
Groups Geom. Dyn. 10 (2016), 407–471
DOI 10.4171/GGD/353

Groups, Geometry, and Dynamics

© European Mathematical Society

�e dense amalgam of metric compacta

and topological characterization

of boundaries of free products of groups

Jacek Świątkowski1

Abstract. We introduce and study the operation, called dense amalgam, which to any

tuple X1; : : : ; Xk of non-empty compact metric spaces associates some disconnected

perfect compact metric space, denoted zt.X1; : : : ; Xk/, in which there are many appropri-

ately distributed copies of the spaces X1; : : : ; Xk . We then show that, in various settings,

the ideal boundary of the free product of groups is homeomorphic to the dense amalgam

of boundaries of the factors. We give also related more general results for graphs of groups

with �nite edge groups. We justify these results by referring to a convenient characteriza-

tion of dense amalgams, in terms of a list of properties, which we also provide in the paper.

As another application, we show that the boundary of a Coxeter group which has in�nitely

many ends, and which is not virtually free, is the dense amalgam of the boundaries of its

maximal 1-ended special subgroups.
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0. Introduction

In Section 1 of the paper we describe an operation which to any �nite tuple

X1; : : : ; Xk

of nonempty metric compacta associates a metric compactum

Y D zt.X1; : : : ; Xk/

which satis�es the following. Y can be equipped with a countable in�nite family
Y of subsets, partitioned as

Y D Y1 t � � � t Yk ;

such that

(a1) the subsets in Y are pairwise disjoint and for each i 2 ¹1; : : : ; kº the family
Yi consists of embedded copies of the space Xi ;

(a2) the family Y is null, i.e. for any metric on Y compatible with the topology
the diameters of sets in Y converge to 0;

(a3) each Z 2 Y is a boundary subset of Y (i.e. its complement is dense);

(a4) for each i , the union of the family Yi is dense in Y ;

(a5) any two points of Y which do not belong to the same subset of Y can be
separated from each other by an open and closed subset H � Y which is
Y-saturated (i.e. such that any element of Y is either contained in or disjoint
with H ).
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We call the operation zt the dense amalgam, and its result zt.X1; : : : ; Xk/ the
dense amalgam of the spaces X1; : : : ; Xk. Obviously, the dense amalgam of any
family X1; : : : ; Xk of spaces is a disconnected perfect compact metric space.
Moreover, if the spaces X1; : : : ; Xk are connected, then the connected compo-
nents of their dense amalgam are the subsets from the family Y and the singletons
from the complement of the union [Y. In Section 3 we show that the operation of
dense amalgam satis�es the following “algebraic” properties.

0.1. Proposition. (1) zt.X1; : : : ; Xk/ D zt.X1 t � � � t Xk/ (so in particular the
operation is commutative).

(2) zt.X1; : : : ; Xk/ D zt.X1; : : : ; Xi�1; zt.Xi ; : : : ; Xk// for any k � 1 and any
1 � i � k (so the operation is associative and idempotent).

(3) zt.X; X1; : : : ; Xk/ D zt.X; X; X1; : : : ; Xk/ for any k � 0.

(4) For any totally disconnected nonempty compact metric space Q, and any
k � 1,

zt.X1; : : : ; Xk; Q/ D zt.X1; : : : ; Xk/:

(5) For any totally disconnected space Q,

zt.Q/ D C;

where C is the Cantor space.

In Section 2 we prove the following characterization result.

0.2. �eorem. Given any nonempty compact metric spaces X1; : : : ; Xk , each
metric compactum Y which can be equipped with a family Y D Y1 t � � � t Yk of
subsets satisfying conditions (a1)–(a5) above is homeomorphic to the dense amal-
gam zt.X1; : : : ; Xk/.

�e main motivation for the study of dense amalgams in this paper comes from
their role in understanding ideal boundaries of spaces and groups. In Sections 4–6
we deal with various settings for ideal boundaries, showing among others that in
these settings the boundary of the free product of groups is homeomorphic to the
dense amalgam of the boundaries of the factors. We also give similar more gen-
eral results for fundamental groups of non-elementary graphs of groups with �-
nite edge groups (see �eorem 0.3 below). �e term non-elementary for a graph of
groups is explained in De�nition 4.1.5, but it contains among others the case when
the vertex groups are all in�nite and the underlying graph is not reduced to a sin-
gle vertex. In particular, the results apply to amalgamated free products and HNN
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extensions of in�nite groups along �nite subgroups. In consistency with the prop-
erties from Proposition 0.1, we use the convention that zt.;/ is the Cantor space
and zt.;; X1; : : : ; Xk/ WD zt.X1; : : : ; Xk/. �e concepts of EZ-boundaries appear-
ing in the statement below are explained in Subsection 4.2 (see De�nitions 4.2.1
and 4.2.2). Our main result concerning boundaries is as follows.

0.3. �eorem. Let G D �1.G/, where G is a non-elementary graph of groups with
�nite edge groups. Let v1; : : : ; vk be the vertices of the underlying graph of G.

(1) Suppose that all vertex groups Gvi
of G admit EZ-boundaries (respectively,

EZ-boundaries in the strong sense of Carlsson–Pedersen), and let @Gvi
be

such boundaries. �en G admits an EZ-boundary (in the strong sense of
Carlsson–Pedersen, respectively) homeomorphic to the dense amalgam
zt.@Gv1

; : : : ; @Gvk
/.

(2) Suppose that all vertex groups Gvi
of G are hyperbolic and let @Gvi

be their
Gromov boundaries. �en the Gromov boundary @G is homeomorphic to the
dense amalgam zt.@Gv1

; : : : ; @Gvk
/.

(3) Suppose that all vertex groups Gvi
of G are CAT.0/, and for each vi let �i

be a CAT.0/ space on which Gvi
acts geometrically. �en there is a CAT.0/

space � on which G acts geometrically, and such that the CAT.0/ boundary
@� is homeomorphic to the dense amalgam of the CAT.0/ boundaries @�i ,
i.e. @� Š zt.@�1; : : : ; @�k/.

(4) Suppose that all vertex groups Gvi
of G are systolic (in the sense of simpli-

cial nonpositive curvature as introduced by T. Januszkiewicz and the author
in [11]), and for each vi let †i be a systolic simplicial complex on which
Gvi

acts geometrically. �en there is a systolic complex † on which G acts
geometrically, and such that the systolic boundary @† (as introduced by
D. Osajda and P. Przytycki in [14]) is homeomorphic to the dense amalgam
of the systolic boundaries @†i , i.e. @† Š zt.@†1; : : : ; @†k/.

Note that parts (2), (3), and (4) of �eorem 0.3 do not follow automatically
from part (1), as a group G may have in general many pairwise non-homeomorphic
EZ-boundaries. �e EZ-boundaries as in the assertion of part (1) have been
constructed recently by C. Tirel [19] (the case of the free product) and by
A. Martin [12] (the general case). We provide identi�cations of these boundaries
with the appropriate dense amalgams by referring to the characterization given in
�eorem 0.2. Part (2) of �eorem 0.3 strengthens an earlier result of A. Martin
and the author [13] (saying that, as a topological space, @G depends uniquely on
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the topology of the boundaries @Gvi
); the strengthening concerns recognizing @G

as the appropriate dense amalgam.

In Section 7 we present a more speci�c result concerning boundaries of
Coxeter groups. Recall that to any Coxeter system .W; S/ there is associated a
CAT.0/ polyhedral complex called the Coxeter-Davis complex (see Chapters 7
and 12 in [6], where this complex is denoted by †.W; S/). �e CAT.0/ boundary
of this complex, denoted @.W; S/, is what is shortly called the boundary of the
Coxeter group W (though it actually depends also on S ).

0.4. �eorem. Let .W; S/ be a Coxeter system, and suppose that W has in�nitely
many ends, and is not virtually free. Let .W1; S1/; : : : ; .Wk; Sk/ be the Coxeter
systems corresponding to all maximal 1-ended special subgroups of W . �en
k � 1, and

@.W; S/ Š zt.@.W1; S1/; : : : ; @.Wk; Sk//:

�e reader is advised to look also at the statement of Proposition 7.3.2 in the
text. �is proposition is the main step in the proof of �eorem 0.4, but it also
nicely complements the picture of appearance of dense amalgams as boundaries
of Coxeter groups.

As it will be explained in Section 7, assumptions of �eorem 0.4 can be easily
veri�ed in terms of the Coxeter matrix of the system .W; S/. Similarly, maximal 1-
ended special subgroups of W are easy to list in terms of the same data. Note that
�eorem 0.4 concerns all Coxeter systems except those for which the correspond-
ing group W is either �nite, or 2-ended, or 1-ended, or virtually free. �us, up to
understanding the boundaries in 1-ended cases, the theorem presents a complete
insight into the topology of boundaries of Coxeter groups.

Acknowledgment. �e author thanks Krzysztof Omiljanowski for helpful dis-
cussions.

1. �e dense amalgam

In the major initial part of this section, given a nonempty compact metric space X ,
we construct out of it the unique (up to homeomorphism) compact metric space
Y D zt.X/, called the dense amalgam of (copies of) X , and we show that it satis-
�es conditions (a1)–(a5) of the introduction (for parameter k D 1). �e construc-
tion of the space zt.X/ is rather involved and requires a lot of auxiliary terminology
and preparatory observations.
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In the short �nal part of the section we extend the construction to describe the
dense amalgam zt.X1; : : : ; Xk/ of a �nite collection of compact metric spaces.

�e peripheral extension RX of X . Denote by P the in�nite countable discrete
topological space. Given a compact metric space X , its peripheral extension is a
compact metric space K which contains P as an open dense subspace such that
K n P is homeomorphic to X . In other words, K is a metric compacti�cation
of P with the remainder X . Points of P are called the peripheral points of the
extension K.

Example. Let G be an in�nite word hyperbolic group, and let @G be its Gromov
boundary. �en xG D G t@G, equipped with the Gromov boundary compacti�ca-
tion topology, is a peripheral extension of the boundary @G. Its peripheral points
are precisely the elements of G.

1.1. Lemma. (1) Any nonempty compact metric space X admits a peripheral ex-
tension.

(2) Any two peripheral extensions of a nonempty compact metric space X are
homeomorphic rel X (i.e. via a homeomorphism that is identical on X).

(3) Given a peripheral extension K of X , the group of homeomorphisms of K

identical on X acts transitively on the set P of peripheral points of K.

Proof. To see (1), choose a sequence an of elements of X such that for each x 2 X

it contains a subsequence converging to x. Put

P D ¹bn W n 2 N º;

and extend the metric d of X to the set K D X t P , inductively, by putting

d.x; bn/ D d.x; an/ C
1

n

for x ¤ bn.
For (2), let K D X t P and K 0 D X t P 0 be two peripheral extensions of X ,

and let d; d 0 be some metrics on them. Choose any map � W P ! X such that

lim
p2P

d.p; �.p// D 0:

We need to �nd a bijection b W P ! P 0 such that the map idX [b W K ! K 0 is a
homeomorphism. To do it, it is su�cient to choose b so that

lim
p2P

d 0.b.p/; �.p// D 0: (�)
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Indeed, if we consider a sequence pk of P that converges to x 2 X , then �.pk/

converges to x by de�nition of � . Since, by (�), lim
k

d 0.b.pk/; �.pk// D 0,

it follows that b.pk/ converges to x, which shows that idX [b is a homeomor-
phism.

To choose b as above, order the elements of P and P 0 into sequences .pk/

and .p0
k
/, and iterate the following two steps alternately.

Step 1 . Consider the smallest k for which b.pk/ has not yet been de�ned. Choose
some q0 2 P 0 such that d 0.q0; �.pk// < 1=k and such that q0 was not yet chosen
as image of any pi (such q0 exists because P 0 is dense in K 0), Set b.pk/ D q0.

Step 2. Consider the smallest k for which p0
k

was not yet chosen as image of any
pi , and choose any q 2 P such that d 0.p0

k
; �.q// < d 0.p0

k
; X/ C 1=k and such

that b has not yet been de�ned on q (such q exists since �.P / is dense in X). Set
b.q/ D p0

k
.

�en b is obviously a bijection. A straightforward veri�cation shows that b

satis�es property .�/, and this completes the proof of (2).

Part (3) of the lemma is obvious.

In view of parts (1) and (2) of Lemma 1.1, a space K as above exists and is
uniquely determined by X , so we denote it by RX and call the peripheral extension
of X .

Complete tree systems of peripheral extensions of X . Denote by T the unique
up to isomorphism countable tree of in�nite valence at every vertex. Let VT be
the vertex set of T , and OT the set of all oriented edges of T . For each t 2 VT ,
we denote by Nt the set of all oriented edges of T with initial vertex t .

A complete tree system of peripheral extensions of X is a tuple

‚ D .¹Xtº; ¹btº/

such that to each t 2 VT there is associated

� a space Xt homeomorphic to X , equipped with its peripheral extension RXt ,
and with the set Pt of peripheral points of this extension;

� a bijective map bt W Nt ! Pt .
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Given two complete tree systems ‚ D .¹Xtº; ¹btº/ and ‚0 D .¹X 0t º; ¹b0tº/ of
peripheral extensions of X , an isomorphism between them is a tuple F D .�; ¹ftº/

such that

(I1) � W T ! T is an automorphism;

(I2) for each t 2 VT the map ft W RXt ! RX 0
�.t/

is a homeomorphism of peripheral
extensions, i.e. it maps Xt on X 0

�.t/
(and thus also Pt onto P 0

�.t/
);

(I3) for each t 2 VT and any e 2 Nt the following commutation rule holds:

b0�.t/.�.e// D ft .bt .e//:

1.2. Lemma. Any two complete tree systems of peripheral extensions of X are
isomorphic.

Proof. Let ‚ D .¹Xtº; ¹btº/ and ‚0 D .¹X 0t º; ¹b0tº/ be two complete tree systems
of peripheral extensions of X . Order the vertices of VT into a sequence t0; t1; : : :

so that for any natural k the subtree Tk of T spanned on the vertices t1; : : : ; tk
contains no other vertices of VT . We construct an isomorphism � W T ! T and
homeomorphisms ft W RXt ! RX 0

�.t/
successively, at vertices t D tk, as follows.

For each subtree Tk, denote by TC
k

the subtree of T spanned on Tk and all vertices
adjacent to the vertices of Tk . Choose any t 00 2 VT and any homeomorphism
ft0 W RXt0 ! RX 0

t 0
0

of peripheral extensions (which exists by Lemma 1.1(2)). Denote

by T 00 the subtree of T reduced to the vertex t 00. Consider the bijection

.b0
t 0
0
/�1ft0bt0 W Nt0 �! Nt 0

0

and denote by �0 W TC0 ! .T 00/C the isomorphism induced by the assignment
t0 ! t 00 and by the above bijection.

Now, suppose that we have already chosen the following data:

(1) vertices t 00; : : : ; t 0
k

in VT such that the subtree T 0
k

of T spanned on these ver-
tices contains no other vertices of VT , and the assignments ti ! t 0i yield an
isomorphism �k W Tk ! T 0

k
;

(2) an isomorphism �k W TC
k

! .T 0
k
/C which extends �k;

(3) for i D 0; 1; : : : ; k, homeomorphisms fti W RXti ! RX 0
t 0
i

of peripheral exten-

sions such that the bijections .b0
t 0
i

/�1fti bti W Nti ! Nt 0
i

are consistent with �k

(i.e. coincide with the appropriate restrictions of the map induced by �k

between the sets of oriented edges of TC
k

and .T 0
k
/C).
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Consider the vertex tkC1, and let j 2 ¹0; 1; : : : ; kº be the index for which tj is
the unique vertex of Tk adjacent to tkC1. Put

t 0kC1 WD �k.tkC1/:

Applying Lemma 1.1(3), choose any homeomorphism of peripheral extensions
ftkC1

W RXtkC1
! RX 0

t 0
kC1

such that ftkC1
.btkC1

.ŒtkC1; tj �// D b0
t 0
kC1

.Œt 0
kC1

; t 0j �/.

Denote by �kC1 W TC
kC1

! .T 0
kC1

/C the isomorphism induced by �k and the
bijection .b0

t 0
kC1

/�1ftkC1
btkC1

W NtkC1
! Nt 0

kC1
.

Iterating the above described step of the construction, we get an isomorphism

� D
[

k

�k W T �! T

and a family of homeomorphisms of peripheral extensions ft W RXt ! RX 0
�.t/

such
that for each t 2 VT the map .b0t /

�1ftbt W Nt ! Nt 0 is consistent with �

(i.e. coincides with the restriction of � to Nt ). Since the latter clearly implies
the commutativity condition (I3), we get that F D .�; ¹ftº/ W ‚ ! ‚0 is an iso-
morphism, which completes the proof.

�e dense amalgam of (copies of) X . We �rst describe an auxiliary compact
metrisable space, uniquely determined by X up to homeomorphism, which intu-
itively is the in�nitely iterated and appropriately completed wedge of copies of RX ,
in which the successively glued copies have rapidly decreasing size; wedge glu-
ings are performed at all peripheral points in all copies of RX so that exactly two
copies meet at each gluing point.

More precisely, let ‚ D .¹Xtº; ¹btº/ be a complete tree system of peripheral
extensions of X . For any �nite subtree F of T de�ne the partial wedge of ‚ for
F , as the quotient topological space

_F ‚ WD
G

t2VF

RXt = �;

where � is the equivalence relation induced by the equivalences

bt .Œt; s�/ � bs.Œs; t �/

for all oriented edges Œt; s� of F .



416 J. Świątkowski

For any pair of �nite subtrees of T such that F 0 � F view _F 0‚ canonically
as a subset of _F ‚, and consider the retraction map �F;F 0 W _F ‚ ! _F 0‚

determined by the following. For any vertex s 2 VF n VF 0 and for any x 2 RXs,
viewing RXs canonically as a subset of _F ‚, we put

�F;F 0.x/ D bt .Œt; t 0�/;

where Œt; t 0� is the last oriented edge on the shortest path in T connecting s with F 0.
Clearly, the retraction map �F;F 0 is continuous. Moreover, it is easy to check that,
for any �nite subtrees F 00 � F 0 � F of T ,

�F 0;F 00 ı �F;F 0 D �F;F 00 :

1.3. De�nition. (1) �e wedge inverse system associated to ‚ is the system over
the poset of �nite subtrees of T given by

S_‚ D .¹_F ‚ W F � T is a �nite subtreeº; ¹�F;F 0 W F 0 � F � T º/:

(2) �e wedge of ‚ is the inverse limit of the system S_‚,

_‚ WD lim
 �

S_‚:

Since all partial wedges _F ‚ are easily seen to be compact metrisable,
the same is true for their inverse limit _‚.

Before getting further, we need to distinguish the subset P‚ in _‚ consist-
ing of the “gluing points” of the wedge. More precisely, for any oriented edge
e D Œt; t 0� 2 OT the point bt .Œt; t 0�/ 2 RXt , viewed as a point of _‚, coincides
with the point bt 0 .Œt 0; t �/, and we denote the corresponding point of _‚ by pjej
(to emphasize the fact that it is induced by the underlying non-oriented edge jej).
We then put

P‚ WD ¹pjej W e 2 OT º:

1.4. Lemma. Each point of the subset P‚ is isolated in the space _‚. In partic-
ular, P‚ is an open subset in _‚, and thus its complement _‚ n P‚ is a compact
metrisable space.

Proof. Let p D pjej be any point of P‚. Viewing jej as a subtree of T , we clearly
have pjej 2 _jej‚ � _‚. Moreover, if we denote by

�jej W _ ‚ �! _jej‚

the map canonically associated to the inverse limit, it is not hard to see that
��1
jej

.pjej/ D pjej. Since pjej is isolated in _jej‚, its singleton is an open subset
in _jej‚, and thus the same is true in _‚, which completes the proof.
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Note that, it follows easily from the above description of _‚ that if ‚ and ‚0

are two isomorphic complete tree systems of peripheral extensions of X , then the
pairs of spaces ._‚; P‚/ and ._‚0; P‚0/ are homeomorphic. �is and Lemma 1.2
then justify the following.

1.5. De�nition. �e dense amalgam of (copies of) X , denoted zt.X/, is the topo-
logical space _‚ n P‚, where ‚ is any complete tree system of peripheral exten-
sions for X .

A more explicit description of the wedge _‚ and its subspace _‚ n P‚.

Given a complete tree system ‚ D .¹ RXtº; ¹btº/ of peripheral extensions of X ,
consider the equivalence relation on the disjoint union

F

t2VT

RXt induced by the
equivalences bt .Œt; s�/ � bs.Œs; t �/ for all oriented edges Œt; s� 2 OT . Denote the
set of equivalence classes of this relation by #‚. Let @T be the set of ends of the
tree T , i.e. the set of equivalence classes for the relation on the set of in�nite rays
in T provided by coincidence of two rays except possibly at some �nite initial part
in each of them. Since the inverse system S_‚ consists of natural retractions of big-
ger partial wedges on the smaller ones, one easily identi�es the inverse limit _‚,
set theoretically, with the disjoint union #‚ t @T .

We now describe the topology of the inverse limit _‚ as topology on the set
#‚ t @T . For any �nite subtree F of T consider the map �F W _ ‚ ! _F ‚

canonically associated to the inverse limit. Under identi�cation of _‚ with
#‚ t @T , this map is easily seen to have the following form. If s 2 VF and
x 2 RXs � #‚, then �F .x/ D x 2 RXs � _F ‚. If s 2 VT n VF , let Œts; t 0s� be the
�rst oriented edge on the unique minimal path connecting a vertex of F to s; then
for any x 2 RXs we have �F .x/ D bts .Œts; t 0s�/ 2 RXts � _F ‚. Finally, if z 2 @T ,
let Œtz; t 0z� be the �rst oriented edge on the unique minimal ray in T representing z

and starting at a vertex of F ; then �F .z/ D btz .Œtz; t 0z�/ 2 RXtz � _F ‚.
By de�nition of the inverse limit, the family

¹��1
F .U / W F is a �nite subtree of T and U is an open subset of _F ‚º

is a subbasis for the topology in _‚. It follows from the above description of �F

that any subset ��1
F .U / from this subbasis, viewed as a subset of #‚ t @T , can be

described as follows. Identify _F ‚ and all the sets RXt canonically as the subsets
in #‚. Under notation as in the previous paragraph, put

#U ‚ WD U [
[

¹ RXs W s 2 VT n VF and bts .Œts; t 0s�/ 2 U º � #‚:
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Furthermore, put

@U T WD ¹z 2 @T W btz .Œtz; t 0z�/ 2 U º:

�en ��1
F .U / D #U ‚ [ @U T .

Using the above description of the sets ��1
F .U /, we now indicate a convenient

basis of the topology in _‚ D #‚ t @T . For any vertex t 2 VT , viewing it as a
subtree of T , we denote by �t W _‚ ! _t‚ D RXt the map canonically associated
to the inverse limit.

1.6. Lemma. �e family

B D ¹��1
t .U / W t 2 VT and U is an open subset of RXt º [ ¹¹pº W p 2 P‚º

is a basis of the topology in _‚.

Proof. We will �rst show that the family B satis�es the axioms of a basis of topol-
ogy. Since B is obviously a covering of _‚, it remains to check that the intersec-
tion B \ B 0 of any two sets from B is the union of some sets from B. �is is
obvious if B or B 0 is a singleton from P‚. �us, we need to study the case when
B D ��1

t .U / and B 0 D ��1
s .U 0/, where U; U 0 are some open subsets in RXt and

RXs , respectively.
If t D s, we get B \ B 0 D ��1

t .U \ U 0/, which trivially yields our assertion.
If t ¤ s, let F be the subtree of T spanned on t and s (which is obviously �nite),
and let OF be the set of oriented edges in F . Put

Ut WD U n bt .Nt \ OF /;

Us WD U n bs.Ns \ OF /;

and, for each a 2 VF n ¹t; sº,

Ua WD RXa n ba.Na \ OF /:

Observe that for any a 2 VF the set Na \ OF is �nite. Consequently, for any
a 2 VF the set ba.Na \ OF / is closed, and hence Ua is open in the corresponding
space RXa. Furthermore, de�ne a subset A � VF by the following rules:

� t belongs to A if RXt � B 0,

� s belongs to A if RXs � B ,

� a vertex a 2 VF n ¹t; sº belongs to A if RXa � B \ B 0.
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It is not hard to observe that

B \ B 0 D .P‚ \ B \ B 0/ [
[

a2A

��1
a .Ua/;

which also yields our assertion. �us B satis�es the axioms of a basis of topology.
Now we need to show that the topology TB induced by B coincides with the

original topology T in _‚ D #‚ t @T . Since, in view of Lemma 1.4 we have
B � T, it follows that TB � T. To prove the converse inclusion, it is enough to
show that any set of form ��1

F .U /, where F is any �nite subtree of T , is the union
of some elements of B. To do this, for each a 2 VF put

Ua WD .U \ RXa/ n ba.Na \ OF /:

Note that, by the argument as before, this is an open subset of RXa. Observe that
we have

��1
F .U / D .P‚ \ ��1

F .U // [
[

a2VF

��1
a .Ua/;

which completes the proof.

We now pass to the subspace _‚ n P‚. Consider the family of its subsets

B0 WD ¹W n P‚ W W 2 Bº

D ¹��1
t .U / n P‚ W t 2 VT and U is an open subset in RXt º:

From Lemma 1.6 we immediately get the following.

1.7. Corollary. B0 is a basis of the topology in _‚ n P‚.

Note that, under identi�cation _‚ D #‚ t @T , the subspace _‚ n P‚ is
identi�ed with the subset

�
F

t2VT
Xt

�

t@T . By what was said above, we have the
following description of any set ��1

t .U /nP‚ 2 B0 as a subset of
� F

t2VT
Xt

�

t@T .
For s 2 VT n ¹tº let Œt; ts� be the �rst oriented edge on the path in T from t to s.
Similarly, for any z 2 @T let Œt; tz� be the �st oriented edge on the unique ray in
T started at t and representing z. Recalling that U is an open subset of RXt , de�ne
the subset D.t; U / �

�
F

t2VT
Xt

�

t @T as

D.t; U / WD .U \ Xt / t
G

¹Xs W s ¤ t and bt .Œt; ts�/ 2 U º

t ¹z 2 @T W bt .Œt; tz�/ 2 U º:

We then have ��1
t .U / n P‚ D D.t; U /.
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As immediate restatement of Corollary 1.7 we get the following.

1.8. Proposition. �e family

D D ¹D.t; U / W t 2 VT and U is an open subset of RXt º

is a basis for the topology in the space _‚ n P‚, under its identi�cation with
�

F

t2VT
Xt

�

t @T .

To conclude the explicit description of the space _‚ n P‚ (and thus also the
amalgam zt.X/), we provide in the lemma below some bases of open neighbour-
hoods for all points in this space.

1.9. Lemma. For the canonical identi�cation of _‚nP‚ with
�

F

t2VT
Xt

�

t@T ,

(1) if x 2 Xt �
�

F

t2VT
Xt

�

t @T , then the family of sets D.t; U /, where U

runs through any basis of open neighbourhoods of x in RXt , is a basis of open
neighbourhoods of x in

�
F

t2VT
Xt

�

t @T I

(2) if z 2 @T �
�

F

t2VT
Xt

�

t@T , then for any ray Œt0; t1; : : : � in T representing
z the family

¹D
�

ti ; RXti n ¹bti .Œti ; ti�1�/º
�

W i � 1º

is a basis of open neighbourhoods of z in
� F

t2VT
Xt

�

t @T .

We skip a straightforward proof of this lemma.

�e amalgam zt.X/ satis�es conditions (a1)–(a5). As we have already noticed,
the amalgam zt.X/ is a compact metrisable space. We now check that it satis�es
conditions (a1)–(a5) listed in the introduction. To do this, we will use the above dis-
cussed identi�cation of zt.X/ Š _‚nP‚ with the set

�
F

t2VT
Xt

�

t@T equipped
with topology provided by the basis D, as stated in Proposition 1.8. As a family Y

of subsets we take the family Xt W t 2 VT .

Note that each Xt is an embedded copy of X , as it coincides with the image of
the canonical embedding of Xt in the inverse limit _‚. Since the subsets in this
family are clearly pairwise disjoint, condition (a1) is ful�lled.

To check condition (a2) we need to verify that for any �nite open covering U

of
�

F

t2VT
Xt

�

t @T and for almost every vertex t 2 VT (i.e. for each t 2 VT n A,
where A is some �nite subset of VT ) there is U 2 U such that Xt � U . Obviously,
without loss of generality, we may assume that U consists of subsets from the
basis D. More precisely, we may assume that there is a �nite subset A � VT and
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a family Us W s 2 A of open subsets in the corresponding spaces RXs such that
U D ¹D.s; Us/ W s 2 Aº. But then it is easy to check that for each t 2 VT n A we
have Xt � D.s; Us/ for some s 2 A, which veri�es (a2).

Condition (a3) follows easily from the description of bases of open neigh-
bourhoods of points in

�
F

t2VT
Xt

�

t @T , as given in Lemma 1.9(1). We skip
this strightforward argument. Similarly, condition (a4) follows directly from
Lemma 1.9(2).

To check condition (a5), we introduce a family of Y-saturated open and
closed subsets of

�
F

t2VT
Xt

�

t @T that we call half-spaces. For any edge
e D Œt; t 0� 2 VT consider the subsets

H�e WD D.t; RXt n ¹bt .Œt; t 0�/º/

and

HCe WD D.t 0; RXt 0 n ¹bt 0.Œt 0; t �/º/;

and note that they are both open. Moreover, they form a partition of the space
�

F

t2VT
Xt

�

t @T , and thus they are both open and closed. Finally, both these
subsets are easily seen to beY-saturated. We will call them the half-spaces induced
by the edge e.

Now, let x; y be any two distinct points of
�

F

t2VT
Xt

�

t @T which do not
belong to the same subset of Y. First, consider the case when x 2 Xt for some
t 2 VT . If y 2 Xs for some s ¤ t , then for any oriented edge e on the path
connecting t with s we have x 2 H�e and y 2 HCe . If y 2 @T , then for any
oriented edge e in the ray started at t and representing y we similarly have x 2 H�e
and y 2 HCe . �is veri�es condition (a5) in the considered case. Since in the
remaining case, when x; y 2 @T , we can also easily separate x from y by a half-
space, condition (a5) follows.

�e dense amalgam zt.X1; : : : ; Xk/. Given a �nite collection X1; : : : ; Xk of
nonempty compact metric spaces, put

zt.X1; : : : ; Xk/ WD zt.X/;

where X D X1 t � � � t Xk is the topological disjoint union. Under identi�cation
zt.X/ D

� F

t2VT
Xt

�

t@T , for each t 2 VT we have Xt D X1;t t� � �tXk;t , where
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each Xi;t is homeomorphic to the corresponding Xi . For each i 2 ¹1; : : : ; kº take

Yi WD ¹Xi;t W t 2 VT º;

and put

Y WD
[

i

Yi :

We check that so de�ned space and the family of its subspaces satisfy condi-
tions (a1)–(a5) from the introduction.

�e only condition which does not follow by an argument similar as before is
condition (a5), in the case of two points x 2 Xi;t and y 2 Xj;t for some t 2 VT

and some j ¤ i . Observe that we can partition the peripheral extension RXt of
Xt D X1;t t� � �tXk;t into open and closed subsets U; W such that U \Xt D Xi;t .
�e subsets D.t; U / D ��1

t .U / and D.t; W / D ��1
t .W / form then an open

and closed partition of zt.X1; : : : ; Xk/, and since we obviously have that
x 2 Xi;t � D.t; U / and y 2 Xj;t � D.t; W /, the argument is completed.

2. �e characterization

�e aim of this section is to prove �eorem 0.2 of the introduction. We start
with introducing a useful terminology. Let X1; : : : ; Xk be a collection of
nonempty metric compacta, for some k � 1. A compact metric space Y is
.X1; : : : ; Xk/-regular if it can be equipped with a family Y of subspaces satisfying
conditions (a1)–(a5) from the introduction. Any family Y with these properties
is called an .X1; : : : ; Xk/-regularizing family for Y . �eorem 0.2 may be then
rephrased as follows: any .X1; : : : ; Xk/-regular compact metric space is homeo-
morphic to the dense amalgam zt.X1; : : : ; Xk/.

In view of the de�nition of the dense amalgam zt.X1; : : : ; Xk/ for k > 1, given
at the end of Section 1, �eorem 0.2 is a direct consequence of the following two
results.

2.1. Proposition. Given a nonempty compact metric space X , each .X/-regular
space Y is homeomorphic to the dense amalgam zt.X/.

2.2. Proposition. Given any tuple X1; : : : ; Xk of nonempty compact metric spaces,
each .X1; : : : ; Xk/-regular space Y is also .X1 t � � � t Xk/-regular.
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In the proofs of both propositions above we will use the following notation.
Given a nonempty subset A in a metric space Y , and a real number � > 0, an
�-neighbourhood of A is the subset

N�.A/ WD ¹x 2 Y W dY .A; x/ < �º:

�e diameter of A is the number

diam.A/ WD sup¹dY .x; y/ W x; y 2 Aº:

Proof of Proposition 2.2. Let Y be an .X1; : : : ; Xk/-regularizing family for Y .
We will construct inductively an .X1t� � �tXk/-regularizing familyW D .Wn/n�1

for Y . Each Wn 2 W will have a form of the union of some appropriately chosen
subsets from Y.

Order the elements of Y into a sequence .Yn/n�1. Put Z1;1 D Y1 and choose
the subsets Z1;2; : : : ; Z1;k 2 Y such that

(z1) the family Z1;i W 1 � i � k consists of exactly

one set from each of the subfamilies Yi of Y;

(z2) for each 2 � i � k we have Z1;i � Ndiam.Z1;1/.Z1;1/.

Such a choice is possible since, by conditions (a2)–(a4), each family Yi is
in�nite, null and dense in Y . Put W1 D Z1;1 [ � � � [ Z1;k .

Having already constructed the subsets W1; : : : ; Wn�1 as unions of some sub-
families of Y, we construct the subset Wn as follows. If Yn is not contained in
W1 [ � � � [ Wk�1, put Zn;1 D Yn; otherwise, take as Zn;1 any subset from Y

not contained in W1 [ � � � [ Wk�1. Choose Zn;2; : : : ; Zn;k 2 Y not contained in
W1 [ � � � [ Wk�1 and satisfying the analogues of conditions (z1) and (z2) above,
with Z1;i ’s replaced by Zn;i ’s.

We now check that W is an .X1 t � � � t Xk/-regularizing family of subsets
for Y , i.e. it satis�es the appropriate variant of conditions (a1)–(a5). Note that W
obviously consists of subsets which are embedded copies of X1 t � � � t Xk , and
each such copy is boundary in Y (as �nite union of closed boundary subsets).
Moreover, by condition (z2) for each n we have diam.Wn/ � 3diam.Zn;1/, and
thus the family W is null. Finally, it follows from the above description that for
each n we have Yn � W1 [ � � �[ Wn, and so we have that [W D [Y. In particular,
the union of the family W is dense in Y .
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It remains to show that the family W satis�es condition (a5). However, in order
to ensure that this is true, we need to add some ingredient to the construction
presented above. To describe this ingredient, for each n � 1 consider the number

zn WD max
°

diam.Z/ W Z 2 Y; Z 6�

n
[

jD1

Wj

±

and note that, since the family Y is null, we have lim
n

zn D 0. Now, in the above

inductive construction of the subspaces Wn, for each n we additionally choose a
�nite partition Qn of Y into Y-saturated closed and open subsets Qn

1 ; : : : ; Qn
mn

,
such that

(q1) for each n we have mn � n, and

(a) for each j 2 ¹1; : : : ; nº we have Wj � Qn
j � N1=n.Wj /,

(b) for each j 2 ¹n C 1; : : : ; mnº we have diam.Qn
j / < zn C 1=n;

(q2) QnC1 is a re�nement of Qn for each n � 1;

(q3) for each n the subset WnC1 is contained in one of the sets Qn
j 2 Qn.

More precisely, at each step of the construction, after choosing a subspace
Wn we choose a partition Qn satisfying (q1) and (q2), and then we choose WnC1

satisfying (q3). �e possibility to choose Qn satisfying (q1) and (q2) follows from
condition (a5) for the family Y, due to the following.

Claim 1. If A is either a subspace from Y or a point from the subset

Y � WD Y n [Y;

then for all � > 0 there is a closed and open Y-saturated set Q such that
A � Q � N�.A/.

We skip a straightforward proof of Claim 1, indicating only that it uses the fact
that Y-saturated closed and open subsets of Y are closed under �nite intersections
and �nite unions. Once we have chosen Qn, in the description of WnC1 as above
we additionally require that all the sets ZnC1;i W 2 � i � k are contained in the
same Qn

j as the set ZnC1;1, which guaranties (q3).
Observe that, by the above description, all closed and open subsets Qn

j ap-
pearing in any of the partitions Qn are W-saturated. �us, we may use them as
separating sets justifying condition (a5). Namely, if x 2 Wn for some n � 1, then
x can be separated from a point y … Wn by a subset Qm

n , for su�ciently large m,
due to condition (q1)(a). If x 2 Y �, for each n consider this jn for which x 2 Qn

jn
.

We will need the following.
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Claim 2. diam.Qn
jn

/ ! 0.

To prove Claim 2, consider �rst the case when for each n we have jn � n.
In this case, by condition (q1)(a), we have x 2 N1=n.Wjn

/ for all n. From this it is
not hard to deduce that for a �xed j we have jn D j only for �nitely many n, and
hence jn ! 1. Since Qn

jn
� N1=n.Wjn

/ and so diam.Qn
jn

/ � diam.Wjn
/ C 2

n
,

we get that diam.Qn
jn

/ ! 0 by the fact that the family W is null.
Now, consider the case when for each n we have jn > n. It follows that

jn ! 1. By condition (q1)(b), we have diam.Qn
jn

/ < zn C 1
n
, and hence

diam.Qn
jn

/ ! 0 in this case too. �e general case easily follows from the two
just considered cases, hence Claim 2.

By Claim 2, x can be separated from any other point y 2 Y by a set Qn
jn

,
for su�ciently large n. �is completes the proof of Proposition 2.2.

�e proof of Proposition 2.1 requires more terminology and auxiliary results,
which we provide in four preparatory subsections below. �e proof itself appears
at the end of the section.

In all the remaining part of this section we work under notation and assump-
tions of Proposition 2.1. It means that X is a nonempty metric compactum, Y is
an .X/-regular space, and Y is an .X/-regularizing family for Y . We �x a metric
dY in Y . We also often refer to the subset Y � D Y n [Y.

2.A. Cantor space C and the related space C0. Recall that the Cantor space
is a metric compactum C determined uniquely by the following properties:

(c1) C is zero-dimensional, i.e. every point of C is a connected component of C

(it can be separated from any other point by a closed and open subset of C );

(c2) C has no isolated points, i.e. every point of C is an accumulation point.

2.A.1. Lemma. �e quotient space Y=Y is homeomorphic to the Cantor space C .

Proof. Since Y is a null decomposition of Y , it follows from [5], Proposition 2 on
p. 13, that Y=Y is a metric compactum. We need to check conditions (c1) and (c2).
Condition (c2) follows easily from condition (a3) for Y, and condition (c1) is a
consequence of condition (a5), hence the lemma.

We now recall or provide few properties of the Cantor space and its subspaces
that will be useful later in this section. Denote by C0 the space obtained by deleting
any single point from the Cantor space C . �e following two results are well
known.
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2.A.2. Proposition. A locally compact separable metric space is homeomorphic
to C0 if and only if it is zero-dimensional, noncompact and has no isolated points.

2.A.3. Proposition. Any noncompact open subset of C is homeomorphic to C0.
In particular, the complement C n Z of any closed boundary subset Z � C is
homeomorphic to C0.

We will also need the following technical result.

2.A.4. Lemma. Let ¹p� W � 2 ƒº be an in�nite (in fact, countable) discrete subset
of the space C0, and let U� W � 2 ƒ be a covering of C0 by open subsets with
compact closures in C0 such that p� 2 U� for each � 2 ƒ. �en there is a
partition of C0 into subsets K� W � 2 ƒ which are compact, open, and such that
p� 2 K� � U� for each � 2 ƒ. Moreover, the subsets K� are all homeomorphic
to the Cantor space.

Proof. �e �rst assertion is a fairly straightforward consequence of the fact that
each point of C0 has a basis of open neighbourhoods which are also compact. �e
second assertion follows from the fact that any nonempty closed and open subset
of the Cantor space C is homeomorphic to C .

2.B. Sequences of subspaces convergent to points. Since the family Y is null,
given any in�nite sequence .Zn/ of pairwise distinct subspaces from Y, we have
lim

n!1
diam.Zn/ D 0. �is justi�es the following. Given a sequence .Zn/ as above,

we say that a point p 2 Y is the limit of this sequence, lim
n!1

Zn D p, if for some

(and hence any) selection of points pn 2 Zn we have lim
n!1

pn D p. In such a

situation we also say that the sequence .Zn/ is convergent.

2.B.1. Fact. Each point p 2 Y can be expressed as p D lim
n!1

Zn for some se-

quence .Zn/ as above.

Proof. If p 2 Y �, the assertion follows directly from condition (a4) for Y (and
from compactness of the subspaces in Y). If p 2 Z 2 Y then, by condition (a3)
applied to Z, p is either the limit as required, or the limit of some sequence .pn/ of
points from the subset Y �. In the latter case, since each pn is the limit as required,
the same holds for p D lim

n
pn, which completes the proof.

We present two more technical results concerning convergent sequences of
subspaces from Y. We skip a straightforward proof of the �rst of these two results.
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2.B.2. Lemma. Let .Zn/n�1 be a sequence of subspaces in Y satisfying the fol-
lowing conditions:

(1) Z1 is arbitrary;

(2) ZnC1 � Ndiam.Zn/.Zn/ and diam.ZnC1/ < 1
2

diam.Zn/, for each n � 1.

�en .Zn/ is convergent, and if p D lim
n

Zn, then

¹pº [
[

n�1

Zn � N2diam.Z1/.Z1/:

2.B.3. Lemma. Given an ordering of the family Y into a sequence ¹Yn W n 2 N º,
let .Zn/n�0 be a sequence of distinct subspaces from Y satisfying the following
conditions:

(0) Z0 is arbitrary;

(1) Z1 ¤ Y1, diam.Z1/ < 1
2

diam.Z0/ and Z1 � Ndiam.Z0/.Z0/;

(2) for each n � 1 we have ZnC1 ¤ YnC1, diam.ZnC1/ < 1
2

diam.Zn/ and
ZnC1 � Ndn

.Zn/, where

dn WD min
�

diam.Zn/;
1

3
dY .Yn; Zn/; : : : ;

1

3n
dY .Y1; Z1/

�

:

�en .Zn/ is convergent, and the limit point p D lim
n

Zn belongs to Y �.

Proof. Convergence follows from Lemma 2.B.2. Moreover, it is not hard to see
that for the limit point p we have

dY .p; Yn/ >
�

1 �

1
X

iD1

1

3i

�

dY .Yn; Zn/ D
1

2
dY .Yn; Zn/ > 0

for each n � 1, and thus p …
S1

nD1 Yn D [Y.

2.C. Approximating families of subspaces. We will frequently use the follow-
ing concept.

2.C.1. De�nition. Let Z 2 Y. A subfamily Y0 � Y approximates Z if

� Z … Y0,

� Z � [Y0,

� lim
W 2Y0

dY .W; Z/ D 0 (equivalently, for any � > 0 almost all W 2 Y0 are

contained in N�.Z/).
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We make a record of few easily seen properties of approximating families.

2.C.2. Fact. (1) Any Z 2 Y admits an approximating family Y0 � Y.

(2) Any approximating family Y0 for Z 2 Y is discrete in the complement Y nZ

in any of the following two equivalent senses:

� for each W 2 Y0 there is ı > 0 such that the neighbourhood Nı.W / (in Y )
is disjoint with Z and with all subspaces from Y0 n ¹W º;

� the subset ¹ŒW � W W 2 Y0º � Y=Y is discrete in .Y=Y/ n ¹ŒZ�º, where for any
W 2 Y we denote by ŒW � the point in the quotient Y=Y corresponding to W .

2.D. T -labelling of Y. In this rather long subsection we introduce the concept
of a T -labelling of Y, which is the most important tool in our proof of Proposi-
tion 2.1. Recall that T denotes the countable tree with in�nite valence at every
vertex. We �x terminology and notation concerning various objects inside T .
We choose a base vertex in T , denoting it t0. A central ray in T is any in�nite
path 
 started at t0, with consecutive vertices denoted 
.0/; 
.1/; : : : . For any ver-
tex t 2 VT n ¹t0º its ancestor at is the adjacent vertex on the path from t to t0.
A sector based at t , denoted †t , is the set of all s 2 VT for which t lies on the path
from s to t0 (including s D t ); t is then called the base of the sector †t . �e set
of successors of t is the set †1

t D ¹s 2 †t W dT .s; t / D 1º. For any integer k � 0

the k-ball Bk and the k-sphere Sk are de�ned as Bk D ¹t 2 VT W dT .t; t0/ � kº,
Sk D ¹t 2 VT W dT .t; t0/ D kº.

2.D.1. De�nition. Given an .X/-regularizing family Y of subspaces in a metric
compactum Y , a T -labelling for Y is a labelling .Yt/t2VT

of Y by elements of the
set VT such that

(L1) the map t ! Yt is a bijection from VT to Y;

(L2) for any central ray 
 in T the sequence of subspaces Y
.n/ converges to a
point in the complement Y �;

(L3) for each t 2 VT n ¹t0º the family Ys W s 2 †1
t approximates the subspace Yt ;

similarly, the family Yt W t 2 S1 approximates the subspace Yt0 ;

(L4) for each t 2 VT n ¹t0º, closure in Y of the union of the family ¹Ys W s 2 †t º,
denoted Ht , is a closed and open subset of Y which is disjoint with Yat

;

(L5) lim
t¤t0

diam.Ht / D 0;

(L6) for any two distinct t1; t2 2 S1, as well as for any s 2 VT n ¹t0º and any two
distinct t1; t2 2 †1

s , we have Ht1 \ Ht2 D ;.
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�e next result shows that a T -labelling is a potentially useful tool for proving
Proposition 2.1.

2.D.2. Proposition. Let X be a nonempty metric compactum, and let Y be an
.X/-regular space, with .X/-regularizing family Y of subspaces. If Y admits a
T -labelling then Y is homeomorphic to the dense amalgam zt.X/.

Proof. Let .Yt /t2VT
be a T -labelling for Y.

Step 1 . Construction of a complete tree system compatible

with the T -labelling. We start with constructing a complete tree system
of peripheral extensions for X , ‚ D .¹Xt W t 2 VT º; ¹bt W t 2 VT º/, satisfying the
following conditions:

(1) for each t 2 VT we have Xt D Yt ;

(2) for each t 2 VT the map bt W Nt ! Pt D RXt n Xt satis�es the following:
choosing any points ˇt .s/ 2 Yt such that dY .ˇt .s/; Ys/ D dY .Yt ; Ys/, for all
s 2 Nt ;we have

lim
s2Nt

d RXt
.bt .s/; ˇt .s// D 0: (2.D.2.1)

To construct maps bt satisfying (2.D.2.1), we proceed for each t 2 VT inde-
pendently as follows. Order the vertices of Nt into a sequence .sn/ and the points
of Pt into a sequence .xn/. Recall that, by condition (L3) in De�nition 2.D.1, we
have lim

n
dY .ˇt .sn/; Ysn

/ D 0, and thus for any y 2 Yt there is a subsequence nm

such that lim
m

ˇt .snm
/ D y. Iterate the following two steps, starting with n D 1; 2.

For odd n, if j is the smallest index for which ˇt .sj / has not yet been de�ned, put
bt .sj / D x for any x 2 Pt which was not yet chosen as the image of any other s,
and which satis�es d RXt

.x; ˇt .sj // < 1
n
. For even n, if j is the smallest index for

which xj has not yet been chosen as the image of any s, choose any s for which
bt .s/ has not yet been de�ned and such that d RXt

.xj ; ˇt .s// < d RXt
.xj ; Yt/ C 1

n
.

We skip the direct veri�cation that bt is then a bijection and satis�es (2.D.2.1).

Step 2. The map h W _ ‚ n P‚ ! Y . Recall that we have the identi�cation
_‚ n P‚ D .

F

t2VT
Yt / t @T . If x 2 @T , let 
x be the unique central ray in T

representing x. Accordingly with the above identi�cation, put:

� h.x/ WD x if x 2 Yt for some t 2 VT ;

� h.x/ WD lim
n

Y
x.n/ if x 2 @T .

Note that, due to condition (L2), the latter limit exists and is a point of Y �.
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In the next three steps we will show that h is respectively injective, surjective
and open, thus getting that it is a homeomorphism. Since _‚ n P‚ Š zt.X/, this
will complete the proof of Proposition 2.D.2.

Step 3. h is injective. Since h maps the subset
F

t2VT
Yt � _‚ n P‚ injec-

tively on the subset
S

t2VT
Yt � Y , and since by condition (L2) it maps @T to the

subset Y � D Y n .
S

t2VT
Yt /, it is su�cient to show that the restriction of h to @T

is injective.

Consider two distinct points p; q 2 @T , and the corresponding central rays

p ; 
q. Let i be the smallest number such that 
p.i/ ¤ 
q.i/. Denote by Hp; Hq

respectively the closures in Y of the unions [¹Ys W s 2 †
p.i/º, [¹Ys W s 2 †
q.i/º.
By condition (L6) we get Hp \ Hq D ;: �e assertion then follows by observing
that h.p/ 2 Hp and h.q/ 2 Hq.

Step 4. h is surjective. Obviously, any point x 2
S

t2VT
Yt � Y is in the

image of h. �us, we need to show that any point q 2 Y � is also in this image.

According to Fact 2.B.1, there is a sequence tn such that in Y we have
q D lim

n
Ytn . Recall that for each t 2 VT n ¹t0º we denote by Ht the closure

in Y of the union [¹Ys W s 2 †tº. We claim that there is u 2 S1 such that tn 2 †u

for in�nitely many n. Indeed, if there is no such u then, denoting by un this vertex
of S1 for which tn 2 †un

, we have lim
n

diam.Hun
/ D 0 (due to condition (L5)),

and since Ytn � Hun
, it follows that q D lim

n
Hun

. Consequently, we also have

q D lim Yun
, and due to condition (L3) this implies that q 2 Yt0 , despite q 2 Y �.

�us, there is u 2 S1 such that tn 2 †u for in�nitely many n. Moreover, since
then q 2 Hu, and since by (L6) the subsets Hs W s 2 S1 are pairwise disjoint, it
follows that u as above is unique. We denote it u1.

Iterating the above argument, for each natural k we get a unique uk 2 Sk such
that tn 2 †uk

for in�nitely many n. By uniqueness of uk , we get that †ukC1
� †uk

for each k, and thus the sequence t0; u1; u2; : : : is a central ray in T . Denote by
p 2 @T the point corresponding to this central ray. Since we have q 2 Huk

for
each k, we also have q D lim

k
Huk

, and consequently q 2 lim
k

Yuk
D h.p/. �is

completes the proof of surjectivity.

Step 5. h is open. We refer to the basis D of the topology of the space
_‚ n P‚ D

� F

t2VT
Yt

�

t @T , as described in Proposition 1.8. We need to show
that far any set D.t; U / 2 D (where t 2 VT is a vertex, and U � RYt is an open
subset) its image h.D.t; U // is an open subset of Y .
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Recall that there are three kinds of points in D.t; U /:

(1) points x 2 U \ Yt ;

(2) points y 2 Ys for s ¤ t such that bt .Œt; ts�/ 2 U ;

(3) points p 2 @T such that bt .Œt; tz�/ 2 U .

We will show that the image z of a point of each kind is contained in h.D.t; U //

together with some open neighbourhood of z in Y .
Let z D h.p/ for some p of kind (3) above. Choose any vertex s 2 VT n ¹t0º

lying on the central ray from t0 to p and such that t … †s. Note that then the
set t¹Yu W u 2 †sº � D.t; U / and the set of all q 2 @T represented by cen-
tral rays passing through s are both the subsets of D.t; U /. We also claim that,
denoting the union of these two subsets by Ds, we have h.Ds/ D Hs. �e inclu-
sion h.Ds/ � Hs is obvious. For the opposite inclusion, the argument is the same
as that in Step 4. �us, we get z 2 Hs � h.D.t; U //, where the subset Hs is open
(by condition (L4)).

Now, let z D h.y/ for some y 2 Ys of kind (2) above. We consider three
subcases concerning the position of s. First, suppose that s is not lying on the
path from t0 to t . �en, arguing as in the previous case, we get similarly that
z 2 Hs � h.D.t; U //. In the remaining cases, denote by s0 the vertex adjacent to
s on the path from s to t . If s D t0, one shows similarly (using the fact that h is
a bijection) that z 2 Y n Hs0 � h.D.t; U //. Since by (L4) the set Hs0 is closed,
its complement Y n Hs0 is open, and thus it is as required. Finally, if s lies in the
interior of the path from t0 to t , by condition (L4) we have Ys \ Hs0 D ;. We then
get z 2 Hs n Hs0 � h.D.t; U //, where Hs n Hs0 is easily seen to be open, again
due to (L4).

In the last case, let z D h.x/ for some x 2 U \ Yt (i.e. x is of kind (1) above).
Since U is open, there is � > 0 such that

d RYt
.x; bt .s// > � for each s 2 Nt n b�1

t .U /: (2.D.2.2)

In view of (2.D.2.1), we then have

lim inf
s2Nt nb

�1
t .U /

d RYt
.x; ˇt .s// � �:

Since the metrics d RYt
and dY restricted to Yt are equivalent, and since

x 2 Yt � .
F

t2VT
Yt / t @T coincides with z D h.x/ 2 Yt � Y , there is �0 > 0

such that

lim inf
s2Nt nb

�1
t .U /

dY .z; ˇt .s// � �0:
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Since lim
s2Nt

dY .ˇt .s/; Ys/ D 0 and lim
s2Nt

diam.Ys/ D 0, it follows that

lim inf
s2Ntnb

�1
t .U /

dY .z; Ys/ � �0: (2.D.2.3)

For each s 2 Nt consider the half-tree ‰s in T containing s and not containing
t . Put �s D [¹Yu W u 2 ‰sº, where the closure is taken in Y . Note that that for all
s 2 Nt except possibly one (namely this for which t0 2 ‰s) we have �s D Hs,
and hence

lim
s2Nt

diam.�s/ D 0: (2.D.2.4)

Since Ys � �s for each s 2 Nt , it follows from (2.D.2.3) and (2.D.2.4) that

lim inf
s2Ntnb

�1
t .U /

dY .z; �s/ � �0:

�us,

for almost all s 2 Nt n b�1
t .U / we have dY .z; �s/ >

�0

2
: (2.D.2.5)

We claim also that for any s 2 Nt we have dY .z; �s/ > 0. To see this, it is
enough to note that for each s 2 Nt we have Yt \ �s D ;. Indeed, this is true by
condition (L4) for all s except possibly this one for which t0 2 ‰s . We denote this
exceptional s by s0. If this s0 exists, one easily notes that, since by (L4) the subset
Ht is open, we have Ht \ �s0

D ;, and consequently Yt \ �s0
D ;.

As a consequence of the assertions in the previous paragraph, there is ı > 0

such that dY .z; �s/ > ı for all s 2 Nt n b�1
t .U / and dY .z; Yt n U / > ı. Since

from the de�nition of h one deduces easily that

h.Œ_‚ n P‚� n D.t; U // � .Yt n U / [
[

¹�s W s 2 Nt n b�1
t .U /º;

it follows from bijectivity of h that the metric ball Bı.x; .Y; dY // is contained in
h.D.t; U //. �is completes the proof of openness of h, and hence also the proof
of Proposition 2.D.2.

Proof of Proposition 2.1. Let Y be an .X/-regular space, with .X/-regularizing
family Y. In view of Proposition 2.D.2, to prove Proposition 2.1, it is su�cient to
show that Y admits a T -labelling. Before starting the actual construction of such
a T -labelling, order Y into a sequence .Yk/k�1. We demand that a labelling that
we construct satis�es the following:
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(r1) for each k � 1 we have Yk 2 ¹Yu W u 2 Bk�1º;

(r2) for each k � 1 and any t 2 Sk, denoting by Œt0; u1; : : : ; uk�1; t � the path in T

from t0 to t , and putting

dt WD min
�

diam.Yt /;
1

3
dY .Yk; Yt /;

1

32
dY .Yk�1; Yuk�1

/;

: : : ;

1

3k
dY .Y1; Yu1

/
�

;

for any s 2 †1
t we have Ys � Ndt

.Yt / and diam.Ys/ < 1
2

diam.Yt /.

Note that, in view of Lemma 2.B.3, we have the following.

Claim. If a labelling .Yt /t2VT
for Y satis�es the above conditions (r1) and (r2)

then it satis�es condition (L2) of De�nition 2.D.1.

We start the inductive construction of a T -labelling for Y by putting

Yt0 WD Y1:

Induction proceeds with respect to radii of balls Bn and spheres Sn in VT . At the
�rst essential (i.e. not trivial) step, for each t 2 S1 we choose Yt so that

(1) the family ¹Yt W t 2 S1º contains Y2 and approximates Yt0 ;

(2) if we put

dt D min
�

diam.Yt /;
1

3
dY .Y1; Yt /

�

;

then the family Ndt
.Yt / W t 2 S1 covers Y n Yt0 ;

(3) for any Z 2 Y n ¹Yu W u 2 B1º there is t 2 S1 such that Z � Ndt
.Yt / and

diam.Z/ < 1
2

diam.Yt /.

To make such a choice, consider the subset

E0 D ¹x 2 Y W dY .x; Yt0/º � 1;

and for each m � 1 consider the subset

Em D ¹x 2 Y W 2�m � dY .x; Yt0/ � 2�mC1º:
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Each of those subsets is closed in Y , and hence compact. For each W 2 Y n ¹Yt0º

put

dW D min
�

diam.W /;
1

3
dY .Y1; W /

�

:

For each m � 0 choose a �nite subfamily Wm � Yn¹Yt0º such that each W 2 Wm

intersects Em, and the corresponding family of neighbourhoods

¹NdW
.W / W W 2 Wmº

covers Em. Denote byWCm the set of all W 0 2 Y, W 0 ¤ Yt0 , W 0\Em ¤ ;, such that
W 0 is not contained in any single neighbourhood from the family ¹NdW

.W / W W 2

Wmº or diam.W 0/ � 1
2

min.diam.W / W W 2 Wm/. Note that for each m � 0 the
family WCm is �nite. Put

W WD
h

[

m�0

.Wm [ WCm/
i

[ ¹Y2º

and label W using S1 as the set of labels, so that W D ¹Yt W t 2 S1º. Observe
that conditions (1)–(3) above are then satis�ed (we skip a rather straightforward
argument).

By Lemma 2.A.1, the space .Y=Y/ n ¹ŒYt0�º is homeomorphic to the punc-
tured Cantor space C0 (here, for s 2 VT we denote by ŒYs� the point of Y=Y cor-
responding to Ys). Moreover, since the just chosen family Yt W t 2 S1 approxi-
mates Yt0 , the corresponding subset ¹ŒYt � W t 2 S1º is discrete in .Y=Y/ n ¹ŒYt0 �º

(see Fact 2.C.2(b)). For each t 2 S1 put

Ut WD Ndt
.Yt / n

[

¹Z 2 Y W Z 6� Ndt
.Yt /º

n
[

°

Z 2 Y W Z ¤ Yt ; diam.Z/ �
1

2
diam.Yt /

±

:

Observe that nullness of Y has the following consequences. First, the union
S

¹Z 2 Y W Z ¤ Yt ; diam.Z/ � 1
2

diam.Yt /º is �nite, and hence it yields a closed
subset of Y . Second, the set

[

¹Z 2 Y W Z 6� Ndt
.Yt /º n

[

¹Z 2 Y W Z 6� Ndt
.Yt /º

(where the closure is taken in Y ) is disjoint with Ndt
.Yt /. It follows that

Ut D Ndt
.Yt / n

[

¹Z 2 Y W Z 6� Ndt
.Yt /º

n
[

°

Z 2 Y W Z ¤ Yt ; diam.Z/ �
1

2
diam.Yt /

±

:
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In particular, Ut is an open neighbourhood of Yt in Y . Moreover, by conditions (2)
and (3) above, the family Ut W t 2 S1 is a covering of Y nYt0 . Obviously, the sets Ut

are allY-saturated. �us, their images U 0t through the quotient map Y ! Y=Y form
an open covering of .Y=Y/ n ¹ŒYt0�º by the sets whose closures in .Y=Y/ n ¹ŒYt0 �º

are compact (because their closures in Y=Y do not contain the point ŒYt0 �), and for
each t 2 S1 we have ŒYt � 2 U 0t . By Lemma 2.A.4, there is a partition of the space
.Y=Y/ n ¹ŒYt0�º into subsets Kt W t 2 S1 which are compact, open, and such that
for each t we have ŒYt � 2 Kt � U 0t . Denoting by

q W Y n Yt0 �! .Y=Y/ n ¹ŒYt0�º

the quotient map, we get the partition of Y n Yt0 into subsets

Lt D q�1.Kt / W t 2 S1

which are closed and open in Y and Y-saturated. It is not hard to see that for each
t 2 S1 we also have

(p1) Yt � Lt ;

(p2) Lt � Ndt
.Yt/ and thus, since dt � diam.Yt /,

diam.Lt / < 3 diam.Yt /I

(p3) each Z 2 Y contained in Lt and distinct from Yt satis�es

diam.Z/ <
1

2
diam.Yt /:

We now proceed to the general inductive step of the construction. Suppose
that for some n � 1 and for all t 2 Bn we have already chosen the subspaces Yt so
that the family Yt W t 2 Bn contains all of the subspaces Y1; Y2; : : : ; YnC1. Suppose
also that we have constructed a partition of the subspace Y n [¹Yu W u 2 Bn�1º

into Y-saturated subspaces Lt W t 2 Sn, each open and closed in Y , such that, for
each t 2 Sn

(p1�) Yt � Lt ;

(p2�) Lt � Ndt
.Yt / and thus diam.Lt / < 3 diam.Yt /;

(p3�) each Z 2 Y contained in Lt and distinct from Yt satis�es

diam.Z/ <
1

2
diam.Yt /:
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For each t 2 Sn do the following. For each s 2 †1
t choose Ys so that

(t1) Ys � Lt n Yt (then Ys � Ndt
.Yt / and diam.Ys/ < 1

2
diam.Yt //;

(t2) if YnC2 � Lt n Yt then for some s 2 †1
t

Ys D YnC2I

(t3) the family ¹Ys W s 2 †1
t º approximates Yt ;

(t4) denoting by Œt0; u1; : : : ; un; s� the path in T from t0 to s, if we put

ds D min
�

diam.Ys/;

1

3
dY .YnC1; Ys/;

1

32
dY .Yn; Yun

/;

: : : ;

1

3nC1
dY .Y1; Yu1

/
�

;

then the family Nds
W s 2 †1

t covers Lt n Yt and for any Z 2 Y, Z � Lt n Yt ,
there is s 2 †1

t such that Z � Nds
.Ys/ and diam.Z/ < 1

2
diam.Ys/.

�is can be done in a way similar as described above (for the family Yt W t 2 S1).
Moreover, since the quotient space Lt=¹Z 2 Y W Z � Lt º is homeomorphic to
the Cantor space (because it is an open and closed subspace of Y=Y), arguing as
above with the help of Lemma 2.A.4, we obtain a partition of Lt nYt into a family
of subsets Ls W s 2 †1

t which are closed and open in Lt (and hence also in Y ),
Y-saturated, and such that Ys � Ls � Nds

.Ys/ for each s 2 †1
t . Moreover, for

each such s condition (p3�) holds with s substituted for t .
By the above inductive construction, we get an injective map u ! Yu from

VT to Y, which is also surjective due to condition (r1) (which follows from condi-
tion (t2)). �is map is thus a labelling of Y, i.e. condition (L1) of De�nition 2.D.1
holds. Moreover, since conditions (r1) and (r2) are ful�lled due to (t2) and (t4),
Claim above ensures that this labelling satis�es condition (L2). Condition (L3)
holds by (t3). It follows fairly directly from (t1) and from the construction and
properties of sets Ls that for each t ¤ t0 we have Ht � Lt . �is easily implies
condition (L6), and in view of (p2�) it also implies (L5). �e argument as in
Step 4 of the proof of Proposition 2.D.2 shows that in fact for each t ¤ t0 the
subspace Ht coincides with Lt , thus being open and closed in Y , which justi�es
condition (L4). Hence, the construction above yields a T -labelling for Y, which
completes the proof.
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3. Properties of the operation of dense amalgam

In this section we derive, using the construction and the characterization, various
properties of the operation of dense amalgam. In particular, we justify Proposi-
tion 0.1 of the introduction.

Start with observing that part (1) of Proposition 0.1 (which yields commutativ-
ity of the dense amalgam) follows by the de�nition of zt.X1; : : : ; Xk/, as given at
the end of Section 1.

We next pass to part (3) of Proposition 0.1. We will show the following result,
which obviously implies the statement of part (3), but in fact it is easily seen to be
just equivalent.

3.1. Proposition. Let X1; : : : ; Xk be any nonempty metric compacta, and let
M1; : : : ; Mm be the pairwise non-homeomorphic spaces representing all home-
omorphism types appearing among X1; : : : ; Xk. �en

zt.X1; : : : ; Xk/ D zt.M1; : : : ; Mm/:

Proof. In view of the characterization given in �eorem 0.2, and proved
in Section 2, it is su�cient to show that the space Y D zt.X1; : : : ; Xk/ is
.M1; : : : ; Mm/-regular. Let Y be an .X1; : : : ; Xk/-regularizing family for Y . It
is partitioned into subfamilies Yi W 1 � i � k so that conditions (a1)–(a5) of
the introduction hold. For each i 2 ¹1; : : : ; kº let m.i/ be this index for which
Xi is homeomorphic to Mm.i/. We de�ne a new partition of Y, into subfamilies
Y0j W 1 � j � m, putting Y0j WD [¹Yi W m.i/ D j º for each j 2 ¹1; : : : ; mº. A direct
veri�cation shows that Y equipped with this new partition is an .M1; : : : ; Mm/-
regularizing family for Y , which completes the proof.

To deal with the remaining parts of Proposition 0.1, we will need the following
auxiliary result, which follows fairly directly from the construction of the dense
amalgam, as described in Section 1.

3.2. Lemma. Let Y be an .X1; : : : ; Xk/-regular space, with .X1; : : : ; Xk/-regu-
larizing family Y, and let Z 2 Y. Suppose that Z is not connected, and let A1; A2

be nonempty open and closed subsets of Z forming its partition. �en there is a
partition of Y into open and closed subsets H1; H2 such that

(1) A1 D H1 \ Z and A2 D H2 \ Z;

(2) each subset W 2 Y n ¹Zº is contained either in H1 or in H2.
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Proof. We may assume that Y D zt.X1; : : : ; Xk/, and we identify it with
�

F

t2VT
Xt

�

t@T , as in Section 1, where each Xt is homeomorphic to X1t� � �tXk .
Under this homeomorphism, we express each Xt as Xt D X1;t t � � � t Xk;t , where
Xi;t Š Xi . We then identify Z with a subset Xi;t , for some t 2 VT and some
1 � i � k. We extend the partition of Z D Xi;t into subsets A1; A2 �rst to a parti-
tion of Xt into A01 D A1 and A02 D Xt nA1, and then to a partition of the peripheral
extension RXt into open and closed subsets A001; A002. Putting Hi WD D.t; A00i /, for
i D 1; 2, we get a partition of Y as required, which completes the proof.

We now turn to proving parts (2), (4), and (5) of Proposition 0.1.

Proof of Proposition 0.1(2). In view of the characterization of dense amalgams
given in �eorem 0.2, it is su�cient to show that the space

Y D zt.X1; : : : ; Xi�1; zt.Xi ; : : : ; Xk//

is .X1; : : : ; Xk/-regular. We start with describing a natural candidate for an
.X1; : : : ; Xk/-regularizing family Y�. We refer to the identi�cation (as presented
in Section 1) of Y with the space

�
F

t2VT
Xt

�

t @T , where each Xt is homeomor-
phic to the space

X1 t � � � t Xi�1 t �;

with

� D zt.Xi ; : : : ; Xk/:

We realize each such homeomorphism as

Xt D X t
1 t � � � t X t

i�1 t �t :

We also identify each �t with the space
�

F

s2VTt
Xt;s

�

t @Tt , where Tt is a sep-
arate copy of the tree T , and where each Xt;s is homeomorphic to Xi t � � � t Xk ,
which we write as

Xt;s D X
t;s
i t � � � t X

t;s
k

:

Now, for each j 2 ¹1; : : : ; i � 1º we put

Y�j WD ¹X t
j W t 2 VT º;

and for each j 2 ¹i; i C 1; : : : ; kº we put

Y�j WD ¹X
t;s
j W t 2 VT ; s 2 VTt

º:
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Veri�cation that the so described family

Y� D

k
G

jD1

Y�j

satis�es conditions (a1)–(a4) of an .X1; : : : ; Xk/-regularizing family is straight-
forward, and we skip it. Veri�cation of condition (a5) is a bit more involved.
Let x; y be two points of Y not belonging to the same set of Y�. We need to
separate x from y by a Y�-saturated open and closed subset of Y . To do this, one
needs to consider several cases of positions of x and y. We verify the statement in
the case when for some t0 2 VT , some s0 2 VTt

, and some j 2 ¹i; i C1; : : : ; kº we
have x 2 X

t0;s0

j and y 2 @Tt0 . (�e arguments in the remaining cases are similar,
and we omit them.)

Consider the family

Yt0 WD ¹Xt0;s W s 2 VTt0
º;

which is the canonical .Xi ; : : : ; Xk/-regularizing family for �t0 , as indicated at the
end of Section 1. By condition (a5), there is a partition of �t0 into open, closed
and Yt0 -saturated subsets A1; A2 such that x 2 A1 and y 2 A2. Consider then the
family

Y WD
�

i�1
[

jD1

¹X t
j W t 2 VT º

�

[ ¹�t W t 2 VT º;

which is the canonical .X1; : : : ; Xi�1; �/-regularizing family for Y . By Lem-
ma 3.2, there is a partition of Y into open and closed subsets H1; H2 such that

Ai D Hi \ �t0 for i D 1; 2;

and each subset of Y n ¹�t0º is contained either in H1 or in H2. Since the subsets
Hi are clearly Y�-saturated, and since x 2 H1 and y 2 H2, the assertion follows
in the considered case, which completes the proof.

Proof of Proposition 0.1(4). Let

Y D zt.X1; : : : ; Xk; Q/:

In view of �eorem 0.2, it is su�cient to show that Y is .X1; : : : ; Xk/-regular.
Let Y be the canonical .X1; : : : ; Xk ; Q/-regularizing family for Y , as described at
the end of Section 1. More precisely, viewing Y as

�
F

t2VT
Xt

�

t @T , with each
Xt homeomorphic to X1 t � � � t Xk t Q, which we write as

Xt D X1;t t � � � t Xk;t t Qt ;
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we have

Y D
�

k
G

iD1

¹Xi;t W t 2 VT º
�

t ¹Qt W t 2 VT º:

As a natural candidate for an .X1; : : : ; Xk/-regularizing family for Y we take

Y0 D

k
G

iD1

Y0i

with

Y0i D ¹Xi;t W t 2 VT º:

We need to check conditions (a1)–(a5) for Y0. �e only one for which the veri�-
cation is not straightforward is condition (a5). �e only problematic case is when
we consider points x; y 2 Qt0 for some t0 2 VT (which no longer belong to the
same set of Y0). Since Qt0 (being homeomorphic to Q) is totally disconnected,
we may choose its partition into open and closed subsets A1; A2 such that x 2 A1,
y 2 A2. �en, applying Lemma 3.2 to the family Y and to Z D Qt0 , we get
partition of Y into open and closed subsets H1; H2 which are Y0-saturated. Since
obviously we have x 2 H1 and y 2 H2, the proof is completed.

Proof of Proposition 0.1(5). We refer to the characterization of the Cantor space
C as the compact metric space which is totally disconnected and has no isolated
points. Since the arguments are standard and similar to the previous ones, we only
sketch them.

�e amalgam zt.Q/ is compact and metrizable by the argument provided in
Section 1 for all dense amalgams. It has no isolated points by conditions (a3)
and (a4) (this is again true for any dense amalgam). Finally, zt.Q/ is totally dis-
connected due to condition (a5), and by total disconnectedness of Q combined
with Lemma 3.2. We omit further details.

4. EZ-boundaries for graphs of groups

�is section is devoted to the proof of �eorem 0.3(1). More precisely, given a
non-elementary graph of groups G with �nite edge groups, and with vertex groups
equipped with EZ-boundaries @Gv, we show that the model of EZ-boundary for
the fundamental group of G constructed by Alexandre Martin in [12] is homeo-
morphic to the dense amalgam of the boundaries @Gv .
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4.1. Graphs of groups. We recall basic terminology and notation concerning
graphs of groups, referring the reader to [18] for a more complete exposition.
We consider graphs Y with multiple edges and loop edges allowed. We denote by
VY the set of vertices, and by OY the set of oriented edges of Y . Given a 2 OY ,
we denote by ˛.a/ and !.a/ the initial and the terminal vertex of a, respectively.
For a 2 OY , we denote by Na the oppositely oriented edge, and by jaj the nonori-
ented edge underlying a. �e set of nonoriented edges of Y will be denoted jOjY .

4.1.1. De�nition. A graph of groups over a graph Y is a tuple

G D .¹Gv W v 2 VY º; ¹Ge W e 2 jOjY º; ¹ia W a 2 OY º/;

where Gv and Ge are groups, and ia W Gjaj ! G!.a/ are group monomorphisms.

Given a graph Y , we denote by Y 0 its �rst barycentric subdivision. For any
a 2 OY , we denote by aC the nonoriented edge in Y 0 which connects the barycen-
ter of jaj with the vertex !.a/. �us, the set of nonoriented edges of Y 0 is exactly
¹aC W a 2 OY º.

4.1.2. De�nition. Let G be a graph of groups over a graph Y , and let „ be a
maximal tree in Y 0. Consider the set of symbols S D ¹sa W a 2 OY ; aC 6� „º.
�e fundamental group

G D �1.G; „/

is the group

G D ..�v2VY
Gv/ � .�e2jOjY Ge/ � FS /=N;

where FS is the free group with the standard generating set S , and where N is the
normal subgroup of the free product

.�v2VY
Gv/ � .�e2jOjY Ge/ � FS

generated by the elements

g�1ia.g/ W aC � „; g 2 Gjaj

and the elements

g�1s�1
a ia.g/sa W aC 6� „; g 2 Gjaj:

Since we have canonical injections of the groups Gv, Ge and Fs in G, we will
often identify elements of these groups as elements of G.
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4.1.3. De�nition. Given a graph of groups G over Y , and a maximal subtree
„ � Y 0, the Bass–Serre tree X D X.G; „/ is described as follows:

� VX D
F

v2VY
.G=Gv/ � ¹vº and OX D

F

a2OY
.G=Gjaj/ � ¹aº;

� .gGjaj; a/ D .gGjaj; Na/;

� !..gGjaj; a// D

8

<

:

.gG!.a/; !.a// if aC � „,

.gs�1
a G!.a/; !.a// if aC 6� „.

�e Bass–Serre tree X comes equipped with the G-action (for G D �1.G; „/)
given by

h � .gGv; v/ D .hgGv; v/

and

h � .gGjaj; a/ D .hgGjaj; a/:

It is well known that X D X.G; „/ is indeed a tree, and G acts on X without
inversions and so that the vertex and edge stabilizers are as follows:

StabG..gGv; v// D gGvg�1

and

StabG..gGjaj; a// D gGjajg
�1:

�ere is also a canonical nondegenerate map

� W X �! Y

given by

�..gGv; v// D v

and

�..gGjaj; a// D a;

which is G-invariant (i.e. G-equivariant with respect to the trivial action of G

on Y ).

4.1.4. Remark. A bit more geometric description of the Bass–Serre tree
X D X.G; „/ (or description of its geometric realization) goes as follows.
For each a 2 OY , let �jaj be a nonoriented edge with its two associated oriented
edges �a and �a D � Na, and suppose that its endpoints ˛.�a/ and !.�a/ are distinct.
View �jaj as a topological space homeomorphic to a segment. Put

X D
�

G

e2jOjY

.G=Ge/ � �e

�

= �;
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where � is induced by the equivalences .gGjaj; !.�a// � .g0Gjaj; !.�a// for the
following triples .a; g; g0/ 2 OY � G � G:

� aC � „ and g�1g0 2 G!.a/;

� aC 6� „ and g�1g0 2 s�1
a G!.a/sa.

�e (geometric) edges of X are then the images through the quotient map of
the relation � of the sets gGe � �e , and we denote them ŒgGe; �e�. Similarly, the
vertices of X are the equivalence classes of points .gGjaj; !.�a//, which we denote
ŒgGjaj; !.�a/�.

We now pass to discussing a not quite standard concept of a non-elementary
graph of groups, which appears in the statement of �eorem 0.3. An oriented edge
a 2 OY in a graph of groups G D .¹Gvº; ¹Geº; ¹iaº/ over Y is trivial if it is not a
loop and if ia W Gjaj ! G!.a/ is an isomorphism. Given a trivial edge a, we de�ne
a new graph of groups G0 by contracting the edge jaj in Y to a point (denoted vjaj),
thus getting a new graph Y 0, and by putting

G0vjaj
WD G˛.a/;

while leaving the groups and maps unchanged at the remaining vertices and edges.
�e resulting graph of groups G0 has the same fundamental group as G, and we say
that it is obtained from G by an elementary collapse. A graph of groups with no
trivial edge is said to be reduced. Obviously, any graph of groups (over a �nite
graph) can be modi�ed into a reduced graph of groups by a sequence of elementary
collapses.

4.1.5. De�nition. A graph of groups G over Y is simply elementary if it has one
of the following three forms:

� Y consists of a single vertex, and has no edge;

� Y consists of a single vertex, v, and a single loop edge, jaj, and the maps
ia; i Na are both isomorphisms;

� Y consists of a single edge, jaj, with two distinct vertices ˛.a/, !.a/, and
the images of both maps ia; i Na are subgroups of index 2 in the corresponding
vertex groups.

A graph of groups over a �nite graph is non-elementary if, after modifying it
to a reduced graph of groups by elementary collapses, it is not simply elementary.

We will need the following property of non-elementary graphs of groups.
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4.1.6. Lemma. Let G be a non-elementary graph of groups over a �nite
graph Y , and assume that all edge groups in G are �nite. Let X D X.G; „/ be the
Bass–Serre tree of G.

(1) For each v 2 VY with in�nite vertex group Gv there is a 2 OY with ˛.a/ D v

such that any lift of a to X (through �) separates X into two subtrees, each
of which contains lifts of all vertices of Y .

(2) If all vertex groups of G are �nite then X is an in�nite locally �nite tree, and
there is v 2 VY such that any lift of v to X splits X into at least three in�nite
components.

Proof. To prove part (1), �x a vertex v 2 VY for which Gv is in�nite. We �rst
claim that v has more than one lift in X . If this were not the case, the unique lift
Qv of v would be �xed by all of G D �1.G; „/. Hence we would have Gv D G,
and this could only happen if G was reducing to a graph of groups over a single
vertex, contradicting the assumption that G is non-elementary.

Now, �x two distinct lifts v1; v2 of v in X , and let Qa be the �rst oriented edge
in X on the unique path from v1 to v2. We claim that its projection

a WD �. Qa/

is as required. Indeed, since any edge in Y starting at v lifts to in�nitely many
edges in X starting at v2, for each vertex u 2 VY there is its lift Qu in X such
that v2 lies on the path in X from v1 to Qu. �is shows that the subtree of X ob-
tained by splitting at Qa and containing v2, contains also lifts of all vertices of Y .
�e other subtree obtained by the same splitting contains lifts of all vertices of
Y by a similar argument. For other lifts of a the assertion is true by transitiv-
ity of G on the set of all these lifts, and by G-invariance of the projection � .
�is completes the proof of part (1).

To prove part (2), note that X is obviously locally �nite. Moreover, X is in-
�nite since the fundamental group of any reduced not simply elementary graph
of groups is in�nite. To prove existence of a vertex v as required, note that exis-
tence of such v is clearly preserved by elementary collapses. �us, it is su�cient
to prove it in the case of reduced graphs of groups G. For a reduced graph of
groups G, any vertex splits the Bass–Serre tree X into as many in�nite components
as the valence of this vertex. �us, it is su�cient to show that if G is reduced and
non-elementary, then the Bass–Serre tree X has a vertex with valence at least 3.
It is not hard to see that if G is reduced and non-elementary (i.e. not simply elemen-
tary), then the underlying graph Y contains a vertex v with one of the following
properties:
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� there are at least two oriented edges in Y starting at v;

� there is an oriented edge a terminating at v such that the index of the subgroup
ia.Gjaj/ < Gv is at least 3.

In any of these two cases lifts of v in X have valence at least 3, which �nishes
the proof.

4.2. EZ-structures. For completeness of the exposition, we recall the notions
of EZ-structure and EZ-boundary of a group. A slightly weaker version of this
concept, called Z-structure, is due to Bestvina [1]. A generalization for groups
with torsion was introduced by Dranishnikov [9]. Farell and Lafont [10] stud-
ied an equivariant analogue, which applied only to torsion free groups. �e con-
cept presented below generalizes all these approaches, and it has appeared in this
form in Martin’s paper [12] (while its slightly stronger version was studied by
Rosenthal [17]). �e concept of EZ-boundary uni�es and generalizes the notions
of Gromov boundary, CAT.0/ boundary, and systolic boundary (as introduced
in [14]). Existence of an EZ-structure for a group G implies that G satis�es the
Novikov conjecture.

4.2.1. De�nition. An EZ-structure for a �nitely generated group G is a pair
. xE; Z/ of spaces (with Z � xE) such that

� xE is a Euclidean retract (i.e. a compact, contractible and locally contractible
space with �nite covering dimension; such a space is automatically metriz-
able);

� xE n Z is a cocompact model of a classifying space for proper actions of G

(i.e. a contractible CW-complex equipped with a properly discontinuous co-
compact and cellular action of G, such that for every �nite subgroup
H < G the �xed point set . xE n Z/H is nonempty and contractible);

� Z is a Z-set in xE (i.e. Z is a closed subspace in xE such that for any open set
U � xE the inclusion U n Z ! U is a homotopy equivalence);

� compact sets fade at in�nity, that is, for every compact set K � xE n Z,
any point z 2 Z, and any neighbourhood U of z in xE, there is a smaller
neighbourhood V � U of z such that if a G-translate of K intersects V then
it is contained in U ; this is equivalent to requiring that the set of G-translates
of any compact K � xE n Z is a null family of subsets in xE;

� the action of G on xE n Z extends continuously to xE.
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An EZ-boundary for G is a space Z appearing in any EZ-structure . xE; Z/

for G.

To keep track of the relationship to G, we will usually denote an EZ-structure
for G as .EG; @G/, and the corresponding classifying space EG n @G simply
as EG.

In the statement of �eorem 0.3(1) we refer also to a stronger concept of the
boundary, as de�ned below.

4.2.2. De�nition. An EZ-structure . xE; Z/ is strong in the sense of Carlsson–
Pedersen if for each �nite subgroup H < G the �xed point set ZH is either empty
or a Z-set in xEH . An EZ-boundary strong in the sense of Carlsson–Pedersen for
G is a space Z appearing in any EZ-structure . xE; Z/ for G strong in the sense of
Carlsson–Pedersen.

�e above concept strengthens slightly, in a natural way, the concepts appear-
ing in the works of Carlsson and Pedersen [3], as well as Rosenthal [17]. It has
appeared in Martin’s paper [12], where it turned out to be natural from the point
of view of the combination theorem being the main result of that paper.

4.3. An EZ-structure for a graph of groups with �nite edge groups. Let G
be a graph of groups as in �eorem 0.3(1), over a �nite graph Y . It means that
all edge groups Ge in G are �nite, and each vertex group Gv is equipped with an
EZ-structure .EGv ; @Gv/. In this subsection we brie�y recall the construction of
an EZ-structure .EM G; @M G/ for the fundamental group G D �1.G; „/. �is is
a rather special case of a much more general construction presented by Alexandre
Martin in [12]. Our description is adapted to the case under our interest.

Apart from the EZ-structures .EGv; @Gv/, as initial data for the construc-
tion we need the following: for each oriented edge a 2 OY we choose a point
pa 2 EG!.a/ which is �xed by the subgroup ia.Gjaj/ < G!.a/. Note that the sub-
group ia.Gjaj/ is �nite, and hence its �xed point set in EG!.a/ is not empty, which
justi�es existence of pa. �e tuple of data .¹.EGv; @Gv/ W v 2 VY º; ¹pa W a 2 OY º/

as above is an example of an EZ-complex of classifying spaces compatible with G,
see De�nitions 2.2 and 2.6 in [12].

We �rst describe a cocompact model EM G of a classifying space for proper
actions of G. As in Remark 4.1.4, for each a 2 OY , let �jaj be a nonoriented
edge with its two associated oriented edges �a and �a D � Na, and suppose that its
endpoints ˛.�a/ and !.�a/ are distinct. View �jaj as a topological space homeo-
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morphic to a segment. Put

EM G WD
h

G �
��

G

v2VY

EGv

�

t
�

G

e2jOjY

�e

��i

= �;

where the equivalence relation � is induced by the following equivalences:

� .gh; x/ � .g; hx/ for all g 2 G, v 2 VY , x 2 EGv and h 2 Gv;

� .gh; y/ � .g; y/ for all g 2 G, e 2 jOjY , y 2 �e and h 2 Ge;

� .g; pa/ � .g; !.a// 2 G � �jaj for all g 2 G and all a 2 OY W aC � „;

� .gs�1
a ; pa/ � .g; !.a// 2 G � �jaj for all g 2 G and all a 2 OY W aC 6� „.

�e action of G on EM G is induced by

h � .g; x/ D .hg; x/

for any x 2
� F

v2VY
EGv

�

t
� F

e2jOjY
�e

�

and any g; h 2 G. �is is a speci�cation
of the construction from Section 2 in [12]. �eorem 2.4 in the same paper asserts
that EM G is indeed a cocompact model of a classifying space for proper actions
of G (which also can be easily seen directly in this rather special case).

In addition to the above, we have a continuous G-equivariant map

p W EM G �! X.G; „/

to the Bass–Serre tree, induced by

p..g; x// D .gGv; v/; for x 2 EGv ,

and by

p..g; y// D .gGjaj; y/ 2 ¹gGjajº � �jaj; for y 2 �jaj,

where in the last expression we refer to the description of X D X.G; „/ as in
Remark 4.1.4.

Note that for each vertex t 2 VX the preimage p�1.t / is a subspace of EM G

which is an embedded copy of EG�.t/. �is subspace will be denoted EGt , which
nicely interplays with the following. If we denote by Gt the subgroup of G sta-
bilizing the vertex t , then EGt is invariant under Gt , and it is a classifying space
for proper actions for Gt .

Note also that for an edge " D ŒgGjaj; �jaj� of X , denoting by "ı its geo-
metric interior, the closure in EM G of the preimage p�1."ı/, denoted p�1."ı/,
is an embedded copy of �jaj. We call each set of this form a segment in EM G.
�e endpoint of this segment, which projects through p to t D ŒgGjaj; !.�a/�,
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belongs to the subspace EGt , and we call it the attaching point of the segment
p�1."ı/ in the subspace EGt . Observe also that p establishes a bijective corre-
spondence between the nonoriented edges of X and the segments of form p�1."ı/

as above. We will call the segment p�1."ı/ in EM G the lift of the edge " of X .

We now pass to the description of a set @StabG, which is a part of @M G.
�is is the specialization to our case of the construction given at the end of
Section 2.1 in [12]. Put

@StabG WD
�

G �
�

G

v2VY

@Gv

��

= �;

where � is induced by the equivalences .gh; x/ � .g; hx/ for all g 2 G, v 2 VY ,
x 2 @Gv and h 2 Gv . �e action of G on @StabG is given by acting from the left
on the �rst coordinate. We also have the G-equivariant projection

pStab W @StabG �! VX

induced by

pStab..g; x// D .g; v/

for all v 2 VY and all x 2 @Gv . For any vertex t 2 VX , the preimage p�1
Stab.t / is

Gt -invariant and has a (unique up to Gt -action) identi�cation with the boundary
@G�.t/. We denote this preimage by @Gt . �e union EGt WD EGt t @Gt has a
(unique up to Gt -action) identi�cation with EG�.t/. Under the topology induced
from this identi�cation, the pair .EGt ; @Gt/ is an EZ-structure for Gt .

A third ingredient in the description of the EZ-structure .EM G; @M G/ is the
set @X of ends of the Bass–Serre tree X D X.G; „/. More precisely, this is the
set of equivalence classes of in�nite combinatorial rays in X for the relation of
coincidence except at possibly some �nite initial parts. �e action of G on X

induces the action on @X . We then put

@M G WD @StabG t @X and EM G WD EM G t @M G:

�e union of the maps p, pStab and the identity map on @X gives the map

Np W EM G �! X t @X

which is G-equivariant. Moreover, for each vertex t 2 VX , the preimage . Np/�1.t /

coincides with EG t .
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We now recall the topology in EM G, as described in Section 6 of [12].
In fact, we are interested only in the restricted topology in the boundary @M G,
so we recall only this part of the information. We do this by describing, for any
point z 2 @M G, a basis of open neighbourhoods of z in @M G.

Fix a vertex t0 in the Bass–Serre tree X . If z 2 @X , for any integer n � 1 let
Xn.z/ be the subtree of X spanned on all vertices t 2 VX for which the path in X

connecting t0 to t has the same �rst n edges as the in�nite path in X from t0 to z.
Denote by @Xn.z/ the set of ends in this subtree, viewing it canonically as a subset
of @X . Put Vn.z/ WD p�1

Stab.VXn.z// [ @Xn.z/. As a basis of open neighbourhoods
of z in @G take the family of sets Vn.z/ for all integer n � 1.

If z 2 @StabG, let t be the vertex of X such that z 2 @Gt . Let U be an open
neighbourhood of z in EGt (for the topology induced from the identi�cation with
EG�.t/). Put zVU to be the set of all elements u 2 @M G with p.u/ ¤ t and such that
the geodesic in X [ @X from t to p.u/ starts with an edge " which lifts through
p to a segment in EM G whose attaching point in EGt belongs to U . Put then
VU .z/ WD U [ zVU . As a basis of open neighbourhoods of z in @M G take the
family of sets VU .z/, where U runs through some basis of open neighbourhoods
of z in EGt .

4.4. Proof of �eorem 0.3(1). Part (1) of �eorem 0.3 is a direct consequence
of the following property of EZ-boundaries @M G described in the previous sub-
section.

4.4.1. Lemma. Under assumptions of �eorem 0.3(1),

@M G Š zt.@Gv1
; : : : ; @Gvk

/:

Proof. Let G be a graph of groups as in �eorem 0.3(1), and let @M G be the
EZ-boundary of the fundamental group G D �1.G; „/, as described in the
previous subsection. Consider �rst the special case when all vertex groups Gvi

are �nite. It follows from the de�nition of an EZ-structure that the boundaries
@Gvi

are then all empty. �us, by our convention, we have that the amalgam
zt.@Gv1

; : : : ; @Gvk
/ is then the Cantor space C . On the other hand, the bound-

ary @M G reduces in this case to the part @X . By Lemma 4.1.6(2), X is then an
in�nite uniformly locally �nite tree such that the set of vertices splitting it into at
least three in�nite components is a net in X (i.e. there is D > 0 such that every
vertex of X remains at combinatorial distance at most D from a vertex in this
set). A straightforward argument shows that @X , with the topology described in
the previous subsection, is then homeomorphic to the Cantor space C . �us the
theorem follows in the considered case.
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We now pass to the case when at least one vertex group is in�nite. Recall that,
by de�nition, an EZ-boundary of a group (if exists) is nonempty if and only if the
group is in�nite. Without loss of generality, suppose that for some m 2 ¹1; : : : ; kº

the vertex groups Gv1
; : : : ; Gvm

are in�nite, while the remaining ones are �nite.
Since the boundaries @Gvj

for j > m are empty, by our convention we have
zt.@Gv1

; : : : ; @Gvm
; : : : ; @Gvk

/ D zt.@Gv1
; : : : ; @Gvm

/. �us we need to show that
@M G is homeomorphic to zt.@Gv1

; : : : ; @Gvm
/.

By de�nition of EZ-boundary (De�nition 4.2.1), @M G is compact and metriz-
able. Using the notation introduced in the previous subsection, de�ne a family
Y D Y1 t � � � t Ym of subsets in @M G as follows. For each i 2 ¹1; 2; : : : ; mº put
Yi WD ¹@Gt W t 2 VX ; �.t/ D viº. In view of �eorem 0.2, it is su�cient to show
that Y is a .@Gv1

; : : : ; @Gvm
/-regularizing family for @M G. �us we need to check

conditions (a1)–(a5) of the introduction.

Recall that the topology in the subspace @Gt induced from that in @M G coin-
cides with the topology provided by the identi�cation of @Gt with @G�.t/ (compare
Proposition 6.19 in [12]). �us, each subset @Gt is an embedded copy of @G�.t/,
which veri�es condition (a1).

To check condition (a2), i.e. nullness of the family Y, we need to show that
for each open covering U of @M G there is a �nite subfamily A � Y such that for
every Z 2 Y n A there is U 2 U that contains Z. Obviously, without loss of
generality we may assume that U is �nite and consists of sets from bases of open
neighbourhoods of points. Suppose that

U D ¹VU1
.z1/; : : : ; VUp

.zp/; Vn1
.z01/; : : : ; Vnq

.z0q/º:

It is not hard to see that the above property holds for U with

A D ¹@Gp.z1/; : : : ; @Gp.zp/º:

We omit further details.
To check (a3), choose any Z 2 Y, i.e. a subset @Gt for some vertex t of X

such that �.t/ D vi and i � m. Choose also any point z 2 @Gt , any open
neighbourhood U of z in EGt , and consider the associated open neighbourhood
VU .z/ from the local basis at z in @M G, as described at the end of Subsection 4.3.
We need to show that VU .z/ contains a point of @M G n @Gt .

Recall that we denote by Gt the subgroup of G stabilizing t , and that this
subgroup is isomorphic to Gvi

, and hence it is in�nite. Moreover, the pair
.EGt ; @Gt/ is an EZ-structure for Gt . Since G is non-elementary, it follows from
Lemma 4.1.6(2) that some edge " of X adjacent to t splits X into subtrees con-
taining lifts of all vertices of Y . Let � D p�1."ı/ be the segment of EM G which
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is the lift of ", and let x be the attaching point of � in EGt . Since, by de�nition of
an EZ-structure, compact subsets of EGt fade at in�nity, we get that there is x0

in Gt -orbit of x such that x0 2 U . �is x0 is the attaching point in EGt of another
segment � 0 of EM G. By G-equivariance, the image

"0 WD p.� 0/

is a di�erent from " edge of X adjacent to t that splits X into subtrees containing
lifts of all vertices of Y . Let s be a vertex of X which is a lift of v1, and which after
splitting X at "0 belongs to the other component than t . By de�nition of VU .z/,
we see that @Gs � VU .z/. Since @Gs ¤ ; (because @Gs Š @Gv1

, and Gv1
is

in�nite), this completes the veri�cation of (a3).
�e argument in the previous paragraph shows in fact that for each

i 2 ¹1; : : : ; mº any point of @StabG belongs to the closure in @M G of the subset
[

Yi D p�1
Stab.��1.vi //:

To check condition (a4), i.e. that [Yi is dense in @M G, it remains to show that
any point of @X also belongs to the closure of [Yi . Let z 2 @X , and let Vn.z/ be
a neighborhood of z in @M G which belongs to a local basis at z, as described at
the end of Subsection 4.3. Let D be the combinatorial diameter of the graph Y ,
and let u be the vertex on the in�nite path in X from t0 to z, at distance n C D

from t0. Let s be a vertex of X which is a lift of vi lying at combinatorial distance
� D from u (by de�nition of D, such s always exists). Observe that s 2 VXn.z/,
and hence @Gs D p�1

Stab.s/ � Vn.z/. Since @Gs ¤ ; (because @Gs Š @Gvi
),

this completes the veri�cation of condition (a4).
To check condition (a5), we make the following two observations, the direct

proofs of which we omit. First, note that for any z 2 @X , any set Vn.z/ from the
local basis at z is both open and closed in @M G. Second, observe that any two
points of @M G not contained in the same set Z 2 Y (i.e. in the same set @Gt for
any t 2 p�1.¹v1; : : : ; vmº/) can be separated from each other by some set Vn.z/,
for appropriately chosen z and n. �is completes the veri�cation of condition (a5),
and thus completes the proof.

5. Gromov boundaries and CAT.0/ boundaries

In this section we prove parts (2) and (3) of �eorem 0.3. It is not hard to give
direct proofs of these results, by referring to the characterization of dense amal-
gams provided in �eorem 0.2. However, we present shorter arguments, based on
properties of EZ-boundaries @M G constructed in Subsection 4.3.
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Gromov boundary and the proof of �eorem 0.3(2). We use the following
result of A. Martin (see Corollary 9.19 in [12]).

5.1. Lemma. Let G be a graph of groups satisfying the assumptions of part (2)
of �eorem 0.3. Let .P Gvi

; @Gvi
/ be the EZ-structures for the vertex groups

Gvi
provided by the compacti�cations of appropriate Rips complexes P Gvi

by
means of Gromov boundaries @Gvi

of these groups. �en the EZ-boundary @M G

for G D �1.G/ obtained from the above EZ-structures as in Subsection 4.3 is
G-equivariantly homeomorphic to the Gromov boundary of G.

Note that, under assumptions of the above lemma, it follows from Lemma 4.4.1
that

@M G Š zt.@Gv1
; : : : ; @Gvk

/:

Consequently, �eorem 0.3(2) follows from Lemma 5.1.

CAT.0/ boundary and the proof of �eorem 0.3(3). Recall that if a group �

acts geometrically (i.e. by isometries, properly discontinuously and cocompactly)
on a CAT.0/ space W , and if xW denotes the compacti�cation of W by means of
its CAT.0/ boundary @W , then the pair . xW ; @W / is an EZ-structure for �.

We work under assumptions and notation of �eorem 0.3(3). Let .EM G; @M G/

be the EZ-structure for G D �1.G/ constructed as in Subsection 4.3 out of CAT.0/

EZ-structures .�i ; @�i/. We make the following observations concerning this
EZ-structure.

5.2. Lemma. (1) �e space EM G carries a natural geodesic metric for which it
is CAT.0/, and for which G acts on EM G geometrically.

(2) �e boundary @M G naturally coincides (as a topological space) with the
CAT.0/ boundary @EM G (for the CAT.0/ geodesic metric in EM G as in part (1)).

Proof. To prove (1), note that EM G is obtained from copies of the CAT.0/

spaces �i , and from copies of the segment, by gluing the endpoints of the seg-
ments to the appropriate attaching points in copies of �i . By putting at each seg-
ment the standard euclidean metric of length 1, we get on EM G the induced length
metric which is geodesic (see I.5.26 in [2]). Since we perform the gluings along
singletons, which are obviously convex as subspaces, the successive application
of Basic Gluing �eorem II.11.1 in [2] shows that EM G with the above metric is
CAT.0/. Obviously, with this metric G acts on EM G by isometries. �e action is
proper and cocompact by de�nition of EZ-structure.
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To prove part (2), choose a base point x0 2 EM G as a point in some copy of
some �i . �ere are two kinds of geodesic rays in EM G starting at x0:

(a) those which pass through in�nitely many segments;

(b) those which, after passing through �nitely many segments, eventually coin-
cide with a geodesic ray in some copy of some �i .

We de�ne a map
h W @EM G �! @M G

as follows. If � 2 @EM G is represented by a geodesic ray of kind (a) above,
note that the sequence of segments through which this ray successively passes
projects (through the map p described in Subsection 4.3) to a sequence of edges
in the Bass–Serre tree X which forms an in�nite combinatorial ray �; denoting by
Œ�� 2 @X the end of X represented by �, we put h.�/ WD Œ��. If � is represented
by a geodesic ray of kind (b), its �nal part (which is a geodesic ray in some copy
EGt of some �i ) induces a point z in the CAT.0/ boundary of this copy (i.e. a
point in @Gt � @StabG); we then put

h.�/ WD z:

�e so described map

h W @EM G �! @M G D @StabG [ @X

is easily seen to be a bijection. As both spaces @EM G and @M G are compact,
to �nish the proof of (2) we need to show that h is continuous.

Recall (e.g. from II.8.6 in [2]) that a point � of the boundary of a CAT.0/ space
W , represented by a geodesic ray 
� started at a point x0 2 W , has a basis of open
neighbourhoods of form

U.
� ; r; "/ D ¹� 2 @W W dW .
�.r/; 
�.r// < "º;

where r and " run through arbitrary positive real numbers, 
� is the geodesic
ray in W started at x0 and representing �, and 
�.r/ is the point on 
� at dis-
tance r from x0. Below we will make use of the sets of the above form U.
� ; r; "/

for the space W D EM G. Without loss of generality, we assume that the base
point x0 2 EM G is chosen in the subspace EGt0 (which is a copy of some �i ),
where t0 is the base vertex in the Bass–Serre tree X , as �xed at the end of Sub-
section 4.3 (in the description of local bases of neighbourhoods for the topology
in @M G). Let p D h.�/ be any point of @M G, and V its any open neighbourhood.
We need to indicate an open neighbourhood U of � in @EM G such that h.U/ � V .
Clearly, we may restrict ourselves to the case when V belongs to the basis of local
neighbourhoods at p, as described at the end of Subsection 4.3.
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We consider two cases. First, suppose that p D Œ�� 2 @X � @M G, where �

is the combinatorial ray in X induced by a geodesic ray 
 in EM G of kind (a)
above; then 
 starts at x0 and represents �. Let V D Vn.�/ for some n � 1. Let xn

be the most distant from x0 point on the n-th segment in EM G traversed by the
ray 
 , and let r D dEM G.x0; xn/. It is then easy to see that U D U.
; r; 1/ is as
required. We omit further details. In the second case, suppose that p D z 2 @Gt

for some vertex t of the Bass–Serre tree X . �en � is represented by the geodesic
ray 
 in EM G started at x0, which eventually coincides with the geodesic ray 
t

in EGt representing z and started at the attaching point xt of the segment through
which any geodesic ray started at x0 enters EGt . Let rt D dEM G.x0; xt /. Let
also V D VU .z/ for some open neighbourhood U of z in EGt . By the descrip-
tion of the topology in the CAT.0/ compacti�cation EGt (see again II.8.6 in [2]),
there are positive reals r and " with the following property: for any geodesic ray
ˇ in EGt started at xt , if dEGt

.ˇ.r/; 
t.r// < " then for any r 0 2 .r; 1� the
point ˇ.r 0/ belongs to U (here, by ˇ.1/ we mean the point in the boundary rep-
resented by ˇ). It is not hard to see that then the ball of radius " in EGt centered
at 
t .r C "/ D 
.rt C r C "/ is also contained in U . From this, it follows fairly
directly that the set U D U.
; rt Cr C"; "/ is as required. �is completes the proof
of the lemma.

Now, since by Lemma 4.4.1 under our assumptions we have

@M G Š zt.@�1; : : : ; @�k/;

�eorem 0.3(3) follows from Lemma 5.2 by putting � D EM G.

6. Systolic boundaries

In this section we prove part (4) of �eorem 0.3. In Subsection 6.1 we brie�y recall
the de�nition and basic properties of systolic complexes and groups.
In Subsection 6.2 we construct the systolic complex † appearing in the assertion
of �eorem 0.3(3), as appropriate tree of systolic complexes. In Subsection 6.3 we
recall the concept of systolic boundary. Finally, in Subsection 6.4 we prove �eo-
rem 0.3(4) by studying the systolic boundary of the earlier described complex †

in the light of the characterization of dense amalgams provided in �eorem 0.2.

6.1. Systolic complexes and groups. Systolic complexes have been introduced
in the paper by T. Januszkiewicz and the author [11]. �ese are the simply con-
nected simplicial complexes of arbitrary dimension that satisfy some local (com-
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binatorial) condition that resembles nonpositive curvature. A group is called sys-
tolic if it acts geometrically (i.e. by simplicial automorphisms, properly discon-
tinuously and cocompactly) on a systolic complex. It is shown in [11] that systolic
groups are biautomatic, and hence also semihyperbolic, and that they appear in
abundance in arbitrary (virtual) cohomological dimension.

We recall brie�y the de�nition of a systolic complex. A simplicial complex is
�ag if its any set of vertices pairwise connected with edges spans a simplex. A full
cycle in a simplicial complex is a full subcomplex isomorphic to a triangulation of
the circle S1. A simplicial complex is 6-large if it is �ag and contains no full cycle
with less than 6 edges. A simplicial complex is systolic if it is simply connected
and its link at any vertex is 6-large. �is simple de�nition describes spaces with
surprisingly rich geometric (but expressed in purely combinatorial terms) struc-
ture. One of the basic observations is that systolic complexes are contractible,
which is an analogue of Cartan–Hadamard theorem. We recall few further facts
that we need in the present paper. �e �rst result below is due to Victor Chepoi
and Damian Osajda.

6.1.1. �eorem (�eorem C in [4]). Let H be a �nite group acting by automor-
phisms on a locally �nite systolic complex ‡ . �en ‡ contains a simplex which is
H -invariant.

�e next result concerns existence of natural EZ-structures for systolic groups.

6.1.2. �eorem (�eorem A in [14] and �eorem E in [4]). Let ‡ be a systolic
complex acted upon geometrically by a systolic group G. �en there is a compact-
i�cation x‡ D ‡ [ @‡ such that the pair . x‡; @‡/ is an EZ-structure for G.

�e paper [14] by Damian Osajda and Piotr Przytycki contains construction of
a compacti�cation x‡ as above, and the corresponding space @‡ D x‡ n‡ resulting
from this construction is the systolic boundary of ‡ , as appearing in the statement
of �eorem 0.3(4). It is shown in [14] that if a systolic group G is word hyperbolic
then its any systolic boundary (depending on the choice of a systolic complex on
which G acts geometrically) coincides with the Gromov boundary of G. �us,
this notion naturally extends the concept of ideal boundary to the class of systolic
groups which are not word hyperbolic. In Subsection 6.3 we indicate the features
of systolic boundaries necessary for the proof of �eorem 0.3(4), and the proof
itself is provided in Subsection 6.4.

Recall from [16] the following natural notion and a related observation.
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6.1.3. De�nition. A tree of systolic complexes is a simplicial complex ‡ equipped
with a simplicial map p W ‡ ! X onto a simplicial tree X satisfying the following.
For every vertex t of X the preimage p�1.t / is a systolic complex, and for every
open edge eı of X the closure in ‡ of the preimage p�1.eı/ is a simplex.

6.1.4. Lemma ([16], Section 7). If p W ‡ ! X is a tree of systolic complexes then
‡ is itself a systolic complex.

6.2. Graphs of systolic groups and the construction of † D †.G; „/. In this
subsection, under assumptions of �eorem 0.3(4), we construct a systolic complex
† as asserted in the theorem. Veri�cation that the systolic boundary @† is home-
omorphic to the appropriate dense amalgam will be provided in Subsection 6.4.

Let G be as in the assumptions of �eorem 0.3(4), and let „ be a maximal tree
in the �rst barycentric subdivision Y 0 of the underlying graph Y of G. We use the
notation as in Subsection 4.1 concerning G and the associated objects.

For each a 2 OY , �x an embedding

ja W �a �! †!.a/

of an abstract simplex �a onto some simplex of †!.a/ preserved by the restricted
action on †!.a/ of the subgroup ia.Gjaj/ < G!.a/. Since the subgroup ia.Gjaj/ is
�nite, existence of such an embedding is ensured by �eorem 6.1.1. We denote by
j�1

a the inverse isomorphism from the simplex ja.�a/ to �a. For each a 2 OY ,
put

�jaj WD �a � � Na

(i.e. the simplicial join of the simplices �a; � Na). Consider the action of the group
Gjaj on the simplex �jaj by simplicial automorphisms de�ned on vertices u by

g � u WD j�1
a .ia.g/ � ja.u// for u 2 �a,

and

g � u WD j�1
Na .i Na.g/ � j Na.u// for u 2 � Na.

Put

† D †.G; „/ WD
h

G �
�

.
G

v2VY

†v/ t
�

G

e2jOjY

�e

��i

= �

where the equivalence relation � is induced by the following equivalences:
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� .gh; x/ � .g; hx/ for all g 2 G, v 2 VY , x 2 †v and h 2 Gv;

� .gh; y/ � .g; hy/ for all g 2 G, e 2 jOjY , y 2 �e and h 2 Ge;

� .g; ja.y// � .g; y/ for all g 2 G, all a 2 OY such that aC � „, and all
y 2 �a � �jaj;

� .gs�1
a ; ja.y// � .g; y/ for all g 2 G, all a 2 OY such that aC 6� „, and all

y 2 �a � �jaj.

We denote by Œg; x� the equivalence class under the relation � of an element
.g; x/.

Observe that the above described space † carries a natural induced structure
of a simplicial complex. More precisely, the injective images in † (through the
quotient map provided by �) of the simplices ¹gº � � in the copies ¹gº � †v or
¹gº � �e yield the structure of a simplicial complex for †. We denote the image
simplices as above by Œg; ��.

† comes equipped with a simplicial projection map p W † ! X D X.G; „/

onto the Bass–Serre tree of G. �is map is determined by its restriction to vertices,
which is described as follows: p.Œg; w�/ D .gGv; v/ for any v 2 VY , any vertex
w 2 †v , and any g 2 G. For any vertex t D .gGv; v/ of X , the preimage p�1.t /

is a subcomplex in † isomorphic to †v , and we denote it †t . Similarly, for any
geometric edge " D ŒgGjaj; �jaj� of X , closure in † of the preimage p�1."ı/ of its
interior "ı is a simplex of †, naturally isomorphic with the simplex �jaj. We denote
this simplex by �". As a consequence, p W † ! X is a tree of systolic complexes,
as in De�nition 6.1.3, and hence, by Lemma 6.1.4, † is a systolic complex.

Consider the simplicial action of the fundamental group G D �1.G; „/ on †

which is described on vertices by h � Œg; w� D Œhg; w� for any v 2 VY , any vertex
w 2 †v, and any g; h 2 G. �is action is easily seen to be cocompact, as it is
not hard to indicate a �nite set of representatives of orbits for the induced action
of G on the set of all simplices of †. Moreover, the stabilizer of a vertex Œg; w�

of †, where w is a vertex of †v for some v 2 VY , coincides with the subgroup
g�StabGv

.w/�g�1 < G (under the natural interpretation of Gv as a subgroup of G).
�us the vertex stabilizers of the action of G on † are all �nite, and consequently
this action is geometric.

6.3. Systolic boundary of a systolic simplicial complex. We recall, mostly
from [14], the necessary informations concerning the concept of systolic bound-
ary. For more informations, the reader is referred to [14] and to Subsection 9.3
in [15]. Given a systolic simplicial complex ‡ , its systolic boundary @‡ is de�ned
using the objects called good geodesic rays (introduced in De�nition 3.2 in [14]).
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For our purposes, we only need some properties of good geodesic rays, which we
recall below (see Lemmata 6.3.1 and 6.3.3), and here we only mention that they
are some special geodesic rays in the 1-skeleton of a systolic complex. As a set,
systolic boundary @‡ is then the set of all good geodesic rays in ‡ quotiented
by the equivalence relation of being at �nite Hausdor� distance from one another
in ‡ ([14], De�nition 3.6).

�e following useful property follows immediately from Corollary 3.10 in [14].

6.3.1. Lemma. For any vertex O in a systolic simplicial complex ‡ , and any point
� 2 @‡ , there is a good geodesic ray r in ‡ started at O and representing �.

�e next result follows fairly directly from the de�nition of a good geodesic
ray (as given in [14]) and from the structure of a tree of systolic complexes. We do
not present the details of a strightforward proof of this result, but only an outline.

6.3.2. Lemma. Let p W ‡ ! X be a tree of systolic complexes, and let t be any
vertex in the tree X . �en any good geodesic ray in the systolic complex p�1.t / is
also a good geodesic ray in ‡ .

Sketch of proof. We outline the straightforward argument which justi�es the
lemma, referring the reader to [14] for explanations of the notions appearing in
this argument (which are used in that paper to de�ne good geodesic rays).

Obviously, the subcomplex

‡t WD p�1.t /

is geodesically convex in ‡ (for the natural geodesic metric in the 1-skeleton).
Consequently, any directed geodesic in ‡t is also a directed geodesic in ‡ . Fur-
thermore, a surface spanned on a loop in ‡

.1/
t is minimal in ‡t if and only if it is

minimal in ‡ (a surface in ‡ spanned on such a loop and not contained in ‡t can
be easily shown to be not minimal). It follows that any Euclidean geodesic in ‡t

is also a Euclidean geodesic in ‡ . In view of the de�nition of a good geodesic ray
(De�nition 3.2 in [14]), this completes the proof.

Part (1) of the next lemma is a special case of Corollary 3.4 in [14], and part (2)
coincides with Lemma 3.8 in the same paper. Given a good geodesic ray r , we
denote by r.i/ W i � 0 its consecutive vertices. We also denote by d‡.1/ the natural
polygonal metric in the 1-skeleton of ‡ .
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6.3.3. Lemma. �ere is some universal constant D > 0 satisfying the following
properties. For any systolic complex ‡ and any two good geodesic rays r1; r2

in ‡ .1/ based at the same vertex O ,

(1) for any integer i; j such that 0 < i < j ,

d‡.1/ .r1.i/; r2.i// �
i

j
� d‡.1/ .r1.j /; r2.j // C DI

(2) r1; r2 represent the same point in @‡ (i.e. they lie at �nite Hausdor�
distance from one another) if and only if d‡.1/.r1.i/; r2.i// � D for all pos-
itive integers i .

We now pass to describing the topology of @‡ . To do this, we �x a vertex O

in ‡ , and we denote by RO;‡ the set of all good geodesic rays in ‡ started at O .
Note that, in view of Lemma 6.3.1, this set contains good geodesic rays represent-
ing all points of @‡ .

Following Section 4 in [14], the topology of @‡ is introduced by means of
local neighbourhood systems (which consist of sets that are not necessarily open
in the resulting topology). More precisely, for each � 2 @‡ we have a family N�

of sets containing �, called standard neighborhoods of �, and the whole system
N� W � 2 @‡ satis�es some appropriate axioms. Open sets are described as those
U � @‡ for which 8� 2 U 9Q 2 N� such that Q � U . Moreover, each Q 2 N�

contains some open neighborhood of the point �. Finally, standard neighborhoods
Q 2 N� have the form

Q D Q.r; N; R/ D ¹� 2 @‡ W for some r 0 2 Œ�� \ RO;‡

it holds d‡.1/.r.N /; r 0.N // � Rº;

for any good geodesic ray r 2 Œ�� \ RO;‡ , and any positive integers N; R with
R � D C 1, where D is a constant as in Lemma 6.3.3, and where Œ�� denotes the
equivalence class of good geodesic rays representing the point � (see De�nition 4.1
in [14]).

It is shown in [14] that the above system of standard neighbourhoods satis�es
the appropriate axioms (Proposition 4.4), and that the resulting topology in @‡

does not depend on the choice of a vertex O (Lemma 5.5).

Next result records basic properties of systolic boundaries (see Corollaries 5.2
and 5.4, and Propositions 5.3 and 5.6 in [14]).
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6.3.4. Lemma. (1) If a systolic complex ‡ is uniformly locally �nite then its sys-
tolic boundary @‡ is compact, metrisable and has �nite topological dimension.

(2) A locally �nite systolic complex has non-empty systolic boundary if and
only if it is unbounded.

Note that Lemma 6.3.4 applies in particular to systolic complexes acted upon
geometrically by a group.

A useful addition to the above description of topology in @‡ is the following
characterization of convergence.

6.3.5. Lemma. Let � and �n W n � 1 be points of @‡ , and let r and rn W n � 1 be
good geodesic rays in ‡ , started at a �xed vertex O , representing these points,
respectively. �en the sequence .�n/ is convergent to � if and only if for some
R � D C 1 the sequence

.max¹i W d‡.1/.rn.i/; r.i// � Rº/n�1

diverges to C1.

Proof. It follows from Lemma 4.3 in [14] that for any good geodesic ray r 0 in ‡

started at O and representing the same point � as r , to each N 0; R0 one can associate
N such that Q.r; N; R/ � Q.r 0; N 0; R0/. �us, as a basis of neighbourhoods of
� it is su�cient to take the family Q.r; N; R/ W N � 1. �e lemma follows then
directly from the de�nition of standard neighbourhoods Q given above.

6.4. Proof of �eorem 0.3(4). Let † D †.G; „/ be the systolic complex
described in Subsection 6.2. We need to show that the systolic boundary @† is
homeomorphic to the dense amalgam zt.@†1; : : : ; @†k/. Note that, under assump-
tions of the theorem, we obviously have that a group Gvi

is �nite if and only if the
associated complex †i is bounded, and, by Lemma 6.3.3(2), this happens if and
only if @†i D ;.

Similarly as in the proof of Lemma 4.4.1, consider �rst the case when all
groups Gvi

are �nite. By our convention, we have that the dense amalgam
zt.@†1; : : : ; @†k/ is then homeomorphic to the Cantor space C . By Lem-
ma 4.1.6(2), the Bass–Serre tree X is then in�nite, locally �nite and such that
the vertices which split X into at least 3 unbounded components form a net in X .
Moreover, the subcomplexes †t D p�1.t / for the natural structure of a tree of
systolic complexes p W † ! X are uniformly bounded (because each such sub-
complex is isomorphic to one of the complexes †i ). It is not hard to observe that
in such situation p establishes the natural bijective correspondence between the
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classes of good geodesic rays in † and the ends of X , and that the systolic bound-
ary @† has then the natural topology of @X , and hence it is homeomorphic to the
Cantor space C . We omit further details and conclude that the theorem follows in
the considered case.

In the remaining case, after possibly permuting the indices, we have that for
some m 2 ¹1; : : : ; kº the vertex groups Gv1

; : : : ; Gvm
are in�nite, while the re-

maining ones are �nite. Since the boundaries @†j for j > m are then empty, by
our convention we have zt.@†1; : : : ; @†m; : : : ; @†k/ D zt.@†1; : : : ; @†m/. �us
we need to show that @† is homeomorphic to zt.@†1; : : : ; @†m/. In view of �e-
orem 0.2, and using the terminology introduced at the beginning of Section 2,
we need to show that @† is .@†1; : : : ; @†m/-regular.

We start with describing a family Y D Y1 t � � � t Ym of subsets in @†, and
then we show that it satis�es (the appropriate version of) conditions (a1)–(a5) of
the introduction. Recall that for each vertex t of X the subcomplex †t D p�1.t /

is systolic, and consider the map �t W @†t ! @† de�ned as follows. If r is a good
geodesic ray in †t representing a point � 2 @†t , it follows from Lemma 6.3.2
that r is also a good geodesic ray in †. �us, it represents a point � 2 @†, and
we put �t .�/ WD �. Since †t is geodesically convex in †, the map �t is well
de�ned and injective. By referring to the characterization of convergence pro-
vided in Lemma 6.3.5, this also easily implies that �t is continuous. Since by
Lemma 6.3.4(1) the boundary @†t is compact, it follows that �t is an embedding.

Recall that � W X ! Y is the canonical projection from the Bass–Serre tree to
the underlying graph of the graph of groups G. For each i 2 ¹1; 2; : : : ; mº put

Yi WD ¹�t .@†t / W t 2 VX ; �.t/ D viº:

We turn to verifying conditions (a1)–(a5).

It follows from the construction of † that for each t with �.t/ D vi , the sub-
complex †t is isomorphic to †i . Since each �t is an embedding, it follows that
the sets in each Yi are all homeomorphic to @†i . To complete veri�cation of (a1),
we need to show that for distinct vertices t; s 2 VX the images �t .@†t /; �s.@†s/ are
disjoint. Let �t ; �s be any points in the boundaries @†t and @†s, respectively. Let
rt ; rs be good geodesic rays in the complexes †t ; †s representing the points �t and
�s , respectively. It is clear from the structure of a tree of systolic complexes for †

provided by the projection p that the Hausdor� distance between rt and rs in † is
in�nite, and hence the points �t .�t /; �s.�s/ 2 @† do not coincide. �is �nishes the
veri�cation of (a1).
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To check that the family Y is null (i.e. to verify condition (a2)), due to compact-
ness of @†, it is su�cient to show the following property: let �i be a convergent
sequence of points in @† such that for each i there is ti 2 VX with �i 2 �ti .@†ti /,
and such that the vertices ti are pairwise distinct; then any other sequence of
points � 0i such that � 0i 2 �.†ti / is also convergent in @† (in fact, to the same limit
point as the sequence �i ). To verify the above property, suppose that �i ! �. Let
r , ri and r 0i be good geodesic rays in † started at a �xed vertex O and represent-
ing �, �i and � 0i , respectively. Consider �rst the case when � 2 �t .@†t / for some
t 2 VX . It follows that, except for some �nite initial part, r is contained in †t .
By the convergence criterion of Lemma 6.3.5 applied to the convergence �i ! �,
ri intersects †t for all i large enough. Moreover, since ti are pairwise distinct,
for all i large enough the rays ri exit the subcomplex †t after intersecting it. For
such i , let ri .ji/ be the last vertex on ri belonging to †t , i.e. the vertex through
which ri exits †t . By applying again Lemma 6.3.5 to the convergence �i ! �,
we conclude that ji ! 1. Further, since both �i and � 0i belong to the same sub-
set �ti .@†ti /, it follows that for each i large enough the ray r 0i also intersects †t ,
and then exits it through some vertex xi which is at distance at most 1 from ri .ji/

(because both ri and r 0i exit †t through the same simplex). By Lemma 6.3.3(1),
we get that d†.1/.r.j /; r 0.j // � D C 1 for all j � ji . Consequently, applying
again Lemma 6.3.5 and the fact that ji ! 1, we conclude that � 0i ! �. �us the
property above follows in this case.

In the remaining case we consider � which does not belong to any subset
�t .@†t /. Consequently, the ray r exits every subcomplex †t that it intersects.
Let .tn/n�1 be the vertices such that †tn are the consecutive subcomplexes inter-
sected by r . For each i , let n.i/ be the largest n such that the ray ri intersects †tn .
Since �i ! �, we deduce using Lemma 6.3.5 that n.i/ ! 1 as i ! 1. By the
fact that both �i and � 0i belong to �ti .@†ti /, we get that for each i the ray r 0i also
intersects †tn.i/

. Since n.i/ ! 1, it follows by applying once again Lemma 6.3.5
that � 0i ! �, which completes the veri�cation of (a2).

To check condition (a3), we need to show that any subset Z D �t .@†t / is
boundary in @†. Fix any point � 2 �t .@†t /, and let r be a good geodesic ray
started at O and representing �. As we have already noticed before, the ray r is
then contained in †t , except possibly some �nite initial part. We will construct a
sequence �n of points in @† n �t .@†t / which converges to �. In the argument, we
use the notation of Subsection 6.2.

Denoting t D .gGvi
; vi/ for some i � m, we get that the subcomplex †t is

preserved by the subgroup gGvi
g�1 < G D �1.G; „/. �e restricted action of this

subgroup on †t is geometric (in particular, cocompact), because it is equivariantly
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isomorphic to the action of Gvi
on †i . Let a 2 OY be an oriented edge in the un-

derlying graph Y of G, started at vi , and satisfying the assertion of Lemma 4.1.6(1).
Denote by Ea;t the set of all nonoriented edges of X which are the lifts of jaj under
the projection � W X ! Y , and which are adjacent to t . Denote also by Sa;t the set
of all simplices in †t of form �" \†t W " 2 Ea;t . �e subgroup gGvi

g�1 obviously
acts transitively on Sa;t , and hence, by cocompactness of its action on †t , there is
a constant D0 such that for each n su�ciently large (namely for those n for which
r.n/ 2 †t ) the vertex r.n/ lies at the distance at most D0 from some simplex in
Sa;t , say �"n

\ †t . For each edge "n as above, by referring to the assertion of
Lemma 4.1.6(1), choose a vertex tn in X such that

� �.tn/ D vj for some j � m (so that †tn is unbounded, as being isomorphic
to †j );

� the path from t to tn in X passes through the edge "n.

Choose any point �n 2 �tn.@†tn/ (which exists due to Lemma 6.3.4(2)), and let
rn be a good geodesic ray in † started at O and representing �n. Note that, due to
the structure of † as the tree of systolic complexes, for n su�ciently large the ray
rn intersects †t and exits it through the simplex �"n

. It follows that for those n we
have �n … �t .@†t /, and that d†.1/.r.n/; rn.n// � D0 C 1. Applying Lemma 6.3.5,
we deduce from the latter that �n ! �, hence condition (a3).

To check (a4), suppose that � 2 @† n
S

t2VX
�t .@†t /. We need to �nd a se-

quence of points �n 2
S

t2VX
�t .@†t / converging to �. Let r be a good geodesic ray

in † started at O and representing �. By the above assumption on �, the ray r exits
every subcomplex †t that it intersects. Let .tn/n�0 be the sequence of vertices in
X such that †tn are the consecutive subcomplexes of this form intersected by r .
Choose any integers jn such that r.jn/ 2 †tn , and note that jn ! 1. Denote also
by �"n

the simplex through which the ray r exists †tn . Since r projects through p

on an in�nite ray � in X (formed of the consecutive edges "n), for each n there is a
vertex sn in X , with �.sn/ D vi for some i � m, and such that the path from t0 to
sn shares �rst nC1 edges with �. Let �n be any point in �sn

.@†sn
/ (which exists by

Lemma 6.3.4(2)), and let rn be a good geodesic ray in † started at O and repre-
senting �n. By the choice of sn and �n, the ray rn intersects †tn and exits it through
the simplex �"n

. It follows that for some j � jn we have d†.1/.r.j /; rn.j // � 1.
Since jn ! 1, we deduce from Lemma 6.3.5 that �n ! �, which completes the
veri�cation of (a4).

It remains to check condition (a5). Let �1; �2 2 @† be any two points which
do not belong to the same subset of Y. Let r1; r2 be any good geodesic rays in †

started at O and representing �1 and �2, respectively. By the above assumption
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on �1; �2, up to transposing the indices, there is an edge " in X such that the path
p ı r1 in X , being the projection of r1 to X , passes through ", while the path
p ı r2 does not. We de�ne a splitting of @† into two subsets. Let H1 consist of
all points of @† which can be represented by a good geodesic ray r started at O

and such that p ı r passes through ". Put also H2 D @† n H1, and note that it
consists of all points of @† which can be represented by a good geodesic ray r

started at O and such that p ı r does not pass through ". It is an easy observation
involving Lemma 6.3.5 that both H1, H2 are closed in @†. Obviously, they are also
Y-saturated, and separate �1 from �2. �is justi�es condition (a5), and completes
the proof of �eorem 0.3(4).

7. Boundaries of Coxeter groups

In this section we prove �eorem 0.4 of the introduction. �e rough idea of the
proof is this. First, we observe (by referring to the characterization of dense amal-
gams) that any non-elementary splitting of W as free product of special subgroups,
amalgamated along a �nite special subgroup, leads to the expression of the bound-
ary of W as the dense amalgam of boundaries of the factors (see Proposition 7.3.1
for precise statement). Next, we note that splittings as above correspond to split-
tings of the nerve of W along separating simplices (including the empty one).
Further, inspired by the comments in Section 8.8 in [6], we argue that on the level
of groups the terminal factors of iterations of such splittings are either the maxi-
mal �nite or the maximal 1-ended special subgroups (this is a more precise version
of the assertion of Proposition 8.8.2 in [6]). Finally, applying general properties
of the operation of dense amalgam (given in Proposition 0.1), we show that this
yields the assertion. Details are provided in Subsections 7.1–7.4 below.

7.1. Decompositions of simplicial complexes. We introduce a useful terminol-
ogy, and provide basic facts, concerning decompositions of simplicial complexes
along simplices. �e idea of such decompositions is well known in graph theory,
see e.g. [7]. Since we need only very basic facts, and in a speci�c setting, we
brie�y provide an independent account.

7.1.1. De�nition. Let L be a simplicial complex. A splitting of L along a simplex
is an expression of L as the union of proper nonempty subcomplexes L1; L2 whose
intersection L1 \ L2 is either empty or a single simplex. L1 and L2 are then
called the parts of this splitting. A simplicial complex L is irreducible if it has no
splitting.
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Observe that the parts of any splitting of L are full subcomplexes of L. Note
also that L is irreducible if it is connected and has no separating simplex.

We now give a recursive de�nition of a decomposition of a simplicial complex,
and of its factors.

7.1.2. De�nition. A decomposition of a simplicial complex L is any sequence of
splittings from the following recursively described family:

� the empty sequence of splittings forms the trivial decomposition of L, and
the set of factors of this decomposition is ¹Lº;

� a single splitting of L along a simplex is a decomposition, and its set of
factors is the set of two parts of the splitting;

� if a sequence of splittings is a decomposition of L, and if ¹L1; : : : ; Lmº is the
set of its factors, then adding to this sequence a splitting of one of those fac-
tors, say Lm, we also get a decomposition of L; moreover, if L0m; L00m are the
parts of the above splitting of Lm, the set of factors of the new decomposition
is ¹L1; : : : ; Lm�1; L0m; L00mº.

Note that it may happen that L0m or L00m as above coincides with Lj for some
j � m � 1, but then of course this subcomplex appears just once in the set of
factors of the corresponding decomposition.

A decomposition of L is terminal if its every factor is irreducible. Obviously,
every �nite simplicial complex admits a terminal decomposition. Next lemma
shows that any two terminal decompositions of a �nite simplicial complex share
the sets of factors (though they may be quite di�erent as sequences of splittings).
�us, we call the factors of any terminal decomposition as above the terminal
factors. �e same lemma characterizes the terminal factors of a �nite simplicial
complex. In its statement we use the term maximally full irreducible subcomplex,
which denotes any subcomplex which is maximal for the inclusion in the family
of all full and irreducible subcomplexes of a given complex.

7.1.3. Lemma. �e set of factors of any terminal decomposition of a �nite sim-
plicial complex L coincides with the set of all maximally full irreducible subcom-
plexes of L.

Proof. We start with showing two auxiliary claims.

Claim 1. Any factor of a terminal decomposition of L is a maximally full irre-
ducible subcomplex of L.
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To prove Claim 1, consider any factor K of a �xed terminal decomposition
of L. K is clearly full and irreducible. Suppose, by contradiction, that K is not
maximally full irreducible, and let M be a full and irreducible subcomplex of L

containing K as proper subcomplex. Denote by F the set of factors of our �xed
terminal decomposition of L. �is decomposition induces a decomposition of
M for which the set of factors is ¹A \ M W A 2 F; A \ M ¤ ;º. In particular,
K \ M D K is a factor of this induced decomposition of M , which contradicts
irreducibility of M , thus completing the proof of Claim 1.

Claim 2. Given any decomposition of L, every irreducible subcomplex of L is
contained in at least one factor of this decomposition.

To prove Claim 2, note that if M is an irreducible subcomplex of L, and if
L1; L2 are the parts of some splitting of L along a simplex, then M � L1 or
M � L2. Claim 2 then follows by iterating this observation.

Now, in view of Claim 1, to prove Lemma 7.1.3, it is su�cient to show that
any maximally full irreducible subcomplex M of L is a factor in every terminal
decomposition of L. Fixing such a decomposition, we get from Claim 2 that M is
contained in some factor K of this decomposition. Since K is full and irreducible,
maximality of M implies that M D K, which completes the proof.

7.1.4. Example. �e class of �nite simplicial complexes in which all terminal fac-
tors are simplices is well known. It coincides with the class of �nite �ag simplicial
complexes which contain no full subcomplex isomorphic to a triangulation of the
circle S1, see [8]. According to the terminology from [11], which we follow, such
complexes are called 1-large. In Section 8.8 in [6], such complexes are called
(a bit informally) trees of simplices. 1-skeletons of such complexes are known in
graph theory as chordal graphs.

7.2. Nerves of Coxeter systems. Recall that the nerve L D L.W; S/ of a
Coxeter system .W; S/ is the simplicial complex whose vertex set coincides with S ,
and whose simplices correspond to those subsets T � S which span �nite special
subgroups WT < W . In this subsection we recall from [6] few results and observa-
tions concerning properties of groups W that can be read from properties of their
nerves. �e �rst fact below is straightforward (compare [6], Proposition 8.8.1).
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7.2.1. Lemma. Let .W; S/ be a Coxeter system with the nerve L, and let S1; S2

be the vertex sets of the parts L1; L2 of some splitting of L along a simplex. For
i D 1; 2 denote by Wi the special subgroup of W generated by Si , and denote by
W0 the special subgroup generated by the intersection S1 \ S2 (in particular, the
trivial subgroup if S1 \ S2 D ;). �en

W D W1 �W0
W2;

i.e. W is the free product of the subgroups W1; W2 amalgamated along the �nite
subgroup W0.

7.2.2. �eorem ([6], �eorem 8.7.2). A Coxeter group W is 1-ended if and only
if its nerve is an irreducible simplicial complex distinct from a simplex.

Note that the groups appearing in �eorem 7.2.2 are precisely those Coxeter
groups which have nonempty connected boundary. (�is follows e.g. from Propo-
sition 8.6.2(i) and �eorem I.8.3(ii) in [6].)

7.2.3. �eorem ([6], �eorem 8.7.3). A Coxeter group W is 2-ended if and only
if it can be expressed as the product W D W0 � W1, where W0 is a special sub-
group isomorphic to the in�nite dihedral group, and W1 is a �nite special subgroup
(including the case of the trivial subgroup).

Note that the groups appearing in �eorem 7.2.3 are precisely those
Coxeter groups whose boundaries are the spaces consisting of two points. More-
over, nerves of such groups are suspended simplices (including the case of the
suspended empty simplex). However, not every Coxeter group whose nerve is a
suspended simplex is 2-ended.

7.2.4. Proposition ([6], Proposition 8.8.5). A Coxeter group is virtually free non-
abelian if and only if it is not 2-ended and its nerve is an 1-large simplicial
complex distinct from a simplex.

Note that the groups appearing in Proposition 7.2.4 all have Cantor space C as
the boundary. In fact, it is not di�cult to show (and it follows in particular from
�eorem 0.4) that the condition in the proposition fully characterizes the Coxeter
groups which have Cantor space C as their boundaries.

7.3. Dense amalgams and decompositions of nerves. We start with the basic
observation, Proposition 7.3.1 below, bringing dense amalgams into considera-
tions concerning boundaries of Coxeter groups. Since the proof of this proposition
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goes along the same lines as the proof of �eorem 0.3(4) given in Subsection 6.4,
we omit it. We only note that, in view of Lemma 7.2.1, a splitting of the nerve of
W along a simplex induces a splitting of W over a �nite group; moreover, the as-
sumption below concerning indices means that the corresponding graph of groups
of the splitting is non-elementary. �is makes Proposition 7.3.1 completely analo-
gous to the results in parts (1)–(4) of �eorem 0.3 (or rather to their special cases,
with G corresponding to a single amalgamated free product).

7.3.1. Proposition. Under assumptions and notation of Lemma 7.2.1, suppose ad-
ditionally that for at least one of the indices i 2 ¹1; 2º we have ŒWi W W0� ¤ 2

(i.e. the subgroup W0 has index greater than 2 in at least one of the groups Wi ).
�en

@.W; S/ Š zt.@.W1; S1/; @.W2; S2//:

Remark. Note that if in the setting of Proposition 7.3.1 we have ŒWi W W0� D 2

for both i D 1; 2 then W1 Š W0 � Z2 Š W2 and W Š W0 � D1. �en we obvi-
ously have @.W1; S1/ Š @.W2; S2/ Š @.W0; S1 \ S2/, while the boundary @W is
homeomorphic to the suspension of those spaces. �is shows that the assumption
in the proposition concerning indices ŒWi W W0� is essential.

Next result is an extension of Proposition 7.3.1 to more complicated decompo-
sitions of the nerves of Coxeter systems.

7.3.2. Proposition. Suppose that L1; : : : ; Lk are the factors of a decomposition
of the nerve L of a Coxeter system .W; S/, and let .Wi ; Si/ be the Coxeter systems
of special subgroups of W corresponding to the vertex sets Si of the subcom-
plexes Li . Suppose also that W is not 2-ended, and that k � 2. �en

@.W; S/ Š zt.@.W1; S1/; : : : ; @.Wk; Sk//:

Proof. We argue by induction with respect to the length n of a sequence of split-
tings along simplices that constitutes a decomposition of L under consideration.
Since we assume that the number k of factors is at least 2, we have n � 1.
�e case n D 1 follows by Proposition 7.3.1. �us, it remains to verify the general
inductive step.

Suppose that the statement holds true for some decomposition of length n,
and that L1; : : : ; Lk are the factors of this decomposition. Consider a decom-
position of length n C 1 obtained by adding a splitting of the factor Lk , with
parts L0

k
; L00

k
. Obviously, the set of factors of the new decomposition is then
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¹L1; : : : ; Lk�1; L0
k
; L00

k
º. Denote by S 0

k
; S 00

k
the vertex sets of L0

k
and L00

k
, respec-

tively, and let W 0
k
; W 00

k
be the special subgroups generated by these sets. We need

to consider two cases.

Case 1 . At least one of the indices ŒW 0
k

W .W 0
k

\ W 00
k

/� and ŒW 00
k

W .W 0
k

\ W 00
k

/� is
distinct from 2.

In this case the splitting of Lk into L0
k

and L00
k

satis�es the assumptions of
Proposition 7.3.1, and hence

@.Wk; Sk/ Š zt.@.W 0k ; S 0k/; @.W 00k ; S 00k //:

Consequently, using the inductive assumption and Proposition 0.1(2), we get

@.W; S/ Š zt.@.W1; S1/; : : : ; @.Wk; Sk//

Š ztŒ@.W1; S1/; : : : ; @.Wk�1; Sk�1/; zt.@.W 0k; S 0k/; @.W 00k ; S 00k //�

Š zt.@.W1; S1/; : : : ; @.Wk�1; Sk�1/; @.W 0k; S 0k/; @.W 00k ; S 00k //:

Now, if L0
k

or L00
k

coincides with one of the subcomplexes L1; : : : ; Lk�1, we apply
Proposition 0.1(3) to get the assertion. Otherwise, the assertion follows directly.

Case 2. ŒW 0
k

W .W 0
k

\ W 00
k

/� D ŒW 00
k

W .W 0
k

\ W 00
k

/� D 2.

Note that, under this assumption, the group Wk is 2-ended, while both W 0
k

and
W 00

k
are �nite. Consequently, the boundary @.Wk; Sk/ is the space consisting of

2 elements, which we denote Q2. We also have @.W 0
k
; S 0

k
/ D @.W 00

k
; S 00

k
/ D ;.

Using this, the inductive assumption, Proposition 0.1(4), and the properties of
dense amalgam involving the empty set, we get

@.W; S/ Š zt.@.W1; S1/; : : : ; @.Wk; Sk//

Š zt.@.W1; S1/; : : : ; @.Wk�1; Sk�1/; Q2/

Š zt.@.W1; S1/; : : : ; @.Wk�1; Sk�1//

Š zt.@.W1; S1/; : : : ; @.Wk�1; Sk�1/; ;/:

�is implies the assertion, no matter if some of the boundaries

@.Wj ; Sj / W 1 � j � k � 1

is empty or not.
�is completes the proof.



470 J. Świątkowski

7.4. Proof of �eorem 0.4. First, observe that the nerve L of .W; S/ is not an
1-large simplicial complex. Indeed, it is not a simplex since W is not �nite. It is
not any other 1-large simplicial complex by �eorem 7.2.3 and Proposition 7.2.4.
In view of a comment provided in Example 7.1.4, it follows from Lemma 7.1.3 that
L contains at least one maximally full irreducible subcomplex distinct from a sim-
plex. Applying �eorem 7.2.2, this means that W contains at least one maximal
1-ended special subgroup. Hence, we have shown the assertion that k � 1.

Now, consider any terminal decomposition of the nerve L, and let L1; : : : ; Lm

be the factors of this decomposition. For i D 1; : : : ; m, denote by Si � S the
vertex set of Li , and by Wi the special sungroup generated by Si . By Proposi-
tion 7.3.2, we get that

@.W; S/ Š zt.@.W1; S1/; : : : ; @.Wm; Sm//:

Without loss of generality, suppose that L1; : : : ; Lk are precisely those factors
among L1; : : : ; Lm which are not simplices. �en W1; : : : ; Wk is the family of all
maximal 1-ended special subgroups of W . We also know that k � 1.

Since for kC1 � j � m the subcomplexes Lj are simplices, the corresponding
special subgroups Wj are �nite, and their boundaries @.Wj ; Sj / are empty. Since
adding the empty set to the list of densely amalgamated spaces does not a�ect the
result, it follows that

@.W; S/ Š zt.@.W1; S1/; : : : ; @.Wk; Sk//;

which �nishes the proof.
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