x;yŒ0; 1� [ �y;zŒ0; 1�.

Property 1) above is immediate from Lemma 2.6. �e thin triangle property 2)
follows from Proposition 2.7.

�e following corollary is an immediate consequence of Corollary 2.8.

Corollary 2.9. �ere is a number k > 0 such that each of the subgraphs Hc

.c 2 C/ is k-quasi-convex.

We complete this section with a description of the Gromov boundary of G.
Let as before EG be the H-electri�cation of G. Denote by @EG the Gromov

boundary of EG. For each c 2 C let moreover @Hc be the Gromov boundary
of Hc. We equip

@G D @EG [
[

c

@Hc

with a topology which is de�ned by describing for each point � 2 @G a neighbor-
hood basis as follows.

Let �rst � 2 @EG. Let L > 1 be such that every point x 2 G can be connected in
EG to every point � 2 @EG by an L-quasi-geodesic in EG. Let R > 0 be su�ciently
large.

Let ıE be a Gromov metric on @EG based at a �xed point x 2 G. Let

 W Œ0; 1/ ! EG be an L-quasi- geodesic ray connecting x D 
.0/ to �. For � > 0

let C.�; �/ be the collection of all c 2 C such that there exists a geodesic in EG

connecting x to vc which passes through the 2R-neighborhood of 
Œ� log �; 1/.
De�ne B�.�/ � @G by

B�.�/ D ¹� � @EG; ıE.�; �/ < �º [
[

c2C.�;�/

@Hc:
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Clearly we have
T

�>0 B�.�/ D ¹�º. Declare the family of sets B�.�/ to be a neigh-
borhood basis of � in @G. Note that changing the basepoint x yields an equivalent
neighborhood basis.

If c 2 C and � 2 @Hc then choose a basepoint x 2 Hc . By enlarging L we may
assume that x can be connected to every point in @Hc by a quasi-geodesic in Hc

which is an L-quasi-geodesic in G. Choose such a quasi-geodesic 
 W Œ0; 1/ ! Hc

connecting 
.0/ D x to �.
For � > 0 let C.�; �/ be the collection of all d 2 C � ¹cº such that there exists

a geodesic in EG connecting x to vd which passes through the 2R-neighborhood
of 
Œ� log �; 1/ in Hc .

Let yB�.�/ be the set of all � 2 @EG such that an L-quasi-geodesic in EG

connecting x to � passes through the R-neighborhood of 
Œ� log �; 1/ in Hc.
Let Dc.�; �/ be the open ball of radius � about � in the Gromov boundary of Hc

with respect to a Gromov metric based at x. De�ne

B�.�/ D Dc.�; �/ [ yB�.�/ [
[

d2C.�;�/

@Hd :

As before, we have \

�>0

B�.�/ D ¹�º:

Declare the family of sets B�.�/ to be a neighborhood basis of � 2 @G. We have

Proposition 2.10. @G is the Gromov boundary of G.

Proof. For a number L > 1 de�ne an unparametrized L-quasi-geodesic in the
graph EG to be a path � W Œ0; 1/ ! EG with the following property. �ere is some
n 2 .0; 1�, and there is an increasing homeomorphism � W Œ0; n/ ! Œ0; 1/ such
that � ı � is an L-quasi-geodesic in EG.

Let x 2 G be a vertex and let q > 1 be su�ciently large that x can be con-
nected to every point in the Gromov boundary of G by a q-quasi-geodesic ray in G.
Let 
 W Œ0; 1/ ! G be such a simplicial q-quasi-geodesic ray. We claim that there
is a number q0 > 1 such that 
 viewed as a path in EG is an unparametrized
q0-quasi-geodesic in EG.

Namely, for each i > 0 let �i be an enlargement of a geodesic in EG with
endpoints 
.0/; 
.i/. �en there is a number b > 1 such that �i is a b-quasi-
geodesic in G. By hyperbolicity, the Hausdor� distance in G between 
Œ0; i � and
the image of �i is uniformly bounded. Hence the same holds true if this Hausdor�
distance is measured with respect to the distance in EG � G. �us the Hausdor�
distance in EG between 
Œ0; i � and a geodesic in EG with the same endpoints is
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uniformly bounded. Since i > 0 was arbitrary, this implies that indeed 
 is an
unparametrized q0-quasi-geodesic in EG for a number q0 > 0 only depending on q.

As a consequence, if the diameter of 
Œ0; 1/ in EG is in�nite then up to para-
metrization, 
Œ0; 1/ is a q0-quasi-geodesic ray in EG and hence it converges as
i ! 1 to a point � 2 @EG � @G.

Now assume that the diameter of 
Œ0; 1/ in EG is �nite. By Corollary 2.9,
there is a number M > 0 not depending on 
 or on c 2 C with the following
properties.

(1) If x; y 2 G are any two vertices and if c 2 C is such that the distance in
Hc of some shortest distance projections of x; y into Hc is at least M then a
geodesic in EG connecting x to y passes through the special vertex vc de�ned
by c.

(2) If there is some k > 0 and some c 2 C such that the distance in Hc of some
shortest distance projections of 
.0/; 
.k/ into Hc is at least 2M then for each
` > k the distance in Hc of any shortest distance projections of 
.0/; 
.`/

into Hc is at least M .

For k > 0 let C1.k/ (or C2.k/) be the set of all c 2 C so that the distance in
Hc between some shortest distance projections of 
.0/; 
.k/ into Hc is at least M

(or 2M ). By property (2) above, for ` � k we have C2.k/ � C1.`/.
�e diameter of the image of any simplicial geodesic in EG equals the length of

the geodesic and hence it is bounded from below by the number of special vertices
it passes through. Since the diameter of 
Œ0; 1/ in EG is �nite by assumption, by
property (1) and (2) the set P D

S
k>0 C2.k/ is �nite. Moreover, there is some

k0 > 0 such that [

k>0

C2.k/ �
[

k�k0

C1.k/:

As a consequence, if c 2 C and ` > k0 are such that the distance in Hc of some
shortest distance projection of 
.0/; 
.`/ into Hc is at least 2M then the distance
of the shortest distance projection of 
.0/; 
.k0/ is at least M .

Now the diameter of 
Œk0; 1/ in EG is �nite and therefore there is some c 2 C

so that 
Œk0; 1/ is contained in a uniformly bounded neighborhood of Hc.
On the other hand, 
 is a q-quasi-geodesic in G and the inclusion Hc ! G

is a quasi-isometric embedding. By hyperbolicity there is a quasi-geodesic ray �

in Hc whose Hausdor� distance to 
Œk0; 1/ is bounded. As a consequence, 


determines a point � 2 @Hc � @G.
To summarize, there is a map ƒ from the Gromov boundary of G into @G. It is

easily seen from the above discussion that the map ƒ is injective. Corollary 2.9
then shows that ƒ is in fact a bijection.
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We claim that ƒ is moreover continuous and open. To this end let again

 W Œ0; 1/ ! G be a q-quasi-geodesic. By the above discussion, we may assume
that either 
 has in�nite diameter in EG or there is some k0 � 0 and some c 2 Hc

so that 
Œk0; 1/ � Hc.

A neighborhood basis for the endpoint of 
 in the Gromov boundary of G con-
sists of the family D.m/ .m � 1/ of sets where D.m/ contains all endpoints of
uniform quasi-geodesics ˇ in G which pass through a �xed size neighborhood of

.m/. Up to replacing ˇ by a quasi-geodesic of uniformly controlled Hausdor�
distance to ˇ, we may assume that one of the following two possibilities is satis-
�ed.

(1) ˇ is an enlargement of a quasi-geodesic in EG of in�nite diameter and hence
it de�nes a point in the set ¹ı�.�; �/ < �º where � > 0 is determined by the
distance in EG between 
.m/ and 
.0/.

(2) �ere is some d 2 C with the properties described in the de�nition of the sets
B�.�/ so that the tail of ˇ is contained in Hd and hence de�nes a boundary
point of Hd as speci�ed in the description of the neighboorhood basis of

.1/ in the de�nition of @G.

From this description is it immediate that the image under ƒ of a neighborhood ba-
sis of 
.1/ in the Gromov boundary of G equals a neighborhood basis of ƒ.
.1//

in @G.

3. �ick subsurfaces

In this section we consider a handlebody H of genus g � 2. By a disk in H we
mean an essential disk in H .

Two disks D1; D2 � H are in normal position if their boundary circles inter-
sect in the minimal number of points and if every component of D1 \ D2 is an
embedded arc in D1 \ D2 with endpoints in @D1 \ @D2. In the sequel we always
assume that disks are in normal position; this can be achieved by modifying one
of the two disks with an isotopy.

As in the introduction, call a connected essential subsurface X of @H thick if
the following conditions are satis�ed.

(1) Every disk intersects X .

(2) X is �lled by boundaries of disks.
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�e �rst property says that no essential disk can be isotoped o� X . �e second
property implies that @H � X is not thick. An example of a thick subsurface
is the complement in @H of a suitably chosen simple closed curve which is not
diskbounding. �e entire boundary surface @H is thick as well.

For a thick subsurface X of @H de�ne EDG.X/ to be the graph whose vertices
are disks with boundary contained in X . By property (1) in the de�nition of a thick
subsurface, the boundary of each such vertex is an essential simple closed curve
in X . Two such disks D; E are connected by an edge of length one if and only if
there is an essential simple closed curve 
 in X which can be realized disjointly
from both D; E (e.g. the boundary of D if the disks D; E are disjoint).

Denote by dE;X the distance in EDG.X/. �e disk graphDG.X/ of X is de�ned
in the obvious way, and we denote by dD;X its distance function.

In the sequel we always assume that all curves and multicurves on X � @H

are essential. For two simple closed multicurves c; d on @H let �.c; d/ be the
geometric intersection number between c; d .

�e following lemma [21] implies that for every thick subsurface X of @H the
graphDG.X/ is connected. For its proof and later use, let D; E be disks in minimal
position. De�ne an outer component of E with respect to D to be a component
yE of E � D which is a disk whose boundary consists of a single subarc of @E

and a single subarc ˛ of D. �e arc ˛ intersects the boundary of D precisely at its
endpoints. Surgery of D at this outer component yE replaces D by the union of yE

with one of the two components of D � ˛ (compare e.g. [21, 11]).

Lemma 3.1. Let X � @H be a thick subsurface. Let D; E � H be disks with

boundaries in X . �en D can be connected to a disk E 0 which is disjoint from E

by at most �.@D; @E/=2 simple surgeries. In particular,

dD;X.D; E/ � �.@D; @E/=2 C 1:

Proof. Let D; E be two disks in normal position with boundary in X . Assume
that D; E are not disjoint. �en there is an outer component of E � D. A disk D0

obtained by surgery of D at this component is essential in H and its boundary is
contained in X , i.e. D0 2 EDG.X/. Moreover, D0 is disjoint from D, i.e. we have
dD;X .D0; D/ D 1, and

�.@E; @D0/ � �.@D; @E/ � 2: (1)

�e lemma now follows by induction on �.@D; @E/.
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Remark 3.2. Lemma 3.1 implies that a thick subsurface X of @H can not be a
four-holed sphere or a one-holed torus. Namely, if X is a four-holed sphere or a
one-holed torus and if X contains the boundaries of two distinct disks D; E then
these disks intersect. Surgery of D at an outer component of E � D results in
an essential disk D0 ¤ D which up to homotopy is disjoint from the disk D and
whose boundary is contained in X . Since any two essential simple closed curves in
X intersect, the boundary of D0 is peripheral in X which violates the assumption
that no boundary component of X is diskbounding.

A simple closed multicurve 
 in a thick subsurface X of @H is called diskbust-

ing if 
 intersects every disk with boundary in X .
Consider an oriented I -bundle J.F / over a compact (not necessarily

orientable) surface F with (not necessarily connected) boundary @F . �e bound-
ary @J.F / of J.F / decomposes into the horizontal boundary and the vertical

boundary. �e vertical boundary is the interior of the restriction of the I -bundle
to @F and consists of a collection of pairwise disjoint open incompressible annuli.
�e horizontal boundary is the complement of the vertical boundary in @J.F /.

For a given boundary component ˛ of F , the union of the horizontal bound-
ary of J.F / with the I -bundle over ˛ is a compact connected orientable surface
F˛ � @J.F /. �e boundary of F˛ is empty if and only if the boundary of F is
connected. If the boundary of F is not connected then F˛ is properly contained in
the boundary @J.F / of J.F /. �e complement @J.F / � F˛ is a union of incom-
pressible annuli.

De�nition 3.3. An I -bundle generator in a thick subsurface X � @H is an essen-
tial simple closed curve 
 � X with the following property. �ere is a compact
surface F with non-empty boundary @F , there is a boundary component ˛ of @F ,
and there is an orientation preserving embedding ‰ of the oriented I -bundle J.F /

over F into H which maps ˛ to 
 and which maps F˛ onto the complement in X

of a tubular neighborhood of the boundary @X of X .

We call the surface F the base of the I -bundle generated by 
 .

Example 3.4. 1) An orientable I -bundle over an orientable base is a trivial bun-
dle. �us if @H admits an I -bundle generator 
 with orientable base surface F

then the genus g of @H is even and equals twice the genus of F . �e boundary
of F is connected. �e I -bundle over every essential arc in F with endpoints
in @F is an embedded disk in H . �ere is an orientation reversing involution
ˆ W H ! H whose �xed point set intersects @H precisely in 
 . �is involution



382 U. Hamenstädt

acts as a re�ection in the �ber. �e union of any essential arc ˇ in F with end-
points in @F with its image under ˆ is the boundary of a disk in H (there is a small
abuse of notation here since the �xed point set of ˆ intersects @H in a subset of
the �bre over @F ). �is disk is just the I -bundle over the arc ˇ. We refer to [14]
for more information on I -bundles.

2) Let F be an oriented surface of genus k � 1 with two boundary compo-
nents ˛; ˇ. �e oriented I -bundle J.F / D F � Œ0; 1� over F is homeomorphic
to a handlebody H of genus 2k C 1. �e boundary component ˇ of F is nei-
ther diskbounding nor diskbusting in H . Namely, as in 1) above, the I -bundle
over every essential simple arc in F with both endpoints on ˛ is an essential disk
in H . �e subsurface X D @H � ˇ � @H is thick. �e boundary component ˛

of F intersects every disk with boundary in X and is an I -bundle generator for X

whose base is the surface F . �e thick surface X is naturally homeomorphic to
F˛ , the complement of the I -bundle over ˇ in the boundary of J.F /. �e image
of F � Œ0; 1� D J.F / under the embedding J.F / ! H is the complement of a
neighborhood of ˇ in H which is homeomorphic to a solid torus.

3) Let F be the connected sum of g copies of the real projective plane with a
disk. �e orientable I -bundle over F is a handlebody H of genus g. �e vertical
boundary of the I -bundle is an annulus whose core curve 
 is non-separating.
�e complement of the annulus is the two-sheeted orientation cover of F . �e
I -bundle over any simple arc in F with both endpoints on the boundary of F is
an embedded disk in H .

4) Let 
 be a non-separating I -bundle generator for a proper thick subsurface X

of @H , with base F . �en F is non-orientable. Up to isotopy, the thick subsurface
X of @H is the intersection of the boundary @J.F / of the bundle J.F / � H with
@H . It can be obtained from the orientation cover yF of F by glueing an annulus
to the two preimages of the preferred boundary component ˛ of F . �e I -bundle
over every essential embedded arc ˇ in F with endpoints on ˛ is a disk in H . Its
boundary is the preimage of ˇ in F˛ � @J.F /, viewed as the orientation cover of
F (here we use the same small abuse of terminology as before).

For a thick subsurface X of @H let SDG.X/ be the graph whose vertices are
disks with boundaries contained in X and where two such disks D; E are con-
nected by an edge of length one if one of the following two possibilities is satis-
�ed.

(1) �ere is an essential simple closed curve ˛ � X (i.e. which is essential as a
curve in the subsurface X of @H ) which is disjoint from D [E (for example,
@D if D; E are disjoint).
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(2) �ere is an I -bundle generator 
 � X which intersects both D; E in precisely
two points.

We denote by dS;X the distance in SDG.X/. If X D @H then we simply write dS

instead of dS;@H .
�e following was proved in [11] in the case X D @H . �e proof of the result

carries over to an arbitrary thick subsurface without modi�cation.

Proposition 3.5. Let X � @H be a thick subsurface. �e vertex inclusion de�nes

a quasi-isometric embedding of SDG.X/ into the curve graph of X . In particular,

SDG.X/ is ı-hyperbolic for a number ı > 0 only depending on the genus of H .

4. Hyperbolicity of the electri�ed disk graph

As in Section 3, we consider a handlebody H of genus g � 2, with boundary
@H . �e goal of this section is to use �eorem 1 to show hyperbolicity of the
electri�ed disk graph EDG.X/ of a thick subsurface X of @H . We also determine
the Gromov boundary of EDG.X/.

In the sequel for a number L > 1 we call a map ' W X ! Y between metric
spaces X; Y an L-quasi-isometry if for all x; y 2 X we have

d.x; y/=L � L � d.'.x/; '.y// � Ld.x; y/ C L

and if moreover for every y 2 Y there is some x 2 X with d.'.x/; y/ � L.
Let X � @H be a thick subsurface. Recall that X is connected, and by the

remark after Lemma 3.1, X is distinct from a sphere with at most four holes and
from a torus with a single hole. Denote by dCG;X the distance in the curve graph
CG.X/ of X , by dS;X the distance in the graph SDG.X/ and by dE;X the distance
in the electri�ed disk graph EDG.X/ of X .

If X does not contain any I -bundle generator then EDG.X/ D SDG.X/ and
there is nothing to show. �us assume that there is an I -bundle generator 
 � X .
Let

E.
/ � EDG.X/

be the complete subgraph of EDG.X/ whose vertices are disks intersecting 
 in
precisely two points. De�ne

E D ¹E.
/ j 
º

where 
 runs through all I -bundle generators in X . By de�nition, SDG.X/ is
2-quasi-isometric to the E-electri�cation of EDG.X/. �us by �eorem 2.4, to
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show hyperbolicity of EDG.X/ it su�ces to show that each of the graphs E.
/

is ı-hyperbolic for a number ı > 0 not depending on 
 and that the bounded
penetration property holds true.

We begin with establishing hyperbolicity of the graphs E.
/. To this end, for a
compact (not necessarily orientable) surface F with boundary @F and for a �xed
boundary component ˛ of F , de�ne the electri�ed arc graph C 0.F; ˛/ as follows.
Vertices of C 0.F; ˛/ are essential embedded arcs in F with both endpoints in ˛.
Two such arcs are connected by an edge of length one if either they are disjoint
or if they are disjoint from a common essential simple closed curve. If F is non-
orientable, then we require that an essential simple closed curve does not bound a
Möbius band in F .

�e following statement is well known but hard to �nd in the literature.
We give a proof for completeness.

Lemma 4.1. Let F be a compact surface with boundary @F . Assume that F is not

a sphere with at most three holes or a projective plane with at most three holes.

Let ˛ be a boundary circle of F . �en C 0.F; ˛/ is 4-quasi-isometric to the curve

graph of F .

Proof. De�ne the arc and curve graph A.F; ˛/ of F to be the graph whose ver-
tices are arcs with endpoints on ˛ or essential simple closed curves in F .
Two such arcs or curves are connected by an edge of length one if they can be
realized disjointly.

Consider �rst the case that F either is a one-holed torus, a one-holed Klein
bottle, a four holed sphere or a four-holed projective plane. In this case two sim-
ple closed curves in F are connected by an edge in the curve graph of F if they
intersect in the minimal number of points (one or two). Let ˇ be an essential sim-
ple closed curve in F . Cutting F open along ˇ yields a three-holed sphere (if F

is a one-holed torus or a one-holed Klein bottle), the disjoint union of two three
holed spheres (if F is a four-holed sphere) or the disjoint union of a three holed
sphere and a three holed projective plane (if F is a four-holed projective plane).

�us there is a unique essential arc ƒ.ˇ/ � F with endpoints on ˛ which is
disjoint from ˇ. �e distance between two essential simple closed curves ˇ; 
 in
the curve graph of F equals one if and only if the arcs ƒ.ˇ/; ƒ.
/ are disjoint. �is
means that the map ƒ which associates to a simple closed curve ˇ in F the unique
arc ƒ.ˇ/ with endpoints on ˛ which is disjoint from ˇ de�nes an isometry of the
curve graph of F onto the arc graph of .F; ˛/. �is arc graph is the complete sub-
graph of A.F; ˛/ whose vertex set consists of arcs with endpoints on ˛. Moreover,
in the special case at hand, this arc graph is just the graph C 0.F; ˛/. �is yields
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the statement of the lemma for one-holed tori, one-holed Klein bottles, four-holed
spheres and four-holed projective planes.

Now assume that the surface F is such that two vertices in the curve graph of
F are connected by an edge if they can be realized disjointly. �en for any two
disjoint essential simple closed curves ˇ; 
 in F there is an essential arc with end-
points on ˛ which is disjoint from both ˇ; 
 . In particular, for every simplicial path
c in the arc and curve graph A.F; ˛/ connecting two vertices in A.F; ˛/ which are
arcs with endpoints on ˛, there is a path of at most double length in C 0.F; ˛/

connecting the same endpoints. �is path can be obtained from c as follows.
If c.i/; c.i C 1/ are both simple closed curves then replace cŒi; i C 1� by a simpli-
cial path in A.F; ˛/ of length 2 with the same endpoints whose midpoint is an arc
disjoint from c.i/; c.i C 1/. In the resulting path, a simple closed curve ˇ � F is
adjacent to two arcs disjoint from ˇ and hence we can view this path as a path in
C 0.F; ˛/. �us the vertex inclusion C 0.F; ˛/ ! A.F; ˛/ is a 2-quasi-isometry.

We are left with showing that the inclusion of the curve graph of F intoA.F; ˛/

is a 2-quasi-isometry. However, this is well known, and in the case of an oriented
surface, it can be found in [20]. A sketch of a proof is as follows. Construct from
a simplicial path in A.F; ˛/ connecting two simple closed curves a new path by
replacing any edge connecting two arcs by a path of length two with the same
endpoints whose middle vertex is a disjoint simple closed curve. �en replace
any arc ˇ by an essential simple closed curve which is composed of ˇ and one of
the two components of ˛ � ˇ (at least one of the two choices of such curves will
be essential).

A thick subsurface X of @H is not a four-holed sphere. �us if 
 is a separating
I -bundle generator for X then the base of the I -bundle (which is an oriented
surface with boundary) either has positive genus or is a sphere with at least four
holes. Similarly, if 
 is a non-separating I -bundle generator for X then we may
assume that the base F of the I -bundle is not a projective plane with three holes.
Namely, if F is a projective plane with three holes and if ˛ is a distinguished
boundary component of F then there is up to homotopy a unique essential arc ˇ

in F with boundary on ˛. �e I -bundle over ˇ is the unique disk in the oriented
I -bundle over F which intersects the curve ˛ in precisely two points.

For the formulation of the following lemma, for an I -bundle generator 
 in
a thick subsurface X of @H , with base surface F , denote again by 
 the distin-
guished boundary component of F . A disk D � H with boundary @D � X which
intersects 
 in precisely two points is an I -bundle over a simple arc ˇ � F with
boundary on 
 . Namely, if F is oriented then the inclusion F ! J.F / induces an
isomorphism of fundamental groups. As the boundary of a disk de�nes the trivial
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element in the fundamental group of J.F /, the two components of @D � 
 de�ne
inverse elements in the fundamental group of F relative to 
 . A similar argument
can be used in the case that F is non-orientable. We call ˇ the projection of @D

to F . With these notations we show.

Lemma 4.2. Let X � @H be a thick subsurface and let 
 be an I -bundle genera-

tor in X , with base surface F . �en the map which associates to a disk D 2 E.
/

the projection of @D to F extends to a 2-quasi-isometry of E.
/ onto the electri�ed

arc graph C0.F; 
/ of F .

Proof. Let 
 be an I -bundle generator in X and let F be the base surface of the
I -bundle generated by 
 . Let J.F / be the oriented I -bundle over F as in the
de�nition of an I -bundle generator and let ‰ W J.F / ! H be a corresponding
embedding. Up to isotopy, we have ‰.@J.F // \ @H D X . �ere is an orientation
reversing bundle involution ˆ of J.F / which exchanges the endpoints of the �bres.
�e involution preserves @J.F / and the curve 
 . �e quotient of @J.F / under this
involution equals the base surface F of the I -bundle. �e projection of 
 is the
distinguished boundary component of F , again denoted by 
 .

Up to isotopy, if the boundary @D of a disk D in H is contained in X and
intersects the curve 
 in precisely two points then ‰�1.@D/ is invariant under the
involution ˆ (see the comment preceding this lemma). �us the map

‚ W V.C 0.F; 
// �! V.E.
//

which associates to an arc ˇ in F with endpoints on 
 the I -bundle over ˇ is a bi-
jection. Here V.C 0.F; 
// (or V.E.
//) is the set of vertices of C 0.F; 
/

(or E.
/).
If ˛; ˇ 2 V.C 0.F; 
// are connected by an edge then either ˛; ˇ are disjoint

and so are ‚.˛/; ‚.ˇ/, or ˛; ˇ are disjoint from an essential simple closed curve
� in F and therefore the disks ‚.˛/; ‚.ˇ/ are disjoint from ‰.�/ � X . �us ‚

extends to a 1-Lipschitz map C 0.F; 
/ ! E.
/.
We are left with showing that ‚�1 W V.E.
// ! V.C 0.F; 
// is 2-Lipschitz

where V.E.
// and V.C 0.F; 
// are equipped with the restriction of the metric
on E.
/; C 0.F; 
/. To this end let ˛; ˇ 2 V.C 0.F; 
// be such that ‚.˛/; ‚.ˇ/

are connected by an edge in E.
/. If ‚.˛/; ‚.ˇ/ are disjoint then the same holds
true for ˛; ˇ and hence ˛; ˇ are connected by an edge in C 0.F; 
/. Otherwise
‚.˛/; ‚.ˇ/ are disjoint from an essential simple closed curve � in X .

�e boundaries @‚.˛/; @‚.ˇ/ of the disks ‚.˛/; ‚.ˇ/ are invariant under
the involution ‰ ı ˆ ı ‰�1 and therefore @‚.˛/ [ @‚.ˇ/ is disjoint from
� [ ‰ ı ˆ ı ‰�1.�/. As a consequence, the projection of ‰�1.�/ [ ‚‰�1.�/
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to the base surface F is a union of essential arcs with endpoints on 
 and closed
curves (not necessarily simple) which are disjoint from ˛ [ ˇ. If there is a com-
ponent which is a simple arc with endpoints on 
 or if there is a component which
is a simple closed curve then the distance in C 0.F; 
/ between ˛ and ˇ is at most
two as claimed (note that this always holds true if F is orientable). Otherwise
the projection of ‰�1.�/ [ ‚‰�1.�/ consists of arcs and closed curves which are
not simple. However, any simple closed loop which is embedded in the graph
de�ned by these arcs and curves is essential and disjoint from ˛ [ ˇ. �us the
claim follows as before. �e lemma is proven.

From Lemma 4.2, Lemma 4.1 and hyperbolicity of the curve graph of X ([19],
and [2] for the curve graph of a non-orientable surface) we immediately obtain

Corollary 4.3. �ere is a number ı > 0 such that each of the graphs E.
/ is

ı-hyperbolic.

Note that the number ı > 0 in the statement of the corollary only depends on
H but not on X . In fact, the main result of [1, 4, 7, 15] together with Lemma 4.2
shows that it can even be chosen independent of H .

We are left with the veri�cation of the bounded penetration property. To this
end recall from [20] the de�nition of a subsurface projection. Namely, let again
X � @H be a thick subsurface and let Y � X be an essential, open connected
subsurface which is distinct from X , a three-holed sphere and an annulus. We call
such a subsurface Y a proper subsurface of X . �e arc and curve graph AC.Y /

of Y (here we do not specify a boundary component) is the graph whose vertices
are isotopy classes of arcs with endpoints on @Y or essential simple closed curves
in Y , and two such vertices are connected by an edge of length one if they can be
realized disjointly. �e vertex inclusion of the curve graph of Y into the arc and
curve graph is a 2-quasi-isometry [20].

�ere is a projection �Y of the curve graph CG.X/ of X into the space of sub-
sets ofAC.Y / which associates to a simple closed curve in X the homotopy classes
of its intersection components with Y . For every simple closed multicurve c in
X , the diameter of �Y .c/ in AC.Y / is at most one. If c can be realized disjointly
from Y then �Y .c/ D ;.

As before, call a path � in a metric graph G simplicial if � maps each interval
Œk; k C 1� (where k 2 Z) isometrically onto an edge of G or a single vertex.
�e following lemma is a version of �eorem 3.1 of [20].
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Lemma 4.4. �ere is a number B > 0 with the following property. Let Y be

a proper subsurface of X and let � be a simplicial path in CG.X/ which is an

L-quasi-geodesic for some L � 1. If �Y .v/ 6D ; for every vertex v on � then

diam �Y .�/ < BL3:

Proof. By hyperbolicity, for every L > 1 there is a number n.L/ > 0 so that for ev-
ery L-quasi-geodesic � in CG.X/ of �nite length, the Hausdor� distance between
the image of � and the image of a geodesic �0 with the same endpoints does not
exceed n.L/. Indeed, there is a number k > 0 only depending on the hyperbolicity
constant for CG.X/ such that we can choose n.L/ D kL2 (Proposition III.H.1.7
in [5]).

Now let Y � X be a proper subsurface. By �eorem 3.1 of [20], there is a
number M > 0 with the following property. If � is any simplicial geodesic in
CG.X/ and if �Y .�.s// 6D ; for all s 2 Z in the domain of � then

diam.�Y .�// � M:

Let L > 1, let � W Œ0; k� ! CG.X/ be a simplicial path which is an L-quasi-
geodesic and assume that

diam.�Y .�.0/ [ �.k/// � 2M C L.2n.L/ C 6/:

Our goal is to show that � passes through the set A � CG.X/ of all essential simple
closed curves in X � Y . �e diameter of A in CG.X/ is at most two.

To this end let �0 be a simplicial geodesic in CG.X/ with the same endpoints as
�. �eorem 3.1 of [20] shows that there is some u 2 Z such that �0.u/ 2 A. �en
� passes through the n.L/-neighborhood of A.

Let s C 1 � t � 1 be the smallest and the biggest number, respectively, so
that �.s C 1/; �.t � 1/ are contained in the n.L/-neighborhood of A. �en �Œ0; s�

(or �Œt; k�) is contained in the complement of the n.L/-neighborhood of A. Since
� is an L-quasi-geodesic, a geodesic connecting �.0/ to �.s/ (or connecting �.t/

to �.k/) is contained in the n.L/-neighborhood of �Œ0; s� (or of �Œt; k�) and hence
it does not pass through A. In particular,

diam.�Y .�.0/ [ �.s/// � M and diam.�Y .�.t/ [ �.k/// � M:

As a consequence, we have

diam.�Y .�.s/ [ �.t/// � L.2n.L/ C 6/: (2)
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Since dCG;X .�.s C1/; A/ � n.L/ and dCG;X .�.t �1/; A/ � n.L/ and since the
diameter of A is at most 2, we obtain dCG;X.�.s/; �.t// � 2n.L/ C 4. Now � is
a simplicial L-quasi-geodesic in CG.X/ and hence the length t � s of �Œs; t � is at
most L.2n.L/ C 4/ C L D L.2n.L/ C 5/. For all ` 2 Z the curves �.`/; �.` C 1/

are disjoint and therefore if �.`/; �.` C 1/ both intersect Y then the diameter of
�Y .�.`/ [ �.` C 1// is at most one. �us if �.`/ intersects Y for all ` then

diam.�Y .�.s/ [ �.t/// � L.2n.L/ C 5/:

�is contradicts inequality (2) and completes the proof of the lemma.

For simplicity of notation, in the remainder of this section we identify disks in
H with their boundaries. In other words, for a thick subsurface X of @H we view
the vertex sets of the graphs SDG.X/;EDG.X/ as subsets of the vertex set of the
curve graph CG.X/ of X .

Let SDG0.X/ be the E-electri�cation of EDG.X/. For each I -bundle gen-
erator 
 in X , the graph SDG0.X/ contains a special vertex v
 . �e vertex set
of SDG0.X/ is the union of the set of all diskbounding simple closed curves
in X with the set ¹v
 j 
º. In particular, there is a natural vertex inclusion
V.SDG0.X// ! CG.X/ which maps the special vertex v
 to the simple closed
curve 
 . Since SDG.X/ is quasi-isometric to the E-electri�cation of EDG.X/,
Proposition 3.5 shows that this vertex inclusion extends to a quasi-isometric em-
bedding SDG0.X/ ! CG.X/.

We aim at replacing the special vertices on a geodesic in SDG0.X/

by geodesic segments in the peripheral graphs E.
/ while keeping track of sub-
surface projections. To this end we associate to an e�cient L-quasi-geodesic
� W Œ0; n� ! SDG0.X/ a simplicial path Q� in the curve graph CG.X/ as follows.

A vertex �.j / in SDG0.X/ which is not one of the special vertices v


also de�nes a vertex in CG.X/. If �.j /; �.j C 1/ are two vertices of this kind
which are connected in SDG0.X/ by an edge then they are connected in
EDG.X/ � SDG0.X/ by an edge. By the de�nition of the electri�ed disk graph,
this means that there is a simple closed curve ˛ in X which is disjoint from
�.j / [ �.j C 1/. �us �.j / and �.j C 1/ can be connected in CG.X/ by an
edge path of length at most two. We replace the edge �Œj; j C 1� by such a path.

Similarly, if �.j / D v
 for an I -bundle generator 
 in X , then �.j � 1/,
�.j C 1/ are vertices in EDG.X/, i.e. diskbounding simple closed curves, More-
over, �.j �1/; �.j C1/ intersect 
 in precisely two points. Replace �Œj �1; j C1�

by an edge path in CG.X/ with the same endpoints whose length is at most four
and which passes through 
 . �e arc Q� constructed in this way from � is a uniform
quasi-geodesic in CG.X/ which passes through any I -bundle generator 
 at most
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once, and it passes through 
 if and only if it passes through a simple closed curve
which is disjoint from 
 . We call Q� a canonical modi�cation of �. By Proposi-
tion 3.5, the canonical modi�cation of an e�cient L-quasi-geodesic in SDG0.X/

is an L0-quasi-geodesic in CG.X/ for a number L0 > 0 only depending on L.
Now we are ready to show

Lemma 4.5. For every thick subsurface X of @H the family E has the bounded

penetration property.

Proof. Let 
 be a separating I -bundle generator in X . �en X �
 has two homeo-
morphic components X1; X2 with a distinguished boundary component 
 . Denote
by dAC.Xi / the distance in the arc and curve graph AC.Xi / of Xi .i D 1; 2/ for
this boundary component of Xi . Every simple closed curve ˛ in X which has
an essential intersection with 
 projects to a collection of arcs ˛1; ˛2 in X1; X2

which de�ne subsets of AC.Xi / .i D 1; 2/. If ˇ is another simple closed curve
intersecting 
 then de�ne

dAC.X�
/.˛; ˇ/ D max¹dAC.X1/.˛1; ˇ1/; dAC.X2/.˛2; ˇ2/º:

If �
 W CG.X/ ! AC.X � 
/ D AC.X1/ [ AC.X2/ denotes the subsurface
projection then by Proposition 3.5 and Lemma 4.4, there is a number M.L/ > 0

with the following property.
Let � W Œ0; n� ! SDG0.X/ be an e�cient simplicial L-quasi-geodesic, with

canonical modi�cation Q�. If

dAC.X�
/.�

 .�.0//; �
.�.n/// � M.L/

then there is some k0 2 Z such that Q�.k0/ D 
 . Equivalently, there is some k < n

such that �.k/ D v
 . Moreover,

dAC.Xi /.�

 .�.0//; �
.�.k � 1/// � M.L/ .i D 1; 2/;

and similarly

dAC.Xi /.�

 .�.k C 1//; �
 .�.n/// � M.L/ .i D 1; 2/:

As a consequence, if �0 W Œ0; n0� ! SDG0.X/ is another e�cient simplicial
L-quasi-geodesic with the same endpoints, then there is some k0 < n0 such that
�0.k0/ D v
 , and

dAC.X�
/.�

 .�.k � 1//; �
.�0.k0 � 1/// � 2M.L/;

dAC.X�
/.�

 .�.k C 1//; �
.�0.k0 C 1/// � 2M.L/:
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Lemma 4.2 and Lemma 4.1 now show that the distance in E.
/ between
�.k � 1/; �0.k0 � 1/ and between �.k C 1/; �0.k0 C 1/ is uniformly bounded.
In particular, the bounded penetration property holds true for the subgraph E.
/

and for quasi-geodesics connecting two disks whose boundaries have projections
of large diameter into X � 
 .

On the other hand, if � W Œ0; n� ! SDG0.X/ is any e�cient simplicial L-quasi-
geodesic and if �.k/ D v
 for some I -bundle generator 
 then using once more
Lemma 4.4, we conclude that

dAC.X�
/.�

 .�.0//; �
.�.k � 1/// � M.L/:

�erefore the reasoning in the previous paragraph shows that whenever the
distance in E.
/ between �.k � 1/; �.k C 1/ is su�ciently large then

dAC.X�
/.�

 .�.0//; �
.�.n/// � M.L/:

In other words, the conclusion in the previous paragraph holds true, and the
bounded penetration property for separating I -bundle generators follows.

Now assume that 
 is non-separating. Let �
 W CG.X/ ! AC.X � 
/ be the
subsurface projection. Using the notations from the beginning of this proof, if the
distance in AC.X �
/ between �
 .�.0// and �
 .�.n// is at least M.L/ then there
is some k so that �.k/ D v
 . Moreover, we have �.k �1/ 2 E.
/; �.k C1/ 2 E.
/.
As a consequence, the curves �.k �1/; �.k C1/ are invariant under the orientation
reversing involution ' of X which preserves 
 and extends to an involution of the
I -bundle de�ned by 
 .

Let F be the base of the I -bundle de�ned by 
 and let ˛; ˇ 2 C 0.F; 
/ be the
projections of �.k � 1/; �.k C 1/. By Lemma 4.2, the distance in E.
/ between
�.k � 1/; �.k C 1/ is uniformly equivalent to the distance in C 0.F; 
/ between
˛; ˇ. Since �.k � 1/; �.k C 1/ are invariant under the involution ˆ, the main
result of [24] shows that this distance is also uniformly equivalent to the distance
between �
 .�.k � 1// and �
 .�.k C 1// in AC.X � 
/.

In particular, if �0 is any other e�cient L-quasi-geodesic in SDG0.X/ with the
same endpoints, then there is some k0 with �.k0/ D v
 , and the distance in E.
/

between �.k � 1/; �0.k0 � 1/ and between �.k C 1/ and �0.k0 C 1/ is uniformly
bounded. �e bounded penetration property follows in this case.

Finally, as in the case of a separating I -bundle generator, this argument can be
inverted. Together this completes the proof of the lemma.
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We can now apply �eorem 2.4 to conclude

Corollary 4.6. For every thick subsurface X of @H , the graph EDG.X/

is ı-hyperbolic for a number ı > 0 not depending on X . Enlargements of geodesics

in SDG0.X/ are uniform quasi-geodesics in EDG.X/. �ere is a number k > 0

such that for every I -bundle generator 
 in X , the subgraph E.
/ of EDG.X/ is

k-quasi-convex.

Proof. By Proposition 3.5, the E-electri�cation of EDG.X/ is hyperbolic.
�e bounded penetration property holds true by Lemma 4.5 and hence EDG.X/

is hyperbolic relative to E. By Corollary 4.3, there is a number ı > 0 such that
each of the subgraphs E.
/ is ı-hyperbolic. �us the conditions in �eorem 2.4
are satis�ed.

In the remainder of this section, we specialize to the case X D @H .
We begin with establishing a distance estimate for the electri�ed disk graph
EDG D EDG.@H/.

If 
 is an I -bundle generator in @H then let �
 be the subsurface projection of
a simple closed curve in @H into the arc and curve-graph of @H � 
 .

For a subset A of a metric space Y and a number C > 0 de�ne diam.A/C to be
the diameter of A if this diameter is at least C and let diam.A/C D 0 otherwise.
�e notation � means equality up to a universal multiplicative constant.

Corollary 4.7. Let H is a handlebody of genus g � 2. �en there is a number

C > 0 such that for any two disks D; E in H we have

dE.D; E/ � dCG.@D; @E/ C
X




diam.�
 .@D [ @E//C

where 
 passes through all I -bundle generators on @H .

Proof. Let SDG0 be the E-electri�cation of EDG. For an I -bundle generator 
 in
@H denote by v
 the special vertex in SDG0 de�ned by 
 .

Let � W Œ0; k� ! SDG0 be a geodesic. By Corollary 2.8 and Corollary 4.6, an
enlargement O� of � is a uniform quasi-geodesic in EDG. �us it su�ces to show
that the length of O� is uniformly comparable to the right hand side of the formula
in the corollary.

By Proposition 3.5, there is a number L > 1 such that a simplicial arc Q� in
the curve graph CG of @H constructed from � as in the proof of Lemma 4.5 is an
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L-quasi-geodesic in CG. Lemma 4.5 shows that if O� is an enlargement of � then the
diameter of the intersection of O� with E.
/ equals the diameter of �
 .�.0/[�.k//

up to a universal multiplicative and additive constant. �is is what we wanted to
show.

We complete this section with determining the Gromov boundary of the elec-
tri�ed disk graph of H . To this end let H be a handlebody of genus g � 2. Let L
be the space of all geodesic laminations on @H equipped with the coarse Haus-

dor� topology [9]. In this topology, a sequence of laminations �i converges to
� if every accumulation point of �i in the usual Hausdor� topology for compact
subsets of @H contains � as a sublamination. �is topology is not Hausdor�.

Let

H � L

be the subspace of all minimal laminations which �ll up @H , i.e. such that com-
plementary components are simply connected, and which are limits in the coarse
Hausdor� topology of diskbounding simple closed curves. �e restriction to H of
the coarse Hausdor� topology is Hausdor� (see [9] for a discussion of this fact).

For an I -bundle generator 
 let @E.
/ � L be the set of all geodesic lamina-
tions which consist of two minimal components �lling up @H � 
 and which are
limits in the coarse Hausdor� topology of boundaries of disks contained in E.
/.
Each lamination � 2 @E.
/ is invariant under the orientation reversing involution
ˆ
 of @H which �xes 
 pointwise and exchanges the endpoints of the �bres of
the de�ning I -bundle.

De�ne

@EDG D H [
[




@E.
/ � L

where the union is over all I -bundle generators 
 � @H . �e handlebody group
Map.H/ acts on @EDG equipped with the coarse Hausdor� topology as a group
of homeomorphisms.

Proposition 2.10 can now be applied to show

�eorem 4.8. �e Gromov boundary of EDG is Map.H/-equivariantly homeo-

morphic to @EDG.

Proof. We show �rst that the subspace @EDG of L is Hausdor�.
A point � 2 @EDG either is a minimal geodesic lamination which �lls up @H ,

or it is a geodesic lamination with two minimal components which �ll up @H � 


for some I -bundle generator 
 . Let � 6D � be another such lamination. We claim
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that � and � intersect. �is means that for some �xed hyperbolic metric on @H ,
the geodesic representatives of �; � intersect transversely.

If either � or � �lls up @H (i.e. if the complementary components of � or � are
simply connected) then this is obvious. Otherwise � �lls up the complement of an
I -bundle generator 
 , and � �lls up the complement of an I -bundle generator 
 0.
Now the simple closed curve 
 is the only minimal geodesic lamination which
does not intersect � and which is distinct from a component of �. �e lamination
� consists of two minimal components which are not simple closed curves and
therefore the geodesic laminations �; � indeed intersect.

Since �; � 2 @EDG intersect, by the de�nition of the coarse Hausdor� topol-
ogy there are neighborhoods U of �, V of � in L so that any two laminations
�0 2 U; �0 2 V intersect. In particular, the neighborhoods U; V are disjoint.
�is shows that @EDG is Hausdor�.

Proposition 2.10 shows that there is a natural bijection ƒ between @EDG and
the Gromov boundary of EDG. �at this bijection is in fact a homeomorphism
follows from the description the Gromov boundary of the curve graph of @H as
discussed in [18, 9] and Proposition 2.10.

To be more precise, let 
 be a separating I -bundle generator for @H . �e ori-
entation reversing involution ˆ
 of the I -bundle determined by 
 restricts to a
homeomorphism of @H � 
 which exchanges the two components of @H � 
 .
By Lemma 4.1 and Lemma 4.2, the graph E.
/ can be identi�ed with the com-
plete subgraph of CG whose vertex set is the set of all simple closed curves ˛ in
@H which intersect 
 in precisely in two points and are invariant under ˆ
 . Using
again Lemma 4.1, Lemma 4.2 and the description of the Gromov boundary of the
curve graph of a component of X �
 in [18, 9], the Gromov boundary of E.
/ has
a natural identi�cation with the space @E.
/ of all ˆ
 -invariant geodesic lamina-
tions which consist of two minimal components, each of which �lls a component
of @H �
 . �e topology on this space is the coarse Hausdor� topology. A similar
description is valid for the Gromov boundary of E.�/ where � is an orientation
reversing I -bundle generator.

Proposition 2.10 shows that the Gromov boundaries of the subspaces E.
/ are
embedded subspaces of the Gromov boundary of EDG. �e Gromov boundary H

of SDG is embedded in the Gromov boundary of EDG as well. For every � 2 H,
a neighborhood basis of � in the Gromov boundary of EDG consists of sets which
are unions of a neighborhood of � in H with sets @E.
/ where the curves 
 are
contained in some neighborhood of � in CG [ @CG. By the description of neigh-
borhood bases of � in CG [ @CG as neighborhoods of � in the space of geodesic
laminations, equipped with the coarse Hausdor� topology [18, 9], a neighborhood
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basis of � as a point in the Gromov boundary of EDG maps to a neighborhood
basis of ƒ.�/ in lamination space equipped with the coarse Hausdor� topology.
�e same holds true for � 2 @E.
/ where 
 is any I -bundle generator.

5. Intermediate hyperbolic graphs

In this section we construct a graph whose vertices are disks and which can be
obtained from the disk graph by adding edges and from the electri�ed disk graph
by deleting edges. We use Corollary 2.8 to show that this graph is hyperbolic.
�e construction in this section can be iterated inductively and yields hyperbolicity
of the disk graph as explained in Section 6.

First we slightly weaken the de�nition of thick subsurface of @H as follows.
Namely, de�ne a connected properly embedded subsurface Y of @H to be visible

if every disk intersects Y and if moreover Y contains the boundary of at least one
disk. �us a thick subsurface is visible, but a visible subsurface may not be �lled
by boundaries of disks and hence may not be thick. Note that if Y is visible then
the electri�ed disk graph EDG.Y / of Y is de�ned. However, if Y is not thick then
its diameter equals one.

Let as before X be a thick subsurface of @H . Recall from Remark 3.2 that
X is not a four holed sphere or a one holed torus. De�ne EDG.2; X/ to be the
graph whose vertices are isotopy classes of essential disks with boundary in X .
Two such disks D; E in EDG.2; X/ are connected by an edge of length one if
either D; E are disjoint or if @D; @E are disjoint from an essential multicurve
ˇ � @X consisting of two components which are not freely homotopic.

Call a simple closed curve 
 in X admissible if 
 has the following properties.

(1) 
 is neither diskbounding nor diskbusting.

(2) Either 
 is non-separating or 
 decomposes X into a three-holed sphere X1

and a visible second component X2.

For an admissible simple closed curve 
 in X write EDG.X � 
/ to denote the
electri�ed disk graph of the component of X �
 which is not a three-holed sphere.
De�ne F.
/ to be the complete subgraph of EDG.2; X/ whose vertex set consists
of all disks which are disjoint from 
 . As 
 is not diskbounding by assumption,
the boundary of such a disk is not freely homotopic to 
 . A disk D 2 F.
/ de�nes
a vertex in EDG.X � 
/.
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Lemma 5.1. �e vertex inclusion de�nes an isometry of F.
/ and EDG.X � 
/.

Proof. By Remark 3.2, if X is a �ve-holed sphere or a two-holed torus then F.
/

and EDG.X � 
/ contain at most one vertex, so there is nothing to show. �us
assume that X is di�erent from a �ve holed sphere or a two holed torus.

Two disks D; E 2 F.
/ are connected by an edge in EDG.2; X/ if and only if
either they are disjoint or if there is a pair ˇ1; ˇ2 of disjoint not homotopic essential
simple closed curves in X which are disjoint from both D; E.

If D; E are disjoint then they are connected in EDG.X � 
/ by an edge, so
assume that D; E are disjoint from two disjoint not homotopic curves ˇ1; ˇ2.
If one of the curves ˇ1; ˇ2, say the curve ˇ1, is disjoint from 
 , then one of the
two curves ˇ1 (if ˇ1 is not homotopic to 
) or ˇ2 (if ˇ1 is homotopic to 
) is an
essential simple closed curve X � 
 . �is curve must be contained in the compo-
nent yX of X �
 which is not a three holed sphere (note that if 
 is non-separating
then yX D X � 
). �us by de�nition, D; E viewed as vertices in EDG.X � 
/ are
connected by an edge.

Now assume that both ˇ1; ˇ2 intersect 
 . We claim that there is an essential
simple closed curve contained in the intersection of a tubular neighborhood of

 [ˇ1 with yX which is disjoint from 
 and not homotopic to 
 . �is curve is then
essential in yX and disjoint from 
; D; E and once again, D; E are connected by
an edge in EDG.X � 
/.

To show the claim let � be a component of ˇ1�
 . In the case that 
 is separating
we require that � is contained in yX . As yX is not a three-holed sphere or a one-
holed torus, one of the boundary components of a tubular neighborhood of 
 [ �

is an essential simple closed curve in yX disjoint from 
 and not freely homotopic
to 
 .

As a consequence, the vertex inclusion F.
/ ! EDG.X � 
/ extends to a
1-Lipschitz embedding. By de�nition, this embedding is surjective on vertices.
Moreover, any two vertices which are connected in EDG.X � 
/ by an edge are
also connected in F.
/ by an edge. In other words, the 1-Lipschitz embedding
F.
/ ! EDG.X � 
/ is in fact an isometry.

Lemma 5.1 and Corollary 4.6 imply

Corollary 5.2. �ere is a number ı > 0 so that each of the graphs F.
/ is

ı-hyperbolic.
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Let F D ¹F.
/ j 
º be the family of all these subgraphs of EDG.2; X/ where 


passes through all admissible curves in X . Our goal is to apply �eorem 2.4 to F.

Lemma 5.3. EDG.X/ is 2-quasi-isometric to the F-electri�cation of EDG.2; X/.

Proof. Let G be the F-electri�cation of EDG.2; X/. We show �rst that the vertex
inclusion EDG.X/ ! G is 2-Lipschitz.

To this end let D; E be any two vertices in EDG.X/ which are connected by an
edge. �en either D; E are disjoint, or they are disjoint from a common essential
simple closed curve 
 in X .

If D; E are disjoint then D; E viewed as vertices in EDG.2; X/ are connected
by an edge in EDG.2; X/.

Now assume that D; E are disjoint from a common essential simple closed
curve 
 in X . If 
 is diskbounding then the distance between D; E in the disk
graph of X is at most two and hence the same holds true for the distance in G. If 


is admissible then D; E 2 F.
/ and hence by the de�nition of the F-electri�cation
of EDG.2; X/, their distance in G is at most two.

On the other hand, if 
 is neither admissible nor diskbounding, then 
 is a sep-
arating simple closed curve in X . �e surface X �
 is a disjoint union of essential
surfaces X1; X2 which are distinct from three-holed spheres. �e boundaries of
D; E are contained in X1 [ X2.

If @D; @E are contained in distinct components of X �
 then D; E are disjoint
and hence D; E are connected by an edge in EDG.2; X/. If @D; @E are contained in
the same component of X � 
 , say in X1, then the second component X2 contains
an essential simple closed curve �, and @D; @E are disjoint from the multi-curve

 [ � with two components. Once more, this implies that D; E are connected in
EDG.2; X/ by an edge. As a consequence, the vertex inclusion EDG.X/ ! G is
indeed 2-Lipschitz.

�at this inclusion is in fact a 2-quasi-isometry is immediate from the de�ni-
tions. Namely, if 
 � X is admissible then by the de�nition of EDG.X/, any two
vertices in F.
/ are connected in EDG.X/ by an edge.

Our goal is to use Lemma 5.3 and �eorem 2.4 to show hyperbolicity of the
graph EDG.2; X/. To verify the bounded penetration property using the strategy
from Section 4 we have to carefully keep track of subsurface projections. To make
this control quantitative, for � > 0 de�ne a simplicial path � W Œ0; n� ! EDG.X/ to
be �-good if for every thick subsurface Y of X there is a number u D u.Y / 2 Œ0; n/

with the following properties.
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(1) For every j � u, diam.�Y .�.0/ [ �.j /// � �.

(2) For every j > u, diam.�Y .�.j / [ �.n/// � �.

As before, let SDG0.X/ be the E-electri�cation of EDG.X/. By Corollary 2.8,
enlargements of geodesics in SDG0.X/ are uniform quasi-geodesics in EDG.X/.

Lemma 5.4. �ere is a number � > 0 not depending on X such that an enlarge-

ment of a geodesic in SDG0.X/ is �-good.

Proof. By Proposition 3.5 and Lemma 4.4, a geodesic � in SDG0.X/ is �0-good
for a number �0 not depending on X .

Let Q� W Œ0; m� ! CG.X/ be a canonical modi�cation of �. Suppose that Y � X

is a thick subsurface such that diam.�Y . Q�.0/ [ Q�.m/// � �0. Since � is �0-good
and Y is thick, there is a unique number k > 0 so that Q�.k/ is disjoint from Y , and
Q�.k/ is not a diskbounding curve.

Recall from Section 3 the de�nition of the family E D ¹E.
/ j 
º of com-
plete subgraphs of EDG.X/. Let � be an enlargement of �, let 
 be an I -bundle
generator in X and let �Œs; t � be a maximal subarc of � contained in E.
/. By max-
imality and the de�nition of a canonical modi�cation, there is some ` � 0 such
that �.s/ D Q�.`/ and �.t/ D Q�.`C4/. It now su�ces to show that k 62 Œ`; `C4� and
that there is a number �1 > 0 such that the diameter of the projection �Y .�Œs; t �/

is at most �1.
Since Y is thick and hence contains the boundary of some disk and since 


is an I -bundle generator we have Y 6� X � 
 . We use this fact to show that
k 62 Œ`; ` C 4�.

For this we argue by contradiction and we assume otherwise. �en up to ex-
changing the orientation of � and � we have k D ` C 1 and Q�.k/ is a simple closed
curve which is disjoint from the thick subsurface Y , from 
 and from �.s/ D Q�.`/.
Moreover, Y intersects both �.s/ (since �.s/ is diskbounding) and 
 (by assump-
tion).

Now let us assume that there is some simple closed curve ˛ which is disjoint
from �.s/ and 
 and which intersects Y . �en we can replace Q�.k/ by ˛ and obtain
another uniform quasi-geodesic in CG.X/ with the same endpoints. Each of the
vertices of this new quasi-geodesic intersects Y . By Lemma 4.4, this is impossible
if the diameter of the subsurface projection of the endpoints of Q� is su�ciently
large.

As a consequence, any simple closed curve disjoint from both 
 and �.s/ is
disjoint from Y . Since 
 and �.s/ intersect in precisely two points, a tubular neigh-
borhood of 
 [�.s/ is a four-holed sphere (if 
 is separating) or a two-holed torus
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(if 
 is non-separating). �is tubular neighborhood then must be the subsurface
Y . However, by Remark 3.2, a four-holed sphere can not be thick. If Y is a two-
holed torus then Y is the boundary of an I -bundle over a two-holed projective
plane and once again, Y can not be thick. �is is a contradiction and shows that
k 62 Œ`; ` C 4�.

�us assume without loss of generality that ` C 4 < k (the case k < ` is
treated in the same way). If u 2 .s; t / is arbitrary then the path obtained from Q� by
replacing Q�Œ`; `C4� by an edge path of length at most eight with the same endpoints
which contains �.u/ as a vertex is a uniform quasi-geodesic in CG.X/. �e lemma
now follows from Lemma 4.4, applied to this modi�cation of Q�Œ0; k�.

By Corollary 4.6, enlargements of geodesics in SDG0.X/ are uniform quasi-
geodesics in EDG.X/. De�ne an level-2 hierarchy path to be a simplicial path in
EDG.2; X/ which is an enlargement of an enlargement of a geodesic in SDG0.X/.

�eorem 5.5. EDG.2; X/ is hyperbolic. Level-2 hierarchy paths of geodesics in

SDG0.X/ are uniform quasi-geodesics in EDG.2; X/.

Proof. By Lemma 5.3, Lemma 5.1, Corollary 4.6 and �eorem 2.4, it su�ces to
show that the family F D ¹F.
/ j 
 admissibleº satis�es the bounded penetration
property.

To this end let 
 be an admissible simple closed curve in X and let � be an
enlargement of a geodesic � in SDG0.X/. By Lemma 5.4 and the de�nition of
an enlargement, � passes through two points of large distance in F.
/ if and only
if the diameter of the subsurface projections into X � 
 of the endpoints of � is
large, and this can explicitly be made quantitative. In other words, enlargements
of geodesics in SDG0.X/ satisfy the bounded penetration property.

We have to show that this property holds true for any L-quasi-geodesic with the
same endpoints, with quantitative control only depending on L. �us let L > 1 be
arbitrary and let ˇ W Œ0; m� ! EDG.X/ be any L-quasi-geodesic in EDG.X/ with
the same endpoints as �. As � is a uniform quasi-geodesic in EDG.X/, by hyper-
bolicity there is a number n.L/ > 0 only depending on L so that the Hausdor�
distance between the image of � and the image of ˇ is at most n.L/.

Now if 
 is an admissible simple closed curve and if the diameter of the sub-
surface projection of the endpoints of � into X � 
 (i.e. into the component of
X � 
 which is di�erent from a three-holed sphere if 
 is separating) is large
then by Lemma 5.4, � passes through F.
/ and hence the quasi-geodesic ˇ passes
through the n.L/-neighborhood of F.
/.
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Let s0 C 1 � t0 � 1 be the smallest and biggest number, respectively, so that
ˇ.s0 C1/; ˇ.t0 �1/ are contained in the n.L/-neighborhood of F.
/. �e distance
between ˇ.s0/ and ˇ.t0/ is at most 2n.L/ C 2. An enlargement of a geodesic in
SDG0.X/ with endpoints ˇ.0/; ˇ.s0/ and ˇ.t0/; ˇ.m/, respectively, does not pass
through F.
/. �us the diameter of the subsurface projection of ˇ.s0/[ˇ.t0/ into
X � 
 is large.

A canonical modi�cation of ˇŒs0; t0� is an edge path in the curve graph of
X of uniformly bounded length. As the diameter of the subsurface projection
of its endpoints into X � 
 is large, by Lemma 4.4 this path passes through the
complement of F.
/. �en ˇŒs0; t0� passes through F.
/. Moreover, by the same
argument, ˇŒs0; t0� contains two points in F.
/ whose distance in the curve graph
of X � 
 to the two points on � is uniformly bounded.

As a consequence, given any admissible curve 
 , a large subsurface projection
into X �
 of the endpoints of a uniform quasi-geodesic ˇ in EDG.X/ implies that
ˇ passes through F.
/, moreover entry and exit points are contained in a �xed
size neighborhood (only depending on L) of points determined by the subsurface
projections of the endpoints. We refer to the proof of Proposition 3.1 in [13] for a
version of this argument with all estimates explicit.

On the other hand, the same argument with the roles of � and ˇ exchanged
also shows that for an admissible curve 
 , a uniform quasi-geodesic in EDG.X/

passes through two points in F.
/ of large distance if and only if this is true for the
enlargement of a geodesic in SDG0.X/. However, the latter holds true if and only
if the diameter of the subsurface projection of the endpoints is large. �is shows
the bounded penetration property and completes the proof of the theorem.

As an illustration of the method used to establish hyperbolicity we observe

Corollary 5.6. �e disk graph of a handlebody of genus 2 is hyperbolic.

Proof. Let H be a handlebody of genus two. By �eorem 5.5, it su�ces to show
that the vertex inclusion DG ! EDG.2; @H/ is a quasi-isometry.

To this end observe that a connected component of the complement in @H of a
simple multicurve c with two components which are not freely homotopic either
is a four-holed sphere or a one-holed torus or a three-holed disk. By Remark 3.2,
if both components of c are not diskbounding then X � c contains at most one
boundary of a disk. �us two disks which are connected by an edge in EDG.2; @H/

are disjoint and hence connected by a disk in DG. �e corollary now follows from
�eorem 5.5.
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6. Hyperbolicity of the disk graph

�e goal of this section is to complete the proof of �eorem 4 using an argument
which is new and simpler than the argument of Masur and Schleimer [22].

�e idea is to de�ne a �nite chain of intermediate graphs lying geometrically
between the electri�ed disk graph and the disk graph. �is chain begins with the
electri�ed disk graph and ends with the disk graph. With an inductive application
of the construction in Section 5 we show that each of these graphs is hyperbolic.

We next introduce the chain of graphs. Namely, for a thick subsurface X of
@H and for k � 1 de�ne EDG.k; X/ to be the graph whose vertex set is the set
of all disks with boundary in X and where two such disks are connected by an
edge of length one if and only if either they are disjoint or they are disjoint from
an essential multicurve in X with a least k components. Note that if k equals the
cardinality of a pants decomposition for X then EDG.k; X/ is just the disk graph
of X . �e graph EDG.1; X/ is the electri�ed disc graph EDG.X/ of X which is
hyperbolic by Corollary 4.6. �e graph EDG.2; X/ is hyperbolic by �eorem 5.5.

�e strategy is to deduce by induction on k hyperbolicity of EDG.k C 1; X/

from hyperbolicity ofEDG.k; Y / where Y runs through all (not necessarily proper)
thick subsurfaces of X .

To this end de�ne inductively a hierarchy of connected subsurfaces of X as
follows. A level-one subsurface is the complementary component of an admissible
curve which is not a three holed sphere. By induction, a level-k subsurface is a
level-one subsurface of a level-.k � 1/ subsurface.

Let F.k; X/ D ¹EDG.Y / j Y º where Y runs through all level-.k � 1/ subsur-
faces in X . Corollary 4.6 implies

Lemma 6.1. F.k; X/ is a family of ı-hyperbolic graphs for a number ı D ı.k/ > 0

only depending on k.

We now use the family F.k; X/ and Lemma 6.1 to show

�eorem 6.2. �e disk graphDG.X/ of a thick subsurface X of @H is hyperbolic.

Proof. De�ne inductively a level-k hierarchy path in EDG.k; X/ to be an enlarge-
ment of a level-.k � 1/ hierarchy path in EDG.k � 1; X/. Here a level-2 hierarchy
path was de�ned in Section 5.

For a number � > 0 call a quasi-geodesic � W Œ0; n� ! EDG.X; k/ (�; k/-good

if the following holds true. Let Y be a thick subsurface of X which is properly
contained in a level .k �1/-subsurface. �en there is a number u D u.Y / 2 Œ0; m/

with the following properties.
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(a) For every j � u, diam.�Y .�.0/ [ �.j /// � �.

(b) For every j > u, diam.�Y .�.j / [ �.n/// � �.

As in Section 5, we show by induction on k the following.

(1) �eF.k�1; X/-electri�cation ofEDG.k; X/ is 2-quasi-isometric to EDG.k�

1; X/.

(2) �e graphEDG.k; X/ is hyperbolic relative to the familyF.k; X/ of complete
subgraphs. Level-k hierarchy paths are uniform quasi-geodesics.

(3) �ere is a number �k > 0 such that level-k hierarchy paths are .�k; k/-good.

Properties (1) and (2) for k D 1 is just Corollary 4.6. Property (3) for
k D 1 is the Lemma 5.3. Properties (1) and (2) for the case k D 2 was shown
in Corollary 5.5.

By induction, assume that Properties (1),(2),(3) hold true for k�1 2 Œ1; 3g�3/.
Property (1) for k follows as in the proof of Lemma 5.3. Namely, let D; E

be disks with boundary in X which are connected in EDG.k � 1; X/ by an edge.
We may assume that D; E are not disjoint. �en D; E are disjoint from a mul-
ticurve ˛ with k � 1 components. Let Y be the smallest subsurface of X �lled
by @D [ @E. If X � Y contains a diskbounding curve then the distance between
D; E in EDG.k; X/ is at most two. If Y is properly contained in a level-.k � 1/-
subsurface of X then there is a multicurve in X with k components which is
disjoint from D [ E and hence D; E are connected by an edge in EDG.k; X/.
Otherwise Y is a level-.k � 1/-subsurface and hence D; E have distance at most
two in the F.k � 1; X/-electri�cation of EDG.k; X/. �us the vertex inclusion of
EDG.k � 1; X/ into the F.k � 1; X/-electri�cation of EDG.k; X/ is two-Lipschitz
and in fact a two-quasi-isometry.

To show the bounded penetration property required in (2) above, let D; E be
any two disks with boundary in X and let � be a level-.k � 1/-hierarchy path in
EDG.k�1; X/ connecting D to E. By induction hypothesis, this path is a uniform
quasi-geodesic, moreover it is .�k�1; k � 1/-good.

By the reasoning in the proof of �eorem 5.5, such a path has the bounded
penetration property for the subgraphs from the family F.k �1; X/ with constants
only depending on k�1. By induction hypothesis, level-.k�1/-hierarchy paths are
uniform quasi-geodesics in EDG.k � 1; X/ and therefore the bounded penetration
property for the family F.k � 1; X/ follows from the argument in the proof of
�eorem 5.5 without modi�cation.

�e reasoning in the proof of Lemma 5.4 implies moreover Property (3) above
(see also [13] where this argument is used in a more complicated situation).
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As remarked earlier, if k is the number of simple closed curves in a pants
decomposition of X then EDG.k; X/ D DG.X/. �is completes the proof of
�eorem 6.2.

For a thick subsurface Y of @H denote as before by �Y the subsurface projec-
tion of simple closed curves into the arc and curve graph of Y . If 
 is an I -bundle
generator in a thick subsurface Y then let �
 be the subsurface projection into
Y � 
 .

�e following corollary is now immediate from our construction. It was earlier
obtained by Masur and Schleimer (�eorem 19.9 of [22]).

Corollary 6.3. �ere is a number C > 0 such that

dD.D; E/ �
X

Y

diam.�Y .E [ D//C C
X




diam.�
 .E [ D//C

where Y passes through all thick subsurfaces of @H , where 
 passes through all

I -bundle generators in thick subsurfaces of @H , and the diameter is taken in the

arc and curve graph.

For a thick subsurface Y of @H let @EDG.Y / be the Gromov boundary of
EDG.Y /. De�ne

@DG D
[

Y

@EDG.Y / � L

where the union is over all thick subsurfaces of @H and where this union is viewed
as a subspace of L, i.e. it is equipped with the coarse Hausdor� topology. �e
proof of the following statement is completely analogous to the proof of Proposi-
tion 4.8 and will be omitted.

Corollary 6.4. @DG is the Gromov boundary of DG.
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