
Groups Geom. Dyn. 10 (2016), 523–543

DOI 10.4171/GGD/355

Groups, Geometry, and Dynamics

© European Mathematical Society

Abstract commensurability and the Gupta–Sidki group

Alejandra Garrido

Abstract. We study the subgroup structure of the in�nite torsion p-groups de�ned by

Gupta and Sidki in 1983. In particular, following results of Grigorchuk and Wilson for

the �rst Grigorchuk group, we show that all in�nite �nitely generated subgroups of the

Gupta–Sidki 3-groupG are abstractly commensurable withG orG�G. As a consequence,

we show thatG is subgroup separable and from this it follows that its membership problem

is solvable.

Along the way, we obtain a characterization of �nite subgroups of G and establish an

analogue for the Grigorchuk group.
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1. Introduction

Groups of automorphisms of regular rooted trees have received considerable atten-

tion in the last few decades. Their interest derives from the striking properties of

some of the �rst examples studied, the Grigorchuk group [5] and the Gupta–Sidki

p-groups [9]. These groups are easily understood examples of in�nite �nitely

generated torsion groups, answering the General Burnside Problem. Furthermore,

the Grigorchuk group was the �rst group to be shown to be of intermediate word

growth and to be amenable but not elementary amenable (see [6]). Amenability

of the Gupta–Sidki p-groups (among many other examples) was proved in [2].

These and other striking results prompt one to ask what other unusual properties

these groups may have.

In [7], the authors establish another notable result about the Grigorchuk group,

namely that all its in�nite �nitely generated subgroups are (abstractly) commen-

surable with the group itself. Recall that two groups are (abstractly) commen-

surable if they have isomorphic subgroups of �nite index. This notion translates

into geometric terms as “having a common �nite-sheeted covering”: two spaces

which have a common �nite-sheeted covering have commensurable fundamental
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groups. For this reason it is an important concept in geometric group theory.

It also appears in the study of lattices in semisimple Lie groups, in pro�nite groups

and other areas of group theory. Having only one commensurability class of in�n-

ite �nitely generated subgroups is a very strong restriction on subgroup structure

and examples where it is known to hold are scarce. Following a similar general

strategy to that in [7], we will show that an analogous result holds for the Gupta–

Sidki 3-group:

Theorem 1. Every in�nite �nitely generated subgroup of the Gupta–Sidki 3-group

G is commensurable with G or G �G.

This raises two questions. The �rst is whether the commensurability classes

are actually distinct; by contrast, the Grigorchuk group is commensurable with its

direct square. This is the motivation for the work carried out in [4]. In that paper,

more general results on the structure of subgroups of branch groups yield that the

classes are indeed distinct, for many examples of groups acting on p-regular trees

where p is an odd prime.

The second question concerns the restriction to p D 3 in Theorem 1. It seems

likely that this restriction is unnecessary. However, our proof relies heavily on a

delicate length reduction argument that is only available for p D 3.

Our �rst main theorem allows us to prove another result about the subgroup

structure of G, also parallel to a result in [7].

Theorem 2. The Gupta–Sidki 3-group is subgroup separable and hence has

solvable membership problem.

Recall that a group is subgroup separable (or LERF) if each of its �nitely

generated subgroups is an intersection of subgroups of �nite index. This condition

is strong and is only known to hold in very special cases such as free groups,

surface groups, polycyclic groups and some 3-manifold groups (see [11, 18, 14, 13]).

It is related to the membership problem (or generalized word problem). The

membership problem for a �nitely generated group H is solvable if there is an

algorithm which given a �nitely generated subgroup K � H and an element

h 2 H determines whether or not h 2 K. If a group is subgroup separable and all

its �nite quotients can be e�ectively determined then it has solvable membership

problem. The Gupta–Sidki p-groups, the Grigorchuk group and, more generally,

groups with �nite L-presentations are examples of groups all of whose �nite

quotients can be e�ectively determined (see, for instance, [12]).

The proofs of our main theorems both rely on an auxiliary result, Theorem 6,

on �nitely generated subgroups of the Gupta–Sidki 3-group. It is worth mention-

ing that all our results hold for the general case where p is any odd prime, except

for the length reduction argument in this Theorem 6. For this reason, all de�nitions

and preliminary results are stated for the general case in Section 2 and we only
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focus on the case p D 3 for the proof of Theorem 6 in Section 4. We depart from

preliminary results in Section 3, where we discuss maximal subgroups. In [16, 17]

it was shown that all maximal proper subgroups of the Grigorchuk and Gupta–

Sidki groups have �nite index. We will show in Theorem 5 that this maximal

subgroups property passes to all �nitely generated subgroups of the Gupta–Sidki

3-group, as a consequence of Theorem 1. The proofs of Theorem 1 and Theorem 2

are presented in the �nal Section 5. The arguments generalize easily to the case

p > 3 assuming that the analogue of Theorem 6 holds. In this �nal section we

also establish the following characterization of �nite subgroups of the 3-group,

using the analysis carried out in Section 4.

Theorem 3. LetH be a �nitely generated subgroup of G. Then H is �nite if and

only if no vertex section of H is equal to G.

Minor changes in the proof of this theorem and the detailed analysis carried out

in [7] yield an identical characterization of the �nite subgroups of the Grigorchuk

group.

Theorem 4. Let H be a �nitely generated subgroup of the Grigorchuk group �.

Then H is �nite if and only if no vertex section of H is equal to �.

2. De�nitions and preliminaries

We begin by de�ning the trees on which our groups act, the automorphism groups

of these trees, and some of their subgroups which will be used in our proofs.

For an integer d � 2, we may think of the vertices of the d -regular rooted tree

T as �nite words over the alphabet ¹0; : : : ; d � 1º. We think of the empty word "

as the root. The words u; v are joined by an edge if v D uw (or u D vw) for some

w in the alphabet.

We can impose a metric on T by assigning unit length to each edge. Then

vertex v will be at distance n from vertex u if the unique path joining them consists

of n edges. The distance of a vertex v from the root is the level of v. The set of

vertices of level n is called the nth layer of T and is denoted by Ln.

For a vertex v 2 Ln, the subtree consisting of vertices of levelm � n separated

from the root by v is the subtree rooted at v and it is denoted by Tv. Since T is

regular, for every vertex v there is an obvious isomorphism from T to Tv taking u

to vu. We will identify all Tv with T in the rest of the paper.

An automorphism of a rooted tree T is a permutation of the vertices that

preserves the adjacency relation. We denote the group of all automorphisms of

T by AutT . For any vertex v of T write vg for the image of v under g 2 AutT .

We write

St.v/ WD ¹g 2 AutT j vg D vº
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for the stabilizer of v. The subgroup

St.n/ WD
\

v2Ln

St.v/

is the nth level stabilizer. For any subgroup � � AutT , denote by St�.v/ and

St�.n/ the intersection of � with the above subgroups. The level stabilizers St�.n/

have �nite index in �. We say that � has the congruence subgroup property if

every �nite index subgroup of � contains some St�.n/.

For every x 2 St.v/ there is a unique automorphism xv 2 Aut T which is

simply the restriction of x to the subtree Tv.D T /. Hence for every subgroup

� � AutT and every vertex v of T this restriction yields a homomorphism

'vW St�.v/ �! Aut T;

x 7�! xv:

The image of this homomorphism is denoted by �v and called the vertex section

of � at v (some authors call it an upper companion group). We may also refer

to xv D 'v.x/ as the vertex section of x at v. Observe that if v D uw then

'v D 'u ı 'w .

Notice that, although the image 'v.St�.v// is a subgroup of AutT , it may

not be a subgroup of G. We say that a subgroup � � Aut T is fractal if

'v.St�.v// D � for every vertex v of T .

For every n, de�ne

 nW St�.n/ �!
Y

v2Ln

 v.St�.v// �
Y

v2Ln

AutTn;

x 7�! .xv/v2Ln
:

This is an embedding, so we may identify elements of St�.n/ with their image

under  n. For the �rst level we usually omit the subscript and just write  .

In fact, we often (following the custom in the literature) omit the  altogether

for elements of the �rst level stabilizer.

We can now introduce the family of Gupta–Sidki p-groups. Let p > 2

be a prime and let T be the p-regular rooted tree. The Gupta–Sidki p-group

G D ha; bi is the subgroup of AutT generated by two automorphisms a and

b. The automorphism a cyclically permutes the �rst layer as .1 2 : : : p/. The

element b D .a; a�1; 1; : : : ; 1; b/ is recursively de�ned by its action on subtrees

rooted at the �rst layer: it acts on T0 as a acts on T , as a�1 on T1, as b on Tp�1

and trivially on the other subtrees. The �gure below shows the action of b on T

for p D 3:
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We establish some preliminary results and properties of the Gupta–Sidki

p-groups that will be useful later on.

Notation. From now on, G will usually denote the Gupta–Sidki p-group unless

otherwise stated, and we may omit the subscript in StG.n/, StG.v/. The derived

subgroup of G will be denoted by G0 and the direct product of i copies of G

by G.�i/.

It is immediate from the de�nition of G as a subgroup of AutT that G is

residually �nite (as
T1

nD1 StG.n/ D 1). It follows from [10] that G is just in�nite;

that is, G is in�nite but all its proper quotients are �nite.

For i D 1; : : : ; p � 1, we write

bi WD bai

D .1; : : : ; b; a; a�1; : : : ; 1/

where b is in the i th co-ordinate and b0 WD b. Let B denote hbGi, the normal

closure of b. Then it is easy to see that B D hbGi is equal to hb; b1; : : : ; bp�1i D

StG.1/. Note also that b has order p.

We include the proof of the following to illustrate the use of projection argu-

ments since these will play an important role later on.

Proposition 2.1 ([9]). For every n, the nth level stabilizer StG.n/ is a subdirect

product of pn copies of G. Therefore G is in�nite and fractal.

Proof. We proceed by induction. For n D 1 the map  W StG.1/ ! G.�p/ is a

homomorphism. We claim that 'i .StG.1// D G for i 2 ¹0; : : : ; p � 1º. This is

easily seen by examining the images of generators of B:

 .b/ D .a; a�1; 1; : : : ; b/,

 .b1/ D .b; a; a�1; 1; : : : ; 1/,
:::

 .bp�1/ D .a�1; 1; : : : ; 1; b; a/.
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Suppose that the result is true for n � 1. Then a similar argument as for StG.1/

shows that StG.nC 1/ is a subdirect product of p copies of StG.n/, each of them

a subdirect product of pn copies of G. This immediately shows that G is fractal

and in�nite. �

The following are easy generalizations to p > 3 of results proved in [19] for

p D 3.

Proposition 2.2. We have

(i) G=G0 D haG0; bG0i Š Cp � Cp;

(ii)  .B 0/ D .G0/.�p/;

(iii) G=B 0 Š Cp o Cp.

Proof. The �rst item is a straightforward veri�cation. For the second,we have

 .Œb0b1; b
�1
1 bp�1�/

D Œ.a; a�1; 1; : : : ; b/.b; a; a�1; : : : ; 1/; .b�1; a�1; a; : : : ; 1/.a�1; 1; : : : ; b; a/�

D .Œab; b�1a�1�; Œ1; a�1�; Œa�1; a�; : : : ; Œ1; b�; Œb; a�/

D .1; : : : ; 1; Œb; a�/

and it is easy to see that, for i D 1; : : : ; p � 1,

 .Œb0b1; b
�1
1 bp�1�

ai

/ D  .ŒbibiC1; b
�1
iC1bpCi�1�/ D .1; : : : ; Œb; a�; : : : ; 1/

where Œb; a� is in the i th coordinate.

From the above we obtain

G=B 0 D G=.G0/.�p/ D haiB=.G0/.�p/ Š Cp o Cp: �

We are now able to show a commensurability property, which will be used in

the next sections without mention.

Proposition 2.3. For every odd prime p, if i � j mod p � 1 then G.�i/ is

commensurable with G.�j /.

Proof. For �xed i 2 ¹0; : : : ; p � 1º, we show by induction on n that G.�i/ is

commensurable with G.�n.p�1/Ci/. For the base case, we deduce from

parts (ii) and (iii) of Proposition 2.2 that G.�p�1Ci/ D G.�p/ � G.�i�1/ is com-

mensurable with G � G.�i�1/ D G.�i/. Now suppose the claim holds for n.

Then G.�.nC1/.p�1/Ci/ D G.�n.p�1/Ci/ � G.�p�1/ is commensurable with

G.�i/ � G.�p�1/, which is in turn commensurable with G.�i�1/ � G D G.�i/.

Hence G.�.nC1/.p�1/Ci/ is commensurable with G.�i/ and our claim follows by

induction. �
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The following will be very useful.

Proposition 2.4. An element g 2 G is inB if and only if there exist n0; : : : ; np�1 2

¹0; : : : ; p � 1º and c0; : : : ; cp�1 2 G0 such that

g D .a�np�1Cn0bn1c0; a
�n0Cn1bn2c1; : : : ; a

�np�2Cnp�1bn0cp�1/:

Moreover, when this is the case, the representation is unique.

Proof. The ‘if’ direction is obvious. If g 2 B then g is a product of b0; : : : ; bp�1

and

B=B 0 D ¹b
r0

0 b
r1

1 � � � b
rp�1

p�1 B
0 j ri 2 ¹0; : : : ; p � 1ºº:

Thus for some ni 2 ¹0; : : : ; p � 1º; c 2 B 0 we have

g D b
n0

0 b
n1

1 � � � b
np�1

p�1 c

D .an0bn1a�np�1d0; a
�n0Cn1bn2d1; : : : ; b

n0a�np�2Cnp�1dp�1/

D .an0a�np�1bn1c0; a
�n0Cn1bn2c1; : : : ; a

�np�2Cnp�1bn0cp�1/

where ci ; di 2 G0 (since B 0 D .G0/.�p/).

The ni are uniquely determined and therefore so are the ci . �

Lemma 2.5. The following assertions hold:

(i) b.1/ D .b; b; : : : ; b/ 2 G0I

(ii) G0 � St.2/.

Proof. For the �rst item note that bb1 � � � bp�1 � b.1/ mod B 0 because

bb1 � � � bp�1 D .aba�1; b; : : : ; b/:

Therefore it su�ces to show that bb1 � � � bp�1 2 G0. To see this, observe that for

i D 0; : : : ; p � 1 we have bi D bŒb; ai � so that

bb1 � � � bp�1 D b2Œb; a�b�2b3Œb; a2�b�3 � � � b�1Œb; a�2�bŒb; a�1� 2 G0;

as required.

For the second item, let g D .g0; : : : ; gp�1/ 2 St.2/, so gi 2 St.1/ for

each i . Proposition 2.4 implies that g D .bnc0; : : : b
ncp�1/ � .b.1//n mod B 0

for some n. Thus g 2 G0 by the previous part. �

The proofs of Theorems 1 and 2 use the fact that the Gupta–Sidki 3-group

has the congruence subgroup property. This is stated in [1, Proposition 8.4], but

the proof given there is not quite clear. Here is a proof which works for any odd

prime p.
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Proposition 2.6. The Gupta–Sidki p-group G has the congruence subgroup

property.

Proof. By [1, Proposition 3.8], it su�ces to show that G00 contains some level

stabilizer St.m/. The case p > 3 follows from [8, Lemma 2], which shows that

G00 � G0 � � � � � G0, the direct product of p2 copies of G0. Thus, by Lemma 2.5

we have G00 � St.2/ � � � � � St.2/ � St.4/.

For the case p D 3 we must prove an analogous version of [8, Lemma 2].

Let C D ŒG0; G� be the third term of the lower central series of G. Since

G0 contains B 0 D G0 � G0 � G0 and the elements Œa; b�a
�1

D .a; ab; b�1a/,

b.1/ D .b; b; b/, we have

.Œx; a�; 1; 1/ 2 G00 and .Œx; b�; 1; 1/ 2 G00

for any x 2 G0. Therefore G00 � C � 1 � 1 as

C D h¹Œx; a�; Œx; b� j x 2 G0ºGi and G00
C St.1/:

Conjugating by suitable powers of a we obtain that G00 � C � C � C .

Now, ŒŒb�1; a�; b1b2� D .1; Œa; b�; 1/ 2 C and from this we conclude that

C � G0 �G0 � G0. Thus G00 � St.4/ as above. �

This property will be important for the proofs of Theorems 1 and 5 but it is also

obviously useful for the study of �nite quotients of G. In this direction, we point

out that in [3] the authors give an explicit formula for the indices j� W St�.n/j not

just for the Gupta–Sidki p-group, but a more general class of groups � which act

on p-regular rooted trees (GGS groups). They also prove, using di�erent methods,

some of the properties stated in the previous lemmas for arbitrary GGS groups.

The following lemma will be essential in the proof of Theorem 6.

Lemma 2.7. Let H be a subgroup of G which is not contained in St.1/. Then

either all �rst level vertex sections of H are equal to G, or they are all contained

in St.1/ so that StH .1/ D StH .2/.

Proof. Denote byH0; : : : ; Hp�1 the �rst level vertex sections ofH . We claim that

they are all conjugate in G. Since H is not contained in B there exists as 2 H

with s D .s0; : : : ; sp�1/ 2 B . Thus, for every h D .h0; : : : ; hp�1/ 2 StH .1/ we

have has D .h
s0

p�1; h
s1

0 ; : : : ; h
sp�1

p�2 / 2 StH .1/. From this we see thatHi D H
si

i�1 for

i D 0; : : : ; p � 1. The claim follows repeating this argument with powers of as.

Hence we may assume that no Hi is equal to G. We examine the image

of H modulo B 0 (equivalently, the images of the Hi modulo G0). Since all

these vertex sections are conjugate in G, they must have the same images mod-

ulo G0 and the possibilities for these are habki for k 2 Fp , or hbi, or haihbi.

If HiG
0 D haihbiG0 then Hi D G. Suppose not, then Hi is contained in some
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maximal subgroup M < G, which by [17] has index p in G. Thus M � G0 and

G D haihbiG0 D HiG
0 � MG0 D M , a contradiction.

So either HiG
0 D hbiG0 for all i or there exists k 2 Fp such that HiG

0 D

habkiG0 for all i . Pick some h D .h0; : : : ; hp�1/ 2 StH .1/ and consider its image

modulo B 0. If there exist i ¤ j such that hiG
0 and hjG

0 lie in di�erent cyclic

subgroups of G=G0 then, conjugating by suitable elements ofH n St.1/ we would

obtain HiG
0 D HjG

0 D haihbiG0, a contradiction to the above. Thus all hiG
0 lie

in the same cyclic subgroup of G=G0. Our ultimate goal is to show that this cyclic

subgroup is hbiG0, so suppose for a contradiction that there is some k 2 Fp n ¹0º

and some .r0; : : : ; rp�1/ 2 F
p
p such that

.h0G
0; : : : ; hp�1G

0/ D ..abk/r0G0; : : : ; .abk/rp�1G0/:

Now, by Proposition 2.4,

.h0G
0; : : : ; hp�1G

0/

D .a�np�1Cn0bn1G0; a�n0Cn1bn2G0; : : : ; a�np�2Cnp�1bn0G0/

for some ni 2 Fp . Comparing these representations of hB 0, we obtain the

following equations describing the exponents of a and b:

.n0; : : : ; np�1/C D .r0; : : : ; rp�1/

and

.n0; : : : ; np�1/P D k.r0; : : : ; rp�1/;

where

C D

0

B

B

B

B

B

@

1 �1 0 : : : 0

0 1 �1 : : : 0
:::

:::
: : :

: : :
:::

0 0 : : : 1 �1

�1 0 0 : : : 1

1

C

C

C

C

C

A

and P is the permutation matrix associated to .1 2 : : : p/. These are equivalent to

.n0; : : : ; np�1/.kCP
�1 � I / D .0; : : : ; 0/:

The matrix kCP�1 � I is a circulant matrix over Fp with non-zero determinant.

Hence .n0; : : : ; np�1/ D .0; : : : ; 0/ is the only solution and h 2 B 0, which �nishes

the proof of the lemma. �

The proof of Theorem 1 relies on a word length reduction argument. Instead

of the usual word length for �nitely generated groups, we use a length function

which only takes into account the number of conjugates of b.
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Let g 2 G and let as0br1as1 � � � brmasm be a shortest (in the usual sense) word

in ¹a; bº representing g. We can rewrite this word as

b
r1

i1
� � � b

rm

im
av

where bij ¤ bij C1 for each j and v 2 ¹0; : : : ; p � 1º:

De�ne the length l.g/ of g to be m. Thus l.g/ is the number of conjugates of

b in a shortest word in a; b representing g.

The following easy lemma shows how the length of elements of G is reduced

as we project down levels of the tree. Notice that this holds for any odd prime p.

Lemma 2.8. Let g 2 St.1/ and suppose that l.g/ D m. Then

(i) l.'k.g// � 1
2
.mC 1/ and

(ii) if g 2 St.2/ then l.'j .'k.g/// � 1
4
.mC 3/

for k; j 2 ¹0; : : : ; p � 1º.

Proof. Since g 2 St.1/, we can write it in the form g D b
r1

i1
� � � b

rm

im
for some

ij ; rj 2 ¹0; : : : ; p � 1º. Now, the image 'k.g/ for each k 2 ¹0; : : : ; p � 1º is, at

worst, of one of the following forms:

(1) ar1br2 � � �arm , so l.'k.g// � m�1
2

;

(2) ar1br2 � � �arm�1brm , so l.'k.g// � m
2

;

(3) br1ar2 � � � brm�1arm , so l.'k.g// � m
2

;

(4) br1ar2 � � � brm , so l.'k.g// � mC1
2

.

This proves the �rst item.

It now follows that for any g 2 St.2/ we have

l.'j .'k.g/// �
1

2

�mC 1

2
C 1

�

D
1

4
.mC 3/;

for every j; k 2 ¹0; : : : ; p � 1º. �

3. Maximal subgroups

In this section we establish some results about groups whose maximal subgroups

all have �nite index. Once Theorem 1 is proved, these results will show that, for

each �nitely generated subgroup of the Gupta–Sidki 3-group, all maximal sub-

groups have �nite index. The results and proofs are analogous to those in [7].

Notation. We will writeH �f � andH �s �1�� � ���n to mean, respectively, that

H is a �nite index subgroup of � and thatH is a subdirect product of �1 �� � ���n.
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Lemma 3.1. Let � be an in�nite �nitely generated group and H a subgroup of

�nite index in �. If � has a maximal subgroup M of in�nite index then H has a

maximal subgroup of in�nite index containing H \M .

Proof. We �rst show that any proper subgroup ofH containingH\M must be of

in�nite index in H . Suppose for a contradiction that there is a proper �nite index

subgroup L of H containing H \ M . Then K, the normal core of L in �, is of

�nite index in � and therefore KM � � must be of �nite index too. Now, M is

a maximal subgroup of � contained in KM , so either M D KM or KM D �.

If the former holds, then M is of �nite index in �, a contradiction. If the latter is

true, we obtain H D K.M \ H/ � L, contradicting the assumption that L is a

proper subgroup of H .

SinceH is �nitely generated, every proper subgroup is contained in a maximal

subgroup (this can be shown without using Zorn’s Lemma, see [15]) and, by

the above, the maximal subgroup containing H \ M must be of in�nite index

in H . �

Recall that a chief factor of a group � is a minimal normal subgroup of a

quotient group of �.

Lemma 3.2 ([7], Lemma 3). Let �1; � � � ; �n be groups with the properties

that all chief factors are �nite and all maximal subgroups have �nite index.

If� �s �1�� � ���n then all chief factors of� are �nite and all maximal subgroups

of � have �nite index.

Theorem 5. Let � WD G.�k/ be the direct product of k copies of G. If H is a

group commensurable with � then all maximal subgroups of H have �nite index

in H .

Proof. By de�nition of commensurability, there existK �f H and J �f � withK

isomorphic to J . For i D 1; : : : ; k, letGi denote the i th direct factor of�. Then for

every i the subgroup Ji WD J \Gi has �nite index inGi . AsG has the congruence

subgroup property, for each i there is some ni with 1� � � � � St.ni /� � � � � 1 � Ji

and so S WD St.n1/ � � � � � St.nk/ �f J .

Now, G is residually �nite and just in�nite and so all of its chief factors are

�nite. Hence, by the main result in [17], all of its maximal subgroups have �nite

index. Furthermore, we saw in Proposition 2.1 that St.n/ is a subdirect product

of pn copies of G. Thus S satis�es the assumptions of Lemma 3.2 and all of its

maximal subgroups are of �nite index. Lemma 3.1 then implies that all maximal

subgroups of J must have �nite index in J . The result now follows on applying

Lemma 3.1 to K Š J and H . �
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4. The case p D 3: a key theorem

Notation. From now on we restrict our attention to the case p D 3, so G will

denote the Gupta–Sidki 3-group. Recall that Hv denotes the vertex section of a

subgroup H � AutT at vertex v; that is,

Hv D 'v.StH .v// D 'un
ı � � � ı 'u1

.StH .v//;

where v D u1 : : : un is considered as a string of letters ui 2 ¹0; : : : ; p � 1º.

Theorem 6. Let X be a family of subgroups of G satisfying

(I) 1 2 X, G 2 XI

(II) if H 2 X then L 2 X for all L � G such that H �f LI

(III) ifH is a �nitely generated subgroup of St.1/ and all �rst level vertex sections

of H are in X then H 2 X.

Then all �nitely generated subgroups of G are in X.

Proof. Note that if X satis�es properties (I)–(III) then so does the subfamily

¹H j Hg 2 X for all g 2 Gº. We may therefore replace X by this subfamily

and assume that if H 2 X so is every G-conjugate of H .

Suppose for a contradiction that there are �nitely generated subgroups of G

which are not in X. Choose among them some subgroup H generated by a �nite

set S such that D D max¹l.s/ j s 2 Sº is as small as possible.

IfH � St.1/ then by property (III) at least one of the �rst level vertex sections

ofH is not in X and the generating set of this vertex section has elements of length

at most 1
2
.D C 1/ < D by Lemma 2.8, contradicting the choice of H .

Therefore H is not contained in St.1/. We will show that there exists some

v 2 L2 such that the vertex section Hv is not in X and has a generating set

consisting of elements of length less than D.

Since StH .1/ is a �nitely generated subgroup of St.1/, property (III) implies

that not all �rst level vertex sections of StH .1/ are in X. However, if one of them

is in X then, as all �rst level vertex sections of H are conjugate in G, they must

all be in X. Thus no �rst level vertex section of H is in X; in particular, none

of them is equal to G, and Lemma 2.7 asserts that they are all contained in St.1/.

For each k 2 ¹0; 1; 2º, property (III) again implies that one ofHk0; Hk1; Hk2 is not

in X. We claim that for some k every such vertex section is generated by elements

of length less than D.

Pick some element t 2 S n St.1/. Then, as StH .1/ has index 3 in H , the

set T WD ¹1; t; t�1º is a Schreier transversal to StH .1/ in H . Consequently,

StH .1/ D StH .2/ is generated by

X D ¹t1st
�1
2 j ti 2 T; s 2 S; t1st

�1
2 2 StH .1/º:
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The elements of this set have length at most 3D, so the second level vertex sections

of H are generated by elements of length at most .3D C 3/=4, by Lemma 2.8.

Our claim follows if D > 3. For D D 3 and D D 2 the claim follows from

Lemmata 4.3 and 4.2, respectively, while Lemma 4.1 shows that if D D 1 then

H 2 X. �

Lemma 4.1. Let H be a subgroup of G with a �nite generating set S consisting

of elements of length at most 1. Then H 2 X.

Proof. Any s 2 S must be of the form ak; br
i ; b

r
i a

k where k; r 2 ¹1; 2º and

i 2 ¹0; 1; 2º. If S consists of only one element then H is �nite and therefore in

X by properties (I) and (II). Thus S must contain at least two elements and they

clearly cannot all be of the form ak.

If S contains an element of the form ak and an element of any other form

then H D G 2 X. Suppose that all elements of S are of the form br
i . Then either

H D hb0; b1; b2i D St.1/, soH 2 X by properties (I) and (III) and Proposition 2.1;

or H D hbr
i ; b

q
j i < St.1/ for i ¤ j 2 ¹0; 1; 2º and r; q 2 ¹1; 2º, so two of the �rst

level vertex sections of H are G and the other one is hai; therefore H 2 X by

property (III).

Suppose that S contains an element of the form br
i a (we may assume that

the power of a is 1 as .br
i a/

�1 D b�r
iC1a

2). If there is some b
q
j 2 S such that

j D i then b
p�r
j br

i a D a 2 H so H D G 2 X. If there is some b
q
j 2 S

with j ¤ i , then b
q
j D .aq; a�q; bq/a

j
has a˙q in the i th coordinate; but

.br
i a/

3 D br
i b

r
i�1b

r
iC1 D .br ; br

1; b
r/a

i
has br in the i th coordinate, so the vertex

section Hi of H at vertex i is G 2 X. Since H — St.1/, the �rst level vertex

sections of H are conjugate in G, hence all �rst level vertex sections of H are in

X and H 2 X.

Finally, suppose that all elements of S are of the form br
i a, so S contains

elements br
i a, b

q
j a and br

i a.b
q
j a/

�1 2 H . If i D j then a 2 H and H D G 2 X.

If i ¤ j then

br
i a.b

q
j a/

�1 D .ar ; a�1; br/a
i

.a�q; aq; b�q/a
j

has bra˙q in the i th coordinate while .br
i a/

3 2 H has br in the i th coordinate.

Thus Hi D G and H 2 X by the argument in the previous paragraph. �

Lemma 4.2. Let H — St.1/ be a subgroup of G with a �nite generating set S

consisting of elements of length at most 2 and such thatHu � St.1/ for all u 2 L1.

Then Hv is generated by elements of length at most 1 for all v 2 L2.

Proof. First note that no generator ofH is in St.1/ since the only possibilities are

elements of the form br
i and b

r1

i1
b

r2

i2
which are not in St.2/.
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If some t 2 S n St.1/ has length less than 2 then, as in the proof of Theorem 6,

the set T D ¹1; t; t�1º is a transversal of StH .1/ in H and StH .1/ is generated by

the set X D ¹t1st
�1
2 j ti 2 T; s 2 S; t1st

�1
2 2 StH .1/º. The elements of X have

length at most 4, so by Lemma 2.8 all second level vertex sections of H will be

generated by elements of length at most 1.

Suppose then that all elements of S have length 2, that is, they are all of the

form b
r1

i1
b

r2

i2
a. It su�ces to consider only elements of this form as .b

r1

i1
b

r2

i2
a/�1 D

b
�r2

i2C1b
�r1

i1C1a
2. Pick some t D b

r1

i1
b

r2

i2
a 2 S to form the transversal T so that StH .1/

is generated by X as above. Then every element ofX is of the form t�1s; st�1; t3

or t st where s D b
q1

j1
b

q2

j2
a 2 S . We show that all possible combinations of

i1; i2; j1; j2; r1; r2; q1; q2 give rise to generators of second level vertex sections

of H of length at most 1.

The forms t�1s D b
�r2

i2C1b
�r1

i1C1b
q1

j1C1b
q2

j2C1 and st�1 D b
q1

j1
b

q2

j2
b

�r2

i2
b

�r1

i1
yield

elements of length at most 4. Thus, by Lemma 2.8, their second level vertex

sections have length at most 1.

Since i1 ¤ i2, an element of the form t3 D b
r1

i1
b

r2

i2
b

r1

i1�1b
r2

i2�1b
r1

i1C1b
r2

i2C1 will

have at most two separate instances of each of b0; b1; b2. Hence its �rst level vertex

sections will have length at most 2 and so the second level vertex sections have

length at most 1.

More care is required for the form t st D b
r1

i1
b

r2

i2
b

q1

j1�1b
q2

j2�1b
r1

i1C1b
r2

i2C1. Easy

combinatorial arguments (using that i1 ¤ i2 and j1 ¤ j2) show that the �rst level

vertex sections of an element of this form cannot have length greater than 3 and

that the only way they can have length 3 is if i2 D i1 � 1 and either j1 D i1 C 1 or

j2 D i1 C 1. For ease of exposition, assume without loss of generality that i1 D 0.

Then

t st D b
r1

0 b
r2

2 b
q1

j1�1b
q2

j2�1b
r1

1 b
r2

0

D

´

b
r1

0 b
r2

2 b
q1

0 b
q2

j2�1b
r1

1 b
r2

0 ; j1 � 1 D i1I

b
r1

0 b
r2

2 b
q1

j1�1b
q2

0 b
r1

1 b
r2

0 ; j2 � 1 D i1:

The vertex sections at vertices 0 and 1 have length at most 2, while the one at

vertex 2 looks like
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

br1ar2bq1aq2a�r1br2 ; j1 � 1 D i1 D j2I

br1ar2bq1a�q2a�r1br2 ; j1 � 1 D i1; j2 D i1 � 1I

br1ar2aq1bq2a�r1br2 ; j2 � 1 D i1 D j1I

br1ar2a�q1bq2a�r1br2 ; j2 � 1 D i1; j1 D i1 � 1:

In the �rst and third cases we have

'2.t
�1s/ D b�r2ar1a˙q1a�q2 D b�r2

(as H2 � St.1/ by assumption); while, in the second and fourth cases we have

'2.st
�1/ D a�q1a˙q2a�r2b�r1 D b�r1 :
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Thus, in all cases the vertex section of H at vertex 22 is G, which is indeed

generated by elements of length at most 1. �

Lemma 4.3. Let H ¤ St.1/ be a subgroup of G with a �nite generating set S

consisting of elements of length at most 3 and such thatHu � St.1/ for all u 2 L1.

Then there exists k 2 L1 such thatHkj is generated by elements of length less than

3 for all j 2 ¹0; 1; 2º.

Proof. If there exists t 2 S n St.1/ with l.t / � 2 then, by the same argument as

in the proof of Lemma 4.2, the generating set X of StH .1/ consists of elements

of length at most 7, the second level vertex sections of which have length strictly

less than 3.

If all generators in S n St.1/ have length 3, pick one of them, t , to form the

transversal T . Assume that t has the form b
r1

i1
b

r2

i2
b

r3

i3
a for i1; i2; i3 2 ¹0; 1; 2º,

i2 ¤ i1; i2 ¤ i3 and r1; r2; r3 D ˙1. It su�ces to consider elements of this

form since t�1 D b
r3

i3
b

�r2

i2
b

�r1

i1
a�1. We may pick k 2 ¹0; 1; 2º such that neither

'k.bi3C1/ nor 'k.bi1/ is a power of b. Then the elements of X have length no

more than 9 and the choice of k ensures that 'k.x/ D a˙1'k.bz/ for each x 2 X

where l.bz/ � 8. Hence the vertex sectionsHkj for j 2 ¹0; 1; 2º are generated by

elements of length at most .8C 3/=4 < 3, as required. �

5. The case p D 3: proof of main theorems

Using the length reduction arguments and results in the previous section, we easily

obtain a characterization of the �nite subgroups of G.

Theorem 3. LetH be a �nitely generated subgroup of G. Then H is �nite if and

only if no vertex section of H is equal to G.

Proof. For the non-trivial implication, we make the crucial observation that for

each v 2 T , every vertex section of Hv is a vertex section of H . Let H be

generated by a �nite set S . We proceed by induction on D, the maximum length

of elements in S . If D D 1, then by the proof of Lemma 4.1, either H is �nite or

Hu D G for every u 2 L1.

Assume that the assertion of the theorem holds wheneverD � n with n � 1.

For D D n C 1 we consider the cases H � St.1/ and H — St.1/ separately.

IfH � St.1/ then each �rst level vertex sectionHu ofH is generated by elements

of length at most .D C 1/=2 D .nC 2/=2 < D, so that Hu is �nite by inductive

hypothesis. ThusH itself must be �nite as the map  WH ! H0 �H1 �H2 is an

injective homomorphism.
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If H — St.1/ then Hu � St.1/ for every u 2 L1 by Lemma 2.7. In the case

n D 1, Lemma 4.2 shows that each second level vertex section Hv is generated

by elements of length at most 1, and is therefore �nite. Thus H ,!
Q

v2L2
Hv is

�nite. If n D 2, by Lemma 4.3 , there exists u 2 L1 such that Hui is generated

by elements of length at most 2 for all i 2 ¹0; 1; 2; º. Hence Hk is �nite. Since

H — St.1/, all �rst level vertex sections ofH are conjugate in G and are therefore

�nite, making H �nite. Lastly, if n > 2, by the same argument as in the proof

of Theorem 6, Hv is generated by elements of length at most 3D C 3=4 < D

whenever v 2 L2. HenceH is �nite and the theorem follows by induction. �

The same methods as in the above proof and the analysis carried out

in [7, Theorem 3] yield an identical characterization of �nite subgroups of the

Grigorchuk group � D ha; b; c; d i. For the reader’s convenience, we sketch a

proof of the non-trivial implication. The length function here is as in [7], namely,

the usual word length for �nitely generated groups.

Theorem 4. Let H � � be �nitely generated. Then H is �nite if and only if no

vertex section of H is equal to �.

Proof. Let H be generated by a �nite set S such that 1 2 S and S�1 D S and let

D be the maximum length of elements of S . We induct on D.

If D D 1 then either H is �nite or H D �, a contradiction.

Assume that the assertion in the theorem holds. For D D n C 1 we con-

sider the casesH � St.1/ andH — St.1/ separately. IfH � St�.1/ then each �rst

level vertex section Hu of H is generated by elements of length at most

.D C 1/=2 D .nC 2/=2 < D, by [7, Lemma 7], so that Hu is �nite by inductive

hypothesis. ThusH itself must be �nite as the map  WH ! H0 �H1 is injective.

IfH — St�.1/ there are three cases to consider depending on the vertex section

H0 at vertex 0. If H0 � St�.1/ then, by Case 3 in the proof of [7, Theorem 3],

H00 andH01 are generated by elements of length less thanD. ThusH00 andH01

are �nite by inductive hypothesis, so H0 is �nite. Now, H0; H1 are conjugate in

� as H — St�.1/; henceH is �nite.

If H0�
0 D had i� 0 or ha; d i� 0, then H00 � St�.1/ by [7, Lemma 6]. Case 2

of the proof of [7, Theorem 3] shows that H000 and H001 are generated by

elements of length less than D so that H00 is �nite. As H acts transitively on

the second layer of the tree, there exists h D .a.s0; s1/; h1/ 2 H with s0; s1 2 �

swapping the vertices 00 and 01. For any g D ..g00; g01/; g1/ 2 StH .00/ we have

gh D ..g
s1

01; g
s0

00/; g
h1

1 /, whenceH
s1

00 D H01. Hence H01 is �nite, making H0 and

therefore H �nite.

If H0�
0 D haci� 0 or ha; ci� 0, then H000 � St�.1/ by [7, Lemma 6]. Case 1

of the proof of [7, Theorem 3] shows that H0000 and H0001 are generated by

elements of length less than D so that H000 is �nite. Since H acts transitively

on the third layer, there is an element h 2 H swapping the vertices 000 and 001.
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ThenH000 andH001 are conjugate in �, by an argument similar to the one above.

ThusH is �nite by the arguments in the previous case and the theorem follows by

induction. �

We now move on to the proof of the two main results. These can be easily

generalized to the case p > 3, provided that Theorem 6 holds.

Notation. For simplicity, G will denote ‘G or G �G’.

Theorem 1. Every in�nite �nitely generated subgroup of the Gupta–Sidki 3-group

G is commensurable with G or the direct square G � G.

To prove this theorem it su�ces to show that properties (I)–(III) in Theorem 6

hold for the class C of subgroups of G which are �nite or commensurable with G.

Clearly, property (I) holds as the trivial subgroup and G are in this class. It is also

easy to see that property (II) is satis�ed by C: if H 2 C is commensurable with

G and J �f H is a subgroup isomorphic to a �nite index subgroup of G then,

for any L � G containing H as a �nite index subgroup, J is also contained in L

with �nite index. Thus L 2 C. If H 2 C is �nite then any L containing H with

�nite index must also be �nite, so L 2 C too. Thus it only remains to show that C

satis�es:

(III) ifH is a �nitely generated subgroup of St.1/ and all �rst level vertex sections

of H are in C then H 2 C.

This will follow from the next lemma, which uses similar ideas to those in [7].

Lemma 5.1. If H �s H1 � � � � � Hn where each direct factor Hi is in C then

H 2 C. In other words, C is closed for subdirect products.

Proof. This reduces to proving that if H=N1; H=N2 2 C then H=.N1 \N2/ 2 C;

that is, the case n D 2. Suppose then that H �s H1 � H2 with Hi 2 C.

If both factors Hi are �nite then so is H and we are done. Assume that H1 is

commensurable with G. Then there existsK1 �f H1 isomorphic to someL1 �f G.

By Proposition 2.6, K1 contains some level stabilizer StG.n/ (or a direct product

StG.n/�StG.m/ ifK1 �f G�G), and this is subdirect in some direct power ofG by

Proposition 2.1. Denote byM the preimage inH of StG .n/ (or StG.n/�StG.m/).

SinceM has �nite index inH , so does its projection toH2. Thus we may replace

H by M , H1 by StG.n/ (or StG.n/ � StG.m/) and H2 by the projection of M in

H2 and obtain

H �s G1 � � � � �Gr �H2

for some �nite r , which we take to be minimal, where each Gi is a copy of G.

Write A WD G1 � � � � �Gr . Then AH D G1 � � � � �Gr �H2 is commensurable

with G and we claim thatH has �nite index inAH . Denote byKi the kernel of the

map fromH to all factors ofA exceptGi ; that is,Ki D H\.1�� � ��Gi �� � ��1/GH .
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Then Ki GGi and, since Gi is just in�nite, Ki has �nite index in Gi . This way we

obtain a �nite index normal subgroup K1 � � � � �Kr of A contained in H . Hence

jAH W H j D jA W A \ H j is �nite and our claim is proved, showing that H is

commensurable with G.

For the case n � 2, proceed as follows: Take H1 Š H= ker.H � H1/ and

H2 Š H= ker.H � H2/ 2 C. By the above,

H=.ker.H � H1/ \ ker.H � H2// Š im.H ! H1 �H2/ 2 C:

Then, again by the above,

H=.ker.H � H1/ \ ker.H � H2// \ .ker.H � H3//

Š im.H ! H1 �H2 �H3/ 2 C:

At the nth iteration of this operation, we reach

H D H=
�

n�1
\

iD1

ker.H � Hi / \ ker.H � Hn/
�

2 C: �

Theorem 2. The Gupta–Sidki 3-group G is subgroup separable.

To prove this theorem it su�ces to show that the conditions of Theorem 6 hold

for the class S of �nitely generated subgroups ofG all of whose subgroups of �nite

index are closed with respect to the pro�nite topology on G.

Clearly, S satis�es property (I). To see that it also satis�es property (II), let

H �f L for some H in S; thus L is �nitely generated. For any K �f L, we have

K \H �f H so K \H is closed in G by assumption. But K \H also has �nite

index inK, hence each of its �nitely many cosets is also closed in G and therefore

so is K, their union.

Before we can show that S also satis�es property (III) we need the following

lemma.

Lemma 5.2. (1) Suppose thatH0 is a group all of whose quotients are residually

�nite and that each of the groups G1; : : : ; Gn either is �nite or is residually �nite,

just in�nite and not virtually abelian. Let H �s H0 � G1 � � � � � Gn. Then every

quotient of H is residually �nite.

(2) If H is abstractly commensurable with G or G � G then every quotient of

H is residually �nite.

Proof. This is essentially Lemma 12 in [7]. The �rst part is identical and the

proof of the second only requires small modi�cations. Suppose that K G H ;

we want to show that K is an intersection of subgroups of �nite index in H .

Since H is commensurable with G or G � G and they both have the congruence
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subgroup property, there is some normal subgroupN of �nite index inH which is

a subdirect product of �nitely many copies of G. By the same argument as in the

proof of property (II), it su�ces to show that K \ N is closed in N with respect

to the pro�nite topology on N . This follows from the �rst part of the lemma, as it

is equivalent to N=.K \ N/ being residually �nite. �

We may now proceed to show that S also satis�es property (III).

Lemma 5.3. Let H be a �nitely generated subgroup of St.1/ such that its �rst

level vertex sectionsH0; H1; H2 are in S. Then H is in S.

Proof. LetK �f H , then its �rst level vertex sections have �nite index in those of

H and are therefore closed in G. So we only need to show that H is closed in G.

We will show that .H/ is closed in G�G�G, so thatH is closed in St.1/ �f G

and hence in G. In fact, if su�ces to show that  .H/ is closed in H0 �H1 �H2

because in that case  .H/ D
T

Ki for Ki �f H0 �H1 �H2 with eachKi closed

in G � G � G by our assumption on S. The lemma will follow from the more

general

Claim. For every n 2 N, if H �s H0 � � � � �Hn with Hi 2 S then H is closed in

H0 � � � � �Hn.

Proof of the claim. We proceed by induction on n. When n D 1, de�ne

L0 � 1 WD H \ .H0 � 1/:

Then L0 is normal in H0, which is commensurable with G or G � G by The-

orem 1. By Lemma 5.2, H0=L0 is residually �nite so there is a collection

.Nj /j 2J of normal subgroups of �nite index in H0 whose intersection is L0.

Each subgroup .Nj � 1/H is of �nite index in H0 � H1 so it is enough to show

that H D
T

j 2J ..Nj � 1/H/. Let u be an element of the intersection, say

u D .nj ; 1/.hj;0; hj;1/ for each j 2 J . Then hj;1 is constant so we can write

u D .njhj;0; h1/ for each j 2 J . Fix i 2 J and note that h WD .hi;0; h1/ 2 H .

Then, for each j 2 J we have

uh�1 D .nj ; 1/.hj;0h
�1
i;0 ; 1/ 2 .Nj � 1/.H \H0 � 1/ D Nj � 1:

Thus uh�1 2
T

j 2J Nj � 1 D L0 � 1 � H and u 2 H .

Now assume thatH is closed inH0�� � ��Hn�1 wheneverH �s H0�� � ��Hn�1

and eachHi is in S. Suppose that H �s H0 � � � � �Hn with Hi 2 S. De�ne

L0 � 1 � � � � � 1 WD H \ .H0 � 1 � � � � � 1/:

As in the base step, there exist normal subgroups .Nj /j 2J of �nite index in H0

whose intersection is L0. Let

H j WD .Nj � 1 � � � � � 1/H for each j 2 J .
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We show that H D
T

j 2J H
j and that each H j is closed in H0 � � � � �Hn. The

�rst statement is proved similarly to the two-factor case: write an element u of the

intersection as u D .njhj;0; h1; : : : ; hn/ and �nd some h WD .hi;0; h1; : : : ; hn/ 2 H

so that uh�1 D .nj ; 1; : : : ; 1/.hj;0h
�1
i;0 ; 1; : : : ; 1/ 2 Nj � 1� � � � � 1. For the second

statement, �x j 2 J and let P be the pre-image of Nj in H j under the canonical

projection to H0. Then P has �nite index in H j as Nj has �nite index in H0.

Thus, for each i ¤ 0, the projection Pi of P onto the i th factor has �nite index in

Hi , so Pi 2 S. Furthermore, Nj � 1 � � � � � 1 � P �s Nj � P1 � � � � � Pn, so

P=.Nj � 1 � � � � � 1/ �s P1 � � � � � Pn:

By the inductive hypothesis, P=.Nj � 1 � � � � � 1/ is closed in P1 � � � � � Pn.

Thus P is closed in Nj � P1 � � � � � Pn �f H0 � H1 � � � � � Hn, hence also in

H0 �H1 � � � � �Hn. �
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