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Abstract. We introduce and study the operation, called dense amalgam, which to any
tuple Xi,...,Xx of non-empty compact metric spaces associates some disconnected
perfect compact metric space, denoted (i(X7, ..., Xx), in which there are many appropri-
ately distributed copies of the spaces X1, ..., Xx. We then show that, in various settings,
the ideal boundary of the free product of groups is homeomorphic to the dense amalgam
of boundaries of the factors. We give also related more general results for graphs of groups
with finite edge groups. We justify these results by referring to a convenient characteriza-
tion of dense amalgams, in terms of a list of properties, which we also provide in the paper.
As another application, we show that the boundary of a Coxeter group which has infinitely
many ends, and which is not virtually free, is the dense amalgam of the boundaries of its
maximal 1-ended special subgroups.
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0. Introduction

In Section 1 of the paper we describe an operation which to any finite tuple
). ST, ¢*
of nonempty metric compacta associates a metric compactum
Y = 0(X1,..., Xx)

which satisfies the following. ¥ can be equipped with a countable infinite family
Y of subsets, partitioned as

9="Y1U-- U,

such that

(al) the subsets in Y are pairwise disjoint and for each i € {1,..., k} the family
Y; consists of embedded copies of the space X;;

(a2) the family Y is null, i.e. for any metric on ¥ compatible with the topology
the diameters of sets in Y converge to 0;

(a3) each Z € Y is a boundary subset of ¥ (i.e. its complement is dense);
(a4) for each i, the union of the family Y; is dense in Y;

(a5) any two points of ¥ which do not belong to the same subset of Y can be
separated from each other by an open and closed subset H C Y which is
Y-saturated (i.e. such that any element of Y is either contained in or disjoint
with H).
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We call the operation L the dense amalgam, and its result ((X1, ..., Xi) the
dense amalgam of the spaces X1, ..., Xx. Obviously, the dense amalgam of any
family Xi,..., Xx of spaces is a disconnected perfect compact metric space.
Moreover, if the spaces Xi,..., X are connected, then the connected compo-
nents of their dense amalgam are the subsets from the family Y and the singletons
from the complement of the union UY. In Section 3 we show that the operation of
dense amalgam satisfies the following “algebraic” properties.

0.1. Proposition. (1) 0(X1,..., Xx) = 0(X, U---U Xg) (so in particular the
operation is commutative).

) O(X1,...,Xx) = U(X1,..., Xi—1, U(X;,..., Xy)) for any k > 1 and any
1 <i <k (so the operation is associative and idempotent).

Q) UX,Xy,....X) =0(X, X, X1,...,Xg) forany k > 0.

(4) For any totally disconnected nonempty compact metric space Q, and any
k=>1,

O(X1,..., Xk, Q) =U0(X1, ..., Xp).

(5) For any totally disconnected space Q,

0(Q)=c,

where C is the Cantor space.
In Section 2 we prove the following characterization result.

0.2. Theorem. Given any nonempty compact metric spaces Xi, ..., Xy, each
metric compactum Y which can be equipped with a family Y = Y U --- U Yy of
subsets satisfying conditions (al)—(a5) above is homeomorphic to the dense amal-
gam O(X1,..., Xk).

The main motivation for the study of dense amalgams in this paper comes from
their role in understanding ideal boundaries of spaces and groups. In Sections 4-6
we deal with various settings for ideal boundaries, showing among others that in
these settings the boundary of the free product of groups is homeomorphic to the
dense amalgam of the boundaries of the factors. We also give similar more gen-
eral results for fundamental groups of non-elementary graphs of groups with fi-
nite edge groups (see Theorem 0.3 below). The term non-elementary for a graph of
groups is explained in Definition 4.1.5, but it contains among others the case when
the vertex groups are all infinite and the underlying graph is not reduced to a sin-
gle vertex. In particular, the results apply to amalgamated free products and HNN
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extensions of infinite groups along finite subgroups. In consistency with the prop-
erties from Proposition 0.1, we use the convention that {i(#) is the Cantor space
and 0(2, X1, ..., Xg) := 0(X1, ..., Xx). The concepts of EZ-boundaries appear-
ing in the statement below are explained in Subsection 4.2 (see Definitions 4.2.1
and 4.2.2). Our main result concerning boundaries is as follows.

0.3. Theorem. Let G = 11(9), where G is a non-elementary graph of groups with
finite edge groups. Let vy, ..., vi be the vertices of the underlying graph of S.

(1) Suppose that all vertex groups G, of G admit EZ-boundaries (respectively,
EZ-boundaries in the strong sense of Carlsson—Pedersen), and let G, be
such boundaries. Then G admits an EZ-boundary (in the strong sense of

Carlsson—Pedersen, respectively) homeomorphic to the dense amalgam
UGy, ..., 3Gy,).

(2) Suppose that all vertex groups G, of G are hyperbolic and let G, be their
Gromov boundaries. Then the Gromov boundary dG is homeomorphic to the
dense amalgam G(&le veeey 0Gyy).

(3) Suppose that all vertex groups G, of G are CAT(0), and for each v; let A;
be a CAT(0) space on which G, acts geometrically. Then there is a CAT(0)
space A on which G acts geometrically, and such that the CAT(0) boundary
dA is homeomorphic to the dense amalgam of the CAT(0) boundaries 0A;,
ie. OA = T(0AL, ..., dA).

(4) Suppose that all vertex groups Gy, of G are systolic (in the sense of simpli-
cial nonpositive curvature as introduced by T. Januszkiewicz and the author
in [11]), and for each v; let 3; be a systolic simplicial complex on which
Gy, acts geometrically. Then there is a systolic complex X on which G acts
geometrically, and such that the systolic boundary 0% (as introduced by
D. Osajda and P. Przytycki in [14]) is homeomorphic to the dense amalgam
of the systolic boundaries 3%;, i.e. 0% = L(dX,...,dZ).

Note that parts (2), (3), and (4) of Theorem 0.3 do not follow automatically
from part (1), as a group G may have in general many pairwise non-homeomorphic
EZ-boundaries. The EZ-boundaries as in the assertion of part (1) have been
constructed recently by C. Tirel [19] (the case of the free product) and by
A. Martin [12] (the general case). We provide identifications of these boundaries
with the appropriate dense amalgams by referring to the characterization given in
Theorem 0.2. Part (2) of Theorem 0.3 strengthens an earlier result of A. Martin
and the author [13] (saying that, as a topological space, dG depends uniquely on
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the topology of the boundaries dG,, ); the strengthening concerns recognizing 4G
as the appropriate dense amalgam.

In Section 7 we present a more specific result concerning boundaries of
Coxeter groups. Recall that to any Coxeter system (W, S) there is associated a
CAT(0) polyhedral complex called the Coxeter-Davis complex (see Chapters 7
and 12 in [6], where this complex is denoted by X (W, §)). The CAT(0) boundary
of this complex, denoted d(W, §), is what is shortly called the boundary of the
Coxeter group W (though it actually depends also on §).

0.4. Theorem. Let (W, S) be a Coxeter system, and suppose that W has infinitely
many ends, and is not virtually free. Let (W1, S1), ..., (Wg, St) be the Coxeter
systems corresponding to all maximal l-ended special subgroups of W. Then
k>1, and

AW, S) = 0(d(Wy, S1).....0(Wi, Sk)).

The reader is advised to look also at the statement of Proposition 7.3.2 in the
text. This proposition is the main step in the proof of Theorem 0.4, but it also
nicely complements the picture of appearance of dense amalgams as boundaries
of Coxeter groups.

As it will be explained in Section 7, assumptions of Theorem 0.4 can be easily
verified in terms of the Coxeter matrix of the system (W, §). Similarly, maximal 1-
ended special subgroups of W are easy to list in terms of the same data. Note that
Theorem 0.4 concerns all Coxeter systems except those for which the correspond-
ing group W is either finite, or 2-ended, or 1-ended, or virtually free. Thus, up to
understanding the boundaries in 1-ended cases, the theorem presents a complete
insight into the topology of boundaries of Coxeter groups.

Acknowledgment. The author thanks Krzysztof Omiljanowski for helpful dis-
cussions.

1. The dense amalgam

In the major initial part of this section, given a nonempty compact metric space X,
we construct out of it the unique (up to homeomorphism) compact metric space
Y = U(X), called the dense amalgam of (copies of) X, and we show that it satis-
fies conditions (al)—(a5) of the introduction (for parameter k = 1). The construc-
tion of the space [i(X) is rather involved and requires a lot of auxiliary terminology
and preparatory observations.
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In the short final part of the section we extend the construction to describe the
dense amalgam (I(X1, ..., X;) of a finite collection of compact metric spaces.

The peripheral extension X of X. Denote by P the infinite countable discrete
topological space. Given a compact metric space X, its peripheral extension is a
compact metric space K which contains P as an open dense subspace such that
K \ P is homeomorphic to X. In other words, K is a metric compactification
of P with the remainder X. Points of P are called the peripheral points of the
extension K.

Example. Let G be an infinite word hyperbolic group, and let dG be its Gromov
boundary. Then G = G UJG, equipped with the Gromov boundary compactifica-
tion topology, is a peripheral extension of the boundary dG. Its peripheral points
are precisely the elements of G.

1.1. Lemma. (1) Any nonempty compact metric space X admits a peripheral ex-
tension.

(2) Any two peripheral extensions of a nonempty compact metric space X are
homeomorphic rel X (i.e. via a homeomorphism that is identical on X).

(3) Given a peripheral extension K of X, the group of homeomorphisms of K
identical on X acts transitively on the set P of peripheral points of K.

Proof. To see (1), choose a sequence a;,, of elements of X such that for each x € X
it contains a subsequence converging to x. Put

P ={b,:ne N},
and extend the metric d of X to the set K = X U P, inductively, by putting
1
d(x,by) =d(x,a,) + o

for x # by,.
For (2),let K = X U P and K’ = X U P’ be two peripheral extensions of X,
and let d, d’ be some metrics on them. Choose any map 7 : P — X such that

limd(p, n(p)) = 0.
pPEP

We need to find a bijection b: P — P’ such that the map idy Ub: K — K’ is a
homeomorphism. To do it, it is sufficient to choose b so that

lim d'(b(p), n(p)) = 0. (*)
pEP
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Indeed, if we consider a sequence p; of P that converges to x € X, then 7 (py)
converges to x by definition of w. Since, by (%), lilgn d'(b(pr). w(pr)) = O,
it follows that b(py) converges to x, which shows that idy Ub is a homeomor-
phism.

To choose b as above, order the elements of P and P’ into sequences (py)
and (p; ), and iterate the following two steps alternately.

STeP 1. Consider the smallest k for which b ( px) has not yet been defined. Choose
some ¢’ € P’ such that d’(¢’, m(pr)) < 1/k and such that ¢’ was not yet chosen
as image of any p; (such ¢’ exists because P’ is dense in K'), Set b(pr) = ¢'.

STEP 2. Consider the smallest k for which p; was not yet chosen as image of any
pi» and choose any ¢ € P such that d'(p;,7(q)) < d'(p;.. X) + 1/k and such
that b has not yet been defined on ¢ (such ¢ exists since 7 (P) is dense in X). Set
b(q) = py.

Then b is obviously a bijection. A straightforward verification shows that »
satisfies property (x), and this completes the proof of (2).
Part (3) of the lemma is obvious. O

In view of parts (1) and (2) of Lemma 1.1, a space K as above exists and is
uniquely determined by X, so we denote it by X and call the peripheral extension
of X.

Complete tree systems of peripheral extensions of X. Denote by T the unique
up to isomorphism countable tree of infinite valence at every vertex. Let V7 be
the vertex set of 7', and Or the set of all oriented edges of T'. For each ¢t € V7,
we denote by N, the set of all oriented edges of 7 with initial vertex ¢.

A complete tree system of peripheral extensions of X is a tuple
© = ({X:}.{b:})
such that to each ¢t € V7 there is associated

e aspace X; homeomorphic to X, equipped with its peripheral extension X;,
and with the set P; of peripheral points of this extension;

e abijective map b;: Ny — P;.
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Given two complete tree systems © = ({X,},{b;}) and ®" = ({X;},{b;}) of
peripheral extensions of X, an isomorphism between them is atuple F = (A, { f})
such that

1) A: T — T is an automorphism;

(I12) foreacht € Vr themap f;: X; — X /ll(t) is a homeomorphism of peripheral
extensions, i.e. it maps X; on X//w) (and thus also P; onto Pi(t));

(I3) foreacht € Vr and any e € N; the following commutation rule holds:
Broy(A(©)) = fi(bi(e)).

1.2. Lemma. Any two complete tree systems of peripheral extensions of X are
isomorphic.

Proof. Let ©® = ({X,},{b;}) and ®" = ({X;},{b}}) be two complete tree systems
of peripheral extensions of X. Order the vertices of V7 into a sequence #y, 1, . . .
so that for any natural k the subtree 7T; of T spanned on the vertices tq,...,
contains no other vertices of V7. We construct an isomorphism A: T — T and
homeomorphisms f;: X, — X //l(t) successively, at vertices t = g, as follows.
For each subtree T}, denote by T, k+ the subtree of 7' spanned on T} and all vertices
adjacent to the vertices of Ty. Choose any ) € Vr and any homeomorphism
Jio: X 10— X t/é of peripheral extensions (which exists by Lemma 1.1(2)). Denote

by T the subtree of 7' reduced to the vertex ¢;. Consider the bijection
(b;(/))_lft()bt() : Nt() — Nt(/)

and denote by Ag: T," — (Tj)" the isomorphism induced by the assignment
to — t}, and by the above bijection.
Now, suppose that we have already chosen the following data:

(1) vertices t;, ..., t; in Vr such that the subtree 7, of T’ spanned on these ver-
tices contains no other vertices of Vr, and the assignments #; — ¢/ yield an
isomorphism g : Ty — T}

(2) an isomorphism Ag : Tk+ — (T,é)+ which extends pg;

(3) fori = 0,1,...,k, homeomorphisms f;, : X y = X t/{ of peripheral exten-
sions such that the bijections (b!,)~" f;, by, : Ny, — N,; are consistent with A

(i.e. coincide with the approprliate restrictions of the map induced by Ax
between the sets of oriented edges of Tk+ and (T,é)+).
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Consider the vertex x4y, and let j € {0,1,..., k} be the index for which ¢; is
the unique vertex of Ty adjacent to #z 4. Put

t//c—l—l = Ak(l‘k-l—l)-

Applying Lemma 1.1(3), choose any homeomorphism of peripheral extensions

Srewr: Xoer — X;},{H such that fy, ., (brey, ([tk+1.1]) = b;,’(+1([tl/c+1’tj/'])'

Denote by Ary1 :1T k++1 — (T} +1)+ the isomorphism induced by A, and the
e L. , _ ]

bijection (bt],<+1) Jteg1 bty s Ny — Ny

Iterating the above described step of the construction, we get an isomorphism

)L:UAk:T—>T
k

and a family of homeomorphisms of peripheral extensions f;: X; — X i(t) such
that for each 1 € Vr the map (b))"! fib;: Ny — Ny is consistent with A
(i.e. coincides with the restriction of A to N;). Since the latter clearly implies
the commutativity condition (I3), we get that F = (1, {f;}): ® — @' is an iso-
morphism, which completes the proof. O

The dense amalgam of (copies of) X. We first describe an auxiliary compact
metrisable space, uniquely determined by X up to homeomorphism, which intu-
itively is the infinitely iterated and appropriately completed wedge of copies of X,
in which the successively glued copies have rapidly decreasing size; wedge glu-
ings are performed at all peripheral points in all copies of X so that exactly two
copies meet at each gluing point.

More precisely, let ® = ({X;}, {b;}) be a complete tree system of peripheral
extensions of X. For any finite subtree F' of T define the partial wedge of © for
F, as the quotient topological space

VFEO® = |_| Xt/ ~,

teVp

where ~ is the equivalence relation induced by the equivalences

bt([t7 S]) ~ bs([s7 t])

for all oriented edges |z, s] of F.
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For any pair of finite subtrees of 7' such that F’ C F view Vg/® canonically
as a subset of Vz®, and consider the retraction map pr,r': VF ® — VO
determined by the following. For any vertex s € Vg \ Vg and for any x € X,
viewing X, canonically as a subset of v ®, we put

pr.F(x) = bi([t,1']),

where [¢, t'] is the last oriented edge on the shortest path in 7 connecting s with F’.
Clearly, the retraction map pr, - is continuous. Moreover, it is easy to check that,
for any finite subtrees F” C F’ C F of T,

PF'.F" © PF,F’ = PF,F".

1.3. Definition. (1) The wedge inverse system associated to © is the system over
the poset of finite subtrees of 7' given by

6 = ({Vvr®: F C T is afinite subtree}, {pr p: F' C F C T}).
(2) The wedge of © is the inverse limit of the system 8,

VO :=limSg.

Since all partial wedges VF® are easily seen to be compact metrisable,
the same is true for their inverse limit v®.

Before getting further, we need to distinguish the subset Pg in v® consist-
ing of the “gluing points” of the wedge. More precisely, for any oriented edge
e = [t.1'] € Or the point b,([t,1']) € X;, viewed as a point of VO, coincides
with the point b,/ ([t’, t]), and we denote the corresponding point of VO by pj|
(to emphasize the fact that it is induced by the underlying non-oriented edge |e|).
We then put

Pg :={pje|: e € Or}.

1.4. Lemma. Each point of the subset Pg is isolated in the space Vv ®. In partic-
ular, Pg is an open subset in VO, and thus its complement VO \ Pg is a compact
metrisable space.

Proof. Let p = p,| be any point of Pg. Viewing |e| as a subtree of T, we clearly
have p,| € V||® C vO. Moreover, if we denote by

Plel: VO — VO

the map canonically associated to the inverse limit, it is not hard to see that
,ol_ell(p|e|) = Dle|- Since pj is isolated in V@, its singleton is an open subset
in V¢ ®, and thus the same is true in V®, which completes the proof. O
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Note that, it follows easily from the above description of v@ that if ® and ®’
are two isomorphic complete tree systems of peripheral extensions of X, then the
pairs of spaces (VO, Pg) and (V®’, Pg/) are homeomorphic. This and Lemma 1.2
then justify the following.

1.5. Definition. The dense amalgam of (copies of) X, denoted Li(X), is the topo-
logical space vO \ Pg, where ® is any complete tree system of peripheral exten-
sions for X.

A more explicit description of the wedge vO® and its subspace vO \ Pg.
Given a complete tree system © = ({X;},{b;}) of peripheral extensions of X,
consider the equivalence relation on the disjoint union | |,cy,. X, induced by the
equivalences by ([t, s]) ~ bs([s,t]) for all oriented edges [¢,s] € Or. Denote the
set of equivalence classes of this relation by #®. Let dT be the set of ends of the
tree 7', i.e. the set of equivalence classes for the relation on the set of infinite rays
in T provided by coincidence of two rays except possibly at some finite initial part
in each of them. Since the inverse system 8 consists of natural retractions of big-
ger partial wedges on the smaller ones, one easily identifies the inverse limit v,
set theoretically, with the disjoint union #® LI 9T .

We now describe the topology of the inverse limit vV® as topology on the set
#O U dT. For any finite subtree F' of T consider the map pr: VO — VF©®
canonically associated to the inverse limit. Under identification of v® with
#O U dT, this map is easily seen to have the following form. If s € Vg and
x € Xy C #0, then pp(x) = x € Xs C VFO. If s € V7 \ Vr, let [t5,1]] be the
first oriented edge on the unique minimal path connecting a vertex of F to s; then
for any x € X, we have pr(x) = by, ([ts.t)]) € X,, C VF©. Finally, if z € 9T,
let [z, /] be the first oriented edge on the unique minimal ray in 7" representing z
and starting at a vertex of F; then pr(z) = by, ([t;,1]]) € th C VFO.

By definition of the inverse limit, the family

{pF'(U): F is a finite subtree of T and U is an open subset of v O}

is a subbasis for the topology in v®. It follows from the above description of pr
that any subset p;l (U) from this subbasis, viewed as a subset of #© L1 dT', can be
described as follows. Identify v ® and all the sets X, canonically as the subsets
in #0. Under notation as in the previous paragraph, put

#y0 1= U U| J{Xs: s € V7 \ Vr and by, ([t;. 1]]) € U} C #0.
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Furthermore, put

duT :={z € 3T : by, ([tz,1]]) € U}.
Then p;l(U) =#yO® U dyT.

Using the above description of the sets p;l (U), we now indicate a convenient
basis of the topology in v® = #0 U dT. For any vertex ¢ € Vr, viewing it as a
subtree of 7', we denote by p;: VO — v;0 = X, the map canonically associated
to the inverse limit.

1.6. Lemma. The family
B ={p;"(U): t € Vr and U is an open subset of X;} U {{p}: p € Pg}

is a basis of the topology in v©.

Proof. We will first show that the family B satisfies the axioms of a basis of topol-
ogy. Since B is obviously a covering of Vv ®, it remains to check that the intersec-
tion B N B’ of any two sets from B is the union of some sets from B. This is
obvious if B or B’ is a singleton from Pg. Thus, we need to study the case when
B = p;'(U) and B’ = p; ' (U’), where U, U’ are some open subsets in X, and
Xs, respectively.

Ift =5, weget BN B = p;1(U N U’), which trivially yields our assertion.
If ¢ # s, let F be the subtree of T spanned on ¢ and s (which is obviously finite),
and let OF be the set of oriented edges in F'. Put

U :=U\ b, (N, N OF),

Us := U \ bs(Ns N OF),
and, for each a € Vg \ {t, s},

Ua = ).(;a \ba(Na ﬂ OF)

Observe that for any a € VF the set N, N OF is finite. Consequently, for any
a € Vr the set b, (N, N OF) is closed, and hence U, is open in the corresponding
space X,. Furthermore, define a subset A C V by the following rules:

e tbelongsto A if X, C B/,
e s belongs to A if X, C B,

e avertex a € Vi \ {t,s) belongs to A if X, C BN B’'.
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It is not hard to observe that

BNB =(PonBNB)U| e, (U,

acA

which also yields our assertion. Thus B satisfies the axioms of a basis of topology.

Now we need to show that the topology T¢ induced by B coincides with the
original topology 7 in v® = #0 LI dT. Since, in view of Lemma 1.4 we have
B C T, it follows that T C T. To prove the converse inclusion, it is enough to
show that any set of form pz!(U), where F is any finite subtree of 7', is the union
of some elements of B. To do this, for each a € VF put

Us := (U N Xa) \ ba(Na N OF).

Note that, by the argument as before, this is an open subset of X,. Observe that
we have

P (U) = (Po N pr' (W)U | 07" (W),

acVp

which completes the proof. O
We now pass to the subspace VO \ Pg. Consider the family of its subsets
By :={W\ Pg: W € B}
= {0;'(U) \ Po: t € Vr and U is an open subset in X}

From Lemma 1.6 we immediately get the following.

1.7. Corollary. By is a basis of the topology in VO \ Pg.

Note that, under identification Vv® = #O U 90T, the subspace vO \ Pg is
identified with the subset (|_|;cy,. X;) LT . By what was said above, we have the
following description of any set p, ' (U)\ Pe € Bg asasubsetof (| |,y X;)UdT.
For s € Vr \ {t} let [z, t] be the first oriented edge on the path in 7 from ¢ to s.
Similarly, for any z € 9T let [¢, t;] be the fist oriented edge on the unique ray in
T started at 7 and representing z. Recalling that U is an open subset of X,, define
the subset D(1,U) C (|l;ey, X¢) LT as

Dt,U):=UnNX,)u |_|{st s Ztand b;([t,t5]) € U}
U{z € dT: bs([t,¢;]) € U}.

We then have p;1(U) \ Pe = D(t,U).
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As immediate restatement of Corollary 1.7 we get the following.

1.8. Proposition. The family
D ={D(t,U): t € Vr and U is an open subset of X;}

is a basis for the topology in the space VO \ Peg, under its identification with
(Lsey, X¢)uaT.

To conclude the explicit description of the space VO \ Pg (and thus also the
amalgam (1(X)), we provide in the lemma below some bases of open neighbour-
hoods for all points in this space.

1.9. Lemma. For the canonical identification of VO \ Pe with ( |_|,6VT X,) uaT,

(M) ifx € X; C (ep, X:) U 0T, then the family of sets D(t,U), where U
runs through any basis of open neighbourhoods of x in X,, is a basis of open
neighbourhoods of x in (|;cy, X:) U dT:

(2) ifz€dT C (I—lteVT X;)UOT, then for any ray [to,t1,...] in T representing
z the family
{D(ti, X, \ by, ([ti., tia])}) i = 1}

is a basis of open neighbourhoods of z in (|;cy, X;) U dT.

We skip a straightforward proof of this lemma.

The amalgam L (X) satisfies conditions (al)—(a5). As we have already noticed,
the amalgam (I(X) is a compact metrisable space. We now check that it satisfies
conditions (al)—(a5) listed in the introduction. To do this, we will use the above dis-
cussed identification of [i(X) = v©\ Pe with the set (|_|;cy,. X/)U0T equipped
with topology provided by the basis D, as stated in Proposition 1.8. As a family Y
of subsets we take the family X;: ¢ € Vr.

Note that each X; is an embedded copy of X, as it coincides with the image of
the canonical embedding of X, in the inverse limit vV®. Since the subsets in this
family are clearly pairwise disjoint, condition (al) is fulfilled.

To check condition (a2) we need to verify that for any finite open covering U
of (|_|t€VT X;) U AT and for almost every vertex ¢ € Vr (i.e. foreacht € V7 \ 4,
where A is some finite subset of Vr) there is U € U such that X; C U. Obviously,
without loss of generality, we may assume that U consists of subsets from the
basis D. More precisely, we may assume that there is a finite subset A C V7 and
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a family Us: s € A of open subsets in the corresponding spaces X, such that
U = {D(s,Us): s € A}. But then it is easy to check that for each t € V7 \ 4 we
have X, C D(s, Us) for some s € A, which verifies (a2).

Condition (a3) follows easily from the description of bases of open neigh-
bourhoods of points in (|—|teVT X;) U 9T, as given in Lemma 1.9(1). We skip
this strightforward argument. Similarly, condition (a4) follows directly from
Lemma 1.9(2).

To check condition (a5), we introduce a family of Y-saturated open and
closed subsets of (| ],cy, X/) U 0T that we call half-spaces. For any edge
e = [t,t'] € Vr consider the subsets

H] = D(t. X\ {ba([.1])})
and

HF == D, Ko \ by (0.1,

and note that they are both open. Moreover, they form a partition of the space
(|_|t€VT X ,) L T, and thus they are both open and closed. Finally, both these
subsets are easily seen to be Y-saturated. We will call them the half-spaces induced
by the edge e.

Now, let x, y be any two distinct points of ( Ll;ey, X:) U dT which do not
belong to the same subset of Y. First, consider the case when x € X, for some
t € Vp. If y € X, for some s # ¢, then for any oriented edge e on the path
connecting ¢ with s we have x € H,; and y € H}. If y € 9T, then for any
oriented edge e in the ray started at # and representing y we similarly have x € H,
and y € H;. This verifies condition (a5) in the considered case. Since in the
remaining case, when x, y € 9T, we can also easily separate x from y by a half-
space, condition (a5) follows.

The dense amalgam U(X1q,..., Xz). Given a finite collection Xy, ..., X of
nonempty compact metric spaces, put

O(X1,..., Xx) = U(X),

where X = X; U --- U Xy is the topological disjoint union. Under identification
(X) = (|_|t€VT X;)UdT, foreacht € Vr we have X; = X, U---U Xy ,, where
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each X;; is homeomorphic to the corresponding X;. For eachi € {1, ..., k} take

Yi :={Xi,: 1t €Vr},
and put

Y= ).

We check that so defined space and the family of its subspaces satisfy condi-
tions (al)—(a5) from the introduction.

The only condition which does not follow by an argument similar as before is
condition (a5), in the case of two points x € X;; and y € X;, for some t € Vr
and some j # i. Observe that we can partition the peripheral extension X, of
X: = X1, U---UXg, into open and closed subsets U, W suchthat U N X; = X, ;.
The subsets D(t,U) = p;Y(U) and D(t, W) = p; (W) form then an open
and closed partition of O(X1,...,Xx), and since we obviously have that
xeX;; C D, U)and y € X;; C D(¢, W), the argument is completed.

2. The characterization

The aim of this section is to prove Theorem 0.2 of the introduction. We start
with introducing a useful terminology. Let X;,..., Xy be a collection of
nonempty metric compacta, for some k > 1. A compact metric space Y is
(X1, ..., Xg)-regular if it can be equipped with a family Y of subspaces satisfying
conditions (al)—(a5) from the introduction. Any family Y with these properties
is called an (X1, ..., Xg)-regularizing family for Y. Theorem 0.2 may be then

rephrased as follows: any (X1, ..., Xx)-regular compact metric space is homeo-
morphic to the dense amalgam U(X1, ..., X;).
In view of the definition of the dense amalgam D(X 1,..., Xg) fork > 1, given

at the end of Section 1, Theorem 0.2 is a direct consequence of the following two
results.

2.1. Proposition. Given a nonempty compact metric space X, each (X)-regular
space Y is homeomorphic to the dense amalgam U(X).

2.2. Proposition. Given any tuple X, ..., X of nonempty compact metric spaces,
each (X1, ..., Xy)-regular space Y is also (X1 U ---U Xy)-regular.
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In the proofs of both propositions above we will use the following notation.
Given a nonempty subset A in a metric space Y, and a real number € > 0, an
e-neighbourhood of A is the subset

Ne(A) :={x €Y :dy(A,x) <e}.
The diameter of A is the number
diam(A) := sup{dy(x,y): x,y € A}.

Proof of Proposition 2.2. Let Y be an (Xi,..., X)-regularizing family for Y.
We will construct inductively an (X LI - - Xy )-regularizing family W = (Wy),>1
for Y. Each W, € W will have a form of the union of some appropriately chosen
subsets from Y.

Order the elements of Y into a sequence (Y)n>1. Put Z1,; = Y, and choose
the subsets Z1 5, ..., Zy x € Y such that

(z1) the family Z; ;: 1 <i <k consists of exactly

one set from each of the subfamilies Y; of Y;
(z2) foreach2 <i <k we have Z1; C Ngiam(z, 1)(Z1,1)-

Such a choice is possible since, by conditions (a2)—(a4), each family Y; is
infinite, null and densein Y. Put Wy = Z, ; U---U Z .

Having already constructed the subsets Wi, ..., W,_; as unions of some sub-
families of Y, we construct the subset W, as follows. If Y, is not contained in
Wi U - U Wiy, put Z,1 = Y; otherwise, take as Z,,; any subset from Y
not contained in Wy U --- U Wy_;. Choose Z,,»,...,Z, x € Y not contained in
Wi U--- U W_; and satisfying the analogues of conditions (zI) and (z2) above,
with Z; ;’s replaced by Z, ;’s.

We now check that W is an (X; U --- U Xg)-regularizing family of subsets
for Y, i.e. it satisfies the appropriate variant of conditions (al)—(a5). Note that W
obviously consists of subsets which are embedded copies of X; Ll --- LI Xg, and
each such copy is boundary in Y (as finite union of closed boundary subsets).
Moreover, by condition (z2) for each n we have diam(W,,) < 3diam(Z,,;), and
thus the family W is null. Finally, it follows from the above description that for
each n we have Y,, C W; U---U W, and so we have that UW = UY. In particular,
the union of the family W is dense in Y.
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It remains to show that the family W satisfies condition (a5). However, in order
to ensure that this is true, we need to add some ingredient to the construction
presented above. To describe this ingredient, for each n > 1 consider the number

n
Zp = max{diam(Z): ZeYyz¢ U W]}
j=1
and note that, since the family Y is null, we have lim z, = 0. Now, in the above
n
inductive construction of the subspaces W, for each n we additionally choose a

finite partition Q, of Y into Y-saturated closed and open subsets QF,..., Oy, ,
such that

(ql) for each n we have m, > n, and

(a) foreach j € {l,....n} we have W; C Q7 C Ny/n(Wj),

(b) foreach j € {n +1,....my} we have diam(Q7) < z, + 1/n;
(q2) Q"1 is a refinement of Q" for each n > 1;
(q3) for each n the subset W, 4 is contained in one of the sets Q;’ e Q"

More precisely, at each step of the construction, after choosing a subspace
W, we choose a partition Q" satisfying (ql) and (q2), and then we choose W,, 1
satisfying (q3). The possibility to choose Q" satisfying (ql) and (q2) follows from
condition (a5) for the family Y, due to the following.

Cra1wm 1. If A is either a subspace from Y or a point from the subset
Y*:=Y\UYy,

then for all ¢ > O there is a closed and open Y-saturated set Q such that
A C Q C Ne(A).

We skip a straightforward proof of Claim 1, indicating only that it uses the fact
that Y-saturated closed and open subsets of ¥ are closed under finite intersections
and finite unions. Once we have chosen Q”, in the description of W, as above
we additionally require that all the sets Z,1;: 2 < i < k are contained in the
same Q;.’ as the set Z, 11,1, which guaranties (q3).

Observe that, by the above description, all closed and open subsets Q7 ap-
pearing in any of the partitions Q" are W-saturated. Thus, we may use them as
separating sets justifying condition (a5). Namely, if x € W, for some n > 1, then
x can be separated from a point y ¢ W, by a subset Q, for sufficiently large m,
due to condition (ql)(a). If x € Y*, for each n consider this j, for which x € Q;?n.
We will need the following.
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Cramm 2. diam(Q7 ) — 0.

To prove Claim 2, consider first the case when for each n we have j, < n.
In this case, by condition (ql)(a), we have x € Ny,,(W;,) for all n. From this it is
not hard to deduce that for a fixed j we have j, = j only for finitely many », and
hence j, — oo. Since Q% C Ny/n(Wj,) and so diam(Q”? ) < diam(W;,) + 2,
we get that diam(Q7 ) — 0 by the fact that the family W is null.

Now, consider the case when for each n we have j, > n. It follows that
jn — oo. By condition (ql)(b), we have diam(Q}.’n) < zZy + %, and hence
diam(Q7 ) — 0 in this case too. The general case easily follows from the two
just considered cases, hence Claim 2.

By Claim 2, x can be separated from any other point y € Y by a set Q7 ,
for sufficiently large n. This completes the proof of Proposition 2.2. O

The proof of Proposition 2.1 requires more terminology and auxiliary results,
which we provide in four preparatory subsections below. The proof itself appears
at the end of the section.

In all the remaining part of this section we work under notation and assump-
tions of Proposition 2.1. It means that X is a nonempty metric compactum, Y is
an (X)-regular space, and Y is an (X)-regularizing family for Y. We fix a metric
dy in Y. We also often refer to the subset Y* = Y \ UY.

2.A. Cantor space C and the related space Cy. Recall that the Cantor space
is a metric compactum C determined uniquely by the following properties:

(cl) C is zero-dimensional, i.e. every point of C is a connected component of C
(it can be separated from any other point by a closed and open subset of C);

(c2) C has no isolated points, i.e. every point of C is an accumulation point.
2.A.1. Lemma. The quotient space Y /Y is homeomorphic to the Cantor space C.

Proof. Since Y is a null decomposition of Y, it follows from [5], Proposition 2 on
p.13, that Y /Y is a metric compactum. We need to check conditions (cl) and (c2).
Condition (c2) follows easily from condition (a3) for Y, and condition (cl) is a
consequence of condition (a5), hence the lemma. O

We now recall or provide few properties of the Cantor space and its subspaces
that will be useful later in this section. Denote by Cy the space obtained by deleting
any single point from the Cantor space C. The following two results are well
known.
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2.A.2. Proposition. A locally compact separable metric space is homeomorphic
to Cy if and only if it is zero-dimensional, noncompact and has no isolated points.

2.A.3. Proposition. Any noncompact open subset of C is homeomorphic to Cy.
In particular, the complement C \ Z of any closed boundary subset Z C C is
homeomorphic to C.

We will also need the following technical result.

2.A4.Lemma. Let{p,: A € A} be an infinite (in fact, countable) discrete subset
of the space Cy, and let Uy : A € A be a covering of Cy by open subsets with
compact closures in Cy such that p) € U, for each A € A. Then there is a
partition of Cy into subsets K : A € A which are compact, open, and such that
pa € K) C U, foreach A € A. Moreover, the subsets K are all homeomorphic
to the Cantor space.

Proof. 'The first assertion is a fairly straightforward consequence of the fact that
each point of Cy has a basis of open neighbourhoods which are also compact. The
second assertion follows from the fact that any nonempty closed and open subset
of the Cantor space C is homeomorphic to C. O

2.B. Sequences of subspaces convergent to points. Since the family Y is null,
given any infinite sequence (Z,) of pairwise distinct subspaces from Y, we have
li)m diam(Z,) = 0. This justifies the following. Given a sequence (Z,) as above,
;:A/eosay that a point p € Y is the limit of this sequence, li)m Z, = p, if for some
(and hence any) selection of points p, € Z, we havennli)rorgo pn = p. In such a

situation we also say that the sequence (Z,) is convergent.

2.B.1. Fact. Each point p € Y can be expressed as p = lim Z, for some se-
n—>oo

quence (Z,) as above.

Proof. If p € Y*, the assertion follows directly from condition (a4) for Y (and
from compactness of the subspaces in Y). If p € Z € Y then, by condition (a3)
applied to Z, p is either the limit as required, or the limit of some sequence (p,) of
points from the subset Y °. In the latter case, since each p,, is the limit as required,
the same holds for p = li’?l Pn», which completes the proof. O

We present two more technical results concerning convergent sequences of
subspaces from Y. We skip a straightforward proof of the first of these two results.
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2.B.2. Lemma. Let (Z,),>1 be a sequence of subspaces in Y satisfying the fol-
lowing conditions:

(1) Z, is arbitrary;
(2) Znt1 C Ndiam(z,)(Zn) and diam(Z,41) < 3 diam(Z,,), for eachn > 1.
Then (Z,) is convergent, and if p = lim Z,,, then
n

{ry Ul Zn C Nagiamz)(Z1).

n>1

2.B.3. Lemma. Given an ordering of the family Y into a sequence {Y,: n € N},
let (Zn)n>0 be a sequence of distinct subspaces from Y satisfying the following
conditions:

0) Zy is arbitrary;
(1) Zy # Y1, diam(Zy) < § diam(Zo) and Zy C Niam(zo)(Zo);

(2) for each n > 1 we have Z,11 # Ypy41, diam(Z,41) < %diam(Zn) and
Zpy1 C Ng,(Z,), where

1 1
dy = min (diam(Zy). Sy (Yo, Za).... 5rdy (Y1, ).
Then (Z,) is convergent, and the limit point p = lim Z,, belongs to Y *.
n

Proof. Convergence follows from Lemma 2.B.2. Moreover, it is not hard to see
that for the limit point p we have

3

dy(p Yo) > (1= 2 5 )dr (V. Za) = 2y (V. Zy) = 0

i=1

for eachn > 1, and thus p ¢ o, Y» = UY. O

2.C. Approximating families of subspaces. We will frequently use the follow-
ing concept.
2.C.1. Definition. Let Z € Y. A subfamily Yo C Y approximates Z it
o Z ¢ Yo,
e Z C UYy,
° ulfienylo dy (W, Z) = 0 (equivalently, for any ¢ > 0 almost all W € Y, are
contained in N¢(Z)).
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We make a record of few easily seen properties of approximating families.

2.C.2. Fact. (1) Any Z € Y admits an approximating family Yo C Y.

(2) Any approximating family Yo for Z €Y is discrete in the complement Y \ Z
in any of the following two equivalent senses:

e for each W € Y there is § > 0 such that the neighbourhood Ns(W) (in Y)
is disjoint with Z and with all subspaces from Yo \ {W};

o the subset {{W]: W € Yo} C Y /Y is discrete in (Y /Y) \ {[Z]}, where for any
W € Y we denote by [W] the point in the quotient Y /Y corresponding to W.

2.D. T-labelling of Y. In this rather long subsection we introduce the concept
of a T-labelling of Y, which is the most important tool in our proof of Proposi-
tion 2.1. Recall that T denotes the countable tree with infinite valence at every
vertex. We fix terminology and notation concerning various objects inside 7.
We choose a base vertex in T, denoting it ty. A central ray in T is any infinite
path y started at ¢y, with consecutive vertices denoted y(0), y(1), . ... For any ver-
tex t € Vr \ {to} its ancestor a, is the adjacent vertex on the path from ¢ to 7.
A sector based at ¢, denoted X, is the set of all s € V7 for which ¢ lies on the path
from s to ¢y (including s = t); ¢ is then called the base of the sector 3,. The set
of successors of t is the set ! = {s € X;: dr(s,t) = 1}. For any integer k > 0
the k-ball By and the k-sphere Sy are defined as By = {t € Vr:dr(t,ty) < k},
Sy ={t € Vr:dr(t,ty) = k}.

2.D.1. Definition. Given an (X)-regularizing family Y of subspaces in a metric
compactum Y, a T-labelling for Y is a labelling (Y;);ey, of Y by elements of the
set Vr such that

(L1) the map ¢ — Y; is a bijection from V7 to Y;

(L2) for any central ray y in T the sequence of subspaces Y, (,) converges to a
point in the complement Y *;

(L3) foreach € Vr \ {0} the family Y;: s € X! approximates the subspace Y;;
similarly, the family Y;: ¢ € S; approximates the subspace Y;,;

(L4) foreacht € Vr \ {to}, closure in Y of the union of the family {Ys: s € X;},
denoted H;, is a closed and open subset of ¥ which is disjoint with Yy, ;

(LS) lim diam(H;) = 0;
t#to

(L6) for any two distinct #1, ; € Sy, as well as for any s € Vr \ {#o} and any two
distinct 11,1, € X!, we have H,, N H;, = 0.
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The next result shows that a T-labelling is a potentially useful tool for proving
Proposition 2.1.

2.D.2. Proposition. Let X be a nonempty metric compactum, and let Y be an
(X)-regular space, with (X)-regularizing family Y of subspaces. If Y admits a
T-labelling then Y is homeomorphic to the dense amalgam U(X).

Proof. Let (Y;):ev, be a T-labelling for Y.

STEP 1. CONSTRUCTION OF A COMPLETE TREE SYSTEM COMPATIBLE
wITH THE T-LABELLING. We start with constructing a complete tree system
of peripheral extensions for X, ® = ({X;:t € Vr},{bs: t € Vr}), satisfying the
following conditions:

(1) foreacht € Vy we have X; = Y;;

(2) for each t € Vr the map b;: Ny — Py = X, \ X, satisfies the following:
choosing any points B;(s) € Y; such that dy (8;(s), Ys) = dy (¥, Ys), for all
s € N;,we have

lim d, (b (). s (5)) = 0. (2.D.2.1)

To construct maps b, satisfying (2.D.2.1), we proceed for each ¢ € Vr inde-
pendently as follows. Order the vertices of N; into a sequence (s,) and the points
of P; into a sequence (x,). Recall that, by condition (L3) in Definition 2.D.1, we
have li’gn dy (B:(sn), Ys,) = 0, and thus for any y € Y; there is a subsequence n,,
such that linrln Bt (Sn,,) = y. Iterate the following two steps, starting withn = 1, 2.

For odd n, if j is the smallest index for which B;(s;) has not yet been defined, put
b:(s;) = x for any x € P; which was not yet chosen as the image of any other s,
and which satisfies d g (x, B(s;)) < % For even n, if j is the smallest index for
which x; has not yet been chosen as the image of any s, choose any s for which
b:(s) has not yet been defined and such that dy (x;, B:(s)) < dyg, (xj,Y) + %
We skip the direct verification that b, is then a bijection and satisfies (2.D.2.1).

Step 2. THE MmaAP h: VO )\ Pg — Y. Recall that we have the identification
vO \ Pg = (|_|t€VT Y)uodT. If x € aT, let y, be the unique central ray in T
representing x. Accordingly with the above identification, put:

e h(x):=xifx € Y, forsomet € Vr;
e h(x):=lim ny(n) if x € 9T
n

Note that, due to condition (L2), the latter limit exists and is a point of Y °.
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In the next three steps we will show that % is respectively injective, surjective
and open, thus getting that it is a homeomorphism. Since VO \ Pg = [(X), this
will complete the proof of Proposition 2.D.2.

STEP 3. h 1s INJECTIVE. Since i maps the subset| |,cy,. ¥; C VO P injec-
tively on the subset |, evy Y1 CY, and since by condition (L.2) it maps 97 to the
subset Y'* = Y \ (U, ey, Y1), itis sufficient to show that the restriction of 4 to 9T
is injective.

Consider two distinct points p,g € 97T, and the corresponding central rays
Yp,Yq. Let i be the smallest number such that y, (i) # y,(i). Denote by H,, H,
respectively the closures in ¥ of the unions U{Ys: s € £, )}, U{Ys: s € Z), )}
By condition (L6) we get H, N H,; = @. The assertion then follows by observing
that h(p) € Hy, and h(q) € Hy.

STEP 4. 1 15 SURJECTIVE. Obviously, any point x € (J,cy,. Y+ C Y is in the
image of /. Thus, we need to show that any point g € Y * is also in this image.

According to Fact 2.B.1, there is a sequence #, such that in ¥ we have
q = h,fn Y;,. Recall that for each t € Vr \ {to} we denote by H; the closure
in Y of the union U{Y: s € X;}. We claim that there is u € S; such that z,, € %,
for infinitely many . Indeed, if there is no such u then, denoting by u,, this vertex
of S; for which ¢, € ¥,,, we have limdiam(H,, ) = 0 (due to condition (L5)),
and since Y;, C H,y,, it follows thatnq = li’lzn H,, . Consequently, we also have
q = limY,,, and due to condition (L3) this implies that ¢ € Y;,, despite ¢ € Y°.
Thus, there is ¥ € S; such that ¢, € X, for infinitely many n. Moreover, since
then ¢ € H,, and since by (L6) the subsets H;: s € S are pairwise disjoint, it
follows that u as above is unique. We denote it .

Iterating the above argument, for each natural k¥ we get a unique uy € Si such
thatt, € X, forinfinitely many n. By uniqueness of uy, we getthat %, | C Xy,
for each k, and thus the sequence ¢y, u1, U3, ...is a central ray in 7. Denote by
p € 0T the point corresponding to this central ray. Since we have ¢ € H,, for
each k, we also have ¢ = lilgn Hy, , and consequently g € lilgn Yu, = h(p). This

completes the proof of surjectivity.

SteP 5. h 1s opPEN. We refer to the basis D of the topology of the space
VO \ Pe = (|sey, Yr) U 0T, as described in Proposition 1.8. We need to show
that far any set D(¢t,U) € D (where t € Vr is a vertex, and U C Y; is an open
subset) its image h(D(¢, U)) is an open subset of Y.
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Recall that there are three kinds of points in D(¢, U):
(1) points x € U N Yy;
(2) points y € Y, for s # t such that b, ([¢, t5]) € U;
(3) points p € dT such that b, ([t,t;]) € U.

We will show that the image z of a point of each kind is contained in 2(D(t, U))
together with some open neighbourhood of z in Y.

Let z = h(p) for some p of kind (3) above. Choose any vertex s € Vr \ {to}
lying on the central ray from 7o to p and such that ¢+ ¢ X;. Note that then the
set L{Y,:u € X5} C D(t,U) and the set of all ¢ € 9T represented by cen-
tral rays passing through s are both the subsets of D(z, U). We also claim that,
denoting the union of these two subsets by D, we have h(D;) = Hy. The inclu-
sion h(D;) C Hj is obvious. For the opposite inclusion, the argument is the same
as that in Step 4. Thus, we get z € Hy C h(D(¢, U)), where the subset Hj is open
(by condition (L4)).

Now, let z = h(y) for some y € Y; of kind (2) above. We consider three
subcases concerning the position of s. First, suppose that s is not lying on the
path from #y to ¢. Then, arguing as in the previous case, we get similarly that
z € Hy C h(D(t,U)). In the remaining cases, denote by s’ the vertex adjacent to
s on the path from s to ¢. If s = ¢y, one shows similarly (using the fact that 4 is
a bijection) that z € Y \ Hy C h(D(¢,U)). Since by (L4) the set Hy is closed,
its complement Y \ Hy is open, and thus it is as required. Finally, if s lies in the
interior of the path from ¢y to ¢, by condition (LL4) we have Y; N Hy = . We then
getz € Hy\ Hy C h(D(t,U)), where H; \ Hy is easily seen to be open, again
due to (L4).

In the last case, let z = h(x) for some x € U N Y; (i.e. x is of kind (1) above).
Since U is open, there is € > 0 such that

dy (x,bi(s)) > € foreachs € N; \ b, (U). (2.D.2.2)
In view of (2.D.2.1), we then have

liminf  dy (x, Bi(s)) = e.
seN b7 W) !

Since the metrics dft and dy restricted to Y; are equivalent, and since
x €Y, C (Uey, Y1) U OT coincides with z = h(x) € ¥; C Y, thereis €’ > 0
such that

liminf dy(z, B:(s)) = €.
seNA\bTH(U)
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Since lim dy (B:(s), Y;s) = 0 and lim diam(Ys) = 0, it follows that
SEN; SEN;

liminf dy(z,Ys) > €. (2.D.2.3)
SeENN\bL(U)

For each s € N, consider the half-tree W, in 7' containing s and not containing
t. Put Qg = U{Y,: u € U}, where the closure is taken in Y. Note that that for all

s € N; except possibly one (namely this for which ¢y € W) we have Q; = Hj,
and hence
lim diam(2y) = 0. (2.D.2.4)
SEN;

Since Yy C Q for each s € Ny, it follows from (2.D.2.3) and (2.D.2.4) that

liminf dy(z, Q) > €.
SEN\b;7L(U)

Thus,

/

for almost all s € N, \ b7 (U) we have dy (z, 2,) > % (2.D.2.5)

We claim also that for any s € N, we have dy(z, Q) > 0. To see this, it is
enough to note that for each s € N; we have Y; N Q; = @. Indeed, this is true by
condition (L4) for all s except possibly this one for which ¢ty € ;. We denote this
exceptional s by so. If this 59 exists, one easily notes that, since by (L4) the subset
H; is open, we have H; N Q, = @, and consequently ¥; N Qg, = 0.

As a consequence of the assertions in the previous paragraph, there is § > 0
such that dy (z, 25) > § forall s € N, \ b;1(U) and dy (z, Y, \ U) > §. Since
from the definition of /4 one deduces easily that

h(vO\ Pe] \ D(t.U)) C (¥, \ U) U | JiQs: s € N, \ b7 (U)}.

it follows from bijectivity of 4 that the metric ball Bs(x, (Y, dy)) is contained in
h(D(t,U)). This completes the proof of openness of /, and hence also the proof
of Proposition 2.D.2. O

Proof of Proposition 2.1. Let Y be an (X)-regular space, with (X)-regularizing
family Y. In view of Proposition 2.D.2, to prove Proposition 2.1, it is sufficient to
show that Y admits a T-labelling. Before starting the actual construction of such
a T-labelling, order Y into a sequence (Yx)x>1. We demand that a labelling that
we construct satisfies the following:
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(rl) foreachk > 1 we have Y, € {Yy,: u € Bx_1};

(r2) foreach k > 1 and any ¢ € Sg, denoting by [to, U1, ..., ur—_1, ] the pathin T
from ¢ to ¢, and putting

1
d; := min (diam(Y,), Jdr (Y Yo),

1
3_2dY(Yk—1 s Yuk_l),

1
(1Y),

for any s € 2! we have Yy C Ny, (Y;) and diam(Yy) < 3 diam(Y).

Note that, in view of Lemma 2.B.3, we have the following.

Claim. If a labelling (Y;):ev, for Y satisfies the above conditions (r1) and (12)
then it satisfies condition (L2) of Definition 2.D.1.

We start the inductive construction of a T -labelling for Y by putting
Yt() = Yl .

Induction proceeds with respect to radii of balls B,, and spheres S, in V. At the
first essential (i.e. not trivial) step, for each ¢ € S; we choose Y; so that

(1) the family {Y;: ¢t € S1} contains Y, and approximates Y;,;

(2) if we put
1
d; = min (diam(Y,), ng(YI, Yt)>,

then the family Ny, (Y;): ¢t € Sy covers Y \ Y;,;

(3) forany Z € Y\ {Yu: u € By} thereis t € S; such that Z C Ny, (Y;) and
diam(Z) < %diam(Y,).

To make such a choice, consider the subset
Eo={xeY:dy(x,Yy)}>1,
and for each m > 1 consider the subset

En={xeY:2™™ <dy(x,Y;,) <27},
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Each of those subsets is closed in Y, and hence compact. For each W € Y \ {Y;,}
put

|
dw = min (diam(W), Jdr (11, W)).

For eachm > 0 choose a finite subfamily W,, C Y\ {Y,,} suchthateach W ¢ W,,
intersects E,,, and the corresponding family of neighbourhoods

{Na,, W): W € Wp,}

covers Ep,. Denote by Wit the setofall W' € Y, W' # Y,,, W NE,, # @, suchthat
W’ is not contained in any single neighbourhood from the family {Ng4,,, (W): W €
W, } or diam(W') > %min(diam(W): W € W,,). Note that for each m > 0 the
family W} is finite. Put

W= [ L W uw;)] U{Ys)

m=>0

and label W using S; as the set of labels, so that W = {Y;: t € S;}. Observe
that conditions (1)—(3) above are then satisfied (we skip a rather straightforward
argument).

By Lemma 2.A.1, the space (Y/Y) \ {[Ys]} is homeomorphic to the punc-
tured Cantor space Cy (here, for s € Vr we denote by [Ys] the point of Y /Y cor-
responding to Ys). Moreover, since the just chosen family Y,: ¢t € S; approxi-
mates Y;,, the corresponding subset {[Y;]: t € S} is discrete in (Y /Y) \ {[Yz]}
(see Fact 2.C.2(b)). For each ¢ € S; put

U= N, Y) \ | {Z €Y: Z ¢ Na, (Y1)}
U {Z €Y: Z # Y, diam(Z) > %diam(Y,)}.

Observe that nullness of Y has the following consequences. First, the union
NHZ €Y: Z # Y, diam(Z) > % diam(Y;)} is finite, and hence it yields a closed
subset of Y. Second, the set

(2 ey: 2 ¢ Noy v\ J(Z €Y: Z ¢ Ngy(V))}

(where the closure is taken in Y') is disjoint with Ng, (¥;). It follows that

Ur = Nay (") \ | {Z € Y: Z & Ny, (Y1)}

U {Z €Y: Z # Y, diam(Z) > %diam(Y,)}.
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In particular, Uy is an open neighbourhood of Y; in Y. Moreover, by conditions (2)
and (3) above, the family U; : ¢ € S; is acovering of Y\ Y;,. Obviously, the sets U,
are all Y-saturated. Thus, their images U] through the quotientmap ¥ — Y/Y form
an open covering of (Y /Y) \ {[Y,]} by the sets whose closures in (Y /Y) \ {[Y,]}
are compact (because their closures in ¥ /Y do not contain the point [Y;,]), and for
eacht € S; we have [Y;] € U/. By Lemma 2.A.4, there is a partition of the space
(Y/Y) \ {[Y4]} into subsets K;: t € S which are compact, open, and such that
for each ¢ we have [Y;] € K; C U/. Denoting by

q: Y \ Yy — (Y/D\A[Ysol}
the quotient map, we get the partition of Y \ Y;, into subsets
Li=q Y (K;):teS:
which are closed and open in Y and Y-saturated. It is not hard to see that for each
t € S; we also have

(pl) Y: C Ly;
(p2) L; C Ng,(Y;) and thus, since d; < diam(Y;),

diam(L;) < 3 diam(Y;);
(p3) each Z € Y contained in L; and distinct from Y; satisfies

1
diam(Z) < 3 diam(Y;).

We now proceed to the general inductive step of the construction. Suppose
that for some n > 1 and for all # € B, we have already chosen the subspaces Y; so
that the family Y, : ¢t € B, contains all of the subspaces Y7, Y, ..., Y, 4+1. Suppose
also that we have constructed a partition of the subspace ¥ \ U{Y,: u € B,_1}
into Y-saturated subspaces L;: t € S,, each open and closed in Y, such that, for
eachtr € S,

(p1*) Y, C Ly
(p2*) L; C Ng,(Y;) and thus diam(L,;) < 3 diam(Y;);

(p3*) each Z € Y contained in L, and distinct from Y; satisfies

1
diam(Z) < 3 diam(Y;).
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For each ¢ € S, do the following. For each s € Etl choose Y so that
(t1) Ys C Ly \ Yy (then Yy C Ny, (Yr) and diam(Yy) <  diam(Y}));
(t2) if Yy42 C L, \ Y, then for some s € X!

Y = Ynio;

(t3) the family {Y;: s € X!} approximates Y;;
(t4) denoting by [to, U1, ..., Uy, s] the path in T from ¢, to s, if we put

ds = min (diam(Ys),
1
ng(Yn-i-ls Ys),

1
3_2dY(an Yun),

1
WdY(Yls Yul))v

then the family Ny, : s € X! covers L, \ Y; andforany Z € Y, Z C L, \ Y,
there is s € X! such that Z C Ny, (Y;) and diam(Z) < %diam(Ys).

This can be done in a way similar as described above (for the family Y, : ¢ € Sy).
Moreover, since the quotient space L;/{Z € Y: Z C L,} is homeomorphic to
the Cantor space (because it is an open and closed subspace of Y /Y), arguing as
above with the help of Lemma 2.A.4, we obtain a partition of L; \ Y; into a family
of subsets L;: s € Etl which are closed and open in L; (and hence also in Y),
Y-saturated, and such that Yy C Ly C Ny, (Ys) foreachs € X ,1 Moreover, for
each such s condition (p3*) holds with s substituted for ¢.

By the above inductive construction, we get an injective map u — Y, from
Vr to Y, which is also surjective due to condition (rl) (which follows from condi-
tion (t2)). This map is thus a labelling of Y, i.e. condition (L1) of Definition 2.D.1
holds. Moreover, since conditions (rl) and (r2) are fulfilled due to (t2) and (t4),
Claim above ensures that this labelling satisfies condition (L2). Condition (L3)
holds by (t3). It follows fairly directly from (tl) and from the construction and
properties of sets L that for each ¢ # 7o we have H; C L,. This easily implies
condition (L6), and in view of (p2*) it also implies (L5). The argument as in
Step 4 of the proof of Proposition 2.D.2 shows that in fact for each ¢ # t, the
subspace H; coincides with L;, thus being open and closed in Y, which justifies
condition (L4). Hence, the construction above yields a T-labelling for Y, which
completes the proof. U
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3. Properties of the operation of dense amalgam

In this section we derive, using the construction and the characterization, various
properties of the operation of dense amalgam. In particular, we justify Proposi-
tion 0.1 of the introduction.

Start with observing that part (1) of Proposition 0.1 (which yields commutativ-
ity of the dense amalgam) follows by the definition of Li(X1, ..., X;), as given at
the end of Section 1.

We next pass to part (3) of Proposition 0.1. We will show the following result,
which obviously implies the statement of part (3), but in fact it is easily seen to be
just equivalent.

3.1. Proposition. Let X1,..., X; be any nonempty metric compacta, and let
My, ..., My, be the pairwise non-homeomorphic spaces representing all home-
omorphism types appearing among X1, ..., Xg. Then

O(X1,...,Xx) =0My, ..., My).

Proof. In view of the characterization given in Theorem 0.2, and proved
in Section 2, it is sufficient to show that the space ¥ = O(X1,..., Xg) is
(M, ..., My,)-regular. Let Y be an (X,..., Xg)-regularizing family for Y. It
is partitioned into subfamilies Y;: 1 < i < k so that conditions (al)—(a5) of
the introduction hold. For each i € {1,...,k} let m(i) be this index for which
X; is homeomorphic to M,,;). We define a new partition of Y, into subfamilies
H}: 1 < j < m, putting H} = U{Y;:m() = j}foreach j € {1,...,m}. Adirect
verification shows that Y equipped with this new partition is an (M1, ..., My,)-
regularizing family for Y, which completes the proof. U

To deal with the remaining parts of Proposition 0.1, we will need the following
auxiliary result, which follows fairly directly from the construction of the dense
amalgam, as described in Section 1.

3.2. Lemma. Let Y be an (X1,..., Xy)-regular space, with (X1, ..., Xy)-regu-
larizing family Y, and let Z €Y. Suppose that Z is not connected, and let A1, A»
be nonempty open and closed subsets of Z forming its partition. Then there is a
partition of Y into open and closed subsets Hy, Hy such that

(1) A1=HlﬂZandA2=H2ﬂZ;

(2) each subset W € Y\ {Z} is contained either in Hy or in H,.
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Proof. We may assume that ¥ = 0(Xy,...,X;), and we identify it with
( I—lteVT X,) LaT, asin Section 1, where each X, is homeomorphic to X, U- - - Xk.
Under this homeomorphism, we express each X; as X; = X, U---U Xy ;, where
Xi: = X;. We then identify Z with a subset X;;, for some r € V7 and some
1 <i < k. We extend the partition of Z = X; , into subsets A;, A, first to a parti-
tion of X, into A} = A; and A, = X\ 41, and then to a partition of the peripheral
extension X, into open and closed subsets Ay, A}. Putting H; := D(t, A}), for
i = 1,2, we get a partition of Y as required, which completes the proof. O

We now turn to proving parts (2), (4), and (5) of Proposition 0.1.

Proof of Proposition 0.1(2). In view of the characterization of dense amalgams
given in Theorem 0.2, it is sufficient to show that the space

Y =0(Xq, ..., Xi—1, U(Xi, ..., Xz)

is (X1,..., Xg)-regular. We start with describing a natural candidate for an
(X1, ..., Xp)-regularizing family Y*. We refer to the identification (as presented
in Section 1) of Y with the space (|_| tevy X ,) LI dT, where each X, is homeomor-
phic to the space

XiU---U X1 U8,

with
Q=0Xi,..., Xp).

We realize each such homeomorphism as
Xe=Xlu---uXx/_,uQ.

We also identify each * with the space (I—lseVT, X ,,s) U T, where Ty is a sep-
arate copy of the tree T, and where each X; s is homeomorphic to X; L --- U Xk,
which we write as

Xes =X U0 X’
Now, for each j € {I,...,i — 1} we put
Y= {Xj:teVr},
and foreach j € {i,i + 1,...,k} we put

Yr = {X]t.’s: teVr,s ey}
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Verification that the so described family

k
g =Y
=1

J

satisfies conditions (al)-(a4) of an (X4, ..., Xi)-regularizing family is straight-
forward, and we skip it. Verification of condition (a5) is a bit more involved.
Let x, y be two points of ¥ not belonging to the same set of Y*. We need to
separate x from y by a Y*-saturated open and closed subset of Y. To do this, one
needs to consider several cases of positions of x and y. We verify the statement in
the case when for some 7y € V7, some sp € Vr,,andsome j € {i,i +1,...,k} we
have x € X;O’SO and y € 07%,. (The arguments in the remaining cases are similar,
and we omit them.)
Consider the family

létO = {Xt(),s: s € VTtO}v

which is the canonical (X;, ..., Xi)-regularizing family for Q%, as indicated at the
end of Section 1. By condition (a5), there is a partition of Q' into open, closed
and Y’ -saturated subsets A, A, such that x € Ay and y € A,. Consider then the

family
i-1

Y= (U{X}:zeVT})u{Q‘:zeVT},

j=1

which is the canonical (Xi,..., X;—1, Q2)-regularizing family for Y. By Lem-

ma 3.2, there is a partition of Y into open and closed subsets H;, H» such that
A; = H; N Qo fori = 1,2,

and each subset of Y \ {270} is contained either in H; or in H,. Since the subsets
H; are clearly Y*-saturated, and since x € H; and y € H,, the assertion follows
in the considered case, which completes the proof. U

Proof of Proposition 0.1(4). Let
Y =0(X1,..., Xk, 0).

In view of Theorem 0.2, it is sufficient to show that Y is (Xy,..., X)-regular.
Let Y be the canonical (X1, ..., Xk, Q)-regularizing family for Y, as described at
the end of Section 1. More precisely, viewing ¥ as (|],cy,. X;) U 9T, with each
X; homeomorphic to X; Ll --- U X U Q, which we write as

X=X, U---U Xy, UQy,
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we have
k
Y= (l_l{Xi,ti t e VT}) u{Q;:t eVr}.
i=1
As a natural candidate for an (X1, ..., X)-regularizing family for ¥ we take
k
Y =]
i=1

with

Y, ={Xis: t € Vr}.

We need to check conditions (al)—(a5) for Y’. The only one for which the verifi-
cation is not straightforward is condition (a5). The only problematic case is when
we consider points x,y € Qy, for some ty € Vr (which no longer belong to the
same set of Y'). Since Q,, (being homeomorphic to Q) is totally disconnected,
we may choose its partition into open and closed subsets A1, A, such that x € A,
y € A,. Then, applying Lemma 3.2 to the family Y and to Z = Q,,, we get
partition of Y into open and closed subsets H;, H, which are Y'-saturated. Since
obviously we have x € H; and y € H,, the proof is completed. |

Proof of Proposition 0.1(5). We refer to the characterization of the Cantor space
C as the compact metric space which is totally disconnected and has no isolated
points. Since the arguments are standard and similar to the previous ones, we only
sketch them.

The amalgam Li(Q) is compact and metrizable by the argument provided in
Section 1 for all dense amalgams. It has no isolated points by conditions (a3)
and (a4) (this is again true for any dense amalgam). Finally, (i(Q) is totally dis-
connected due to condition (a5), and by total disconnectedness of Q combined
with Lemma 3.2. We omit further details. O

4. E Z-boundaries for graphs of groups

This section is devoted to the proof of Theorem 0.3(1). More precisely, given a
non-elementary graph of groups G with finite edge groups, and with vertex groups
equipped with EZ-boundaries dG,, we show that the model of EZ-boundary for
the fundamental group of G constructed by Alexandre Martin in [12] is homeo-
morphic to the dense amalgam of the boundaries dG,.
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4.1. Graphs of groups. We recall basic terminology and notation concerning
graphs of groups, referring the reader to [18] for a more complete exposition.
We consider graphs Y with multiple edges and loop edges allowed. We denote by
Vy the set of vertices, and by Oy the set of oriented edges of Y. Given a € Oy,
we denote by «(a) and w(a) the initial and the terminal vertex of a, respectively.
For a € Oy, we denote by a the oppositely oriented edge, and by |a| the nonori-
ented edge underlying a. The set of nonoriented edges of ¥ will be denoted |O|y .

4.1.1. Definition. A graph of groups over a graph Y is a tuple
G =({Gy:veVy},{Ge:e €0y}, {ia: a € Oy}),
where G, and G, are groups, and iy : G|4] — Gy(q) are group monomorphisms.

Given a graph Y, we denote by Y’ its first barycentric subdivision. For any
a € Oy, we denote by a™ the nonoriented edge in Y’ which connects the barycen-
ter of |a| with the vertex w(a). Thus, the set of nonoriented edges of Y is exactly
{at:a € Oy).

4.1.2. Definition. Let G be a graph of groups over a graph Y, and let E be
maximal tree in Y’. Consider the set of symbols S = {s,: a € Oy,a* ¢ E
The fundamental group

G =m(§, E)
is the group
G = ((*vevy Gv) * (*eelo|y Ge) * Fs)/N,

where Fg is the free group with the standard generating set S, and where N is the
normal subgroup of the free product

(*veVy Gy) * (*eelOly G.) * Fs
generated by the elements
g tig(g):at CE,g € Gy

and the elements
s lig(g)sa:at ¢ B, g e Giq|-

Since we have canonical injections of the groups G, G, and Fs in G, we will
often identify elements of these groups as elements of G.
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4.1.3. Definition. Given a graph of groups § over Y, and a maximal subtree
E CY', the Bass—Serre tree X = X (G, E) is described as follows:

o Vx = |lyer, (G/Gy) x{v} and Ox = | |;c0, (G/Glq)) x {a};
® (gGlap.a) = (gGyq. a);
(&G w(a) w(a)) ifat C B,
* 0((gGal-a)) = .
(g5;'Gw(a), w(a)) ifat ¢ B.
The Bass—Serre tree X comes equipped with the G-action (for G = 7;(G, E))
given by
h-(gGy,v) = (hgGy,v)
and
h-(gGial.a) = (hgGial, a).

It is well known that X = X(G, E) is indeed a tree, and G acts on X without
inversions and so that the vertex and edge stabilizers are as follows:

Stabg ((gGy. v)) = gGrg ™
and

Stabg ((¢Gla|» @) = gGlaig™".
There is also a canonical nondegenerate map
n: X —Y
given by
((gGy,v)) = v

and

7((gGal,a)) = a,
which is G-invariant (i.e. G-equivariant with respect to the trivial action of G

onY).

4.1.4. Remark. A bit more geometric description of the Bass—Serre tree
X = X(9, E) (or description of its geometric realization) goes as follows.
For each a € Oy, let 7, be a nonoriented edge with its two associated oriented
edges 7, and T, = 73, and suppose that its endpoints «(z,) and w(z,) are distinct.
View 7,4 as a topological space homeomorphic to a segment. Put

x=( | ©/6%z)/~

e€|Oly
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where ~ is induced by the equivalences (gG|q|, @(7a)) ~ (&' G|q|, @(74)) for the
following triples (a, g, g’) € Oy x G x G:

0]

e at C
eat ¢
The (geometric) edges of X are then the images through the quotient map of

the relation ~ of the sets gG, x 7., and we denote them [gG,, t.]. Similarly, the
vertices of X are the equivalence classes of points (gG 4|, @(74)), which we denote

[gGIaI’a)(Ta)]'

and g7'g’ € Gya);

]

and g7'g’ € 5,1 Go(a)Sa-

We now pass to discussing a not quite standard concept of a non-elementary
graph of groups, which appears in the statement of Theorem 0.3. An oriented edge
a € Oy in a graph of groups § = ({Gy}, {G.}, {is}) over Y is trivial if it is not a
loop and if iy : G|g) = G(e) is an isomorphism. Given a trivial edge a, we define
a new graph of groups §' by contracting the edge || in Y to a point (denoted v|,)),
thus getting a new graph Y’, and by putting

G/ = Ga(a),

Yja|

while leaving the groups and maps unchanged at the remaining vertices and edges.
The resulting graph of groups G’ has the same fundamental group as G, and we say
that it is obtained from G by an elementary collapse. A graph of groups with no
trivial edge is said to be reduced. Obviously, any graph of groups (over a finite
graph) can be modified into a reduced graph of groups by a sequence of elementary
collapses.

4.1.5. Definition. A graph of groups G over Y is simply elementary if it has one
of the following three forms:

e Y consists of a single vertex, and has no edge;

e Y consists of a single vertex, v, and a single loop edge, |a|, and the maps
iq, 15 are both isomorphisms;

e Y consists of a single edge, |a|, with two distinct vertices «(a), w(a), and
the images of both maps i,, iz are subgroups of index 2 in the corresponding
vertex groups.

A graph of groups over a finite graph is non-elementary if, after modifying it
to a reduced graph of groups by elementary collapses, it is not simply elementary.

We will need the following property of non-elementary graphs of groups.
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4.1.6. Lemma. Letr G be a non-elementary graph of groups over a finite
graph Y, and assume that all edge groups in G are finite. Let X = X(9, E) be the
Bass—Serre tree of G.

(1) Foreachv € Vy with infinite vertex group G, thereis a € Oy witha(a) = v
such that any lift of a to X (through ) separates X into two subtrees, each
of which contains lifts of all vertices of Y.

(2) If all vertex groups of G are finite then X is an infinite locally finite tree, and
there is v € Vy such that any lift of v to X splits X into at least three infinite
components.

Proof. To prove part (1), fix a vertex v € Vy for which G, is infinite. We first
claim that v has more than one lift in X. If this were not the case, the unique lift
v of v would be fixed by all of G = 71(9, E). Hence we would have G, = G,
and this could only happen if § was reducing to a graph of groups over a single
vertex, contradicting the assumption that G is non-elementary.

Now, fix two distinct lifts vy, v, of v in X, and let a be the first oriented edge
in X on the unique path from v; to v,. We claim that its projection

a:=mn(a)

is as required. Indeed, since any edge in Y starting at v lifts to infinitely many
edges in X starting at v,, for each vertex u € Vy there is its lift & in X such
that v, lies on the path in X from v; to #. This shows that the subtree of X ob-
tained by splitting at @ and containing v,, contains also lifts of all vertices of Y.
The other subtree obtained by the same splitting contains lifts of all vertices of
Y by a similar argument. For other lifts of a the assertion is true by transitiv-
ity of G on the set of all these lifts, and by G-invariance of the projection .
This completes the proof of part (1).

To prove part (2), note that X is obviously locally finite. Moreover, X is in-
finite since the fundamental group of any reduced not simply elementary graph
of groups is infinite. To prove existence of a vertex v as required, note that exis-
tence of such v is clearly preserved by elementary collapses. Thus, it is sufficient
to prove it in the case of reduced graphs of groups §. For a reduced graph of
groups G, any vertex splits the Bass—Serre tree X into as many infinite components
as the valence of this vertex. Thus, it is sufficient to show that if G is reduced and
non-elementary, then the Bass—Serre tree X has a vertex with valence at least 3.
Itis not hard to see that if G is reduced and non-elementary (i.e. not simply elemen-
tary), then the underlying graph Y contains a vertex v with one of the following
properties:
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e there are at least two oriented edges in Y starting at v;

e thereis an oriented edge a terminating at v such that the index of the subgroup
ia(Glq)) < Gy is at least 3.

In any of these two cases lifts of v in X have valence at least 3, which finishes
the proof. U

4.2. E Z-structures. For completeness of the exposition, we recall the notions
of EZ-structure and EZ-boundary of a group. A slightly weaker version of this
concept, called Z-structure, is due to Bestvina [1]. A generalization for groups
with torsion was introduced by Dranishnikov [9]. Farell and Lafont [10] stud-
ied an equivariant analogue, which applied only to torsion free groups. The con-
cept presented below generalizes all these approaches, and it has appeared in this
form in Martin’s paper [12] (while its slightly stronger version was studied by
Rosenthal [17]). The concept of EZ-boundary unifies and generalizes the notions
of Gromov boundary, CAT(0) boundary, and systolic boundary (as introduced
in [14]). Existence of an EZ-structure for a group G implies that G satisfies the
Novikov conjecture.

4.2.1. Definition. An EZ-structure for a finitely generated group G is a pair
(E, Z) of spaces (with Z C E) such that

e E is a Euclidean retract (i.e. a compact, contractible and locally contractible
space with finite covering dimension; such a space is automatically metriz-
able);

e £\ Z is a cocompact model of a classifying space for proper actions of G
(i.e. a contractible CW-complex equipped with a properly discontinuous co-
compact and cellular action of G, such that for every finite subgroup
H < G the fixed point set (E \ Z)# is nonempty and contractible);

e ZisaZ-setin E (i.e. Z is a closed subspace in E such that for any open set
U C E the inclusion U \ Z — U is a homotopy equivalence);

e compact sets fade at infinity, that is, for every compact set K C E \ Z,
any point z € Z, and any neighbourhood U of z in E, there is a smaller
neighbourhood V' C U of z such that if a G-translate of K intersects V' then
itis contained in U this is equivalent to requiring that the set of G-translates
of any compact K C E \ Z is a null family of subsets in E;

e the action of G on E \ Z extends continuously to E.
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An EZ-boundary for G is a space Z appearing in any EZ-structure (E, Z)
for G.

To keep track of the relationship to G, we will usually denote an EZ-structure
for G as (EG,dG), and the corresponding classifying space EG \ dG simply
as EG.

In the statement of Theorem 0.3(1) we refer also to a stronger concept of the
boundary, as defined below.

4.2.2. Definition. An EZ-structure (E, Z) is strong in the sense of Carlsson—
Pedersen if for each finite subgroup H < G the fixed point set Z ' is either empty
ora Z-setin E¥ . An EZ-boundary strong in the sense of Carlsson—Pedersen for
G is a space Z appearing in any E Z-structure (E, Z) for G strong in the sense of
Carlsson—Pedersen.

The above concept strengthens slightly, in a natural way, the concepts appear-
ing in the works of Carlsson and Pedersen [3], as well as Rosenthal [17]. It has
appeared in Martin’s paper [12], where it turned out to be natural from the point
of view of the combination theorem being the main result of that paper.

4.3. An E Z-structure for a graph of groups with finite edge groups. Let G
be a graph of groups as in Theorem 0.3(1), over a finite graph Y. It means that
all edge groups G, in § are finite, and each vertex group G, is equipped with an
EZ-structure (EG,, 3G,). In this subsection we briefly recall the construction of
an EZ-structure (Ep G, dp7G) for the fundamental group G = 7,(S, E). This is
a rather special case of a much more general construction presented by Alexandre
Martin in [12]. Our description is adapted to the case under our interest.

Apart from the EZ-structures (E_Gv, dGy), as initial data for the construc-
tion we need the following: for each oriented edge @ € Oy we choose a point
Pa € EGg(q) which is fixed by the subgroup i,(G\4)) < Gu(q). Note that the sub-
group i, (G|q)) is finite, and hence its fixed point setin £ G, is not empty, which
justifies existence of p,. The tuple of data ({( EG, 0Gy): v € Vy Y, {pa: a € Oy})
as above is an example of an EZ-complex of classifying spaces compatible with G,
see Definitions 2.2 and 2.6 in [12].

We first describe a cocompact model Ej G of a classifying space for proper
actions of G. As in Remark 4.1.4, for each a € Oy, let 1, be a nonoriented
edge with its two associated oriented edges t, and 7, = 15, and suppose that its
endpoints a(z,) and w(t,) are distinct. View 74| as a topological space homeo-
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morphic to a segment. Put

b= [ (L 6)u (L =)/~

veVy e€lOly
where the equivalence relation ~ is induced by the following equivalences:
e (gh,x)~(g,hx)forallg e G,ve Vy,x € EG, and h € Gy;
o (gh,y)~(g,y)forallg e G,e € |0|y,y € to and h € Gg;
e (g,pa) ~(g.w(a)) € G xty forallg e Gandalla € Oy:a™ C E;
e (g5;', pa) ~ (g.w(@) € G x 1y forallg e Gandalla € Oy: at ¢ E.
The action of G on Ep G is induced by

h-(g,x) = (hg, x)

forany x € (|l,cy, EGv)U(Lecjo), Te) andany g,k € G. This is a specification
of the construction from Section 2 in [12]. Theorem 2.4 in the same paper asserts
that Ejs G is indeed a cocompact model of a classifying space for proper actions
of G (which also can be easily seen directly in this rather special case).

In addition to the above, we have a continuous G-equivariant map

p: EMG — X(G,EB)
to the Bass—Serre tree, induced by

p((g,x)) = (gva U), fOI'.X S EGU,
and by
r((g. ) = (&G, ¥) €{8Ga)} X Ta» foOry € 11,

where in the last expression we refer to the description of X = X(9, E) as in
Remark 4.1.4.

Note that for each vertex ¢ € Vx the preimage p~!(¢) is a subspace of Ep G
which is an embedded copy of E G (). This subspace will be denoted E G, which
nicely interplays with the following. If we denote by G, the subgroup of G sta-
bilizing the vertex ¢, then E G, is invariant under G;, and it is a classifying space
for proper actions for G;.

Note also that for an edge ¢ = [gG\4), 7)q)] Of X, denoting by &° its geo-
metric interior, the closure in Ep G of the preimage p~!(¢°), denoted p~1(g°),
is an embedded copy of 7|,|. We call each set of this form a segment in EyG.
The endpoint of this segment, which projects through p to t = [gG4|, @(7a)],
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belongs to the subspace EG;, and we call it the attaching point of the segment
p~1(¢°) in the subspace EG,. Observe also that p establishes a bijective corre-
spondence between the nonoriented edges of X and the segments of form p=1(&°)
as above. We will call the segment p~1(g°) in Ep G the lift of the edge € of X.

We now pass to the description of a set dsipG, Which is a part of dyG.
This is the specialization to our case of the construction given at the end of
Section 2.1in [12]. Put

IsunG = (G x (] 96.))/ ~

velVy

where ~ is induced by the equivalences (gh, x) ~ (g, hx) forall g € G, v € Vy,
x € G, and h € G,. The action of G on dg,p G is given by acting from the left
on the first coordinate. We also have the G-equivariant projection

PStab: 0stabG —> Vx

induced by
Pstab((g. X)) = (g.v)

for all v € Vy and all x € dG,. For any vertex ¢ € Vy, the preimage Ps_ulib([) is
G;-invariant and has a (unique up to G;-action) identification with the boundary
G (). We denote this preimage by dG;. The union EG, := EG, U 3G, has a
(unique up to G,-action) identification with EG ;. Under the topology induced
from this identification, the pair (EG¢,3G,) is an E Z-structure for G;.

A third ingredient in the description of the EZ-structure (Ep; G, dp/G) is the
set X of ends of the Bass—Serre tree X = X(9, E). More precisely, this is the
set of equivalence classes of infinite combinatorial rays in X for the relation of
coincidence except at possibly some finite initial parts. The action of G on X
induces the action on dX. We then put

omMG = 0stapG LU OX and EnG := EpG U ING.
The union of the maps p, psib and the identity map on dX gives the map
p: EMG — X U0X

which is G-equivariant. Moreover, for each vertex ¢ € Vy, the preimage (p)~!(¢)
coincides with EG;.
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We now recall the topology in EpG, as described in Section 6 of [12].
In fact, we are interested only in the restricted topology in the boundary dp G,
so we recall only this part of the information. We do this by describing, for any
point z € djr G, a basis of open neighbourhoods of z in dp G.

Fix a vertex 7y in the Bass—Serre tree X. If z € dX, for any integer n > 1 let
X (2) be the subtree of X spanned on all vertices ¢ € Vx for which the path in X
connecting ¢ to ¢ has the same first n edges as the infinite path in X from ¢ to z.
Denote by d.X,,(z) the set of ends in this subtree, viewing it canonically as a subset
of 0X. Put V,,(z) := pgullb(VXn (z)) U 0X,,(2). As a basis of open neighbourhoods
of z in dG take the family of sets V},(z) for all integer n > 1.

If z € dstabG, let ¢ be the vertex of X such that z € dG,. Let U be an open
neighbourhood of z in EG; (for the topology induced from the identification with
EGy()). Put Vir to be the set of all elements u € 93, G with p(u) # ¢ and such that
the geodesic in X U dX from ¢ to p(u) starts with an edge ¢ which lifts through
p to a segment in E3 G whose attaching point in EG; belongs to U. Put then
Vy(z) := U U Vy. As a basis of open neighbourhoods of z in 9y G take the
family of sets Vi (z), where U runs through some basis of open neighbourhoods
of z in EG;.

4.4. Proof of Theorem 0.3(1). Part (1) of Theorem 0.3 is a direct consequence
of the following property of EZ-boundaries dps G described in the previous sub-
section.

4.4.1. Lemma. Under assumptions of Theorem 0.3(1),
MG = 0(3Gy,, ..., 0Gy,).

Proof. Let G be a graph of groups as in Theorem 0.3(1), and let d) G be the
EZ-boundary of the fundamental group G = 7x1(9, E), as described in the
previous subsection. Consider first the special case when all vertex groups Gy,
are finite. It follows from the definition of an EZ-structure that the boundaries
dG,, are then all empty. Thus, by our convention, we have that the amalgam
U(0Gy,, ..., 3Gy, ) is then the Cantor space C. On the other hand, the bound-
ary dyp G reduces in this case to the part 0X. By Lemma 4.1.6(2), X is then an
infinite uniformly locally finite tree such that the set of vertices splitting it into at
least three infinite components is a net in X (i.e. there is D > 0 such that every
vertex of X remains at combinatorial distance at most D from a vertex in this
set). A straightforward argument shows that dX, with the topology described in
the previous subsection, is then homeomorphic to the Cantor space C. Thus the
theorem follows in the considered case.
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We now pass to the case when at least one vertex group is infinite. Recall that,
by definition, an £ Z-boundary of a group (if exists) is nonempty if and only if the
group is infinite. Without loss of generality, suppose that for some m € {1,...,k}
the vertex groups Gy, ..., Gy,, are infinite, while the remaining ones are finite.
Since the boundaries dG,; for j > m are empty, by our convention we have
U(0Gy,,...,3Gy,,,...,0Gy,) = 0(3Gy,, ..., 3Gy, ). Thus we need to show that
dym G is homeomorphic to J(dGy,, . .., 3Gy, ).

By definition of £ Z-boundary (Definition 4.2.1), dps G is compact and metriz-
able. Using the notation introduced in the previous subsection, define a family
Y=Y, U---UY,, of subsets in dys G as follows. For eachi € {1,2,...,m} put
Y; = {0G,: t € Vx,n(t) = v;}. In view of Theorem 0.2, it is sufficient to show
thatY is a (0Gy,. ..., 0G,,,)-regularizing family for dps G. Thus we need to check
conditions (al)—(a5) of the introduction.

Recall that the topology in the subspace dG; induced from that in ds G coin-
cides with the topology provided by the identification of dG; with dG (;) (compare
Proposition 6.19 in [12]). Thus, each subset G, is an embedded copy of G (),
which verifies condition (al).

To check condition (a2), i.e. nullness of the family Y, we need to show that
for each open covering U of dps G there is a finite subfamily A C Y such that for
every Z € Y \ A there is U € U that contains Z. Obviously, without loss of
generality we may assume that U is finite and consists of sets from bases of open
neighbourhoods of points. Suppose that

U= {Vy,(z1).-... VU, (2p). Va, (2]). ..., Vi, (2) ).
It is not hard to see that the above property holds for U with
.A == {aGp(Zl), ceey aGp(Zp)}.

We omit further details.

To check (a3), choose any Z € Y, i.e. a subset dG, for some vertex ¢ of X
such that 7(¢) = v; and i < m. Choose also any point z € dG,, any open
neighbourhood U of z in EG;, and consider the associated open neighbourhood
Vi (z) from the local basis at z in dps G, as described at the end of Subsection 4.3.
We need to show that V7 (z) contains a point of dps G \ 9G;.

Recall that we denote by G; the subgroup of G stabilizing ¢, and that this
subgroup is isomorphic to G,,, and hence it is infinite. Moreover, the pair
(EG,,dG,) is an EZ-structure for G;. Since G is non-elementary, it follows from
Lemma 4.1.6(2) that some edge ¢ of X adjacent to ¢ splits X into subtrees con-
taining lifts of all vertices of Y. Let t = p~1(&°) be the segment of Ejs G which
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is the lift of ¢, and let x be the attaching point of t in £G;. Since, by definition of
an EZ-structure, compact subsets of £G, fade at infinity, we get that there is x’
in G;-orbit of x such that x’ € U. This x’ is the attaching point in EG, of another
segment t/ of EpG. By G-equivariance, the image
e 1= p(t)

is a different from ¢ edge of X adjacent to ¢ that splits X into subtrees containing
lifts of all vertices of Y. Let s be a vertex of X which is a lift of vy, and which after
splitting X at ¢’ belongs to the other component than 7. By definition of Vi (2),
we see that dG; C Vy(z). Since 0Gy # @ (because dGs = dG,,, and Gy, is
infinite), this completes the verification of (a3).

The argument in the previous paragraph shows in fact that for each
i € {l,...,m} any point of dg,,G belongs to the closure in dps G of the subset

U Yi = Ps_t;lib(”_l (vi))-

To check condition (a4), i.e. that UY; is dense in dp; G, it remains to show that
any point of dX also belongs to the closure of UY;. Let z € X, and let V,,(z) be
a neighborhood of z in d) G which belongs to a local basis at z, as described at
the end of Subsection 4.3. Let D be the combinatorial diameter of the graph Y,
and let u be the vertex on the infinite path in X from ¢ to z, at distance n + D
from #9. Let s be a vertex of X which is a lift of v; lying at combinatorial distance
< D from u (by definition of D, such s always exists). Observe that s € Vy, (;),
and hence 0G; = ps_t}lb(s) C Va(z). Since 0Gy # @ (because 0G5y = 3Gy,),
this completes the verification of condition (a4).

To check condition (a5), we make the following two observations, the direct
proofs of which we omit. First, note that for any z € dX, any set V,,(z) from the
local basis at z is both open and closed in d)sG. Second, observe that any two
points of dps G not contained in the same set Z € Y (i.e. in the same set dG; for
any t € p~'({v1....,vm})) can be separated from each other by some set V,,(z),
for appropriately chosen z and n. This completes the verification of condition (a5),
and thus completes the proof. O

5. Gromov boundaries and CAT(0) boundaries

In this section we prove parts (2) and (3) of Theorem 0.3. It is not hard to give
direct proofs of these results, by referring to the characterization of dense amal-
gams provided in Theorem 0.2. However, we present shorter arguments, based on
properties of EZ-boundaries dys G constructed in Subsection 4.3.
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Gromov boundary and the proof of Theorem 0.3(2). We use the following
result of A. Martin (see Corollary 9.19 in [12]).

5.1. Lemma. Let G be a graph of groups satisfying the assumptions of part (2)
of Theorem 0.3. Let (PGy,,3G,;) be the EZ-structures for the vertex groups
Gy, provided by the compactifications of appropriate Rips complexes PG,,; by
means of Gromov boundaries 0G,, of these groups. Then the EZ-boundary 0y G
for G = m1(9) obtained from the above EZ-structures as in Subsection 4.3 is
G -equivariantly homeomorphic to the Gromov boundary of G.

Note that, under assumptions of the above lemma, it follows from Lemma 4.4.1
that
MG = 0(3Gy,, ..., 0Gy,).

Consequently, Theorem 0.3(2) follows from Lemma 5.1.

CAT(0) boundary and the proof of Theorem 0.3(3). Recall that if a group I'
acts geometrically (i.e. by isometries, properly discontinuously and cocompactly)
on a CAT(0) space W, and if W denotes the compactification of W by means of
its CAT(0) boundary W, then the pair (W, dW) is an E Z-structure for I

We work under assumptions and notation of Theorem 0.3(3). Let (EmG,dyG)
be the EZ-structure for G = m1(9) constructed as in Subsection 4.3 out of CAT(0)
EZ-structures (A;, 9A;). We make the following observations concerning this
EZ-structure.

5.2. Lemma. (1) The space Ep G carries a natural geodesic metric for which it
is CAT(0), and for which G acts on Ep G geometrically.

(2) The boundary 0p; G naturally coincides (as a topological space) with the
CAT(0) boundary 0Ex G (for the CAT(0) geodesic metric in Ep G as in part (1)).

Proof. To prove (1), note that Ej G is obtained from copies of the CAT(0)
spaces A;, and from copies of the segment, by gluing the endpoints of the seg-
ments to the appropriate attaching points in copies of A;. By putting at each seg-
ment the standard euclidean metric of length 1, we get on Ejs G the induced length
metric which is geodesic (see 1.5.26 in [2]). Since we perform the gluings along
singletons, which are obviously convex as subspaces, the successive application
of Basic Gluing Theorem II.11.1 in [2] shows that Ejs G with the above metric is
CAT(0). Obviously, with this metric G acts on Eps G by isometries. The action is
proper and cocompact by definition of EZ-structure.
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To prove part (2), choose a base point xo € Ep G as a point in some copy of
some A;. There are two kinds of geodesic rays in Ejs G starting at xo:

(a) those which pass through infinitely many segments;

(b) those which, after passing through finitely many segments, eventually coin-
cide with a geodesic ray in some copy of some A;.

We define a map
h: 8EMG e BMG

as follows. If & € dE) G is represented by a geodesic ray of kind (a) above,
note that the sequence of segments through which this ray successively passes
projects (through the map p described in Subsection 4.3) to a sequence of edges
in the Bass—Serre tree X which forms an infinite combinatorial ray p; denoting by
[p] € dX the end of X represented by p, we put (&) := [p]. If & is represented
by a geodesic ray of kind (b), its final part (which is a geodesic ray in some copy
EG; of some A;) induces a point z in the CAT(0) boundary of this copy (i.e. a
point in dG; C dsipG); we then put

h() :=z.
The so described map
h: 0Ey G — 0y G = s G U 0X

is easily seen to be a bijection. As both spaces dEp G and dp G are compact,
to finish the proof of (2) we need to show that 4 is continuous.

Recall (e.g. from I1.8.6 in [2]) that a point £ of the boundary of a CAT(0) space
W, represented by a geodesic ray yg started at a point xo € W, has a basis of open
neighbourhoods of form

U(ye.r.e) ={n € W : dw (ye(r). yn(r)) < e},

where r and ¢ run through arbitrary positive real numbers, y, is the geodesic
ray in W started at xo and representing n, and y,(r) is the point on y, at dis-
tance r from xo. Below we will make use of the sets of the above form U(yg, r, €)
for the space W = Ejp;G. Without loss of generality, we assume that the base
point xo € Ep G is chosen in the subspace E Gy, (which is a copy of some A;),
where ¢, is the base vertex in the Bass—Serre tree X, as fixed at the end of Sub-
section 4.3 (in the description of local bases of neighbourhoods for the topology
in dpr G). Let p = h(§) be any point of dps G, and V its any open neighbourhood.
We need to indicate an open neighbourhood U of £ in dE s G such that A(U) C V.
Clearly, we may restrict ourselves to the case when V' belongs to the basis of local
neighbourhoods at p, as described at the end of Subsection 4.3.
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We consider two cases. First, suppose that p = [p] € X C dp G, where p
is the combinatorial ray in X induced by a geodesic ray y in EpG of kind (a)
above; then y starts at xo and represents £. Let V = V() for some n > 1. Let x,
be the most distant from x¢ point on the n-th segment in £y G traversed by the
ray y, and let r = dg,, (X0, x,). It is then easy to see that U = U(y, r, 1) is as
required. We omit further details. In the second case, suppose that p = z € G,
for some vertex ¢ of the Bass—Serre tree X. Then £ is represented by the geodesic
ray y in Ep G started at xo, which eventually coincides with the geodesic ray y;
in EG; representing z and started at the attaching point x; of the segment through
which any geodesic ray started at xo enters EG;. Let r;, = dg,,6(xo, x;). Let
also V' = Vy(z) for some open neighbourhood U of z in EG,. By the descrip-
tion of the topology in the CAT(0) compactification EG; (see again I1.8.6 in [2]),
there are positive reals r and ¢ with the following property: for any geodesic ray
B in EG; started at x;, if dgg,(B(r), y:(r)) < & then for any r’ € (r,00] the
point B(r’) belongs to U (here, by 8(c0) we mean the point in the boundary rep-
resented by B). It is not hard to see that then the ball of radius ¢ in EG; centered
at ys(r +¢e) = y(r; +r + ¢) is also contained in U. From this, it follows fairly
directly that the set U = U(y, r; +r + ¢, ¢) is as required. This completes the proof
of the lemma. U

Now, since by Lemma 4.4.1 under our assumptions we have
aMG = D(E)AI, ey aAk),

Theorem 0.3(3) follows from Lemma 5.2 by putting A = EnG.

6. Systolic boundaries

In this section we prove part (4) of Theorem 0.3. In Subsection 6.1 we briefly recall
the definition and basic properties of systolic complexes and groups.
In Subsection 6.2 we construct the systolic complex ¥ appearing in the assertion
of Theorem 0.3(3), as appropriate tree of systolic complexes. In Subsection 6.3 we
recall the concept of systolic boundary. Finally, in Subsection 6.4 we prove Theo-
rem 0.3(4) by studying the systolic boundary of the earlier described complex X
in the light of the characterization of dense amalgams provided in Theorem 0.2.

6.1. Systolic complexes and groups. Systolic complexes have been introduced
in the paper by T. Januszkiewicz and the author [11]. These are the simply con-
nected simplicial complexes of arbitrary dimension that satisfy some local (com-
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binatorial) condition that resembles nonpositive curvature. A group is called sys-
tolic if it acts geometrically (i.e. by simplicial automorphisms, properly discon-
tinuously and cocompactly) on a systolic complex. It is shown in [11] that systolic
groups are biautomatic, and hence also semihyperbolic, and that they appear in
abundance in arbitrary (virtual) cohomological dimension.

We recall briefly the definition of a systolic complex. A simplicial complex is
flag if its any set of vertices pairwise connected with edges spans a simplex. A full
cycle in a simplicial complex is a full subcomplex isomorphic to a triangulation of
the circle S!. A simplicial complex is 6-large if it is flag and contains no full cycle
with less than 6 edges. A simplicial complex is systolic if it is simply connected
and its link at any vertex is 6-large. This simple definition describes spaces with
surprisingly rich geometric (but expressed in purely combinatorial terms) struc-
ture. One of the basic observations is that systolic complexes are contractible,
which is an analogue of Cartan-Hadamard theorem. We recall few further facts
that we need in the present paper. The first result below is due to Victor Chepoi
and Damian Osajda.

6.1.1. Theorem (Theorem C in [4]). Let H be a finite group acting by automor-
phisms on a locally finite systolic complex Y. Then Y contains a simplex which is
H -invariant.

The next result concerns existence of natural £ Z-structures for systolic groups.

6.1.2. Theorem (Theorem A in [14] and Theorem E in [4]). Let Y be a systolic
complex acted upon geometrically by a systolic group G. Then there is a compact-
ification Y = Y U Y such that the pair (Y, dY) is an EZ-structure for G.

The paper [14] by Damian Osajda and Piotr Przytycki contains construction of
a compactification Y as above, and the corresponding space 3T = T\ Y resulting
from this construction is the systolic boundary of Y, as appearing in the statement
of Theorem 0.3(4). It is shown in [14] that if a systolic group G is word hyperbolic
then its any systolic boundary (depending on the choice of a systolic complex on
which G acts geometrically) coincides with the Gromov boundary of G. Thus,
this notion naturally extends the concept of ideal boundary to the class of systolic
groups which are not word hyperbolic. In Subsection 6.3 we indicate the features
of systolic boundaries necessary for the proof of Theorem 0.3(4), and the proof
itself is provided in Subsection 6.4.

Recall from [16] the following natural notion and a related observation.
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6.1.3. Definition. A tree of systolic complexes is a simplicial complex T equipped
with a simplicial map p: Y — X onto a simplicial tree X satisfying the following.
For every vertex ¢ of X the preimage p~!(¢) is a systolic complex, and for every
open edge e° of X the closure in Y of the preimage p~!(e°) is a simplex.

6.1.4. Lemma ([16], Section 7). If p: Y — X is a tree of systolic complexes then
Y is itself a systolic complex.

6.2. Graphs of systolic groups and the construction of ¥ = X (G, E). In this
subsection, under assumptions of Theorem 0.3(4), we construct a systolic complex
¥ as asserted in the theorem. Verification that the systolic boundary 0% is home-
omorphic to the appropriate dense amalgam will be provided in Subsection 6.4.

Let G be as in the assumptions of Theorem 0.3(4), and let E be a maximal tree
in the first barycentric subdivision Y’ of the underlying graph Y of G. We use the
notation as in Subsection 4.1 concerning G and the associated objects.

For each a € Oy, fix an embedding

Ja: 0q —> 2:w(a)

of an abstract simplex o, onto some simplex of X, ) preserved by the restricted
action on X4 of the subgroup iy (Gg)) < Gu(q). Since the subgroup i, (Gq)) is
finite, existence of such an embedding is ensured by Theorem 6.1.1. We denote by
Ja ! the inverse isomorphism from the simplex j,(o,) to o,. For each a € Oy,
put

Kla| = Oq * 03

(i.e. the simplicial join of the simplices o,, 05). Consider the action of the group
G|q| on the simplex k|4 by simplicial automorphisms defined on vertices u by

g u:=j " (ia(g) jau)) foru € oq,
and
g-u:=j;'"(ia(g) - ja(w)) foru € ogz.

Put

2=26.8) =[x ((L] =ou( U =)~

velVy ec|0ly

where the equivalence relation ~ is induced by the following equivalences:
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(gh,x) ~(g,hx)forallg e G,v e Vy,x € Z,and h € Gy;

(gh,y) ~(g,hy)forallg € G,e € |O|y,y € ke and h € Gg;

(g, ja(y)) ~ (g.y) forall g € G, alla € Oy suchthata™ C E, and all
y €04 C Kla|»

(gs;1, ja(y)) ~ (g, y) forall g € G, alla € Oy such thatat ¢ E, and all
Yy € 0q CKlg|-

We denote by [g, x] the equivalence class under the relation ~ of an element
(g, %).

Observe that the above described space X carries a natural induced structure
of a simplicial complex. More precisely, the injective images in X (through the
quotient map provided by ~) of the simplices {g} x o in the copies {g} x X, or
{g} X k. yield the structure of a simplicial complex for ¥. We denote the image
simplices as above by [g, o].

> comes equipped with a simplicial projection map p: ¥ — X = X(G, E)
onto the Bass—Serre tree of §. This map is determined by its restriction to vertices,
which is described as follows: p([g, w]) = (gGy,v) for any v € Vy, any vertex
w € Xy, and any g € G. For any vertex t = (gG,, v) of X, the preimage p~!(¢)
is a subcomplex in ¥ isomorphic to ¥,, and we denote it 3,. Similarly, for any
geometric edge & = [gG|q|, Tq|] Of X, closure in T of the preimage p~'(&°) of its
interior &° is a simplex of X, naturally isomorphic with the simplex «|,|. We denote
this simplex by k.. As a consequence, p: ¥ — X is a tree of systolic complexes,
as in Definition 6.1.3, and hence, by Lemma 6.1.4, X is a systolic complex.

Consider the simplicial action of the fundamental group G = 7;(9, E) on £
which is described on vertices by & - [g, w] = [hg, w] for any v € Vy, any vertex
w € %,, and any g, h € G. This action is easily seen to be cocompact, as it is
not hard to indicate a finite set of representatives of orbits for the induced action
of G on the set of all simplices of . Moreover, the stabilizer of a vertex [g, w]
of X, where w is a vertex of X, for some v € Vy, coincides with the subgroup
g-Stabg, (w)-g~! < G (under the natural interpretation of G, as a subgroup of G).
Thus the vertex stabilizers of the action of G on X are all finite, and consequently
this action is geometric.

6.3. Systolic boundary of a systolic simplicial complex. We recall, mostly
from [14], the necessary informations concerning the concept of systolic bound-
ary. For more informations, the reader is referred to [14] and to Subsection 9.3
in [15]. Given a systolic simplicial complex Y, its systolic boundary 9T is defined
using the objects called good geodesic rays (introduced in Definition 3.2 in [14]).



458 J. Swigtkowski

For our purposes, we only need some properties of good geodesic rays, which we
recall below (see Lemmata 6.3.1 and 6.3.3), and here we only mention that they
are some special geodesic rays in the 1-skeleton of a systolic complex. As a set,
systolic boundary dY is then the set of all good geodesic rays in Y quotiented
by the equivalence relation of being at finite Hausdorff distance from one another
in Y ([14], Definition 3.6).

The following useful property follows immediately from Corollary 3.10 in [14].

6.3.1. Lemma. For any vertex O in a systolic simplicial complex Y, and any point
& € 07, there is a good geodesic ray r in Y started at O and representing §.

The next result follows fairly directly from the definition of a good geodesic
ray (as given in [14]) and from the structure of a tree of systolic complexes. We do
not present the details of a strightforward proof of this result, but only an outline.

6.3.2. Lemma. Let p: Y — X be a tree of systolic complexes, and let t be any
vertex in the tree X. Then any good geodesic ray in the systolic complex p~'(t) is
also a good geodesic rayin Y.

Sketch of proof. We outline the straightforward argument which justifies the

lemma, referring the reader to [14] for explanations of the notions appearing in

this argument (which are used in that paper to define good geodesic rays).
Obviously, the subcomplex

T, = P_l([)

is geodesically convex in T (for the natural geodesic metric in the 1-skeleton).
Consequently, any directed geodesic in Y; is also a directed geodesic in Y. Fur-
thermore, a surface spanned on a loop in T,(I) is minimal in Y} if and only if it is
minimal in Y (a surface in Y spanned on such a loop and not contained in Y; can
be easily shown to be not minimal). It follows that any Euclidean geodesic in Y}
is also a Euclidean geodesic in T. In view of the definition of a good geodesic ray
(Definition 3.2 in [14]), this completes the proof. O

Part (1) of the next lemma is a special case of Corollary 3.4 in [14], and part (2)
coincides with Lemma 3.8 in the same paper. Given a good geodesic ray r, we
denote by r(i): i > 0 its consecutive vertices. We also denote by d+q) the natural
polygonal metric in the 1-skeleton of Y.
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6.3.3. Lemma. There is some universal constant D > 0 satisfying the following
properties. For any systolic complex T and any two good geodesic rays ri,r»
in YO based at the same vertex O,

(1) for any integeri, j suchthat0 <i < j,

dyiy (r1(0). ra(0)) < 7 i (1 (). r2(j)) + D

(2) r1,r2 represent the same point in dY (i.e. they lie at finite Hausdorff
distance from one another) if and only if dvq) (r1(i), r2(i)) < D for all pos-
itive integers i.

We now pass to describing the topology of 0. To do this, we fix a vertex O
in Y, and we denote by R r the set of all good geodesic rays in Y started at O.
Note that, in view of Lemma 6.3.1, this set contains good geodesic rays represent-
ing all points of 9.

Following Section 4 in [14], the topology of 97 is introduced by means of
local neighbourhood systems (which consist of sets that are not necessarily open
in the resulting topology). More precisely, for each £ € Y we have a family Ng
of sets containing &, called standard neighborhoods of &, and the whole system
Ng: & € 07 satisfies some appropriate axioms. Open sets are described as those
U C 97 for which V& € U 30 € N such that Q C U. Moreover, each Q € Ng¢
contains some open neighborhood of the point £. Finally, standard neighborhoods
O € Ng¢ have the form

Q =Q(r,N,R)={nedY: forsomer' €[nNRor
it holds dT(l)(r(N), r/(N)) < R},

for any good geodesic ray r € [§] N Rp,r, and any positive integers N, R with
R > D + 1, where D is a constant as in Lemma 6.3.3, and where [] denotes the
equivalence class of good geodesic rays representing the point 5 (see Definition 4.1
in [14]).

It is shown in [14] that the above system of standard neighbourhoods satisfies
the appropriate axioms (Proposition 4.4), and that the resulting topology in Y
does not depend on the choice of a vertex O (Lemma 5.5).

Next result records basic properties of systolic boundaries (see Corollaries 5.2
and 5.4, and Propositions 5.3 and 5.6 in [14]).
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6.3.4. Lemma. (1) If a systolic complex Y is uniformly locally finite then its sys-
tolic boundary 07X is compact, metrisable and has finite topological dimension.

(2) A locally finite systolic complex has non-empty systolic boundary if and
only if it is unbounded.

Note that Lemma 6.3.4 applies in particular to systolic complexes acted upon
geometrically by a group.

A useful addition to the above description of topology in Y is the following
characterization of convergence.

6.3.5. Lemma. Let & and &,: n > 1 be points of Y, and let r and rp,: n > 1 be
good geodesic rays in Y, started at a fixed vertex O, representing these points,
respectively. Then the sequence (§,) is convergent to & if and only if for some
R > D + 1 the sequence

(max{i: dya)(rn(i),7(i)) < R})n>1

diverges to +oo0.

Proof. Tt follows from Lemma 4.3 in [14] that for any good geodesic ray r’ in Y
started at O and representing the same point & as r, to each N, R’ one can associate
N such that Q(r, N, R) C Q(r’, N, R). Thus, as a basis of neighbourhoods of
& it is sufficient to take the family Q(r, N, R): N > 1. The lemma follows then
directly from the definition of standard neighbourhoods Q given above. O

6.4. Proof of Theorem 0.3(4). Let ¥ = X(G, E) be the systolic complex
described in Subsection 6.2. We need to show that the systolic boundary 9% is
homeomorphic to the dense amalgam (1(0%1, . .., 3% ). Note that, under assump-
tions of the theorem, we obviously have that a group G, is finite if and only if the
associated complex ¥; is bounded, and, by Lemma 6.3.3(2), this happens if and
only if 0%; = 0.

Similarly as in the proof of Lemma 4.4.1, consider first the case when all
groups Gy, are finite. By our convention, we have that the dense amalgam
0(d%y,...,0%%) is then homeomorphic to the Cantor space C. By Lem-
ma 4.1.6(2), the Bass—Serre tree X is then infinite, locally finite and such that
the vertices which split X into at least 3 unbounded components form a net in X.
Moreover, the subcomplexes X, = p~!(¢) for the natural structure of a tree of
systolic complexes p: ¥ — X are uniformly bounded (because each such sub-
complex is isomorphic to one of the complexes X;). It is not hard to observe that
in such situation p establishes the natural bijective correspondence between the
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classes of good geodesic rays in ¥ and the ends of X, and that the systolic bound-
ary 0¥ has then the natural topology of X, and hence it is homeomorphic to the
Cantor space C. We omit further details and conclude that the theorem follows in
the considered case.

In the remaining case, after possibly permuting the indices, we have that for
some m € {1,...,k} the vertex groups Gy, ..., Gy, are infinite, while the re-
maining ones are finite. Since the boundaries 0X; for j > m are then empty, by
our convention we have 0(0%1,...,0%,,,...,05;) = U(0Z,...,0%,,). Thus
we need to show that 9% is homeomorphic to U(dX1, ..., d%,,). In view of The-
orem 0.2, and using the terminology introduced at the beginning of Section 2,

we need to show that 9% is (0¥, ..., d%,,)-regular.

We start with describing a family Y = Y; U --- U Y,, of subsets in 9%, and
then we show that it satisfies (the appropriate version of) conditions (al)—(a5) of
the introduction. Recall that for each vertex ¢ of X the subcomplex ¥, = p~!(¢)
is systolic, and consider the map ¢, : d¥; — 9% defined as follows. If r is a good
geodesic ray in X; representing a point £ € 93, it follows from Lemma 6.3.2
that r is also a good geodesic ray in X. Thus, it represents a point n € 9%, and
we put ((§) := n. Since X, is geodesically convex in X, the map ¢; is well
defined and injective. By referring to the characterization of convergence pro-
vided in Lemma 6.3.5, this also easily implies that ¢, is continuous. Since by
Lemma 6.3.4(1) the boundary 9%, is compact, it follows that ¢, is an embedding.

Recall that 7: X — Y is the canonical projection from the Bass—Serre tree to
the underlying graph of the graph of groups §. For eachi € {1,2,...,m} put

Yi = {u(0%,): 1t € Vx,w(t) = vi}.

We turn to verifying conditions (al)—(a5).

It follows from the construction of X that for each ¢ with 7 (¢) = v;, the sub-
complex X, is isomorphic to ¥;. Since each ; is an embedding, it follows that
the sets in each Y; are all homeomorphic to d%;. To complete verification of (al),
we need to show that for distinct vertices ¢, s € Vy the images ¢;(0%;), ts(3X;) are
disjoint. Let &, & be any points in the boundaries 0%, and 93, respectively. Let
r¢, rs be good geodesic rays in the complexes X;, X representing the points &; and
&, respectively. It is clear from the structure of a tree of systolic complexes for X
provided by the projection p that the Hausdorff distance between r; and r; in X is
infinite, and hence the points ¢;(&;), ts(§5) € 0¥ do not coincide. This finishes the
verification of (al).
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To check that the family Y is null (i.e. to verify condition (a2)), due to compact-
ness of 0%, it is sufficient to show the following property: let & be a convergent
sequence of points in 0% such that for each i there is t; € Vx with §; € 14;(0Z;),
and such that the vertices t; are pairwise distinct, then any other sequence of
points §/ such that &/ € ((Xy,) is also convergent in 0% (in fact, to the same limit
point as the sequence &;). To verify the above property, suppose that & — &. Let
r, r; and r] be good geodesic rays in X started at a fixed vertex O and represent-
ing £, & and &/, respectively. Consider first the case when § € (,(0X,) for some
t € Vx. It follows that, except for some finite initial part, r is contained in X,.
By the convergence criterion of Lemma 6.3.5 applied to the convergence & — &,
r; intersects X, for all i large enough. Moreover, since #; are pairwise distinct,
for all i large enough the rays r; exit the subcomplex X, after intersecting it. For
such i, let r;(j;) be the last vertex on r; belonging to X;, i.e. the vertex through
which r; exits ¥,;. By applying again Lemma 6.3.5 to the convergence & — &,
we conclude that j; — oo. Further, since both & and &/ belong to the same sub-
set ¢4, (0X,), it follows that for each i large enough the ray rl./ also intersects X,
and then exits it through some vertex x; which is at distance at most 1 from r; (j;)
(because both r; and r/ exit X, through the same simplex). By Lemma 6.3.3(1),
we get that ds)(r(j),7’(j)) < D + 1 for all j < j;. Consequently, applying
again Lemma 6.3.5 and the fact that j; — oo, we conclude that &/ — £. Thus the
property above follows in this case.

In the remaining case we consider & which does not belong to any subset
t;(0%;). Consequently, the ray r exits every subcomplex X, that it intersects.
Let (t4)n>1 be the vertices such that X;, are the consecutive subcomplexes inter-
sected by r. For each i, let n(i) be the largest n such that the ray r; intersects X, .
Since & — &, we deduce using Lemma 6.3.5 that n(i) — oo as i — oo. By the
fact that both & and &/ belong to t;, (0X,), we get that for each i the ray r; also
intersects ¥, ;. Since n(i) — oo, it follows by applying once again Lemma 6.3.5
that £ — &, which completes the verification of (a2).

To check condition (a3), we need to show that any subset Z = (,(d%;) is
boundary in d%. Fix any point £ € (,(d%;), and let » be a good geodesic ray
started at O and representing £. As we have already noticed before, the ray r is
then contained in X;, except possibly some finite initial part. We will construct a
sequence &, of points in 0% \ ¢,(dX;) which converges to . In the argument, we
use the notation of Subsection 6.2.

Denoting t = (gGy,,v;) for some i < m, we get that the subcomplex %; is
preserved by the subgroup gG,, g7 < G = 71(G, E). The restricted action of this
subgroup on X; is geometric (in particular, cocompact), because it is equivariantly
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isomorphic to the action of Gy, on X;. Leta € Oy be an oriented edge in the un-
derlying graph Y of G, started at v;, and satisfying the assertion of Lemma 4.1.6(1).
Denote by E, ; the set of all nonoriented edges of X which are the lifts of |a| under
the projection 7: X — Y, and which are adjacent to ¢. Denote also by S, ; the set
of all simplices in £, of form k, N X, : e € E, ;. The subgroup gG, g~ ! obviously
acts transitively on S, ;, and hence, by cocompactness of its action on X, there is
a constant Dy such that for each » sufficiently large (namely for those n for which
r(n) € X;) the vertex r(n) lies at the distance at most Dy from some simplex in
Sa.t, Say kg, N 2. For each edge ¢, as above, by referring to the assertion of
Lemma 4.1.6(1), choose a vertex ¢, in X such that

e 7(t,) = v; for some j < m (so that 3;, is unbounded, as being isomorphic
to Ej);

e the path from 7 to ¢, in X passes through the edge ¢,,.

Choose any point &, € (¢, (3%;,) (which exists due to Lemma 6.3.4(2)), and let
r, be a good geodesic ray in X started at O and representing &,. Note that, due to
the structure of X as the tree of systolic complexes, for n sufficiently large the ray
ry intersects X, and exits it through the simplex «,, . It follows that for those n we
have &, ¢ ;(0X,), and that ds,0) (r (n), r,(n)) < Do + 1. Applying Lemma 6.3.5,
we deduce from the latter that &, — &, hence condition (a3).

To check (a4), suppose that § € 9% \ Utevx t;(0X;). We need to find a se-
quence of points &, € |, ey, t:(d%;) convergingto £. Letr be a good geodesic ray
in X started at O and representing £. By the above assumption on £, the ray r exits
every subcomplex X, that it intersects. Let (¢,)»>0 be the sequence of vertices in
X such that X;, are the consecutive subcomplexes of this form intersected by r.
Choose any integers j, such that r(j,) € X;,, and note that j, — oco. Denote also
by k., the simplex through which the ray r exists X,,. Since r projects through p
on an infinite ray p in X (formed of the consecutive edges ¢,), for each n there is a
vertex s, in X, with 7 (s,) = v; for some i < m, and such that the path from ¢y to
s shares first n + 1 edges with p. Let &, be any point in ¢, (0%, ) (Which exists by
Lemma 6.3.4(2)), and let r,, be a good geodesic ray in X started at O and repre-
senting &,. By the choice of s, and &,, the ray r,, intersects ¥, and exits it through
the simplex «,. It follows that for some j > j, we have dgu)(r(j),r.(j)) < 1.
Since j, — oo, we deduce from Lemma 6.3.5 that &, — &, which completes the
verification of (a4).

It remains to check condition (a5). Let &;,& € 0% be any two points which
do not belong to the same subset of Y. Let r;, r, be any good geodesic rays in X
started at O and representing &; and &, respectively. By the above assumption
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on &1, &, up to transposing the indices, there is an edge ¢ in X such that the path
p o rp in X, being the projection of r; to X, passes through ¢, while the path
p o ry does not. We define a splitting of % into two subsets. Let H; consist of
all points of X which can be represented by a good geodesic ray r started at O
and such that p o r passes through ¢. Put also H, = 0% \ Hj, and note that it
consists of all points of ¥ which can be represented by a good geodesic ray r
started at O and such that p o r does not pass through ¢. It is an easy observation
involving Lemma 6.3.5 that both Hy, H are closed in dX. Obviously, they are also
Y-saturated, and separate &; from &,. This justifies condition (a5), and completes
the proof of Theorem 0.3(4).

7. Boundaries of Coxeter groups

In this section we prove Theorem 0.4 of the introduction. The rough idea of the
proof is this. First, we observe (by referring to the characterization of dense amal-
gams) that any non-elementary splitting of W as free product of special subgroups,
amalgamated along a finite special subgroup, leads to the expression of the bound-
ary of W as the dense amalgam of boundaries of the factors (see Proposition 7.3.1
for precise statement). Next, we note that splittings as above correspond to split-
tings of the nerve of W along separating simplices (including the empty one).
Further, inspired by the comments in Section 8.8 in [6], we argue that on the level
of groups the terminal factors of iterations of such splittings are either the maxi-
mal finite or the maximal 1-ended special subgroups (this is a more precise version
of the assertion of Proposition 8.8.2 in [6]). Finally, applying general properties
of the operation of dense amalgam (given in Proposition 0.1), we show that this
yields the assertion. Details are provided in Subsections 7.1-7.4 below.

7.1. Decompositions of simplicial complexes. We introduce a useful terminol-
ogy, and provide basic facts, concerning decompositions of simplicial complexes
along simplices. The idea of such decompositions is well known in graph theory,
see e.g. [7]. Since we need only very basic facts, and in a specific setting, we
briefly provide an independent account.

7.1.1. Definition. Let L be a simplicial complex. A splitting of L along a simplex
is an expression of L as the union of proper nonempty subcomplexes L1, L, whose
intersection L1 N Ly is either empty or a single simplex. L; and L, are then
called the parts of this splitting. A simplicial complex L is irreducible if it has no
splitting.
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Observe that the parts of any splitting of L are full subcomplexes of L. Note
also that L is irreducible if it is connected and has no separating simplex.

We now give a recursive definition of a decomposition of a simplicial complex,
and of its factors.

7.1.2. Definition. A decomposition of a simplicial complex L is any sequence of
splittings from the following recursively described family:

o the empty sequence of splittings forms the trivial decomposition of L, and
the set of factors of this decomposition is {L};

e a single splitting of L along a simplex is a decomposition, and its set of
factors is the set of two parts of the splitting;

o if asequence of splittings is a decomposition of L, and if {L1, ..., L,,} is the
set of its factors, then adding to this sequence a splitting of one of those fac-
tors, say L,,, we also get a decomposition of L; moreover, if L/, , L7 are the
parts of the above splitting of L,,, the set of factors of the new decomposition
is{Li,...,Lm—1,L,, L}

Note that it may happen that L/ or L/ as above coincides with L; for some
j < m — 1, but then of course this subcomplex appears just once in the set of
factors of the corresponding decomposition.

A decomposition of L is terminal if its every factor is irreducible. Obviously,
every finite simplicial complex admits a terminal decomposition. Next lemma
shows that any two terminal decompositions of a finite simplicial complex share
the sets of factors (though they may be quite different as sequences of splittings).
Thus, we call the factors of any terminal decomposition as above the ferminal
factors. The same lemma characterizes the terminal factors of a finite simplicial
complex. In its statement we use the term maximally full irreducible subcomplex,
which denotes any subcomplex which is maximal for the inclusion in the family
of all full and irreducible subcomplexes of a given complex.

7.1.3. Lemma. The set of factors of any terminal decomposition of a finite sim-
plicial complex L coincides with the set of all maximally full irreducible subcom-
plexes of L.

Proof. We start with showing two auxiliary claims.

Claim 1. Any factor of a terminal decomposition of L is a maximally full irre-
ducible subcomplex of L.
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To prove Claim 1, consider any factor K of a fixed terminal decomposition
of L. K is clearly full and irreducible. Suppose, by contradiction, that K is not
maximally full irreducible, and let M be a full and irreducible subcomplex of L
containing K as proper subcomplex. Denote by F the set of factors of our fixed
terminal decomposition of L. This decomposition induces a decomposition of
M for which the set of factors is {ANM: A € F, AN M # @}. In particular,
K N'M = K is a factor of this induced decomposition of M, which contradicts
irreducibility of M, thus completing the proof of Claim 1.

Claim 2. Given any decomposition of L, every irreducible subcomplex of L is
contained in at least one factor of this decomposition.

To prove Claim 2, note that if M is an irreducible subcomplex of L, and if
L1, L, are the parts of some splitting of L along a simplex, then M C L; or
M C L,. Claim 2 then follows by iterating this observation.

Now, in view of Claim 1, to prove Lemma 7.1.3, it is sufficient to show that
any maximally full irreducible subcomplex M of L is a factor in every terminal
decomposition of L. Fixing such a decomposition, we get from Claim 2 that M is
contained in some factor K of this decomposition. Since K is full and irreducible,
maximality of M implies that M = K, which completes the proof. O

7.1.4. Example. The class of finite simplicial complexes in which all terminal fac-
tors are simplices is well known. It coincides with the class of finite flag simplicial
complexes which contain no full subcomplex isomorphic to a triangulation of the
circle S!, see [8]. According to the terminology from [11], which we follow, such
complexes are called co-large. In Section 8.8 in [6], such complexes are called
(a bit informally) trees of simplices. 1-skeletons of such complexes are known in
graph theory as chordal graphs.

7.2. Nerves of Coxeter systems. Recall that the nerve L = L(W,S) of a
Coxeter system (W, §) is the simplicial complex whose vertex set coincides with S,
and whose simplices correspond to those subsets 7 C .S which span finite special
subgroups Wr < W. In this subsection we recall from [6] few results and observa-
tions concerning properties of groups W that can be read from properties of their
nerves. The first fact below is straightforward (compare [6], Proposition 8.8.1).
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7.2.1. Lemma. Let (W, S) be a Coxeter system with the nerve L, and let S1, S»
be the vertex sets of the parts L1, L, of some splitting of L along a simplex. For
i = 1,2 denote by W; the special subgroup of W generated by S;, and denote by
Wy the special subgroup generated by the intersection S1 N S, (in particular, the
trivial subgroup if S1 N S, = 0). Then

W = Wi xw, Wa,

i.e. W is the free product of the subgroups Wy, W, amalgamated along the finite
subgroup Wj.

7.2.2. Theorem ([6], Theorem 8.7.2). A Coxeter group W is 1-ended if and only
if its nerve is an irreducible simplicial complex distinct from a simplex.

Note that the groups appearing in Theorem 7.2.2 are precisely those Coxeter
groups which have nonempty connected boundary. (This follows e.g. from Propo-
sition 8.6.2(i) and Theorem 1.8.3(ii) in [6].)

7.2.3. Theorem ([6], Theorem 8.7.3). A Coxeter group W is 2-ended if and only
if it can be expressed as the product W = Wy x Wy, where Wy is a special sub-
group isomorphic to the infinite dihedral group, and W1 is a finite special subgroup
(including the case of the trivial subgroup).

Note that the groups appearing in Theorem 7.2.3 are precisely those
Coxeter groups whose boundaries are the spaces consisting of two points. More-
over, nerves of such groups are suspended simplices (including the case of the
suspended empty simplex). However, not every Coxeter group whose nerve is a
suspended simplex is 2-ended.

7.2.4. Proposition ([6], Proposition 8.8.5). A Coxeter group is virtually free non-
abelian if and only if it is not 2-ended and its nerve is an oo-large simplicial
complex distinct from a simplex.

Note that the groups appearing in Proposition 7.2.4 all have Cantor space C as
the boundary. In fact, it is not difficult to show (and it follows in particular from
Theorem 0.4) that the condition in the proposition fully characterizes the Coxeter
groups which have Cantor space C as their boundaries.

7.3. Dense amalgams and decompositions of nerves. We start with the basic
observation, Proposition 7.3.1 below, bringing dense amalgams into considera-
tions concerning boundaries of Coxeter groups. Since the proof of this proposition
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goes along the same lines as the proof of Theorem 0.3(4) given in Subsection 6.4,
we omit it. We only note that, in view of Lemma 7.2.1, a splitting of the nerve of
W along a simplex induces a splitting of W over a finite group; moreover, the as-
sumption below concerning indices means that the corresponding graph of groups
of the splitting is non-elementary. This makes Proposition 7.3.1 completely analo-
gous to the results in parts (1)-(4) of Theorem 0.3 (or rather to their special cases,
with G corresponding to a single amalgamated free product).

7.3.1. Proposition. Under assumptions and notation of Lemma 7.2.1, suppose ad-
ditionally that for at least one of the indices i € {1,2} we have [W; : Wy] # 2
(i.e. the subgroup Wy has index greater than 2 in at least one of the groups W;).
Then

AW, S) = L(d(Wy, $1), d(W2, S2)).

Remark. Note that if in the setting of Proposition 7.3.1 we have [W; : Wy] = 2
forbothi = 1,2then Wj = Wy x Z, = W5 and W =~ Wy x D. Then we obvi-
ously have d(Wy, S1) = d(W,, Sa) = d(Wy, S1 N S2), while the boundary aW is
homeomorphic to the suspension of those spaces. This shows that the assumption
in the proposition concerning indices [W; : Wy] is essential.

Next result is an extension of Proposition 7.3.1 to more complicated decompo-
sitions of the nerves of Coxeter systems.

7.3.2. Proposition. Suppose that L1, ..., Ly are the factors of a decomposition
of the nerve L of a Coxeter system (W, S), and let (W;, S;) be the Coxeter systems
of special subgroups of W corresponding to the vertex sets S; of the subcom-
plexes L;. Suppose also that W is not 2-ended, and that k > 2. Then

AW, S) = T((W1,S1),...,3(W, Sk)).

Proof. We argue by induction with respect to the length n of a sequence of split-
tings along simplices that constitutes a decomposition of L under consideration.
Since we assume that the number k of factors is at least 2, we have n > 1.
The case n = 1 follows by Proposition 7.3.1. Thus, it remains to verify the general
inductive step.

Suppose that the statement holds true for some decomposition of length 7,
and that L4, ..., Ly are the factors of this decomposition. Consider a decom-
position of length n + 1 obtained by adding a splitting of the factor Ly, with
parts L), L}. Obviously, the set of factors of the new decomposition is then
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{L1.....Lg_1, L. L}}. Denote by S;, S, the vertex sets of L} and L}, respec-
tively, and let W/, W;” be the special subgroups generated by these sets. We need
to consider two cases.

Casek 1. At least one of the indices [W] : (W) N W[)] and [W/ : (W N W[)] is
distinct from 2.

In this case the splitting of Ly into L) and L} satisfies the assumptions of
Proposition 7.3.1, and hence

AW, Sk) = UOW[, S), d(W[, S})).
Consequently, using the inductive assumption and Proposition 0.1(2), we get
(W, S) = 0O, S1). ... d(Wk, Sk))
DWW, S1). ... 8(Wi—r. Sk—1). DWW, S, 0(W, . S))]
D@1, 81). .. 0(Wam1. S—1). O(WL. Sp). 0(W,. SY)).

I

I

Now, if L; or L} coincides with one of the subcomplexes L, ..., Li_1, we apply
Proposition 0.1(3) to get the assertion. Otherwise, the assertion follows directly.
Case 2. [W : (W NW] =[W/: (W.nW)]=2.

Note that, under this assumption, the group W} is 2-ended, while both Wk/ and
W) are finite. Consequently, the boundary d(Wj, Sk) is the space consisting of
2 elements, which we denote Q>. We also have d(W/, S;) = (W[, S) = 0.
Using this, the inductive assumption, Proposition 0.1(4), and the properties of
dense amalgam involving the empty set, we get

AW, S) = 0(O(Wy, S1). ..., 0(Wk, Sk))
0@(Wi, 81). . ... 0(Wi—1. Sk-1). 02)
0@W, S1), ..., d(Wi—1. Sk—1))
O@(W1, S1). ... 0(Wi_1, Sk—1). 9).

Il

Il

I

This implies the assertion, no matter if some of the boundaries
oW, Sj):1<j<k-1

is empty or not.
This completes the proof. O
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7.4. Proof of Theorem 0.4. First, observe that the nerve L of (W, S) is not an
oo-large simplicial complex. Indeed, it is not a simplex since W is not finite. It is
not any other co-large simplicial complex by Theorem 7.2.3 and Proposition 7.2.4.
In view of a comment provided in Example 7.1.4, it follows from Lemma 7.1.3 that
L contains at least one maximally full irreducible subcomplex distinct from a sim-
plex. Applying Theorem 7.2.2, this means that W contains at least one maximal
I-ended special subgroup. Hence, we have shown the assertion that k > 1.

Now, consider any terminal decomposition of the nerve L, andlet Ly, ..., Ly,
be the factors of this decomposition. For i = 1,...,m, denote by S; C S the
vertex set of L;, and by W; the special sungroup generated by S;. By Proposi-
tion 7.3.2, we get that

AW, S) = T@O(W1, 81), ..., (W, Sm)).

Without loss of generality, suppose that Lq,..., Ly are precisely those factors
among L1, ..., L, which are not simplices. Then W1, ..., Wy is the family of all
maximal 1-ended special subgroups of W. We also know that k > 1.

Since fork+1 < j < m the subcomplexes L; are simplices, the corresponding
special subgroups W; are finite, and their boundaries d(W;, S;) are empty. Since
adding the empty set to the list of densely amalgamated spaces does not affect the
result, it follows that

AW, S) = T(d(Wh, S1), ..., d(Wk, Sk)),

which finishes the proof.

References

[1] M. Bestvina, Local homology properties of boundaries of groups. Michigan
Math. J. 43 (1996), no. 1, 123-139. Zbl 0872.57005 MR 1381603

[2] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Grundlehren
der mathematischen Wissenschaften 319, Springer, Berlin, 1999. Zbl 0988.53001
MR 1744486

[3] G. Carlsson and E. Pedersen, Controlled algebra and the Novikov conjectures for K-
and L-theory. Topology 34 (1995), no. 3, 731-758. Zbl 0838.55004 MR 1341817

[4] V. Chepoi and D. Osajda, Dismantlability of weakly systolic complexes and ap-
plications. Trans. Amer. Math. Soc. 367 (2015), no. 2, 1247-1272. Zbl 06394251
MR 3280043

[5] R. Daverman, Decompositions of manifolds. Pure and Applied Mathematics, 124.
Academic Press, Orlando, FL, 1986. Zbl 0608.57002 MR 0872468


http://zbmath.org/?q=an:0872.57005
http://www.ams.org/mathscinet-getitem?mr=1381603
http://zbmath.org/?q=an:0988.53001
http://www.ams.org/mathscinet-getitem?mr=1744486
http://zbmath.org/?q=an:0838.55004
http://www.ams.org/mathscinet-getitem?mr=1341817
http://zbmath.org/?q=an:06394251
http://www.ams.org/mathscinet-getitem?mr=3280043
http://zbmath.org/?q=an:0608.57002
http://www.ams.org/mathscinet-getitem?mr=0872468

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

The dense amalgam of metric compacta 471

M. Davis, The geometry and topology of Coxeter groups. London Mathematical
Society Monographs Series, 32. Princeton University Press, Princeton, N.J., 2008.
Zbl 1142.20020 MR 2360474

R. Diestel, Simplicial decompositions of graphs — some uniqueness results.
J. Combin. Theory Ser. B 42 (1987), no. 2, 133-145. Zbl 0582.05045 MR 0884249

G. A. Dirac, On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25 (1961),
71-76. Zbl 0098.14703 MR 0130190

A. Dranishnikov, On Bestvina—Mess formula. In R. Grigorchuk, M. Mihalik,
M. Sapir, and Z. Sunik (eds.), Topological and asymptotic aspects of group theory.
(Athens, OH, and Nashville, TN, 2004.) Contemporary Mathematics, 394. American
Mathematical Society, Providence, R.1., 2006, 77-85. Zbl 1106.20034 Zbl 1085.20501
(collection) MR 2216707 MR 2216701 (collection)

F. T. Farrell, J.-F. Lafont, EZ-structures and topological applications, Comment.
Math. Helv. 80 (2005), no. 1, 103-121. Zbl 1094.57003 MR 2130569

T. Januszkiewicz and J. Swiatkowski, Simplicial nonpositive curvature. Publ. Math.
Inst. Hautes Etudes Sci. 104 (2006), 1-85. Zbl 1143.53039 MR 2264834

A. Martin, Non-positively curved complexes of groups and boundaries. Geom.
Topol. 18 (2014), no. 1, 31-102. Zbl 1315.20041 MR 3158772

A. Martin and J. Swigtkowski, Infinitely ended hyperbolic groups with homeomor-
phic Gromov boundaries. J. Group Theory 18 (2015), no. 2, 273-289. Zbl 06413225
MR 3318538

D. Osajda and P. Przytycki, Boundaries of systolic groups. Geom. Topol. 13 (2009),
no. 5, 2807-2880. Zbl 1271.20056 MR 2546621

D. Osajda and J. Swigtkowski, On asymptotically hereditarily aspherical groups.
Proc. London Math. Soc. 111 (2015), no. 1, 93-126. Zbl 06464908

P. Przytycki, The fixed point theorem for simplicial nonpositive curvature. Math.
Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 683-695. Zbl 1152.20038
MR 2418711

D. Rosenthal, Continuous control and the algebraic L-theory assembly map. Forum
Math. 18 (2006), no. 2, 193-209. Zbl 1115.18006 MR 2218417

J.-P. Serre, Trees. Translated from the French by J. Stillwell. Springer, Berlin etc.,
1980. Zbl 0548.20018 MR 0607504

C. Tirel, Z-structures on product groups. Algebr. Geom. Topol. 11 (2011), no. 5,
2587-2625. 7Zbl 1232.57002 MR 2836296

Received Feburary 25, 2015

Jacek Swigtkowski, Instytut Matematyczny, Uniwersytet Wroctawski,
pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland

e-mail: swiatkow @math.uni.wroc.pl


http://zbmath.org/?q=an:1142.20020
http://www.ams.org/mathscinet-getitem?mr=2360474
http://zbmath.org/?q=an:0582.05045
http://www.ams.org/mathscinet-getitem?mr=0884249
http://zbmath.org/?q=an:0098.14703
http://www.ams.org/mathscinet-getitem?mr=0130190
http://zbmath.org/?q=an:1106.20034
http://zbmath.org/?q=an:1085.20501
http://www.ams.org/mathscinet-getitem?mr=2216707
http://www.ams.org/mathscinet-getitem?mr=2216701
http://zbmath.org/?q=an:1094.57003
http://www.ams.org/mathscinet-getitem?mr=2130569
http://zbmath.org/?q=an:1143.53039
http://www.ams.org/mathscinet-getitem?mr=2264834
http://zbmath.org/?q=an:1315.20041
http://www.ams.org/mathscinet-getitem?mr=3158772
http://zbmath.org/?q=an:06413225
http://www.ams.org/mathscinet-getitem?mr=3318538
http://zbmath.org/?q=an:1271.20056
http://www.ams.org/mathscinet-getitem?mr=2546621
http://zbmath.org/?q=an:06464908
http://zbmath.org/?q=an:1152.20038
http://www.ams.org/mathscinet-getitem?mr=2418711
http://zbmath.org/?q=an:1115.18006
http://www.ams.org/mathscinet-getitem?mr=2218417
http://zbmath.org/?q=an:0548.20018
http://www.ams.org/mathscinet-getitem?mr=0607504
http://zbmath.org/?q=an:1232.57002
http://www.ams.org/mathscinet-getitem?mr=2836296
mailto:swiatkow@math.uni.wroc.pl

	Introduction
	The dense amalgam
	The characterization
	Properties of the operation of dense amalgam
	EZ-boundaries for graphs of groups
	Gromov boundaries and CAT(0) boundaries
	Systolic boundaries
	Boundaries of Coxeter groups
	References

