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1. Introduction

A group G is called coherent if every �nitely generated subgroup is isomorphic to

a �nitely presented group. When G is known to be coherent, an algorithmic ques-

tion immediately arises: can such a presentation be computed from the subgroup

generators? We say that G is e�ectively coherent if we can describe an algorithm

that, given a �nite set X � G, produces a presentation for the subgroup hXi. Ef-

fective coherence enhances the algorithmic study of subgroups: once a subgroup

presentation is known one may apply other algorithms that deduce group-theoretic

properties from the presentation, or solve problems involving several presentations

(isomorphism, for example).

Several classes of groups are known to be e�ectively coherent, including free

groups, limit groups, and locally quasi-convex hyperbolic groups. One may drop

the assumption that G is coherent and ask whether a subgroup presentation for

hXi can be computed given the guarantee that a �nite presentation exists. Though

this problem was shown in [4] to be unsolvable in several major classes of groups,

some non-coherent examples in which it is solvable, for example the direct product

of free groups, are known (see [4] for a summary).

Our main interest is in groups discriminated by another group �. A group G

is discriminated by � (or is fully residually �) if for every �nite set ¹g1; : : : ; gnº

of non-trivial elements of G there exists a homomorphism �W G ! � such that

�.gi / is non-trivial for i D 1; : : : ; n. When � is a free group and G is �nitely

generated, G is called a limit group. Limit groups �gured prominently in the

work of Kharlampovich and Miasnikov [18] and Sela [32] on the solution to

Tarski’s problems on the elementary theory of free groups. Many equivalent

characterizations of limit groups are known, and these characterizations extend

beyond the case when � is free (see [19] for a summary).

In particular, when � is torsion-free hyperbolic these characterizations hold.

But not all hyperbolic groups are coherent (this follows from the well-known

construction in [31]), and if � is not coherent then there are non-coherent groups

discriminated by � (indeed, � itself is an example). We will consider the case

when � is hyperbolic, locally quasi-convex, and torsion-free. Such groups are

known to be e�ectively coherent (see [12] Proposition 6.1). We prove that every

�nitely generated group G which is discriminated by � is also e�ectively coherent.

Every such group G is known to embed into a group obtained from � by

iterated centralizer extensions [20], and a partial result regarding the computation

of this embedding, for the more general case when � is hyperbolic and torsion-

free, was given in [16]. We complete this result, giving an algorithm to compute

the embedding provided � is also locally quasi-convex. We also give an algo-

rithm that enumerates all (�nitely generated) groups discriminated by �, and an

algorithm that recognizes whether a given group, with decidable word problem,

is discriminated by �.
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For the case when � has torsion, we are not aware of a similar embedding theo-

rem for groups discriminated by �. However, we replace centralizer extensions by

amalgamated products with virtually abelian groups, amalgamated over elemen-

tary subgroups, and prove that groups obtained from � in this way are e�ectively

coherent.

Our principal results are summarized below. In the case when � is a free group,

these results were obtained in [17] (embedding theorem), [18] (e�ective coherence,

see Theorem 30), and [10] (e�ective coherence, enumeration, recognition).

Theorem. Let � be a hyperbolic group which is torsion-free and locally quasi-
convex. There are algorithms to solve each of the following problems.

(i) Given a �nitely presented group G known to be discriminated by �, compute
a sequence of centralizer extensions of �,

� D G0 < G1 < : : : < Gn;

and an embedding of G into Gn (Theorem 21).

(ii) Given a �nitely presented group G known to be discriminated by � and a
�nite subset X � G, compute a presentation for the subgroup generated
by X (Theorem 22).

(iii) Given a �nitely presented group G and a solution to the word problem in G,
determine whether or not G is discriminated by � (Theorem 21).

(iv) Enumerate, by presentations, all �nitely generated groups discriminated
by �, without repeating isomorphic groups (Theorem 24).

In addition, the following problem is algorithmically solvable without the assump-
tion that � is torsion-free.

(v) Given a sequence of groups

� D G0 < G1 < � � � < Gn

in which GiC1 D Gi�E.gi /Vi with Vi virtually abelian and E.gi / the maximal
elementary subgroup containing the in�nite-order hyperbolic element gi ,
and a subset X � Gn, compute a presentation for the subgroup generated
by X (Theorem 20).

E�ective coherence in G is the main result, and we prove this by �rst solving

problem (v), which gives e�ective coherence in centralizer extensions in the case

when � is torsion-free (Theorem 19). We view Gn as the fundamental group

of a graph of groups having two vertices, one with vertex group Gn�1 and the

other with a (virtually) abelian vertex group, and one edge with edge group

being (virtually) Z. A graph-folding algorithm, along with a structure called an

A-graph, was developed in [15] to �nd the induced decomposition of, and hence
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a presentation for, any �nitely presented subgroup of the fundamental group of

a graph of groups A. While certain algorithmic properties are required of A

(it should be ‘benign’, see De�nition 3), when the only edge group is Z these

properties reduce to the decidability of the following problem in vertex groups.

Problem 1. The power coset membership problem for a group G asks to decide,
given two elements x; g 2 G and a �nitely generated subgroup H of G, whether
or not there exists a non-zero integer m such that gm 2 xH .

Decidability of the power coset membership problem implies decidability of

several other important algorithmic problems. On input H D 1 and g D 1 the

answer is ‘Yes’ if and only if x D 1, so the word problem is decidable in G. On

input g D 1, the answer is ‘Yes’ if and only if x 2 H , so the membership problem
is decidable in G.

On input x D 1, the answer is ‘Yes’ if and only if H \hgi is non-trivial, and we

call this the power membership problem. Note that m D 0 is speci�cally excluded

in the problem speci�cation so that this (non-trivial) problem arises when x D 1.

If the intersection is non-trivial, a generator for H \ hgi may be produced by

�nding the smallest m such that gm 2 H . Finally, we can decide if the intersection

xH \ hgi is non-empty, since this occurs if and only if either the answer to the

power coset membership problem is ‘Yes’ or x 2 H .

To solve the power coset membership problem in Gn�1, we view Gn�1 itself as

the fundamental group of a two-vertex graph of groups A. We construct a ‘folded

A-graph’ B
.x/ representing the coset xH : doing so requires that A be benign,

and we argue inductively. To decide if gm 2 xH , we develop in §2 an algorithm

ReadPower that determines whether or not a power of g can be ‘read’ in B
.x/

(Theorem 13).

While reading a �xed power of g in B
.x/ is straightforward, ensuring algorithm

termination while trying to read an arbitrary power is di�cult. We provide some

general, though somewhat involved, conditions under which ReadPower termi-

nates (Property 12), giving a solution to the power coset membership problem for

certain graphs of groups (Theorem 14). As an example, the power coset member-

ship problem is decidable whenever all edge groups are �nite and, necessarily, the

problem is decidable in vertex groups (Corollary 15). The proof that A satis�es

these conditions is given in §3, and we rely on the local quasi-convexity of � and

local relative quasi-conevxity of Gn�1.

2. Power coset membership in graphs of groups

When a group G is presented as the fundamental group of a graph of groups,

every subgroup H inherits from G a graph of groups decomposition, which yields

a presentation of H . To compute this presentation, and to solve the problem
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of membership in H , Kapovich, Weidmann, and Miasnikov developed in [15]

a graph-folding algorithm similar to the folding procedure used by Stallings to

study subgroups of free groups. We apply this technique to study the power coset

membership problem in fundamental groups of certain graphs of groups.

2.1. A-graphs and subgroup graphs. We recall from [15] the notion of an

A-graph and some important properties of A-graphs. All of the results of §2.1

are from [15], to which we refer the reader for proofs.

A graph consists of a set V called vertices, a set E called edges, an involution
�1W E ! E that has no �xed points, and two functions oW E ! V and t W E ! V

that satisfy o.e/ D t .e�1/ for all e 2 E.

A graph of groupsA consists of a graph A together with, for each vertex v 2 V

a group Av, for each edge e 2 E a group Ae, and for each edge group Ae two

monomorphisms ˛eW Ae ! Ao.e/ and !eW Ae ! At.e/. For inverse edges e�1 we

insist that Ae�1 D Ae and ˛e�1 D !e.

An A-path p D hp0; e1; p1; : : : ; en; pni from vertex v0 to vn consists of an

underlying edge-path .e1; : : : ; en/ from v0 to vn and a choice of vertex group

elements pi 2 At.ei / for i D 1; : : : ; n and p0 2 Av0
. The length of p, denoted jpj,

is the number n of edges.

An elementary reduction replaces a subpath of the form

ha; e; !e.c/; e�1; bi;

where c 2 Ae, with the subpath ha˛e.c/bi. Elementary reductions and their

inverses generate an equivalence relation on A-paths, with the equivalence class

of p denoted p. A path is reduced if no elementary reduction is applicable.

The set of equivalence classes of A-loops based at a given vertex v0 forms a

group under concatenation and is called the fundamental group of the graph of
groups A and is denoted �1.A; v0/.

A-graphs. Let A be a graph of groups with underlying graph A and base vertex

v0. An A-graph B consists of a graph B together with the following additional

data:

(i) a graph morphism Œ��W B ! A;

(ii) for each vertex u of B a subgroup Bu � AŒu�;

(iii) for each edge f of B two group elements f˛ 2 AŒo.f /� and f! 2 AŒt.f /� such

that .f �1/˛ D .f!/�1.

The A-vertex Œu� is called the type of a vertex u 2 B , the A-edge Œf � is the type

the edge f of B , and we say that f has the label .f˛; Œf �; f!/.
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The A-graph B de�nes a graph of groups B as follows. Vertex groups are

the groups Bu above, for each edge f the edge group Bf is the subgroup of AŒf �

de�ned by

Bf D ˛�1
Œf �.f

�1
˛ Bo.f /f˛/ \ !�1

Œf �.f!Bt.f /f
�1

! /;

and the monomorphism f̨ W Bf ! Bo.f / is de�ned by

f̨ .g/ D f˛˛Œf �.g/f �1
˛ :

Since !f D f̨ �1 , we have that !f W Bf ! Bt.f / is given by

!f .g/ D f �1
! !Œf �.g/f! :

Henceforth we will not distinguish between theA-graphB and its associated graph

of groups B, referring to both as B and saying that ‘B is an A-graph’.

To each B-path q D hq0; f1; q1; : : : ; fm; qmi from u0 to u1 we associate an

A-path �.q/ from Œu0� to Œu1� de�ned by

�.q/ D hq0.f1/˛; Œf1�; .f1/!q1.f2/˛; Œf2�; : : : ; fm; .fm/!qmi:

Note that if path p ends at vertex u and path q begins at u, then for the concatenated

path pq we have

�.pq/ D �.p/�.q/:

For two equivalent B-paths q and q0, their corresponding A-paths �.q/ and �.q0/

are equivalent. Let

L.B; u0; u1/ D ¹�.q/ j q is a reduced B-path from u0 to u1º;

where �.q/ denotes the A-equivalence class of �.q/. If u0 is a vertex of B such

that Œu0� D v0, then � induces a homomorphism �W �1.B; u0/ ! �1.A; v0/ whose

image is precisely L.B; u0; u0/.

We are interested in the case when the homomorphism � is injective, which

occurs when B is folded. An A-graph B is said to be not folded if at least one of

the following conditions holds.

(I) There exists a vertex u and two distinct edges f1 and f2 with u D t .f1/ D
o.f2/ and Œf1� D Œf �1

2 � D e, such that

.f1/!b.f2/˛ D !e.c/

for some b 2 Bu and c 2 Ae.

(II) There is an edge f such that

˛�1
e .f �1

˛ Bo.f /f˛/ ¤ !�1
e .f!Bt.f /f

�1
! /;

where e D Œf �.
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If neither holds, B is folded. Note in (I) that an edge f and its inverse f �1 are

distinct edges.

Lemma 2. Suppose B is folded. Then for every reduced B-path q the A-path
�.q/ is reduced, hence the homomorphism �W �1.B; u0/ ! �1.A; v0/ is injective.

Starting with anA-graphB
0 that is not folded, there are six folding moves F1–F6

and three auxiliary moves A0–A2 that may be applied to eliminate instances of (I)

and (II) while preserving the image of �1.B; u0/ in �1.A; v0/.

The folding algorithm (Proposition 5.4 of [15]) consists of performing

a sequence of folding moves (in any order) until a folded graph is obtained.

To carry out the folding moves e�ectively, and to ensure that every sequence of

folding moves terminates, the following conditions are su�cient.

De�nition 3. A �nite connected graph of �nitely generated groups A is said to

be benign if all of the following conditions are satis�ed.

(1) For each vertex v and edge e with o.e/ D v there is an algorithm that,

given a �nite set X � Av and an element a 2 Av decides whether or

not hXi \ a˛e.Ae/ is empty and if non-empty produces an element of this

intersection.

(2) Every edge group is Noetherian (i.e. all subgroups are �nitely generated).

(3) Every edge group has decidable uniform membership problem. That is, there

is an algorithm that, given a �nite set X � Ae and an element a 2 Ae, decides

whether or not a 2 hXi.

(4) For each vertex v and edge e with o.e/ D v there is an algorithm that, given

a �nite set X � Av computes a generating set for hXi \ ˛e.Ae/.

The main theorem of [15] produces, from a set of subgroup generators, a folded

A-graph representing the subgroup and a presentation for the subgroup.

Theorem 4. Let A be a benign graph of groups with base vertex v0.

(i) There is an algorithm that, given a �nite subset X of �1.A; v0/, constructs a
folded A-graph B with base vertex u0 such that L.B; u0; u0/ D hXi. Each
vertex group inB is described by a generating set of elements of vertex groups
of A.

(ii) If each vertex group of A is e�ectively coherent then �1.A; v0/ is e�ectively
coherent.
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2.2. Cosets of a subgroup. In order to solve the power coset membership prob-

lem in �1.A; v0/, we will construct a folded graph B
.x/ similar to the graph B

constructed in Theorem 4. While in B elements of the subgroup H D hXi are

represented by loops at a vertex u0, elements of xH are represented by paths in

B
.x/ from a distinguished vertex ux to u0. The graph B

.x/ is not strictly necessary

to solve power coset membership: to decide if pn 2 xH , we may instead check if

x�1pn is represented by a loop in B. However, this requires that the path x�1pn be

reduced, and since the reduced path depends on n, this introduces complications.

The use of B.x/ provides a more elegant solution.

Theorem 5. Let G D �1.A; v0/, whereA is a benign graph of groups. There is an
algorithm that, given a �nitely generated subgroup H � G and x 2 G, produces
either

(1) an element y 2 G with path length 0 such that yH D xH , if such y exists,
or

(2) a folded A-graph B
.x/ with distinguished vertices ux and u0 such that

L.B.x/; ux; u0/ D xH:

The analogous result for right cosets also holds.

Proof. Let X be the given generating set of H . Construct an A-graph B
.x/
0 as

follows. Begin with a base vertex u0. We may assume that each generator h 2 X

is given as a reduced A-path

ph D hh0; e1; h1; : : : ; ek; hki

from v0 to v0 (Property (1) of the de�nition of benign implies that we may compute

a reduced representative for any non-reduced path). If k > 0, attach at u0 a loop

with k edges having labels

.h0; e1; 1/; .h1; e2; 1/; : : : ; .hk�2; ek�1; 1/; .hk�1; ek; hk/:

These labels de�ne the types of the vertices along this path, i.e. the �rst has type

o.e1/ D v0, the second has type o.e2/, and so on. Each vertex group along this

path, except for Bu0
, is set to be trivial. Set Bu0

to be

Bu0
D hh 2 X j jphj D 0i � Av0

:

Denote this A-graph by B
.x/
0 and note that it is precisely the A-graph B0 de�ned

in De�nition 5.1 of [15].
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Now let x be represented by the reduced A-path

px D hx0; e
.x/
1 ; x1; : : : ; e

.x/

l
; xli

from v0 to v0. Construct a ‘line’ of edges f
.x/

1 ; f
.x/

2 ; : : : ; f
.x/

l
, with t .f

.x/
i / D

o.f
.x/

iC1/ for i D 1; : : : ; l � 1, having labels

.x0; e
.x/
1 ; 1/; .x1; e

.x/
2 ; 1/; : : : ; .xl�2; e

.x/

l�1
; 1/; .xl�1; e

.x/

l
; xl /;

with vertex types assigned according these labels as above. Attach this line to B
.x/
0

by setting t .f
.x/

l
/ D u0. Denote o.f

.x/
1 / D ux, the initial vertex of the �rst edge,

and note that it is of type v0. Each vertex group along the path is set to be trivial

(except Bu0
, which has been assigned above). We have now constructed B

.x/
0 .

Lemma 6. Let B.x/
0 be as above. Then

L.B
.x/
0 ; u0; u0/ D H and L.B

.x/
0 ; ux; u0/ D xH:

Proof. Since the vertex groups along the line f
.x/

1 ; : : : ; f
.x/

l
are all trivial, a

reduced path from u0 to u0 cannot contain any of these edges. Hence the �rst

statement is immediate (cf. Lemma 5.3 of [15]).

For the second statement, let p be any reduced path from ux to u0. Since all

the vertex groups along the f
.x/

1 ; : : : ; f
.x/

l
branch are trivial, p can be written as

a concatenation of paths p D qp0 where

q D h1; f
.x/

1 ; 1; f
.x/

2 ; : : : ; 1; f
.x/

l
; 1i (1)

and p0 is a reduced path from u0 to u0. Clearly �.q/ D x, and �.p0/ D h 2 H

by the �rst statement, so �.p/ D xh 2 xH , hence L.B
.x/
0 ; ux; u0/ � xH .

Conversely, each xh can be represented by a path qp0 as above and hence

xH � L.B
.x/
0 ; ux; u0/. 4

We now apply folding moves to B
.x/
0 , in any order, producing a sequence of

A-graphs

B
.x/
0 ; B

.x/
1 ; : : : : (2)

We adopt the convention that the images in every B
.x/
i of edges f and vertices u

from B
.x/
0 continue to be denoted by the same letters f , u. As well, � will denote

the map from B
.x/
i -paths to A-paths, for all values of i .
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If at any point in the sequence the next move will identify ux with u0, we stop

and do not perform this move (the algorithm will output y in this case, as we will

see below). We assume then that ux and u0 are distinct in every B
.x/
i . We also

make two small changes to the folding moves, regarding the use of auxiliary move

A0. Recall from [15] that to apply A0 at a vertex Bu we take an element g 2 AŒu�

and replace

(i) Bu by gBug�1,

(ii) f˛ by gf˛ for edges f with o.f / D u, and

(iii) f! by f!g�1 for edges f with t .f / D u.

Move A0 is only used in folding moves F1 and F2.

In F1, two distinct non-loop edges f1 and f2 with o.f1/ D o.f2/ and

t .f1/ ¤ t .f2/ are folded together. At the beginning of this move, A0 must be

applied at one of the two vertices t .f1/ or t .f2/ (we may choose which) in or-

der to obtain identical edge labels on f1 and f2. Since no folding move in the

sequence (2) identi�es ux with u0, at least one of the vertices t .f1/ or t .f2/ is

neither ux nor u0. We choose to apply A0 at this vertex whenever we use F1.

In F2, a non-loop edge f2 is folded onto a loop edge f1, where o.f1/ D o.f2/.

Auxiliary move A0 must be applied at t .f2/, with an element g 2 AŒt.f1/�, in order

to equalize the edge labels on f1 and f2. If t .f2/ is equal to ux or u0, we will, at

the conclusion of the folding move, apply A0 with the element g�1 at the vertex

t .f2/ (which now coincides with t .f1/). Note that in the description of F2 in [15],

this is done only when t .f2/ D u0.

It follows from [15] Proposition 4.15 that L.B
.x/
i ; u0; u0/ D H for all i .

We claim that

L.B
.x/
i ; ux; u0/ D xH

for every i . From the description of the folding moves, and the considerations

regarding A0 above, it follows that for every path p in B
.x/
0 from ux to u0 there

exists, in each B
.x/
i , a path p0 from ux to u0 such that �.p0/ D �.p/. Hence

L.B
.x/
i ; ux; u0/ � xH . In particular, for the path q which represents x in B

.x/
0 ,

there exists a path q0 in B
.x/
i from ux to u0 such that �.q0/ D x. For the opposite

inclusion, let p be any path from ux to u0 in B
.x/
i . Since .q0/�1p is a loop based

at u0, we have �..q0/�1p/ D h 2 H and so

�.p/ D �.q0.q0/�1p/ D �.q0/ �..q0/�1p/ D xh;

proving the claim.

Now if at no point in the folding sequence is there a move that would identify

ux with u0, the folding algorithm terminates producing the folded graph B
.x/ as

required (see the proof of Theorem 5.8 of [15]). Assume then that for the graph

B
.x/
i there is an applicable folding move which would identify ux with u0.
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This move must be of type F1 or F2, involving edges .f
.x/

1 /�1 and an edge f

with o.f / D o..f
.x/

1 /�1/ and t .f / D u0. Two possibilities are shown in Figure 2.1

(the third possibility has f
.x/

1 as the loop edge). Let e D e
.x/
1 , u D o.f /, and let

f
.x/

1 have label .a1; e; b1/ and f have label .a2; e�1; b2/. Since B
.x/
i is not folded,

there exist b 2 Bu and c 2 Ae such that

b1ba2 D !e.c/:

Then

p D h1; f
.x/

1 ; b; f; 1i

is a path in B
.x/
i from ux to u0 hence �.p/ D xh for some h 2 H . But

�.p/ D ha1; e; b1ba2; e�1; b2i D ha1; e; !e.c/; e�1; b2i

which is equivalent to the length 0 path y D a1˛e.c/b2 2 Au0
. Hence xH D yH ,

and the algorithm returns the element y. �

.a1; e; b1/

.a1; e; b1/

f
.x/

1

f
.x/

1
f

f

.a2; e�1; b2/

.a2; e�1; b2/

u

u0

u0

ux

ux

Figure 2.1. Setup for an F1 fold (left) or an F2 fold (right) which would identify ux with u0.

2.3. Semi-canonical forms for paths in certain A-graphs. Let B be a folded

A-graph and let

p D hp0; e1; p1; e1; : : : ; pn�1; en; pni

be an A-path. If there exists a B-path q such that �.q/ D p, then there will (usu-

ally) be in�nitely many equivalent such paths. We will de�ne a semi-canonical

form for these paths, which will depend on the choice of representative p for the

class p. While semi-canonical forms are not required to solve the problem of deter-

mining the existence of q, they are essential in solving the more di�cult problem

of whether or not there exists q and m ¤ 0 such that �.q/ D pm (discussed in the

next section).

We place the following restriction on B: assume that every edge group Bf of

B which is in�nite has �nite index in the corresponding edge group Ae of A. This

is satis�ed, for example, when all edge groups of A are virtually cyclic. For each

in�nite Bf , �x a (�nite) set Rf of left coset representatives of Bf in Ae.
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Our de�nition of semi-canonical forms corresponds to the following procedure

for searching for a path q D hq0; f; : : :i such that �.q/ D p. We start searching

at a vertex u0 such that Œu0� D o.e1/. We locate an edge f of type e1 incident

on u0. Since the map � will multiply q0 on the right by f˛ , and the target element

p0 may be replaced by p0˛e1
.c/ for any c 2 Ae1

, the element p0˛e1
.c/f �1

˛

must be in the vertex group Bu0 for some c 2 Ae1
for q to exist. Having

selected q0 D p0˛e1
.c/f �1

˛ , we proceed to the next vertex group, but with p1

replaced by !e1
.c�1/p1. Though there may be in�nitely many choices for the

‘adjustment’ c, we will show that only �nitely many ‘canonical’ choices need to

be considered. Along the next edge we may have another adjustment c0, and so

produce a sequence of adjustments, each depending on the previous.

Canonical adjustments. Let f be an edge of B and denote Œf � D e and

u D o.f /. For an element c 2 Ae, we de�ne the left adjustment corresponding

to c as

lc D ˛e.c/f �1
˛ (3)

and the right adjustment corresponding to c as

rc D f �1
! !e.c�1/: (4)

Note that while lc and rc depend on both c and f , we will assume that the edge

groups of A are pairwise disjoint, making f uniquely determined by c.

For an element a 2 Ao.e/ de�ne a set C.f; a/ � Ae called the canonical
adjustment set as follows. If there is no element c0 2 Ae such that alc0

2 Bu, then

C.f; a/ is empty. If such an element c0 does exist, then

(i) if Bf is �nite,

C.f; a/ D c0Bf I

(ii) if Bf is in�nite,

C.f; a/ D ¹c 2 Rf j alc 2 Buº:

In the case when Bf is �nite, the set C.f; a/ does not depend on the choice of c0.

Indeed, suppose we replace c0 by another element c0
0 2 Ae such that alc0

0
2 Bu.

Then .alc0
/�1alc0

0
2 Bu, and

.alc0
/�1alc0

0
D .f˛˛e.c�1

0 /a�1/.a˛e.c0
0/f �1

˛ / D f˛˛e.c�1
0 c0

0/f �1
˛ ;

hence ˛e.c�1
0 c0

0/ 2 B
f˛
u . Since B is folded, the edge group Bf is equal to

˛�1
e .B

f˛
u /, hence c�1

0 c0
0 2 Bf because ˛e is injective and therefore the cosets

coincide.



E�ective coherence of �-discriminated groups 557

Lemma 7. Every element c 2 C.f; a/ satis�es alc 2 Bu, and C.f; a/ is non-empty
if and only if there exists c 2 Ae such that alc 2 Bu.

Proof. The �rst statement need only be veri�ed in the case when Bf is �nite. Let

c0b 2 C.f; a/ and recall that f̨ W Bf ! Bu is de�ned by f̨ .z/ D f˛˛e.z/f �1
˛ .

We have

alc0b D a˛e.c0/˛e.b/f �1
˛ D a˛e.c0/f �1

˛ f̨ .b/ D alc0 f̨ .b/ 2 Bu;

as required.

For the second statement, we need only prove that if Bf is in�nite and there

exists c 2 Ae such that alc 2 Bu then there exists c0 2 Rf such that alc0 2 Bu.

Write c D c0b, where c0 2 Rf and b 2 Bf . Since f̨ .b�1/ 2 Bu, we have

alc0 D a˛e.c0/f �1
˛ f̨ .b/ f̨ .b�1/ D .a˛e.c/f �1

˛ / f̨ .b�1/ D alc f̨ .b�1/ 2 Bu

as required. �

Adjustment sequences. Let

p D hp0; e1; p1; : : : ; en; pni

be a reduced A-path and let u0; u00 be vertices of B with Œu0� D o.e1/ and

Œu00� D t .en/. Let

F D .f1; f2; : : : ; fn/

be an edge path in B with o.f1/ D u0, t .fn/ D u00, and Œfi � D ei for i D 1; : : : ; n.

An adjustment sequence associated with the pair .p;F/ is a sequence

� D .c1; c2; : : : ; cn/

with ci 2 Aei
for i D 1; : : : ; n that satis�es the following properties:

(i) c1 2 C.f1; p0/,

(ii) ci 2 C.fi ; rci�1
pi / for i D 2; : : : ; n � 1, and

(iii) rcn
pn 2 Bt.fn/.

Note that the possible values for ci depend on ci�1. To every adjustment sequence

� we associate a B-path

Q.�/ D hp0lc1
; f1; rc1

p1lc2
; f2; : : : ; fn; rcn

pni:

If the path F has length 0, we associate with F an empty adjustment sequence

� D ; and de�ne Q.�/ D p0. The path Q.�/ is a B-path since the elements

p0lc1
; rc1

p1lc2
; : : : ; rcn

pn lie in the appropriate B-vertex groups, by construction

(see Lemma 7).
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Lemma 8. For every adjustment sequence � associated with .p;F/, the path Q.�/

is a B-path satisfying

�.Q.�// D p:

Proof. We have

�.Q.�// D hp0lc1
.f1/˛; e1; .f1/!rc1

p1lc2
.f2/˛; : : : ; en; .fn/!rcn

pni

D hp0˛e1
.c1/; e1; !e1

.c�1
1 /p1˛e2

.c2/; : : : ; en; !en
.c�1

n /pni

D p: �

Semi-canonical paths. Now let ˆ be the set of all edge paths F D .f1; : : : ; fn/

with o.f1/ D u0, t .fn/ D u00, and Œfi � D ei for i D 1; : : : ; n. We de�ne the set of

semi-canonical paths SC.p; u0; u00/ as

SC.p; u0; u00/ D
[

F2ˆ

¹Q.�/ j � is an adjustment sequence for .p;F/º:

The key properties of semi-canonical paths (Theorem 9) are that every path

mapping onto p is equivalent to a semi-canonical path and that the number of

semi-canonical paths is �nite.

Theorem 9. Let A be a graph of groups and let B be a folded A-graph such that
every in�nite edge group of B has �nite index in the corresponding edge group
of A. Let

p D hp0; e1; p1; : : : ; en; pni

be an A-path and let u0, u00 be vertices of B with Œu0� D o.e1/ and Œu00� D t .en/.
Then every B-path q from u0 to u00 that satis�es

�.q/ D p (5)

is equivalent to a path in the �nite set SC.p; u0; u00/. Consequently, SC.p; u0; u00/

is non-empty if and only if there exists a path q from u0 to u00 satisfying (5).

Proof. The fact that SC.p; u0; u00/ is �nite follows from the fact that every set

C.f; a/ is �nite and there are �nitely many edge paths of length n in B, hence

there are �nitely many adjustment sequences.

We now proceed by induction on the length n of p. Suppose that the path

q exists. We may assume that q is reduced. When n D 0, q must be precisely

the length 0 path q D hp0i, and u0 D u00. This path is the unique element of

SC.p; u0; u00/.
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Now assume the statement holds for paths of length less than n and suppose that

there exists a path q D hq0; f1; q1; : : : ; fn; qni from u0 to u00 such that �.q/ D p.

Denote

Tail.q/ D hq1; f2; q2; : : : ; fn; qni

and similarly Tail.p/. Then there exists c1 2 Ae1
such that q0.f1/˛ D p0˛e1

.c1/

and Tail.q/ satis�es

�.Tail.q// D rc1
Tail.p/:

Let f D f1. We will show that we may assume c1 2 C.f; p0/.

If Bf is �nite, then C.f; p0/ D c0Bf D c1Bf (see the proof that C.f; a/ does

not depend on c0, page 556), so c1 2 C.f; p0/ already. If Bf is in�nite, there exist

c0
1 2 Rf and b 2 Bf such that c1 D c0

1b. Since b�1 2 Bf , we may replace q by

the equivalent path

Qq D hq0 f̨ .b�1/; f; !f .b/Tail.q/i:

Since the �rst element q0 f̨ .b�1/ of Qq satis�es

.q0 f̨ .b�1//f˛ D q0f˛˛e1
.b�1/ D p0˛e1

.c1b�1/ D p0˛e1
.c0

1/;

we may assume from the beginning that c1 2 C.f; p0/.

Since Tail.q/ has length n�1 it is equivalent, by induction, to a semi-canonical

path. That is, there exists an adjustment sequence � 0 D .c2; : : : ; cn/ associated

with the path rc1
Tail.p/ and the edge path .f2; : : : ; fn/ such that Tail.q/ is equiv-

alent to Q.� 0/. If n D 1 then rc1
p1 2 Bu00 and if n � 2 then c2 2 C.f2; rc1

p1/,

hence the sequence � D .c1; : : : ; cn/ is an adjustment sequence associated with p

and .f1; : : : ; fn/. Then

q D hq0; f1; Q.� 0/i D hp0lc1
; f1; rc1

p1lc2
; f2; : : : ; rcn

pni D Q.�/

hence q is equivalent to the semi-canonical path Q.�/. �

Remark 10. If p0 is an A-path with p0 D p, the set SC.p0; u0; u00/ need not

coincide with SC.p; u0; u00/, hence the adjective ‘semi-canonical’. This arises from

the fact that whenever Bfi
is �nite, the set C.fi ; rci�1

pi / depends on pi .

2.4. Reading powers in an A-graph. When A is a benign graph of groups and

B is a folded A-graph, there is an algorithm that, given an A-path p, decides

whether or not there exists a B-path q such that �.q/ D p (see Claim 5.14 of [15]).

We require a stronger version of this result (the algorithm ReadPower

on p. 562), which will decide whether or not there exists q such that �.q/ D pm

for some m > 0, under certain conditions on A and B.
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We use Theorem 9 to restrict the search for q to semi-canonical forms, but

consequently we must insist that in�nite edge groups of B have �nite index in the

corresponding A-edge groups. We assume that B is already folded, so rather than

insist that A be benign (the requirement for folding), we specify a set of properties

(Property 12) for the pair .A;B/ that are su�cient for our algorithm to run and

terminate. To simplify the description of these properties, we begin by de�ning

the following property.

Property 11. Let G be a group, and let C and C 0 be subgroups of G.

(i) We say that G satis�es Property 11 with respect to C if for every �nitely
generated subgroup H � G and for every x; g 2 G with gx�1 62 C , if

H \ C and H \ C x are both �nite

then there exist �nitely many pairs .c; c0/ 2 C � C x such that

cgc0 2 H:

(ii) We say that G satis�es Property 11 with respect to .C; C 0/ if for every �nitely
generated subgroup H � G and every g 2 G, if

H \ C and H \ C 0 are both �nite;

then there exist �nitely many pairs .c; c0/ 2 C � C 0 such that

cgc0 2 H:

We now state the conditions we will need in order to use ReadPower.

By an edge cycle we mean a �nite edge path .f1; f2; : : : ; fm/ with t .fm/ D o.f1/.

Let fmC1 denote f1.

Property 12. Let A be a graph of groups and let B be a folded A-graph. We say
that the pair .A;B/ satis�es Property 12 if all of the following conditions hold.

(i) Every vertex group of A has decidable membership and power membership
problem.

(ii) There is an algorithm that, given a vertex v of A, an edge f of B with
Œo.f /� D v, and an element x 2 Av, decides whether or not the intersection

xBo.f / \ ˛Œf �.AŒf �/
f �1

˛

is empty.

(iii) For every edge f of B, if Bf is in�nite then it has �nite index in AŒf �. It must
be known which Bf are in�nite.
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(iv) For every edge cycle f1; : : : ; fm of B in which Bfi
is �nite for all i , there

exists i 2 ¹1; : : : ; mº such that

(a) if eiC1 ¤ e�1
i , then AŒt.fi /� satis�es Property 11 with respect to the pair

of subgroups

.!ei
.Aei

/.fi /! ; ˛eiC1
.AeiC1

/.fiC1/�1
˛ /;

(b) if eiC1 D e�1
i , then AŒt.fi /� satis�es Property 11 with respect to

!ei
.Aei

/.fi /! ;

where ei D Œfi � and eiC1 D ŒfiC1�.

Let p D hp0; e1; p1; : : : ; en; pni be a reduced A-path which is a loop (i.e.

o.e1/ D t .en/). We say that p is cyclically reduced if p2 is also reduced. For

i 2 ¹0; : : : ; n � 1º, de�ne

Op0 D pnp0;

Opi D pi ; for i ¤ 0:

Indices of Opi are taken modulo n. Note that for any m > 0,

pm D hp0; e1; Op1; e2; Op2; : : : ; en; Op0; e1; Op1; : : : ; en; pni: (6)

The following algorithm ReadPower is a modi�ed breadth-�rst search on the

graphB. It uses a data structureT called the search tree which is a rooted, directed,

ordered tree. Each vertex � of T is labelled by a pair .u; i/ where u is a vertex of B

and i is the distance modulo n from the root to � , and is marked as either ‘explored’

or ‘unexplored’. Though i is determined by the depth of � in T, having i explicitly

recorded will simplify our description and proof of the algorithm. The root is

labelled by .u0; 0/. Each edge from a vertex labelled by .u; i/ to a vertex labelled

by .u�; i C 1/ is labelled by a pair .f; c/ where f is an edge of B from u to u� and

c 2 AŒf �. The element c will be a canonical adjustment which is ‘pushed forward’

to the next vertex group.

Theorem 13. There is an algorithm ReadPower that, given

� a graph of groups A and a folded A-graph B satisfying Property 12,

� a cyclically reduced A-loop p, and

� vertices u0; u00 of B,

decides whether or not there exists a B-path q from u0 to u00 and an integer m > 0

such that
�.q/ D pm

and if so, produces q and the minimum such m.
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Algorithm 1: ReadPower.

Input: Graph of groups A and a folded A-graph B satisfying Property 12, a

reduced A-loop p D hp0; e1; : : : ; en; pni, and vertices u0; u00 of B.

Output: A pair .q; m/ where q is a B-path from u0 to u00 and m is a positive

integer m such that �.q/ D pm, with m minimal over all such

pairs. If no pair exists, the word ‘No’.

1 T WD single root vertex labelled by .u0; 0/ and marked ‘unexplored’;

2 if Œu0� ¤ o.e1/ or Œu00� ¤ t .en/ then

3 return ‘No’;

4 while T has unexplored vertices do

5 � WD unexplored vertex having minimum distance d from the root and,

of all unexplored vertices at distance d , is left-most;

6 .u; i/ WD label of � ;

7 e WD eiC1;

8 if � is the root then

9 if Length.p/ D 0 then

10 if Bu0 \ hp0i ¤ 1 then

11 return .pm
0 ; m/ with m > 0 minimal such that pm

0 2 Bu0 ;

12 else

13 return ‘No’;

14 else

15 a WD p0;

16 else

17 � 0 WD Parent.�/;

18 .f 0; c0/ WD label of edge � 0 ! � ;

19 a WD rc0 Opi ;

20 F WD ¹f 2 Edges.B/ j Œf � D e; o.f / D uº;
21 for each f 2 F do

22 if 9 c 2 Ae such that alc 2 Bu then

23 for each c 2 C.f; a/ do

24 if i D n � 1 and t .f / D u00 and rcpn 2 Bu00 then

25 m WD .d C 1/=n;

26 Let .f1; c1/; : : : ; .fd ; cd / be the edge labels of the path

from the root to � ;

27 � WD .c1; : : : ; cd ; c/;

28 return .Q.�/; m/ ;

29 else

30 if no vertex .t .f /; i C 1/ in T has incoming edge .f; c/

then

31 Insert a child � 00 of � with label .t .f /; i C 1/ ;

32 Label the edge � ! � 00 by .f; c/;

33 Mark � 00 as unexplored;

34 Mark � as explored;

35 return ‘No’;
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Proof. Algorithm e�ectiveness. First, we check that all steps of the algorithm may

in fact be carried out. The only non-obvious steps are those on lines 10, 11, 22, 23,

and 24.

Line 10 is an instance of the power membership problem in AŒu0�, hence is

decidable. For line 11, we check, using decidability of the membership problem in

AŒu0�, if each of p; p2; p3; : : : is in Bu0 and return the �rst success.

On line 22, deciding the existence of c is equivalent to deciding if the inter-

section

.f˛a�1/Bu \ ˛e.Ae/f �1
˛ ;

in the vertex group AŒu�, is non-empty. This is decidable by Property 12(ii).

On line 23, we compute the set C.f; a/. It is known which Bf are in�nite.

If Bf is �nite, we simply search for c 2 Ae such that alc 2 Bu, which is known

to exist. If Bf is in�nite, we �rst construct a set of coset representatives Rf of

Bf in AŒf � (we can construct the Schrier graph since membership is decidable).

Then we check the condition alc 2 Bu for each c 2 Rf . Line 24 also involves

a membership problem in a vertex group of A, and membership is decidable by

Property 12(i).

Algorithm termination. Next, we ensure that the algorithm terminates. Every

iteration of the while loop on line 4 marks one vertex of T as explored, so it

su�ces to show that the size of T is bounded. Since F and C.f; a/ are always

�nite sets, every vertex in T has �nitely many children, so its su�ces to show that

the depth of T is bounded.

Observe that an edge of T labelled by .f; c/ having terminal vertex labelled

by .t .f /; i/ occurs at most once in T: once such an edge exists, the conditional

on line 30 prevents it from being created a second time. The number of possible

values for f and i is �nite. If Bf is in�nite, then the set C.f; a/ is, regardless of

a, a subset of the �xed, �nite set of coset representatives Rf . It follows that there

are �nitely many edges in T labelled by .f; c/ such that Bf is in�nite. Note that

when Bf is �nite the set C.f; a/ is �nite but depends on a.

Assume that the depth of T is unbounded. Then T contains an in�nite path

�0 �! �1 �! �2 �! � � � : (7)

We denote by .fj ; cj / the label of the edge from �j to �j C1. By the above

observation, there exists M > 0 such that Bfj
is �nite for all j > M . Let N

be the number of edges in B. For all j > M , the sequence of edges

fj ; fj C1; : : : ; fj CN

must contain a contiguous subsequence which is a edge cycle in B, and so must

contain a sequential pair of edges f; f 0 satisfying the statements in Property 12(iv).

Since the path (7) is in�nite, there exists such a pair that occurs in�nitely often.

Hence there exists a sequential pair of edges f; f 0 satisfying the statements in

Property 12(iv), an integer i 2 ¹0; : : : ; n � 1º, and an in�nite subset J � N>M

such that for all j 2 J , fj �1 D f , fj D f 0, and �j is labelled by .u; i/, where

u D t .f /.
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Let e D Œf �, e0 D Œf 0�, and denote C D !e.Ae/f! and C 0 D ˛e0.Ae0/.f 0/�1
˛ .

Since B is folded, the edge group Bf is de�ned by

Bf D !�1
e .B

f �1
!

u \ !e.Ae//:

Since Bf is �nite, B
f �1

!
u \ !e.Ae/ is �nite hence Bu \ C is �nite. Since Bf 0 is

de�ned by

Bf 0 D ˛�1
e0 .B

f 0
˛

u \ ˛e0.Ae0//;

it follows in the same manner that Bu \ C 0 is �nite.

Consider �rst the case when e0 ¤ e�1. We know that AŒu� satis�es Property 11

with respect to .C; C 0/. By construction, rcj �1
Opi lcj

2 Bu for all j 2 J , and we

may rewrite this element as

.f �1
! !e.c�1

j �1// Opi.˛e0.cj /.f 0/�1
˛ / D !e.c�1

j �1/f! .f �1
! Opi .f

0/�1
˛ /˛e0.cj /.f 0/�1

˛ :

Set H D Bu and g D f �1
! Opi .f

0/�1
˛ 2 AŒu�. Since Bu \ C and Bu \ C 0 are both

�nite, Property 11 implies that there are �nitely many pairs .cj �1; cj / for which

rcj �1
Opi lcj

2 Bu. Hence there exists c such that cj �1 D c for in�nitely many

j 2 J . This contradicts the fact that T contains at most one edge labelled by .f; c/

with terminal vertex labelled by .t .f /; i/.

If e0 D e�1, we have ˛e0 D !e and we may rewrite the element rcj �1
Opi lcj

as

!e.c�1
j �1/f! .f �1

! Opi .f
0/�1

˛ /.!e.cj /f! /f �1
! .f 0/�1

˛ :

Set H D Bu, g D .f �1
! Opi .f

0/�1
˛ /, and x D f �1

! .f 0/�1
˛ . Since gx�1 D Opi

f! ,

if gx�1 2 C then Opi 2 !e.Ae/ which contradicts the fact that p is cyclically

reduced. Hence gx�1 62 C , so Property 11 states that there are �nitely many pairs

.cj �1; cj / such that rcj �1
Opi lcj

2 Bu and we obtain a contradiction as above.

Algorithm correctness. Finally, we prove that the algorithm is correct. The cases

when p has length zero and when Œu0� ¤ o.e1/ or Œu00� ¤ t .en/ are clearly correct.

First, suppose the algorithm returns the pair .Q.�/; m/ on line 28. It follows

immediately from lines 23 and 24 that .c1; : : : ; cd ; c/ is an adjustment sequence

for pm, hence the desired path q D Q.�/ exists. We will argue the minimality of

m below.

Now suppose that the algorithm reaches line 35, returning ‘No’. Assume, for

contradiction, that there exists a B-path q from u0 to u00 and an integer m > 0 such

that �.q/ D pm, and assume that m is minimal. Then the set SC.pm; u0; u00/ is

non-empty, so there exist an edge sequence F D .f1; : : : ; fnm/ and an adjustment

sequence � D .c1; : : : ; cnm/ associated with .pm;F/. Since the algorithm searches

exhaustively for adjustment sequences, it will discover this sequence, recording it

in T during lines 31 and 32, and reaching the return statement on line 28, unless
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the conditional on line 30 fails. Assume then that such a failure �rst occurs at

position j in the adjustment sequence: that is,

j D i .mod n/;

and the edge � 0 ! � has label .fj ; cj /, but the required child � 00 of � is not created

because T already contains a vertex with label

.t .fj C1/; j C 1/

having incoming edge with label

.fj C1; cj C1/:

Let �kC1 be this pre-existing vertex, let �0; �1; : : : ; �kC1 be the vertices along the

unique path from the root �0 to �kC1, and let .f 0
1 ; c0

1/; : : : ; .f 0
kC1

; c0
kC1

/ be the

sequence of edge labels along this path. Note that �k is at distance k from the

root, the current search vertex � (line 5) is at distance j from the root, and that

k D j .mod n/.

Since �k has a child (and is not equal to �), it must be marked ‘explored’. Since

vertices of T are processed in order of distance from the root then left-to-right,

either k < j or k D j and �k appears to the left of � . Consider the sequence of

elements

� 00 D .c0
1; c0

2; : : : ; c0
k ; cj C1; cj C2; : : : ; cmn/

and the edge path

F
00 D .f 0

1; f 0
2; : : : ; f 0

k; fj C1; fj C2; : : : ; fmn/:

Since

.f 0
kC1; c0

kC1/ D .fj C1; cj C1/;

it follows that � 00 is an adjustment sequence associated with either .pm;F00/, in the

case k D j , or with .pm0

;F00/ where

m0 D
j � k

n
;

in the case k < j . In the latter case, the path Q.� 00/ is in SC.pm0

; u0; u00/,

contradicting the minimality of m. In the former case, we may replace the original

edge path F and adjustment sequence � by F
00 and � 00 and repeat the argument.

Since �k was to the left of � in T we may, after �nitely many such replacements,

reduce to the case k < j and obtain the contradiction above.

The above argument also demonstrates the minimality of the value m returned

on line 28. If m is not minimal, there is a semi-canonical path q for pm0

, with m0

minimal, that the algorithm does not �nd (it searches breadth-�rst, and returns the

�rst success). The failure cannot be due to the case k < j , since this implies that
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m0 is not minimal. The failure must occur in the k D j case, but we may then

repeat the argument with a semi-canonical path q0 passing through the vertex �k

to the left of � . After �nitely many steps we again reduce to the case k < j and

obtain a contradiction. �

By combining the ReadPower algorithm with A-graph folding, we may solve

the power coset membership problem in certain graphs of groups.

Theorem 14. Let G be the fundamental group of a benign graph of groups A in
which every vertex group has decidable power coset membership problem, and
such that for every folded A-graph B, the pair .A;B/ satis�es Property 12. Then
the power coset membership problem is decidable in G.

Proof. Let v0 be the base vertex of A, so that G D �1.A; v0/. Assume we are

given as input to the power coset membership problem elements x; p; h1; : : : ; hs 2

G, expressed as A-loops based at v0. The decidability of the membership problem

in vertex groups allows us to reduce paths, so we may assume that these paths are

reduced. Let H D hh1; : : : ; hsi and p D hp0; e1; p1; e2; : : : ; en; pni.

Suppose that p is not cyclically reduced, that is, p2 is not a reduced path. Then

e1 D e�1
n and pnp0 D !en

.c/ for some c 2 Aen
. Consider the conjugate

pp0 D h1; e1; p1; : : : ; en; pnp0i � h1; e1; p1; : : : ; pn�1˛en
.c/; en; 1i:

Since .pp0/m 2 xp0H p0 if and only if pm 2 xH , we may assume from the

beginning that p0 D pn D 1.

Let v1 D t .e1/. Under the natural isomorphism �1.A; v0/ ' �1.A; v1/, the

image of p is the reduced path p0 D hp1; e2; : : : ; en�1; pn�1i and we consider the

same problem with v1 as the base vertex instead of v0 (replacing x and H by their

images under this isomorphism). If p0 is not cyclically reduced, we may repeat this

procedure, reducing the length of p each time, until p is cyclically reduced. Hence

we may assume from the beginning that p is cyclically reduced. We continue to

denote the base vertex by v0.

Since A is benign, we may apply Theorem 5 with input H and x. Suppose the

algorithm reaches the second case, returning the coset graph B
.x/.

The power coset membership problem has a positive answer if and only if there

exists a path q in B
.x/ from ux to u0 such that �.q/ D pm or �.q/ D .p�1/m

for some m > 0. We can decide this using Theorem 13 (i.e. the ReadPower

algorithm), since the pair .A;B.x// satis�es Property 12 by assumption.

Now suppose the algorithm of Theorem 5 returns a path y of length 0 such

that yH D xH . Construct the folded A-graph B described in Theorem 4 and let

u0 be the base vertex of B and Bu0
the associated vertex group.
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Consider �rst the case when p has length 0. Since pm and y are both in the base

vertex group Av0
, pm 2 yH if and only if pm 2 y.H \Av0

/. But H \Av0
D Bu0

(since � preserves path length), hence the problem reduces to an instance of power

coset membership in the vertex group Av0
, which is decidable.

Now consider the case when p has non-zero length. We must determine

whether or not there exists a B-path q from u0 to u0 such that �.q/ D y�1pm

or �.q/ D y�1.p�1/m, for some m > 0. We make a slight modi�cation to

the ReadPower algorithm, replacing the statement ‘a WD p0’ on line 15 by

‘a WD y�1p0’ (and similarly for p�1). The modi�ed algorithm clearly solves

the problem. �

Note that the preconditions for Theorem 14, in particular Property 12(iv), may

be di�cult to establish. In the next section, we will use quasi-convexity properties

to establish this for groups obtained by iterated centralizer extensions, but let us

mention here the simple case when edge groups of A are �nite.

Corollary 15. Let G be the fundamental group of a graph of groups in which all
edge groups are �nite and all vertex groups have decidable power coset member-
ship problem. Then the power coset membership problem is decidable in G.

Proof. Property 12(iv) is immediate. Since edge groups are �nite, the various al-

gorithmic problems involving edge groups reduce to �nitely many word problems.

Finite groups are Noetherian, so the graph of groups is benign. �

3. E�ective coherence, embedding, enumeration

Our main goal in this section is to prove that every �nitely generated group G

that is discriminated by a locally quasi-convex torsion-free hyperbolic group � is

e�ectively coherent. We approach this via the fact that G embeds into a group

Gn obtained from � by iterated centralizer extensions. Viewing a centralizer

extension as the fundamental group of a graph of groups, we apply the folding

algorithm to �nd the induced decomposition of, and hence a presentation for, a

subgroup. As applications, we compute the embedding of G into Gn, and provide

enumeration and recognition algorithms for groups discriminated by �.

An iterated centralizer extension corresponds to an iterated graph of groups

construction. Since we will need to prove that the graph of groups is benign, we

begin in §3.1 by giving some general situations in which we can prove that an

iterated graph of groups, with virtually cyclic edge groups, is benign.

3.1. Benign iterated graphs of groups. Consider a graph of groups A in which

each vertex group is itself the fundamental group of a graph of groups. There are

many important hierarchies of this type, with various restrictions on the graph
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of groups and with the hierarchy terminating in base groups of a speci�c type

(e.g. iterated centralizer extensions, �nite hierarchies [9] and [21], quasi-convex

hierarchies [34]).

When can we prove that A is benign? If edge groups are cyclic, then condi-

tions (2) and (3) of the de�nition of benign hold and (1) and (4) reduce to instances

of the power coset membership problem in vertex groups. We will use Theorem 14

to show that decidability of the power coset membership problem propagates up

the hierarchy, but to do so we will need to prove, independently, that Property 11

holds at certain vertex groups.

For a vertex u, we say that Property 11 holds at u with respect to edge groups
if for every edge e with t .e/ D u and every a 2 Au, Au satis�es Property 11 with

respect to !e.Ae/a, and for every edge e0 ¤ e�1 with u D o.e0/ and every a0 2 Au,

Au satis�es Property 11 with respect to .!e.Au/a; ˛e0.Au/a0

/. Note that e0 and e

may coincide if A has loops.

Theorem 16. Let G be the fundamental group of a graph of groups A in which

(i) every edge group is virtually cyclic,

(ii) every vertex group has decidable power coset membership problem, and

(iii) for every edge of A, at least one of its adjacent vertex groups satis�es
Property 11 with respect to edge groups.

Then A is benign and G has decidable power coset membership problem.

Proof. First, we check that A is benign. The membership problem is decidable in

virtually cyclic groups (it follows, for example, from Lemma 17 below since such

groups are locally quasi-convex hyperbolic), so (3) holds. Property (2) holds since

every virtually cyclic group E is Noetherian (indeed, the procedure described

below for �nding a generating set of hXi \ E can be used to produce a �nite

generating set of any subgroup of E).

For conditions (1) and (4), let X be a �nite subset of a vertex group Av, a an

element of Av, and E the image of an edge group in Av. Let c be an element

of in�nite order in E (such an element may be found since there is a computable

bound on the order of �nite elements in a hyperbolic group, see [3]). The subgroup

hci must have �nite index in E, and we may compute set of coset representatives

b1; : : : ; bm (the membership problem is decidable, so we may construct the Schrier

graph).

To �nd a generating set for hXi \ E, �rst �nd k such that hXi \ hci D hcki.
Next, �nd all elements of the form bi c

l , where i 2 ¹1; : : : ; mº and 0 � l < k,

such that bic
l 2 hXi. These elements, together with ck , form a generating set for

hXi \ E. To check if hXi \ aE is non-empty, it su�ces to check if hXi \ .abi /hci
is non-empty for some i 2 ¹1; : : : ; mº, and this may be decided using power coset

membership in Av.
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Decidability of the power coset membership problem in G is a corollary of

Theorem 14. Indeed, for any pair .A;B/ with B folded, Property 12(i) holds by

assumption, Property 12(ii) holds since A is benign, and Property 12(iii) holds

since edge groups are virtually cyclic. For Property 12(iv), consider any edge

cycle f1; : : : ; fs of B (the assumption that all Bfi
are �nite will not be needed).

If s D 1 then e1 is a loop hence Property 11 holds at o.e1/ by assumption and

case (a) of Property 12(iv) is satis�ed. If s > 1, consider the edge f2. Either

Property 11 holds at o.e2/ so Property 12(iv) is satis�ed for i D 1, or Property 11

holds at t .e2/ so Property 12(iv) is satis�ed for i D 2. �

This theorem requires that Property 11 holds for some vertex groups, but we

do not have a method to prove this property based purely on graph of groups

considerations. Instead, we show that certain locally quasi-convex relatively

hyperbolic groups satisfy the property.

There are several combination theorems [6] that give conditions under which

the fundamental group G of a graph of groups with (relatively) hyperbolic vertex

groups is itself relatively hyperbolic, and a recent theorem of Bigdely and Wise [2]

shows that local quasi-convexity of the vertex groups often implies local relative

quasi-convexity of G. Therefore relatively hyperbolic groups that are locally

relatively quasi-convex arise naturally in graph of groups constructions.

We recall the de�nition of local quasi-convexity. Let G be a group generated

by a �nite set X . Let X D Cay.G; X/ be the Cayley graph of G with respect to X ,

and dX the associated metric. For a path p in X we denote by jpj the length of p

and by o.p/ and t .p/ the initial and terminal vertices of p, respectively. A path p

is a .�; c/-quasi-geodesic if for every subpath q of p, jqj � �dX .o.q/; t .q// C c.

A subgroup R � G is called quasi-convex if there exists � � 0 (‘quasi-

convexity constant’) such that the following holds: for every pair of elements

r1; r2 2 R and every geodesic 
 with o.
/ D r1 and t .
/ D r2, every vertex

of 
 is within distance � of a vertex belonging to R. Though quasi-convexity of a

subgroup may depend on the choice of generating set X , when G is hyperbolic it

is independent of the choice of �nite generating set ([5], Proposition 10.4.1).

If every �nitely generated subgroup of G is quasi-convex then G is called lo-
cally quasi-convex. Examples of locally quasi-convex groups include free groups,

(most) surface groups, and a variety of small-cancellation, Coxeter, and one-

relator groups recently studied by Martínez-Pedroza, McCammond, and Wise

([23], [24], and [22]). We will use these groups as vertex groups in Theorem 16,

so decidability of the power coset membership problem is essential.

Lemma 17. Every locally quasi-convex hyperbolic group � has decidable power
coset membership problem.

Proof. Let H � � be �nitely generated, and let x; g 2 �. Compute a hyperbol-

icity constant ı for � and a quasi-convexity constant � for H (using [26] or [30]
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and [14] Proposition 4). First, determine if g has �nite order. Since the order of

any �nite-order element of � is bounded by s2ıC1 C1, where s is the cardinality of

the given generating set of � (see [3]), it su�ces to check if gi is trivial for some

0 < i � s2ıC1 C 1. If g has �nite order k, check if gi 2 xH for any 0 < i � k,

using the fact that membership in a quasi-convex subgroup of a hyperbolic group

is decidable ([12] Proposition 6.1). Assume now that g has in�nite order.

Suppose that gm 2 xH for some m > 0. In the Cayley graph of �, the path

labelled by gm is a .�; c/-quasi-geodesic, for some � and c depending on ı and

jgj but not on m ([27] Lemma 1.11). Consequently, the path q labelled by x�1gm

is a .�; c0/-quasi-geodesic, where c0 D c C .� C 1/jxj. Let p be a geodesic path

from 1 to x�1gm. There exists a computable constant K D K.ı; �; c0/ such that

every vertex of q is within distance K of p ([27] Lemma 1.9). Since H is �-quasi-

convex, every vertex of p lies within � of H . Hence every vertex of q lies within

distance K C � of H . In particular, there exist elements y0; y1; : : : ; ym in the ball

B of radius K C � centered at 1 such that

x�1giyi 2 H;

for i D 0; : : : ; m (see Figure 3.1).

� �� �

� K� K

1 x�1gm 2 Hp

q

x�1

x�1gi

x�1gj

x�1gi yi 2 H x�1gj yj 2 H

Figure 3.1. Vertices of q are .K C �/-close to H .

Let N D jBj. We claim that there exists 0 < n � N such that x�1gn 2 H . If

m � N , the claim holds, so assume m > N . Then there exist 0 � i < j < m such

that yi D yj .

Let

h1 D x�1giyi ;

h2 D .y�1
i g�i x/x�1gj yi ;

h3 D .y�1
i g�j x/x�1gm;
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which are all elements of H . Then

h1h3 D h1y�1
i gm�j

D h1.y�1
i gj �iyi /.y

�1
i gm�j /g�.j �i/

D h1h2h3g�.j �i/

D x�1gm�.j �i/

so x�1gm�.j �i/ 2 H . If m � .j � i/ � N , the claim holds, and otherwise we

repeat the above argument with m0 D m� .j � i/ in place of m (note that m0 > 0).

This proves the claim.

If gm 2 xH for some m < 0, a similar argument shows that x�1gn 2 H for

some �N � n < 0. We conclude that if there exists m ¤ 0 such that gm 2 xH ,

then there exists n ¤ 0 in the interval Œ�N; N � such that gn 2 xH . Then to solve

the power coset membership problem, it su�ces to check if any of the elements

x�1gi is in H , for i 2 Œ�N; N � n ¹0º. �

We now review some necessary aspects of the geometry of relatively hyper-

bolic groups from [29]. Let G be hyperbolic relative to a collection

H D ¹H1; : : : ; Hmº of subgroups. Subgroups of G that are conjugate into sub-

groups in H are called parabolic. Denote

yH D

mG

iD1

Hi n ¹1º

and let yX D Cay.G; X [ yH/. When constructing yX we remove from X any

parabolic elements.

For a path p in yX, a maximal subpath consisting of edges from Hi is

called an Hi -component. Every vertex that does not lie in the interior of some

Hi -component is called a phase vertex. Two Hi -components p1 and p2 are con-
nected if there is an edge from a vertex of p1 to a vertex of p2 labelled by an

element of Hi . An Hi -component is isolated if it is not connected to any other

Hi -component.

A subgroup R of G is called relatively quasi-convex if there exists a constant

� � 0 such that the following condition holds: for every two elements r1; r2 2 R,

every geodesic path 
 in yX with o.
/ D r1 and t .
/ D r2, and every vertex v of 
 ,

there exists a vertex w 2 R such that

dX .v; w/ � �:

Note that this distance is in X, not yX. As with quasi-convexity, relative quasi-

convexity (in a relatively hyperbolic group) does not depend on the �nite gener-

ating set X ([29] Proposition 4.10). If every �nitely generated subgroup of G is

relatively quasi-convex then G is called locally relatively quasi-convex.



572 I. Bumagin and J. Macdonald

Lemma 18. Let G be relatively hyperbolic and locally relatively quasi-convex.
Then for every hyperbolic element c 2 G of in�nite order, G satis�es Property 11

with respect to the maximal elementary subgroup E containing c.

Proof. Let s be the index of C D hci in E and let A be a set of coset representatives

of C in E. Let g; x 2 G with gx�1 62 E and let K � G be �nitely generated such

that K \ E and K \ Ex are both �nite. Note that C x has index s in Ex and that

Ax is a set of coset representatives C x in Ex .

Let I denote the set of all quadruples .a1; a2; n; l/ with a1; a2 2 A and n; l 2 Z

such that

a1cngax
2 .cx/l 2 K: (8)

To prove Property 11 we must show that I is �nite. Assume for contradiction that

I is in�nite.

First, suppose that there are more than s2 elements of I that have identical third

components. Then there exists .a1; a2; n; l/ and .a1; a2; n; k/ in I with l ¤ k.

Then

.a1cngax
2 .cx/l /�1.a1cngax

2 .cx/k/ D .cx/k�l 2 K;

hence h.cx/k�l i � K contradicting the fact that K \Ex is �nite. Similarly, if there

are more than s2 elements of I having identical fourth components, one obtains

a contradiction to the fact that K \ E is �nite. It follows then that there exists

a1; a2 2 A and an in�nite subset J � I indexed by N consisting of elements

.a1; a2; ni ; ki/ where ni ¤ nj and ki ¤ kj for all i ¤ j .

Let G be hyperbolic relative to H. Then G is also hyperbolic relative to

H
0 D H [ ¹Eº, since by [28] Corollary 1.7 the maximal elementary subgroup

containing a hyperbolic element is always hyperbolically embedded (if a conjugate

of E is already included we simply replace it by E). Let yX D Cay.G; yH0/. Edges

of yX labelled by elements of E will be called E-edges.

Let pgx�1 be a geodesic path in yX representing the element gx�1. Write pgx�1

in the form

pgx�1 D e Opgx�1e0

where e and e0 are E-edges labelled by elements b; b0 2 E and Opgx�1 neither

begins nor ends with an E-edge. Since gx�1 62 E, Opgx�1 is non-empty. Since

pgx�1 is a geodesic, every E-component of pgx�1 is isolated and consists of a

single edge. Let px be a geodesic path for x and write px in the form

px D e00 Opx

where e00 is an E-edge labelled by b00 2 E and Opx does not begin with an E-edge.

Every E-component of px is isolated and consists of a single edge.
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For every i 2 N, let pi be the path from 1 to a1cni gx�1a2cki x de�ned by

pi D e
.1/
i Opgx�1e

.2/
i Opx;

where e
.1/
i is the E-edge labelled by a1cni b and e

.2/
i is the E-edge labelled by

b0a2cki b00. The path pi is shown in Figure 3.2.

Claim. For in�nitely many i , pi is a path without backtracking, i.e. for all H 2 H,
every H -component of pi is isolated.

Proof. First we show that every E-component is isolated. Since all ni are distinct,

as are all ki , there are in�nitely many i such that a1cni b ¤ 1 and b0a2cki b00 ¤ 1

so we may assume these two elements are non-trivial. Hence the E-components

of pi are precisely the edges e
.1/
i and e

.2/
i and the E-edges appearing in Opgx�1 and

in Opx.

Assume for contradiction that pi has a non-isolated E-component. The com-

ponent e
.1/
i is not connected to an E-component of Opgx�1 , as this would imply that

either Opgx�1 is not a geodesic or that Opgx�1 begins with an E-edge. Similarly, e
.2/
i

is neither connected to an E-component of Opgx�1 nor to an E-component of Opx.

If e
.1/
i and e

.2/
i are connected, it implies that Opgx�1 represents an element of E,

hence gx�1 2 E, which is false.

The only remaining possibility is that Opx has an E-component which is con-

nected to either e
.1/
i or to an E-component of Opgx�1 . We claim that this occurs for

only �nitely many i . Assume otherwise. Then for in�nitely many i , there exists

1 � li � j Opgx�1 j and 2 � mi � j Opx j C 1 such that the vertex number li of Opgx�1

(where vertex number 1 is the �rst vertex from the left) is connected via an E-edge

to vertex number mi of Opx . Since Opgx�1 and Opx are �nite, there exist i ¤ j such

that li D lj and mi D mj . It follows that

g1.b0a2cki b00/g2 2 E; g1.b0a2ckj b00/g2 2 E (9)

where g1; g2 2 G are the elements represented by the length j Opgx�1 j � li C 1

terminal segment of Opgx�1 the length mi � 1 initial segment of Opx (respectively).

Taking the di�erence of the elements appearing in (9), we conclude that

.ckj �ki /b00g2 2 E:

Since E is hyperbolically embedded in G, it almost malnormal by Theorem 1.5(3)

of [28]. That is, E \Eh is �nite for all h 2 G nE. Since hckj �ki ib00g2 is an in�nite

subgroup of E \Eb00g2 , the conjugator b00g2 must lie in E, which implies g2 2 E.

However, g2 corresponds to the length mi �1 initial segment of Opx. This segment

cannot be length 1, as Opx does not begin with a E-edge, nor can it be length greater

than 1, as Opx is a geodesic. It must therefore be length 0, contradicting mi � 2.
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Now we check that for each H 2 H
0, where H ¤ E, every H -component in

pi is isolated for all but �nitely many i . Assume otherwise. The H -components

may only occur in Opgx�1 and Opx . Since each of these paths is a geodesic, no

two H -components of Opgx�1 are connected, and similarly for Opx. Hence an

H -component of Opgx�1 is connected to an H -component of Opx, for in�nitely

many i . As in the case for E-components, we conclude there exists i ¤ j , g1 2 G

corresponding to a terminal segment of Opgx�1 , and g2 2 G corresponding to an

initial segment of Opx such that

g1.b0a2cki b00/g2 2 H; g1.b0a2ckj b00/g2 2 H:

It follows that .ckj �ki /b00g2 2 H , hence hckj �ki ib00g2 is an in�nite subgroup of

Eb00g2 \ H . But H and E are both in H
0, so the intersection Eb00g2 \ H must be

�nite (see Proposition 2.36 of [29]), which is a contradiction. 4

We return to the proof of Lemma 18. The length of pi is bounded by


 D 2 C 2jxj C jgj;

so pi is, trivially, a .1; 
/-quasi-geodesic. Let qi be a geodesic in yX from 1 to

a1cni gx�1a2cki x. Since pi and qi are both quasi-geodesic paths with the same

endpoints and pi is a path without backtracking, there exists a constant � D �.
/

such that every (phase) vertex of pi is within dX -distance � of a vertex of qi

([29] Proposition 3.15). In particular, for the endpoint ui of e
.1/
i , there exists a

vertex vi in qi at dX -distance at most � from ui . Let � be a quasi-convexity constant

for K. Since qi is a geodesic in yX between elements of K, vi is at dX -distance at

most � from a vertex belonging to K. Hence for in�nitely many i , ui is connected

inX to a vertex of K by a path ri of dX -length at most �C�, as shown in Figure 3.2.

� �

� �

pi

qi

Opgx�1

Opx

1 a1cni gx�1a2cki x

ui

vi

ri

e
.1/

i

e
.2/

i

2 K

Figure 3.2. A path ri of length at most � C � connects ui to K.
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Since the ball of radius � C � is �nite in X, there exist i ¤ j such that ri and

rj are labelled by the same element g0 2 G. We conclude that

a1cni bg0 2 K; a1cnj bg0 2 K

hence .cni �nj /a�1
1 2 K, so h.cni �nj /a�1

1 i is an in�nite subgroup of K \ E. This

is a contradiction, so I must be �nite as required. �

3.2. Groups discriminated by � . Let � be a torsion-free locally quasi-convex

hyperbolic group and G a �nitely presented group discriminated by �. Since

G embeds into an iterated centralizer extension of �, we will prove e�ective

coherence of G by �rst proving e�ective coherence in centralizer extensions of

�. This will also allow us to compute the embedding.

An extension of a centralizer of � is a group G1 presented by

G1 D h�; t1; : : : ; tr j ŒC.g/; ti � D Œti ; tj � D 1; 1 � i; j � ri

where g 2 � and C.g/ is the centralizer of g in �. Note that G1 is isomorphic to

the amalgamated product ��C.g/.C.g/�Z
r /, which we regard as the fundamental

group of a graph of groups with two vertices.

The operation of forming an extension of a centralizer may be iterated to form

a chain

� D G0 < G1 < � � � < Gn (10)

where GiC1 is an extension of a centralizer of Gi . We say that Gn is obtained from

� by iterated extensions of centralizers.

For every non-trivial g 2 �, its centralizer C.g/ is cyclic and malnormal, and

g may be chosen so that C.g/ D hgi. It follows (see [25]) that all centralizers

in Gn are torsion-free abelian groups of �nite rank and that the chain (10) may

be arranged so that each GiC1 is obtained from Gi by extension of a cyclic

centralizer, i.e.

GiC1 D Gi �hgi i Z
ri C1: (11)

We will apply combination theorems to obtain relative hyperbolicity and local

relative quasi-convexity of each GiC1, then apply Theorem 16 inductively to obtain

e�ective coherence of Gn. This is the central theorem of the paper.

Theorem 19. There is an algorithm that, given

� a �nitely presented group � that is hyperbolic, torsion-free, and locally
quasi-convex,

� a chain of centralizer extensions � D G0 < G1 < : : : < Gn and,

� a �nite subset X � Gn,

produces a presentation for the subgroup hXi generated by X .
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The absence of torsion in � does not play an essential role in the proof of

Theorem 19, so we will prove it in a more general case, starting from a base group �

that is hyperbolic and locally quasi-convex, but possibly with torsion. The iterated

centralizer extension construction must be modi�ed. As before, we will construct

a chain of groups

� D G0 < G1 < G2 < : : : < Gn: (12)

To construct G1, choose g0 2 � to be an element of in�nite order and form an

amalgamated product

G1 D � �E.g0/DE0
V0

where V0 is a �nitely presented virtually abelian group and E.g0/ is the maximal

elementary subgroup containing g0. The group E.g0/ is hyperbolically embedded

in � (see [28] Corollary 1.7), meaning � is hyperbolic relative to E.g0/. Then

it follows that G1 is hyperbolic relative to V0 (see for example [6]) and locally

relatively quasi-convex (see [2] Theorem 3.1).

In general, GiC1 is obtained from Gi by choosing a hyperbolic element

gi 2 Gi of in�nite order, a �nitely presented virtually abelian group Vi , a sub-

group Ei � Vi isomorphic to E.gi /, and forming the amalgamated product

GiC1 D Gi �E.gi /DEi
Vi : (13)

The same argument as above shows that GiC1 is relatively hyperbolic and locally

relatively quasi-convex.

In the case when � is torsion-free, each group Gi is toral relatively hyperbolic.

Since each gi may be chosen in (11) so that C.gi / D hgi i, one may assume that gi

is a hyperbolic element. Then the elementary subgroup E.gi / coincides with the

centralizer C.gi/. Thus Theorem 19 follows from Theorem 20 below.

Theorem 20. There is an algorithm that, given

� a �nitely presented group � that is hyperbolic and locally quasi-convex,

� a chain of amalgamated products

� D G0 < G1 < : : : < Gn;

where GiC1 D Gi �E.gi /DEi
Vi for i D 0; : : : ; n � 1 with gi 2 Gi hyperbolic

of in�nite order and Vi virtually abelian, and

� a �nite subset X � Gn,

produces a presentation for the subgroup hXi generated by X .

Proof. In the input we assume that for each i , the following data is provided: gen-

erating sets for E.gi / and Ei , a bijection between those generating sets inducing

an isomorphism E.gi / ' Ei , a presentation for Vi , and a free basis for a free

abelian subgroup Ai � Vi of �nite index.
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We regard each GiC1 as the fundamental group of a graph of groups with two

vertex groups Gi , Vi and one edge group E.gi /. We prove, by induction on n, that

each GiC1 has decidable power coset membership problem and the corresponding

graph of groups is benign by applying Theorem 16 at each step.

In the base case we have G1 D � �E.g0/DE0
V0. The edge group E.g0/ is

virtually cyclic, and the vertex group � satis�es Property 11 with respect to E.g0/

and all of its conjugates E.gx
0 / D E.g0/x by Lemma 18, so conditions (i) and (iii)

of Theorem 16 hold. The vertex group � has decidable power coset membership

problem by Lemma 17, so it su�ces to show that every �nitely presented virtually

abelian group V has decidable power coset membership problem.

The power coset membership problem is a rational subset intersection prob-

lem: a coset of a �nitely generated subgroup is a rational subset, as is a cyclic

group minus one element, and the problem asks to determine whether such an

intersection is non-empty. But the rational subset intersection problem in any

�nitely-generated group is Turing-equivalent to the rational subset intersection

problem in any �nitely generated �nite-index subgroup. An explicit construction

of the reduction is given in [11] Theorem 2.3.3. So we reduce power coset member-

ship in V to an instance of rational subset intersection in a free abelian �nite-index

subgroup A � V , which is decidable (see [11] Proposition 2.2.12). Note that the

reduction requires a coset diagram of A in V : such a diagram may be constructed

since V has decidable membership problem (virtually abelian groups are abelian-

by-�nite, and an algorithm for the membership problem in all polycyclic-by-�nite

groups is given in [1]).

We conclude from Theorem 16 that G1 has decidable power coset membership

problem and the corresponding graph of groups is benign. The inductive case

is proved similarly, with decidable power coset membership in Gi provided by

induction and noting as above that Gi is relatively hyperbolic and locally relatively

quasi-convex.

We prove e�ective coherence by induction. Since �nitely generated virtually

abelian groups are polycyclic-by-�nite, they are e�ectively coherent by [1] The-

orem 3.4. Locally quasi-convex hyperbolic groups are also e�ectively coherent

([12] Proposition 6.1), so the folding algorithm of [15] Theorem 5.8 shows that G1

is e�ectively coherent, since the graph of groups for G1 is benign. By induction,

Gn is e�ectively coherent. �

Theorem 19 implies that every �nitely generated group G that is discriminated

by � (torsion-free) is e�ectively coherent, provided G is speci�ed as a subgroup

of some Gn. However, if G is speci�ed by an abstract presentation this does not

describe an algorithm unless the embedding G ,! Gn is known. We are now in a

position to compute this embedding. If � does have torsion, we are not aware of

an embedding of G into iterated centralizer extensions of �, nor into a chain of

the form (12).
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In [16], it was shown that one may compute a �nite collection of homo-

morphsims from G to groups obtained from � by centralizer extensions, at least

one of which must be injective. This was proved for all torsion-free hyperbolic

groups �, but a method to identify an injective homomorphism from this collec-

tion could not be given. With the additional assumption of local quasi-convexity,

e�ective coherence of Gn allows us to determine which homomorphism is injec-

tive.

Theorem 21. Let � be a torsion-free locally quasi-convex hyperbolic group.
There is an algorithm that, given a �nitely presented group G:

(i) if G is discriminated by �, computes a sequence of centralizer extensions

� D G0 < G1 < � � � < Gn

and an embedding G ,! Gn;

(ii) if G is not discriminated by �, runs forever.

If in addition a solution to the word problem in G is given, the algorithm terminates
when G is not discriminated by �, reporting this fact.

Proof. From Theorem 3.17 of [16], we may e�ectively construct �nitely many

groups H1; : : : ; Hm, each given as sequence of centralizer extensions of �, and

homomorphisms �i W G ! Hi such that if G is discriminated by �, at least one �i

is injective. As observed above, each Hi is toral relatively hyperbolic and locally

relatively quasi-convex.

For each i , construct a presentation for �i.G/ using Theorem 19. Since

�i .G/ � Hi is �nitely generated, it is relatively quasi-convex and hence toral rel-

atively hyperbolic (by [13] Theorem 9.1 or [22] Theorem 1.8). If G is discrim-

inated by �, then G is also toral relatively hyperbolic since it is isomorphic to

some �i.G/. We check if G is toral relatively hyperbolic using the algorithm

given in Theorem 0.2 of [7], which terminates if so and runs forever if not.

If this algorithm terminates, we check for each i D 1; : : : ; m whether or not G

and �i .G/ are isomorphic, using the solution to the isomorphism problem for toral

relatively hyperbolic groups given in [8]. If G 6' �i .G/, then �i is not injective.

If G ' �i.G/, then G is discriminated by � (since it is isomorphic to a subgroup

of Hi , which is discriminated by �), and hence is Hop�an by [33] Theorem 1.12.

Consequently, �i is injective.

If a solution to the word problem in G is given, we may run in parallel the

following algorithm. Enumerate non-trivial elements g 2 G and check whether

or not �i .g/ is trivial for each i . If G is not discriminated by �, all of the �i must

fail to be injective and the algorithm will eventually �nd for each i a non-trivial

gi 2 G such that �i .gi / D 1. �
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Note that this theorem provides a recognition algorithm for groups G discrim-

inated by �, provided the word problem is decidable in G. It also gives e�ective

coherence of G when G is given by a presentation rather than as a subgroup of Gn.

Theorem 22. There is an algorithm that, given

� a �nitely presented group � that is hyperbolic, torsion-free, and locally
quasi-convex,

� a �nitely presented group G that is discriminated by �, and

� a �nite subset X � G,

computes a presentation for the subgroup hXi generated by X .

In the case when � is a free group, the above result was obtained in [18] and

in [10]. Our result provides an alternate proof.

Corollary 23. Limit groups are e�ectively coherent.

We may also give an algorithm that enumerates all �nitely generated groups

discriminated by �.

Theorem 24. There is an algorithm that, given a presentation of a group � that is
hyperbolic, torsion-free, and locally quasi-convex, enumerates by presentations
all �nitely generated groups discriminated by �, without repeating isomorphic
groups.

Proof. Every �nitely generated group discriminated by � is isomorphic to a sub-

group of a group obtained from � by a �nite chain of centralizer extensions. Enu-

merate all groups Gn obtained from � by a �nite chain of centralizer extensions

and all �nite subsets Xi � Gn. Since each Gn is e�ectively coherent, we can

compute a presentation for hXi i. Since every hXi i is toral relatively hyperbolic,

we may use the solution to the isomorphism problem from [8] to eliminate iso-

morphic groups. �
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