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Introduction

Since formulated by M.Dehn in the early 1910’s, the word and conjugacy problems
for �nitely presented groups have become fundamental in combinatorial group
theory. Following the work of Novikov [25] and further authors on their unsolv-
ability in general, it has become natural to consider these problems for speci�c
classes of �nitely presented groups. For example in [7, 8, 9], Dehn has solved
them in fundamental groups of closed surfaces; his motivation originated from
their topological study.

Given a �nite presentation of a group G, a solution to the word problem is an
algorithm, which given two elements !; !0 2 G as words in the generators and
their inverses, decides whether or not ! D !0 in G. A solution to the conjugacy

problem is an algorithm, which given !; !0 2 G, decides whether or not there
exists h 2 G such that !0 D h!h�1 in G. It turns out that the existence of a
solution for G does not depend on the �nite presentation involved. We say that G

has a solvable word (resp. conjugacy) problem if G admits a solution to the word
(resp. conjugacy) problem.



474 J.-Ph. Préaux

By a 3-manifold we mean a connected compact manifold of dimension 3,
possibly with boundary; a 3-manifold may be orientable or not. We work in the
PL category; by the Hauptvermutung and Moise’s �eorem this is not restric-
tive. According to the work of �urston (cf. [35]) an orientable 3-manifold M is
geometrisable if all the pieces obtained in its canonical topological decomposition
(roughly speaking along essential spheres, discs and tori) have an interior that ad-
mits a complete locally homogeneous Riemannian metric. In the following we
will say (abusively) that a non-orientable 3-manifold is geometrisable whenever
the total space of its orientation cover is geometrisable; it is worth noting that
this assumption is weaker than the usual one conjectured for all non-orientable
3-manifold.1 It’s a deep result that all orientable 3-manifolds turn out to be ge-
ometrisable; the work of Perelman in the early 2000’s, together with clari�ca-
tions by several authors (cf. [2]), prove this statement. �erefore, in the follow-
ing all 3-manifolds will be assumed to be geometrisable in our (weaker) sense.
�e reader who might not feel comfortable with Perelman’s proof may consider it
as an implicit hypothesis on all 3-manifolds involved.

In fundamental groups of (weakly geometrisable) 3-manifolds, the word prob-
lem is known to be solvable since the work of Epstein and �urston on auto-
matic group theory (cf. [11]). We have proved in [26] that all groups of orientable
(geometrisable) 3-manifolds have a solvable conjugacy problem; we will make
a heavy use of these last two results in our proof. We focus on non-orientable
(weakly geometrisable) 3-manifolds and we construct an algorithm that solves the
conjugacy problem for their fundamental groups. �erefore, all 3-manifolds have a
fundamental group with solvable conjugacy problem, which contrasts with higher
dimensions. We also state as corollaries that the conjugacy problem in surface-by-
cyclic groups and that the twisted conjugacy problem in surface groups are both
solvable (cf. §1).

�e solution for groups of non-orientable 3-manifolds does not arise from a
solution in the oriented case, since D. Collins and C. F. Miller have shown that
the conjugacy problem can be unsolvable in a group even when solvable in an
index 2 subgroup ([12]). �erefore the usual technique that consists in translating
the problem to the orientable covering space fails to yield a solution. Nevertheless
our strategy will consist essentially in reducing as far as possible to the conjugacy
problem in the orientation covering space.

1 For short that the pieces obtained in their topological decomposition are two-fold covered
by punctured, orientable, complete locally homogeneous Riemannian 3-manifolds whose cover
involutions are isometries. See [30] pages 484–485 for details.
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We brie�y emphasize two points that sound noteworthy to us. On the one hand
the core of the algorithm makes use of basic solutions to the word and conjugacy
problems in groups of orientable 3-manifolds, themselves reducing to basic solu-
tions, built from biautomatic group theory, in groups of the basic pieces, Seifert
�ber spaces and �nite volume hyperbolic manifolds, and does not require any
naive enumerative algorithm. �erefore, one may expect to deduce an e�cient
algorithm. On the other hand our general strategy that reduces the problem to
the orientation covering space may sometimes succeed in resolving the conjugacy
problem in a group G containing an index 2 subgroup H with solvable conjugacy
problem; see �eorem F.

Acknowledgements. �e author wishes to thank A. Martino for useful discus-
sions about the twisted conjugacy problem, as well as P. de la Harpe for several
comments on a preliminary version.

1. Statement of the results

�is work is mainly devoted to prove the following result.

�eorem A (main result). �e conjugacy problem is solvable in fundamental

groups of non-orientable geometrisable 3-manifolds.

Together with a solution in the oriented case (cf. [26]), one obtains the follow-
ing theorem.

�eorem B. �e conjugacy problem is solvable in fundamental groups of ge-

ometrisable 3-manifolds. Topologically rephrased, given any pair of loops  ,  0

in a geometrisable 3-manifold, one can decide whether they are freely homotopic.

It is worth noting that we do not only show that a solution exists but rather give
a constructive process to build an algorithm; moreover when applied to conjugate
elements u and v the algorithm implicitly produces a conjugating element h, i.e.

such that u D hvh�1.

�eorem B has several consequences. First the generalized word and conju-
gacy problems relative to boundary subgroups are both solvable. More precisely:
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�eorem C. Let M be a geometrisable 3-manifold and F � @M a compact con-

nected surface. Set G D �1.M/ and H D i�.�1.F//; there exist algorithms that

decide for g 2 G whether g 2 H (respectively for g 2 G whether g is conju-

gate to some element of H ). Topologically rephrased given any loop  (resp. any

�-based loop for some � 2 F) in M one can decide whether up to homotopy (resp.

�-�xed homotopy)  lies in F.

Proof that �eorem B H) �eorem C. Double the 3-manifold M along the iden-
tity on F to obtain the 3-manifold M tF M. �e proof of lemma 1.2 of [26],
as well as the observation that the orientation cover of M tF M is the double of
the orientation cover of M along the lift(s) of F show that M tF M is geometris-
able. Its group splits into an amalgam � D G �H G of two copies of G D �1.M/

along the identity of H D i�.�1.F//. Given g lying in the G-left factor we denote
by Ng the corresponding element in the G-right factor. Since the gluing map is the
identity, for any h 2 H; h D Nh, and one obtains by applying elementary facts
upon amalgams (cf. Corollary 4.4.2 and �eorem 4.6 in [23]) that g; Ng are equal
(resp. conjugate) in � if and only if g 2 H (resp. g is conjugate in G to some
h 2 H ). Hence with a solution to the word problem (resp. conjugacy problem) in
� provided by �eorem B, it su�ces to decide whether g D Ng (respectively g and
Ng are conjugate).

A second consequence concerns the conjugacy problem in surface by cyclic
groups. It has been proved in [4] that (f. g. free)-by-cyclic groups have a solvable
conjugacy problem. As a complementary result we can deduce from �eorem B
together with the Dehn–Nielsen �eorem the same statement concerning (closed
surface)-by-cyclic groups, so that any (compact surface)-by-cyclic group turns out
to have a solvable conjugacy problem.

�eorem D. �e conjugacy problem is solvable in closed surface-by-cyclic

groups.

Proof that �eorem B H) �eorem D. Let F be a closed surface, K D �1.F/,
and let G be an extension of K by a cyclic group C . In case C is �nite, G is biau-
tomatic (follows from [11, De�nition 2.5.4 and Example 2.3.6]) and hence has a
solvable conjugacy problem (cf. [13] or [11, �eorem 2.5.7]). In case C is in�nite,
the extension splits as G D K Ì� Z for some � 2 Aut.K/. �e Dehn–Nielsen
�eorem (cf. [6, �eorem 3.4.6]) shows that � is induced by an homeomorphism
f of the surface F so that G is isomorphic to the fundamental group of the bundle
over S1 with �ber F and sewing map f . It follows from the �urston geometri-



�e conjugacy problem in groups of non-orientable 3-manifolds 477

sation �eorem ([35]) that such a bundle is geometrisable and �nally �eorem B
shows that G has a solvable conjugacy problem.

A third consequence concerns the twisted conjugacy problem in surface
groups. Given a group G and an automorphism � of G the twisted conjugacy
problem is solvable in .G; �/ if one can algorithmically decide given any u; v 2 G

whether there exists g 2 G such that �.g/ug�1 D v. �e twisted conjugacy prob-
lem is said to be solvable in G when solvable in .G; �/ for any automorphism
� 2 Aut.G/.

�eorem E. �e twisted conjugacy problem is solvable in closed surface groups.

Together with the case of f. g. free groups (cf. [4]) the same result holds for
fundamental groups of compact surfaces.

Proof that �eorem D H) �eorem E. Let F be a closed surface, K D �1.F/,
� an automorphism of K and G D K Ì� Z given by the presentation

hG; t j for all g 2 G; tgt�1 D �.g/i:

Given u; v 2 K, there exists g 2 K such that �.g/ug�1 D v if and only there
exists g 2 K such that g t�1u g�1 D t�1v if and only if t�1u is conjugate to t�1v

in G: indeed if there exists htp, with h 2 K and n 2 Z, that conjugates t�1u into
t�1v, then so does hn D htp.t�1u/n for any n 2 Z, and in particular for hp, which
belongs to K. Hence a solution to the conjugacy problem in G yields a solution
to the twisted conjugacy problem in .K; �/.

We conclude with a general result inspired by our strategy that may help some-
times for solving the conjugacy problem in a group G containing an index 2 sub-
group with solvable conjugacy problem.

�eorem F. Let G be a �nitely presented group and H an index 2 subgroup of G

given by a computable right coset function G ! G=H . Suppose that

(i) H has a solvable conjugacy problem,

(ii) for any couple of order two elements u; v 2 G one can decide whether u; v

are conjugate in G, and

(iii) for any element u 2 G with order > 2, one can decide for any couple of

elements of G lying in the centralizer ZG.u2/ whether they are conjugate in

ZG.u2/.

�en G has a solvable conjugacy problem.



478 J.-Ph. Préaux

Proof. Since H is an index 2 subgroup of G having a solvable conjugacy problem,
then both H and G have a solvable word problem. Note also that the computability
of the right coset function allows to decide for any element in G whether it lies in
H and yields a Reidemeister rewriting process for H ([23, §2.3]). Let u; v 2 G

be given; one can suppose that they are both non-trivial. Check whether u2 D 1

and v2 D 1. If both occur then use (ii) to decide whether u and v are conjugate
in G. If exactly one of u; v has order 2 then they are de�nitely non-conjugate.
So suppose in the following that u; v both have order greater than 2. Let a 2 GXH

be arbitrary and Nv D ava�1. Use (i) to decide whether u2 is conjugate in H either
to v2 or to Nv2. Suppose that one case occurs for otherwise u; v are non-conjugate in
G, and �nd h 2 H such that u2 D hv2h�1 (resp. u2 D h Nv2h�1). �en v0 D hvh�1

(resp. h Nvh�1) lies in ZG.u2/, and u; v are conjugate in G if and only if u; v0 are
conjugate in ZG.u2/, that one can decide using (iii).

2. Proof of �eorem A

We now turn to the proof of the main result. We start from an arbitrary non-
orientable (geometrisable) 3-manifoldM given by a triangulation and we construct
an algorithm that solves the conjugacy problem in �1.M/.

�e process is done in four steps. In the �rst step we reduce to the closed irre-
ducible case, i.e. we prove that one recovers solutions in groups of non-orientable
3-manifolds from solutions in groups of closed irreducible 3-manifolds. In the
second step we construct the orientation cover

p W N �! M

of M and of its cover involution

� W N �! N

as well as the topological decompositions of M and N; that of N is obtained from
known algorithms for the decomposition of orientable 3-manifolds derived from
the Haken’s theory of normal surfaces ([18, 17]); then deforming until it becomes
“almost” �-invariant yields that of M. In the third step we construct the induced
splittings of �1.M/ and �1.N/ as graphs of groups M, N and the covering of
graphs of groups

p W N �! M;

which are useful to deal with elements in

�1.M/ D �1.M/ and �1.N/ D �1.N/I
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we also establish all the basic algorithms needed in the �nal and fourth step, where
is given the core of the algorithm.

2.1. Step 1: reduction to the closed irreducible case. �e preliminary step
reduces the proof to the case of closed irreducible geometrisable 3-manifolds.

Lemma 2.1. �e conjugacy problem in groups of non-orientable geometrizable

3-manifolds reduces to that of closed irreducible geometrisable 3-manifolds.

Moreover given a triangulation of M the reduction process is constructive.

Proof. Let M be a non-orientable geometrisable 3-manifold; we focus on the
conjugacy problem in �1.M/. �e reduction process is made in two steps, by
�rst reducing to closed non-orientable 3-manifolds and then to closed irreducible
3-manifolds.

Gluing a 3-ball to each spherical component of the boundary @M leaves �1.M/

unchanged; so we suppose in the following thatM has no spherical boundary com-
ponent. If @M is non-empty, double M along its boundary to obtain the closed
non-orientable 3-manifold that we denote by 2M. Lemma 1.1 of [26] asserts that
the inclusion map i W M ! 2M induces a monomorphism i� W �1.M/ ! �1.2M/,
and that u; v 2 �1.M/ are conjugate in �1.M/ if and only if i�.u/ and i�.v/ are
conjugate in �1.2M/; hence the conjugacy problem in �1.M/ reduces to that
in �1.2M/: to decide whether u; v are conjugate in �1.M/ it su�ces to decide
whether i�.u/; i�.v/ are conjugate in �1.2M/.

Let’s prove that the closed 3-manifold 2M is geometrisable (without reference
to �urston–Perelman). Notice �rst that if xM and 2M denote respectively the
orientation covering space of M and of 2M, then 2M is the double space 2 xM

of xM: indeed, the orientation cover xM ! M naturally extends to a 2-fold cover
2 xM ! 2M of their double spaces, therefore since 2 xM is orientable, by unicity of
the orientation cover, 2 xM and 2M are homeomorphic. Since M is geometrisable
so is xM (recall our weak version of the de�nition of being geometrisable for a
non-orientable 3-manifold). Now Lemma 1.2 of [26] states that the double space
of an orientable geometrisable 3-manifolds is also geometrisable, and hence, with
the above 2M is geometrisable; therefore the non-orientable 3-manifold 2M is
geometrisable.

It proves that the conjugacy problem in groups of geometrisable non-orientable
3-manifolds reduces to that for those which are closed. Moreover the reduction
process is constructive since from a triangulation ofM one can e�ectively produce
a triangulation of 2M and the monomorphism i� W �1.M/ ! �1.2M/.
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We now turn to the second step; so suppose furthermore that M is closed.
A Kneser–Milnor decomposition splits M into a connected sum of the prime
closed geometrisable (possibly orientable) factors M1;M2; : : : ;Mn, inducing a
split of �1.M/ into the free product of �1.M1/, �1.M2/; : : : ; �1.Mn/. A basic
fact on conjugacy in free products (cf. [23, �eorem 4.2, §4.1]) shows that the
conjugacy problem in �1.M/ reduces to those in the �1.Mi /’s. Now either Mi is
an S2-bundle over S1 and �1.Mi / ' Z, or Mi is irreducible. Hence the conjugacy
problem in �1.M/ reduces to that in groups of closed irreducible geometrisable
3-manifolds. When M is given by a triangulation, an algorithm appearing in [18]
for the Kneser–Milnor decomposition allows to perform the reduction construc-
tively.

In the achievement of the proof, the Lemma 2.1 leads us to the case of groups
of closed irreducible geometrisable non-orientable 3-manifolds.

� In the following M denotes a closed irreducible geometrisable non-orientable

3-manifold, with orientation cover p W N ! M.

2.2. Step 2: algorithms for the topological decompositions of M and N. We
start from a closed irreducible non-orientable geometrisable 3-manifold M given
by a triangulation. We show how one algorithmically constructs the orientation
cover p W N ! M and appropriate topological decompositions of M, N.

Lemma 2.2 (algorithm Top1 for the orientation cover). Given a triangulation

of M one can algorithmically produce a triangulation of its orientation covering

space N as well as the covering map p W N ! M and the covering involution

� W N ! N.

Proof. �e triangulation of M can be easily given as a triangulation of a
PL-ball B together with a gluing of pairs of triangles in @B. Pick an orientation
of B; it induces an orientation on each triangle in @B. Identify paired trian-
gles in @B each time their gluing preserves orientation, to obtain a new oriented
PL-manifold C together with orientation reversing gluings of pairs of triangle
in @C. Consider a copy C0 of C and endow C0 with the reverse orientation.
For each triangle ı in @C denote by ı0 its copy in @C0. For each gluing of triangles
ı1; ı2 in @C, glue coherently in C [ C0, ı1 with ı0

2 and ı0
1 with ı2 (cf. Figure 1).

�e manifold obtained is the covering space N together with a triangulation, and
the construction implicitly produces the covering map p W N ! M as well as the
covering involution � W N ! N.
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Figure 1. Construction of N from M given as a PL-ball with identi�cations on the boundary.

� Apply Algorithm Top1 to construct a triangulation of the 2-fold covering space

N of M as well as the covering projection p and involution � .

�e oriented manifold N may be reducible. In such a case (cf. [34]) N contains
a compact surface † whose components are �-invariant essential spheres such that

– N cut along † decomposes into �-invariant components: N1, N2; : : : ;Np and
each manifold yNi obtained by �lling up all S2 � @Ni with balls is irreducible
and non-simply connected;

– let n be the number of non-separating components in †; �1.N/ decomposes
as a free product of �1.N1/,: : : �1.Np/ and of a free group with rank n:
�1.N/ ' �1.N1/ � � � � � �1.Np/ � Fn;

and † has image in M a compact surface … D p.†/ whose components are two-
sided projective planes such that

– M cut along … has components M1;M2; : : : ;Mp where the covering projec-
tion sends each Ni onto Mi ;

– it induces a splitting of �1.M/ as a graph of groups whose vertex groups are
�1.M1/; �1.M2/; : : : ; �1.Mp/ and all edge groups have order 2.

Lemma 2.3 (algorithm Top2 for coherent decompositions along S2 of N and
P2 of M). One can algorithmically �nd systems of pairwise disjoint essential

�-invariant spheres † in N and projective planes … in M as above.
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Proof. Apply [18, Algorithm 7.1] (or, for a bound on complexity, an improved
algorithm in [17]), to �nd, if any, an essential sphere S0 in N. If none exists then
† D … D ¿ and the process stops. Otherwise apply to S0 the following classical
argument (cf. [36]) to construct a �-invariant essential sphere S in N. Since M is
irreducible then �S0 \ S0 6D ¿ for otherwise p.S0/ would be an essential sphere
in M. If �S0 D S0 there is nothing left to prove so suppose it does not occur.
Deform slightly S0 so that �S0 \ S0 consists of n > 0 closed simple curves.
Consider such a curve, which in addition bounds an innermost disk D in �S0

(i.e. a disk in �S0 n .�S0 \ S0/), as well as a disk D0 in S0. Consider the two
spheres S1 D S0 [ D n int.D0/ and S2 D D [ D0 and perform small isotopies
(see Figure 2) so that Si D �Si or Si \�Si has fewer than n components (i D 1; 2).

Figure 2. By considering small enough collar neighborhoods N.S0/ of S0 and �N.S0/

of �S0 in a subdivision of the triangulation of N, one can deform by isotopy the spheres
S1 D S0 [ D n int.D0/ and S2 D D [ D0 such that either �.Si / D Si or they become
transverse and Si \ �Si has fewer components, i D 1; 2.

Moreover at least one of S1; S2 does not bound a ball in N: for suppose on the
contrary that S1; S2 bound respective balls B1;B2 then either: (i) B1 � S2 and S0

also bounds a ball included in B1, or (ii) B1 \ B2 D ¿ and there exists a collar
neighborhood N.D/ of D such that B1 [ B2 [ N.D/ is a ball bounded by S0; it
would contradict that S0 is essential. Apply the S3 recognition algorithm (cf. [29])
to each component of NnS1, NnS2 with one ball glued on the boundary, to check
which of S1; S2, say S1, does not bound a ball. �en apply the same process to S1

instead of S0, and so on. Since the number of components of �Si \ Si decreases
it will �nally stop, leading us with a �-invariant essential sphere S in N.

Cut N along S and then glue balls B1;B2 to its boundary to obtain N1 and
(possibly) N2. Since � preserves S and reverses the orientation both on N and S

it necessarily preserves each component of N n S. Restrict then extend � to an
involution of Ni with �xed points (i D 1; 2). �en apply the same argument as
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above to search for essential �-invariant spheres in N1 and N2. We furthermore
need to deform each such sphere so that it lies in N n S, that is, so that it does
intersect neither B1 nor B2.

Suppose without loss of generality that we have found an essential �-invariant
sphere S0 in N1 which intersects B1. After slightly deforming S0 by isotopy,
S0 \ @B1 consists of m > 0 simple closed curves. Let D0 be an innermost disk in
S0; @D0 bounds a disk D in @B1. If D0 lies in B1, consider

S1 D S0 [ .D [ �D/ n int.D0 [ �D0/

and deform it by a small isotopy (cf. Figure 3) so that S1 becomes a �-invariant
essential sphere and S1 \ @B1 has less than m components.

Figure 3. By considering small enough collar neighborhoods N.S0/ of S0 and N.@B1/

of @B1 in a subdivision of the triangulation of N, one can deform by isotopy the spheres
S1 D S0 [ .D[�D/n int.D0 [�D0/ and S2 D D[D0 so that their numbers of intersection
with @B1 decrease.

If D0 does not lie in B1, consider the two spheres S1 as above and S2 D D[D0

(cf. Figure 3). At least one of S1, S2 does not bound a ball (for the same reason
as above); use the S3 recognition algorithm to check so. If S1 does not bound a
ball, as above, after a small isotopy, S1 is a �-invariant essential sphere such that
S1 \ @B1 has less than m components. If S2 does not bound a ball, after a small
isotopy, one obtains an essential sphere S2; but S2 may not be �-invariant. Since
M is irreducible one has S2 \ �S2 6D ¿ and using the same procedure as above
one constructs a �-invariant essential sphere S3, included in S2 [ �S2 up to small
isotopy, such that S3 \ @B1 has less than m components.

By applying this process as long as possible one �nally obtains, if any,
a �-invariant essential sphere in N1 which does not intersect B1 nor B2. Cut N1
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along this sphere, glue balls and then apply the same process to the manifolds ob-
tained, while they do contain an essential sphere. According to the Kneser–Milnor
�eorem it will �nally stop, leading us with the compact surface † consisting of
�-invariant essential spheres in N, as described above.

� Apply Algorithm Top2 to �nd a surface † in N made of essential �-invariant

spheres and the surface … D p.†/ in M made of two-sided projective planes.

Cut N along † and M along … so as to split them into pieces, respectively,
N1;N2; : : : ;Np and M1;M2; : : : ;Mp; the involution � restricts on each Ni to a
free involution with quotient Mi . Consider yN1; yN2; : : : ; yNp obtained by �lling up
all spheres in @N1; @N2; : : : ; @Np with balls. Each involution � W Ni ! Ni extends
uniquely up to isotopy to an involution � W yNi ! yNi with orbit space an orbifold
yMi obtained from Mi by gluing a cone over P2 on each projective plane in @Mi .

Each manifold yNi , i D 1 : : : p, is irreducible. Hence there exists a (possibly
empty) 2-sided compact surface �i � yNi that is unique up to isotopy, and such
that

– �i is minimal with respect to inclusion,

– components of �i (if any) are essential tori, and

– each component of yNi n �i is either atoroidal or a Seifert �ber space;

the so-called JSJ characteristic torus decomposition (cf. [15, �eorem 1.9]
or [3, �eorem 3.4], see also [19]). If �i 6D ¿, consider such a surface �i that in
addition satis�es

– �i lies in Ni , and

– p.�i/ is a two-sided compact surface „i in Mi whose components are es-
sential tori and Klein bottles, and

– whenever yNi is not a T2-bundle over S1 modeled on Sol geometry: for each
component T of �i , if �T 62 �i then T and �T cobound in yNi a component
homeomorphic to T2 � I that is preserved under � .

When �i D ¿, set „i D ¿. Such (possibly empty) surfaces �i in Ni and „i in
Mi are what we call coherent JSJ decompositions of Mi ;Ni .

Lemma 2.4 (algorithm Top3 for the JSJ decompositions). One can algorithmi-

cally construct coherent JSJ decompositions �i � Ni and „i � Mi (i D 1 : : : p).
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Proof. During the whole proof, we use notations yN, N, �, M and „ instead of
cNi , Ni , �i , Mi and „i . Apply [18, Algorithm 8.2] to �nd the JSJ decomposition
� as well as the characteristic Seifert submanifold of yN. Suppose in the following
that � 6D ¿ for otherwise there is nothing left to prove.

Apply the same argument as in the proof of the last lemma to deform the
tori in � so that they all lie in the interior of N. Deform slightly � so that
�\�� is either empty or consists of simple closed curves and of whole tori Tj ’s.
�en deform � so that each closed curve component in �\�� becomes essential
in �. For suppose that �T1 \ T2 has a non-essential closed curve as component,
then it necessarily contains a curve bounding an innermost disk D in �T1 such
that @D bounds a disk D0 in T2. Replace in �, T1 by T1 [ �D0 n int.�D/ and T2

by T2 [ D n int.D0/, so that after a small isotopy the number of components in
� \ �� decreases (cf. Figure 4). Apply this process until each closed curve in
� \ �� becomes essential in �.

Figure 4. By considering small enough collar neighborhoods N.T2/ of T2 and N.�T1/

of �T1 in a subdivision of the triangulation of N, one can deform by isotopy the tori
T2 [ D n int.D0/ and �T1 [ D0 n int.D/ so that their number of intersection decreases.

Let Tj be a component of � such that �Tj \ � consists of simple closed es-
sential curves. We prove �rst that �Tj \ � cannot consist of exactly one essential
curve  . For otherwise, let T be a component of � such that �Tj \T D  ; neces-
sarily the torus T is non-separating. Consider a regular neighborhood V.�/ of �

inN andN0 D Nnint.V .�//;  gives rise to two disjoint essential curves �; C in
two di�erent components of @N0, both parallel to  , and such that �; C cobound
an essential annulus in a component N00 of N0. Necessarily N00 is a Seifert �ber
space, with at least two boundary components. If N00 � T2 � I then �; C are
regular �bers in a Seifert �bration of N00 D N0, which extends to N. �is con-
tradicts the minimality of �. If N00 6� T2 � I, according to [19, Lemma II.2.8],
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�; C are homotopic to regular �bers of a �bration of N00 and the same argument
shows that � n T is also a JSJ decomposition of N, which once again contradicts
the minimality of �. �is leads us to a contradiction.

Now let Tj be a component of � such that �Tj \ � consists of at least two
simple closed essential curves. �e family of essential curves is pairwise disjoint
so that they cut �Tj into annuli. Let ;  0 be two such curves cobounding an
innermost annulus A (i.e. A intersects � into ;  0). Let T;T0 � � be such that
 � T and  0 � T0. Suppose that T 6D T0; consider as above N0 D N n int.V .�//,
it has a component N00 which is a Seifert �ber space with ;  0 lying in di�erent
components of @N00, and ;  0 cobound an annulus in N00.

�e caseN00 � T2�I is discarded since � has at least two components. So with
[19, Lemma II.2.8] ;  0 are homotopic to regular �bers. Now let  00 2 �Tj \ T00

for some T00 � �, such that ;  00 cobound an innermost annulus B 6D A in �Tj .
�e same argument as above shows that N0 contains N000 which is a Seifert �ber
space and that if T 6D T00,  is homotopic to a regular �ber of N000. Hence T0 6D T 6D

T00 is impossible because otherwise the Seifert �brations of N00, N000 would both
extend to N00 [N000 [ int.V .T// and � n T would be a smaller JSJ decomposition.

In summary when �Tj \� consists of simple closed curves one can �nd T � �

and two curves ;  0 � T cobounding in �Tj an innermost annulus A. �e curves
;  0 cobound also an annulus B in T. Modify � by changing T into T[An int.B/

and Tj into Tj [ �B n int.�A/, and perform a small isotopy so that the number of
components in �\�� decreases (cf. Figure 5). Pursue this process until �\��

has no more closed curve component.

Tj [ B n int.A/

Tj

A

B

T [ A n intB

0
T

Figure 5. By considering small enough collar neighborhoods N.T/ of T and N.�Tj / of �Tj

in a subdivision of the triangulation of N, one can deform by isotopy the tori T[An int.B/

and �T [ B n int.A/ so that their number of intersection decreases.
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Up to this stage � is a JSJ decomposition of yN; its components are 2-sided
essential tori that fall in two parts: those with �T � � and those with �T\� D ¿.
For those T such that �T \ T D ¿, p.T/ is a two-sided essential torus in M. For
those T such that �T D T and � is orientation reversing on T, p.T/ is a two-sided
Klein bottle in M. For those T such that �T D T and � is orientation preserving
on T, p.T/ is a one-sided torus. In the latter case consider a regular neighborhood
V.T/ of T in N with �V.T/ D V.T/ and change T in � by a component of @V .T/.

Finally for any T such that �T \ � D ¿: by the characteristic pair �eorem
(cf. [19]), �T is parallel to some T0 � �. If T0 D T, then T and �T cobound
a T2 � I preserved under � or N is a torus bundle modeled on Sol geometry
(cf. �eorem 5.3, [30]). If T0 6D T: note that �T0 D T and replace in � its com-
ponent T0 by �T. At the end of the process � and „ D p.�/ are coherent JSJ
decompositions of N and M.

� Apply Algorithm Top3 to �nd coherent JSJ decompositions �i of the Ni ’s and

„i of the Mi ’s.

De�ne the surfaces

� D
[

i

�i

and

„ D
[

i

„i

respectively embedded in N, M. Note that the involution � naturally acts on
N n † t � t ��, permuting its connected components, and consider the two
�-equivariant maps

p W N n .† t � t ��/ �! M n .… t „/

and

p W † t � t �� �! … t „

obtained by restriction of p W N ! M.

Lemma 2.5 (algorithm Top4). For each component Q of N n † t � t ��, let yQ

be obtained by gluing balls to all S2 � @Q. �ere is an algorithm which checks

for each such Q whether yQ is a Seifert �ber space and if so returns a set of Seifert

invariants.
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Proof. �e algorithm is given in [18, Algorithm 8.1] and implicitly provides a set
of Seifert invariants.

� Apply Algorithm Top4 to decide which of the pieces of N n † t � t �� are

punctured Seifert �ber spaces and return for each a set of Seifert invariants.

2.3. Step 3: graph of groups splittings of �1.M/ and �1.N/. We now focus
on how �1.M/ and �1.N/ can be given constructively by �nite sets of data. �is
can be achieved by constructing graphs of group related to the topological decom-
positions of M and N with vertex and edge groups given by �nite presentations.

First we need to establish the following algorithms that will be useful in the
remaining of this part. We say that a 3-manifold V has incompressible boundary

if for any component T of @V, the inclusion map i W T ,! V induces a monomor-
phism i� W �1.T/ ! �1.V/. For a 3-manifold with incompressible boundary a
peripheral subgroups system is a collection of monomorphisms from the �1 of
components of @V into �1.V/ induced by the inclusion maps; each such monomor-
phism is only well de�ned up to conjugacy in �1.V/.

Lemma 2.6 (basic algorithms in the �1 of the pieces). Let V be a 3-manifold

given by a triangulation, q W W ! V be the orientation cover, V D �1.V/ and

W D �1.W/ seen as a subgroup of V (whenever V is orientable q W W ! V is an

homeomorphism).

(i) F inite presentations. One can algorithmically produce �nite presen-

tations hS j Ri of V and hS 0 j R0i of W with S 0 a set of words on S [ S�1.

(ii) Algorithm Gwp.W; V / . Given a word w on S [ S�1 one can decide

whether w 2 W and if so produce a word w0 on S 0 [ S 0�1 which represents

the same element.

In the following @V is incompressible and consist of S2, P2, T2, K2.

(iii) Peripheral subgroups system. One can construct a peripheral sub-

groups system .Vi /iD1:::p of V (respectively .Wj /j D1:::q of W ) by canoni-

cal �nite presentations with generators words on S [ S�1 (respectively on

S 0 [ S 0�1), represented by loops in @V (respectively @W) and such that for

any i D 1 : : : p, Vi \ W D Wi .
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(iv) Generalized word problem for boundary subgroups. Here

we moreover suppose that V is geometrisable. Given peripheral subgroups

systems .Vi/i of V and .Wj /j of W , and w a word on S [ S�1 (respectively

on S 0 [ S 0�1), one can decide whether w 2 Vi (respectively w 2 Wj ) and if

so �nd a word w0 on generators of Vi (respectively of Wj ) which represents

the same element in V (respectively in W ).

Proof. In caseV is orientable, q W W ! V is an homeomorphism, and simply skip
in the lines of the proof all assumptions involving W or W .

Proof of (i) and (ii). As in the proof of Lemma 2.2, construct from a triangulation
of V a PL-ball B with a PL-identi�cation f of triangles in @B with quotient man-
ifold homeomorphic to V. Let Df , the domain of f , be the union of all triangles
in @B identi�ed by f . Choose a point � in B. For any PL-triangle ı in Df apply
barycentric subdivisions to ı and f .ı/ and then choose a PL-loop ı1 in B from �

to the center of gravity ı� of ı, and a PL-loop ı2 in B from f .ı�/ to �; consider
the PL-loop l.ı/ D ı1ı2 based in � (cf. Figure 6); let �S D ¹l.ı/ ; ı 2 Df º be the
�nite set of all PL-loops based in � obtained in this way. Given any PL-loop l in
V based in � there is an algorithm which homotopically changes, with � �xed, the
�-loop l into a product of elements of �S : simply deform slightly l so that it be-
comes transverse with @B then look at the successive triangles in Df that l passes
through, to write it down as a product of �-loops in �S . In particular �S is a set
of representatives of a generating set S of V ' �1.V; �/ that we �x throughout
the rest of the proof.

Figure 6. �e loop l.ı/ based in � in V de�ned by a triangle ı with identi�cation in @B3;
it yields a generator of �1.V; �/.

Use the algorithm in [27] to compute a �nite presentation hT j U i of �1.V; �/

from the triangulation of V. It considers its 1-skeleton K and constructs a spanning
tree T of K; for any edge e in K n T let l1 be the simple PL-loop in T from � to
the origin of e and l2 the simple PL-loop in T from the extremity of e to � and let
le D l1e l2 a �-loop which passes through e. �e set T of generators is represented
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by the set of all �-loops le obtained in this way. For any PL-loop l based in � one
algorithmically constructs a product of the le, e 2 K n T, homotopic to l with �

�xed, by reading the successive edges of K n T which appears in l .

Use the two processes described above to write down elements s 2 S as words
T .s/ on T [ T �1, and elements t 2 T as words S.t/ on S [ S�1 and apply
the following sequence of Tietze transformations (cf. [23]) to the presentation
hT j U i:

– add a generator s and a relation s D T .s/ for each s 2 S , to obtain the
presentation hS [ T j U [ U1i

– add relations t D S.t/ for all t 2 T , to obtain hS [ T j U [ U1 [ U2i,

– use relations in U2 to change each relation in U [ U1 and express it on the
alphabet S , to obtain hS [ T j U 0 [ U 0

1 [ U2i,

– delete generators in T and relations in U2, to obtain hS j U 0 [ U 0
1i,

which �nally yields a �nite presentation of V with generating set S and proves the
�rst assumption in (i). �is presentation has a large number of generators and can
be easily improved by identifying generators making use of a splitting of Df into
connected surfaces on which f provides homeomorphisms.

Among the set S of generators one can decide which one reverses orientation
and which one doesn’t: indeed the loop l.ı/ is orientation reversing if and only
if fjı W ı ! f .ı/ reverses the orientation induced on ı; f .ı/ by that of B. Hence
given a word on S [ S�1 one can decide if it represents an element in W simply
by counting whether it has an even occurrence of orientation reversing generators
or not. Consider the set S 0 of words of one of the form: s, or s0s00 or s0ss0�1

for any s orientation preserving, and any s0; s00 orientation reversing, elements
of S [ S�1. Each word on S [ S�1 having an even number of occurrence of
orientation reversing element can be easily written (in linear time) as a word on
S 0 [ S 0�1 for example by the deterministic pushdown automata in Figure 7. �is
shows that S 0 generates W and proves (ii).

Finally apply a process such as Reidemeister–Schreier (cf. [23, 20]) to build
a �nite presentation hT 0 j U 0i of W , then express each generator in S 0 as a word
on T 0 [ T 0�1 and each generator in T 0 as a word on S 0 [ S 0�1 and apply Tietze
transformations as above to obtain a �nite presentation hS 0 j R0i with generators
S 0 for W . �is completes the proof of (i).
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Figure 7. A pushdown automata that given a word on generators S [ S�1 of V decides
whether it represents an element in the index 2 subgroup W and if so returns in the stack a
representative as a word on the generators S 0 [S 0�1 of W as described above. Elements of
S [ S�1 are denoted x if they lie in W and y; y1; : : : ; yn otherwise; " is the empty string;
in bracket is the element of S 0 [ S 0�1 pushed on the top of the stack.

Proof of (iii). First note that since q W W ! V induces a monomorphism on fun-
damental groups, whenever V has incompressible boundary, so has W. �e set of
PL-triangles in @B n Df together with f provides a triangulation of @M. Use it to
compute the Euler characteristic � and check orientability for each component of
@M; that determines their homeomorphism classes S2, P2, T2 or K2 depending
on whether � D 2, � D 1, � D 0 and orientable, or � D 0 and non-orientable.
�en by a favorite trick (such as representing each surface in @M by a PL-disk
with identi�cation on its boundary edges and deforming to get one of 4 standard
models, cf. [31]) �nd for each surface 6� S2 in @M a family of 2 � � PL-curves
which represent generators of one of the canonical presentations

ha j a2 D 1i;

ha; b j Œa; b� D 1i;

or

ha; b j aba�1 D b�1i

of Z2, Z ˚ Z, or Z Ì Z. Finally, use the algorithm described in the proof of (i)
above to write down the generators on the alphabet S [S�1. It de�nes a peripheral
subgroups system of V .
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An element in a peripheral subgroup of V can be orientation preserving or
orientation reversing as an element of V , but also as an element of the surface
group; note that since surfaces arise from the boundary those two notions coincide.

�e boundary of W is q�1.@V/ and its components are related to those of @V.

– Any S2; P2 ,! @V lifts to S2 ,! @W. Since �1.S2/ D ¹1º, the monomor-
phism �1.S2/ ! �1.W/ is well de�ned.

– Any T2 ,! @V lifts to two components T2 ,! @W. �e monomorphism
� W �1.T2/ ! V has its image in W ; let ˛, ˇ be two based loops in T2 which
represent generators Œ˛�, Œˇ� of �1.T2/, i W T2 ,! V, and a D �.Œ˛�/, b D �.Œˇ�/;
the loops i.˛/, i.ˇ/ are orientation preserving in V and lift to loops ˛C; ˇC and
˛�, ˇ� lying in the two T2 ,! @W where they both represent a basis of �1.T2/.
One de�nes the respective monomorphisms �C W �1.T2/ ! W by �C.Œ˛C�/ D a,
�C.ŒˇC�/ D b and �� W �1.T2/ ! W , by ��.Œ˛��/ D vav�1, ��.Œˇ��/ D vbv�1

for some arbitrary element v of V n W .

– Any K2 ,! @V lifts to a T2 ,! @W. Let �1.K2/ ! V be the monomor-
phism found above, and let ˛, ˇ be based loops in K2 such that �.Œ˛�/ D a and
�.Œˇ�/ D b for some generators a; b of Z Ì Z as in the presentation above.
Let i W K2 ,! V; i.˛/, i.ˇ/ are respectively orientation reversing and orientation
preserving loops in V, then consider the two loops ˛2 and ˇ1, respective lifts of
i.˛/2 and of i.ˇ/ in @W; they represent generators of �1.T2/. Let the monomor-
phism �0 W �1.T2/ ! W be de�ned by �0.Œ˛2�/ D a2 and �0.Œˇ1�/ D b.

We have �nally constructed a peripheral subgroups system in W , which
proves (iii). By construction whenever Vi is a peripheral subgroup of V , Vi \ W

is a peripheral subgroup Wi of W .

Proof of (iv). SinceV is geometrisable the word problem is solvable in V (cf. [11]).
In particular in case of the peripheral subgroup ¹1º coming from a S2 component
one can solve the generalized word problem.

Suppose �rst that V is orientable. �en any peripheral subgroup V1 6D ¹1º

comes from a torus T2 ,! @V. Consider an homeomorphic copy V0 of V,
and the double 2V D V tT2 V0 of V along the boundary component T2 ,! @V.
�en [26, Lemma 1.2] shows that 2V is geometrisable, therefore �1.2V/ has solv-
able word problem. �e group �1.2V/ splits into the amalgam V �V1

V 0 equipped
with the isomorphism v 2 V 7�! v0 2 V 0 which restricts to the identity on the sub-
group V1 ' Z˚Z. Let v be an element of V given as a word on S [ S�1, then by
the normal form theorem for amalgams (cf. [23]), v 2 V1 if and only if v�1v0 D 1
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in �1.2V/, which can be checked using the solution to the word problem in �1.2V/.
If yes one can enumerate elements in V1 as words on the generators found in (iii)
and for each use a solution to the word problem in V to decide whether it equals
v, to �nally write down v as a word on generators of V1; this naive process can
be improved using the quasi-convexity of V1 in V (cf. [11]). (Note that in case V

is an orientable piece coming from a JSJ decomposition of a closed irreducible
3-manifold – as occurs in our context – a far more e�cient solution is given by
[26, Proposition 4.2]). In particular this solves the generalized word problem for
peripheral subgroups of W .

Suppose now that V is non-orientable. Let V1 6D ¹1º be a peripheral subgroup
of V ; V1 is isomorphic either to Z2, Z ˚ Z or Z Ì Z. If V1 ' Z2 is generated
by a then v lies in V1 if and only if v commutes with a (cf. [34]) and one can
decide using a solution to the word problem, and if so write v as a word, 1 or a,
on the generators of V1 . If V1 ' Z ˚ Z, then V1 � W is also, by (iii), a periph-
eral subgroup of W . One checks �rst using (ii) whether v 2 W , and if so, the,
solves the problem reduced to W by the solution given above for the oriented case.
If V1 ' Z Ì Z; let t 2 V1 n .V1 \ W / be an o.r. element in V1 provided by (iii).
One decides whether v lies in W other not; then using the above solution for the
oriented case, one decides whether, v in the former case, or vt in the latter case,
lies in the peripheral subgroups V1 \ W of W . If yes it provides a word on the
generators of V1 equal to v. In any case this solves the generalized word problem
in a peripheral subgroup of V and proves (iv).

We now turn to the description of �1.M/ and �1.N/ using graphs of groups
related to the topological decompositions obtained in step 2.

Recall that a graph of group X consists of (cf. [32]):

– a non-empty �nite connected oriented graph X; let VX, EX denote respec-
tively the vertex and edge sets of X, for all e 2 EX, Ne denotes the opposite
edge of e, and t.e/ 2 VX denotes the extremity of e; the edge e has origin
t.Ne/ and extremity t.e/,

– two families of vertex groups G.v/ for all v 2 VX and edge groups G.e/ for
all e 2 EX, with G.Ne/ D G.e/,

– a family of monomorphisms �e W G.e/ ! G.t.e// for all e 2 EX.
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Graphs of groups come equipped with the notion of fundamental group of
graph of group X (cf. [32, 1]), that we introduce now. An X-path of length n 2 N

is a �nite sequence .g0; e1; g1; : : : ; en; gn/ such that for all i D 1 : : : n�1, one has
t.ei / D t.NeiC1/, gi 2 G.t.ei //, g0 2 G.t.Ne1// and gn 2 G.t.en//. We denote by
�.X/ the set of X-paths. An X-path is reduced if it does not contain a subsequence
.: : : ; e; �e.g/; Ne; : : :/ for some e 2 EX, g 2 G.e/; any X-path can be transformed
into a reduced X-path, called a reduction, by changing each subsequence of the
above form using relations:

.: : : ; g0; e; �e.g/; Ne; g00; : : :/ � .: : : ; g0�Ne.g/g00; : : :/ (�)

for any e 2 EX and g 2 G.e/; moreover any two reductions of an X-path must
have the same length. �e set �.X/ comes equipped with a partially de�ned
concatenation product: .: : : ; e1; g1/.g2; e2; : : :/ D .: : : ; e1; g1g2; e2; : : :/ anytime
t.e1/ D t.Ne2/. Let x 2 VX; a .X; x/-loop is a X-path such that t.Ne1/ D t.en/ D x.
�e concatenation product is well de�ned on .X; x/-loops and is compatible with
relations (�); the equivalence classes of .X; x/-loops with respect to relation (�)
inherits a group structure, and we denote this group by �1.X; x/, the fundamental

group of X based in x. Each element of �1.X; x/ can be represented by a reduced
.X; x/-loop, which allows to de�ne its length. �e isomorphism class of �1.X; x/

does not depend on the base point x 2 VX and will be denoted by �1.X/.

Given a 3-manifold V and a two-sided compact incompressible surface ˆ in V

there is a usual way to de�ne a graph of group V related to .V; ˆ/

with �1.V/ ' �1.V/. Consider the interior N.ˆ/ of a regular neighborhood of
ˆ in V. �e vertices vi (respectively the edges ej ) of V are in 1-1 correspondence
with the components Vi of V n N.ˆ/ (respectively with the components Tj of
ˆ), vertex groups (respectively edge groups) are G.vi/ D �1.Vi / (respectively
G.ej / D �1.Tj /). �e embedding of ˆ in V de�nes for each Tj 2 ˆ two embed-
dings f C

j ; f �
j of Tj into the boundary of some components Vi , Vk of V n N.ˆ/

(possibly i D k) that induce two monomorphisms gC
j ; g�

j of their �1. With the
identi�cations above one de�nes

�ej
D gC

j W G.ej / �! G.t.ej //

and

�Nej
D g�

j W G.Nej / �! G.t.Nej //:
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�is de�nes a graph of group V which depends on all the monomorphisms gC
j ; g�

j

despite the isomorphism class of its fundamental group �1.V/ does not.
One proves by applying the Seifert-Van Kampen �eorem that �1.V/ ' �1.V/.

Given topological decompositions † t � of N and … t „ of M we consider
a graph of group M related to .M; … t „/ and a graph of group N related to
.N; †t�t��/ (rather than on .N; †t�/). �is last graph of group slightly di�ers
from that related to .N; † t �/ in that it may be non-minimal (i.e. it may contain
an edge e with t.e/ 6D t.Ne/ and 'e is onto); it’s the prize for having a covering of
graphs of groups. More precisely, by coherent graph of group decompositions for
�1.M/ and �1.N/ we mean:

� a graph of groups M related to .M; … t „/; �1.M/ ' �1.M/,

� a graph of group N related to .N; † [ � [ ��/; �1.N/ ' �1.N/,

� a covering p W N ! M, that is a collection of

– a map of graphs p W N ! M from the underlying graph N of N to the under-
lying graph M of M, induced by p W N ! M,

– two families of monomorphisms

pv W G.v/ �! G.p.v//; v 2 VN

and

pe W G.e/ �! G.p.e//; e 2 EN;

– a collection of elements �.e/, e 2 EN, with �.e/ 2 G.t.p.e/// such that if
ade is the automorphism of G.t.p.e/// de�ned by

ade.g/ D �.e/ g �.e/�1;

for all g 2 G.t.p.e///, the following diagram commutes:

G.e/
�e

����! G.t.e//

pe

??y
??ypt.e/

G.p.e// ������!
ade ı �p.e/

G.t.p.e///
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– a map

p# W �.N/ �! �.M/

de�ned by

p#.g0; e1; g1; e2; : : : ; en; gn/ D .g0
0; p.e1/; g0

1; p.e2/; : : : ; p.en/; g0
n/

where for all i D 0; : : : ; n,

g0
i D

8
<̂

:̂

pt.Ne1/.g0/ �.Ne1/�1 for i D 0;

�.ei/ pt.ei /.gi / �.NeiC1/�1 for i 6D 0; n;

�.en/ pt.en/.gn/ for i D n;

and for any x 2 VM, Qx 2 p�1.x/, p# induces a monomorphism

p� W �1.N; Qx/ �! �1.M; x/ :

One may refer to [1] for a general de�nition of a covering of graphs of groups; its
formalism di�ers from our, which turns to be more practical in the present context
though less general; we won’t need to relate to the de�nition of [1] in our purpose.

Lemma 2.7 (algorithm for graphs of groups). One can algorithmically produce

coherent graphs of groups decomposition N and M for �1.N/ and �1.M/ related

to the topological decompositions .N; † t � t ��/ and .M; … t „/ as well

as a covering of graphs of groups p W N ! M and the induced monomorphism

p� W �1.N; Qx/ ! �1.M; x/ (given any vertex x of the underlying graph M, and

Qx 2 p�1.x/).

Proof. �e graph of group M is deduced from the topological decomposition of
M along … t „ obtained by algorithms Top2, Top3 and from �nite presentations
of the fundamental groups of the pieces obtained in Lemma 2.6.(i) together with
their peripheral subgroups systems given algorithmically by Lemma 2.6.(iii).

If M denotes the underlying graph of M, VM is in 1-1 correspondence with the
connected components of M n .… t „/ and EM is in 1-1 correspondence with the
components of … [ „. For each v 2 VM, G.v/ is the fundamental group of the
corresponding component ofMn.…t„/, and for each e 2 EM, G.e/ D Z2; Z˚Z;

or Z Ì Z according to the associated component is homeomorphic to P2;T2 or
K2. �e monomorphisms �e W G.e/ ! G.t.e// are induced by the sewing maps
together with the peripheral subgroups systems in all vertex groups.
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Now that a graph of group M with �1.M/ ' �1.M/ associated to the splitting
of M along …t„ is given we construct from M a related graph of group splitting
N of �1.N/. �is graph of group N is related to the topological decomposition of
N along †t�t��: despite we only focus on the graph of group, keep in mind in
the line of the proof that the construction of N encodes how N and †t�t�� are
constructed by gluing the orientation coverings of components of M n .… t „/.

Partition VM into

VM D VMC t VM�; VMC D
®
v1; : : : ; vq

¯
; VM� D ¹vqC1; : : : ; vrº

where VMC are those vertices coming from oriented components and VM� those
coming from non-orientable components of M n .… t „/ (orientability of the
pieces in M n … t „ can be algorithmically checked from their triangulations).
For any v 2 VM�, G.v/ ' �1.Mi / naturally arises with its index two subgroup
of orientation preserving elements described by Lemma 2.6.(i), that we denote
H.vC/; choose for any v 2 VM� an arbitrary element �.v/ in G.v/ X H.vC/,
which de�nes an automorphism adv of H.vC/ by adv.h/ D �.v/ h �.v/�1, for all
h 2 H.vC/. Moreover the choice of �.v/ de�nes a peripheral subgroups system
of H.vC/, as observed in the proof of Lemma 2.6.(iii).

Similarly partition EM into

EM D EMC t EM�; EMC D ¹e1; : : : ; esº; EM� D ¹esC1; : : : ; etº

where EMC are edges associated to T2 and EM� edges associated to P2 or K2;
note that t.EM�/ � VM� and that e 2 EM� if and only if Ne 2 EM�.

One constructs the graph N by picking q C r vertices and s C t edges:

VN D ¹vC
1 ; : : : ; vC

q ; v�
1 ; : : : ; v�

q ; vC
qC1; : : : ; vC

r º;

EN D ¹eC
1 ; : : : ; eC

s ; e�
1 ; : : : ; e�

s ; eC
sC1; : : : ; eC

t º

and by setting, for all i D 1 : : : t,

t.eC
i / D t.ei /

C

and, for all i=1 . . . s,

t.e�
i / D

8
<
:

t.ei /
C whenever t.ei / 2 VM�;

t.ei /
� whenever t.ei / 2 VMC:

De�ne the map of graphs p W N ! M by p.v˙/ D v and p.e˙/ D e.



498 J.-Ph. Préaux

�e vertex groups .H.v//v2VN of N are de�ned, for all v 2 VMC, by

H.vC/ D H.v�/ D G.v/

and, for all v 2 VM�, by
H.vC/ C2 G.v/;

where H.vC/ C2 G.v/ is the subgroup of orientation preserving elements
as discussed above. �e edge subgroups .H.e//e2EN of N are de�ned, for all
e 2 EMC, by

H.eC/ D H.e�/ D G.e/ D Z ˚ Z

and for all e 2 EM�, by

H.eC/ C2 G.e/ and H.eC/ '

8
<
:

¹1º if G.e/ D Z2;

Z ˚ Z if G.e/ D Z Ì Z:

�e monomorphisms

�e W H.e/ �! H.t.e// (for all e 2 EN)

of N are de�ned as follows.

(i) Let e 2 EM�; necessarily t.e/ 2 VM�. �e monomorphism

�e W G.e/ �! G.t.e//

sends the index 2 subgroup H.eC/ of G.e/ into the index 2 subgroup H.t.e/C/

of G.t.e//. De�ne �eC by the commutative diagram

H.eC/
� _

2

��

�eC
// H.t.e/C/

� _

2

��

G.e/
�e

// G.t.e//

(ii) Let e 2 EMC; here H.eC/ D H.e�/ D G.e/ D Z ˚ Z. �ere are two cases.

(ii.a) If t.e/ 2 VMC; De�ne �eC , �e� by the commutative diagrams

H.eC/
�eC

// H.t.e/C/

G.e/
�e

// G.t.e//

H.e�/
�e�

// H.t.e/�/

G.e/
�e

// G.t.e//
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(ii.b) If t.e/ 2 VM�; in that case H.t.e/C/ C2 G.t.e// and one has the
automorphism adt.e/ of H.t.e/C/ de�ned above. Since e 2 EMC and
t.e/ 2 VM�, one has �e.G.e// � H.t.e/C/. De�ne �eC , �e� by the
commutative diagrams

H.eC/
�eC

// H.t.e/C/
� _

2

��

G.e/
�e

// G.t.e//

H.e�/
�e�

// H.t.e/C/
� _

2

��

G.e/
adt.e/ ı�e

// G.t.e//

�e graph N together with the families of vertex groups H.v/, v 2 VN, edge
groups H.e/, e 2 EN and monomorphisms �e W H.e/ ! H.t.e//, e 2 EN, de�nes
the graph of group N. �e vertex and edge groups of N are subgroups of vertex
and edge subgroups of M, which gives rise to the two families of monomorphisms

pv W H.v/ �! G.p.v//; v 2 VN;

pe W H.e/ �! G.p.e//; e 2 EN:

For each e 2 EN de�ne �.e/ 2 G.t.p.e/// by

if e 2 EM�; �.eC/ D 1;

if e 2 EMC; �.eC/ D 1; �.e�/ D

8
<
:

1 if t.e/ 2 VMC;

�.t.e// if t.e/ 2 VM�:

Let ade be the automorphism of G.t.p.e///: ade.h/ D �.e/ h �.e/�1. By con-
struction the following diagram commutes for all e 2 EN:

H.e/
�e

����! H.t.e//

pe

??y
??ypt.e/

G.p.e// ������!
ade ı �p.e/

G.t.p.e///

Consider p# W N ! M as in the de�nition of covers of graphs of groups (cf p.495).
Let x 2 VM and Qx D xC 2 p�1.x/; it remains to prove that p# induces a monomor-
phism p� W �1.N; Qx/ ! �1.M; x/. First p# induces an homomorphism

p� W �1.N; Qx/ �! �1.M; x/;
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since, whenever t.en/ D t.NenC1/,

p#.g0; e1; : : : ; en; gn/ p#.hn; enC1; : : : ; em; gm/

D .g0
0; p.e1/; : : : ; p.en/; �.en/pt.en/.gn/pt.NenC1/.hn/�.NenC1/�1; p.enC1/;

: : : ; p.em/; g0
m/

D .g0
0; p.e1/; : : : ; p.en/; �.en/pt.en/.gnhn/�.NenC1/�1; p.enC1/;

: : : ; p.em/; g0
m/

D p#.g0; e1; : : : ; en; gnhn; enC1; : : : ; em; gm/:

Secondly p� is injective: we prove that the image of a reduced .N; Qx/-loop is a
reduced .M; x/-loop. Clearly the image of a .N; Qx/-loop is a .M; x/-loop. Let

 D .g0; e1; : : : ; en; gn; enC1; : : : ; em; gm/

be a reduced .N; Qx/-loop. Suppose that p#./ is not reduced, more precisely
that p.en/ D p.NenC1/ and that �.en/pt.en/.gn/�.NenC1/�1 lies in �p.en/.G.p.en///.
�ere are several cases to consider.

(i) If p.en/ 2 EM�; here en D NenC1, �.en/ D �.NenC1/ and pt.en/.gn/ lies in
�p.en/.G.p.en/// if and only if gn 2 �en

.H.en//, since

�en
.H.en// D �p.en/.G.p.en/// \ pt.en/.H.t.en///:

In that case  is non-reduced.

(ii) If p.en/ 2 EMC; there are two cases to consider:

(ii.a) If p.t.en// 2 VMC; here en 6D NenC1 implies t.en/ 6D t.NenC1/, hence
en D NenC1. Moreover �.en/ D �.NenC1/ D 1. As above  is non-
reduced.

(ii.b) If p.t.en// 2 VM�; there are four cases to consider.

(ii.b.1) If en D NenC1 D p.en/C, then �.en/ D �.NenC1/ D 1 and as
above  is non-reduced.

(ii.b.2) If en D NenC1 D p.en/�, then �.en/ D �.NenC1/ D �.t.en//.
Here �.t.en//pt.en/.gn/�.t.en//�1 lies in �p.en/.G.p.en///

if and only if gn 2 �en
.H.en//. So  is non-reduced.

(ii.b.3) If both en D p.en/� and NenC1 D p.en/C, then
�.en/ D �.t.en// and �.NenC1/ D 1. �is leads to a con-
tradiction since �.t.en// pt.en/.gn/ 62 pt.en/.H.t.en/// while
�p.en/.G.p.en/// � pt.en/.H.t.en///.
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(ii.b.4) If en D p.en/C and NenC1 D p.en/�; one obtains a contradiction
as in the latter case.

�is concludes the proof.

� Construct graph of groups decompositions M of �1.M/ and N of �1.N/ and the

covering of graphs of groups p W N ! M.

�e choice of a maximal tree T in the underlying graph X of a graph of group
X de�nes embeddings of the vertex and edge groups in �1.X; x/. Let v 2 VX, the
monomorphism G.v/ ! �1.X; x/ is de�ned by

g 2 G.v/ 7�! .1; e1; 1; : : : ; en; g; Nen; : : : ; 1; Ne1; 1/:

where .e1; : : : ; en/ is the simple path in T from x to v. Once embeddings of the ver-
tex groups are given, their images in �1.X; x/ are called vertex subgroups. Since
edge groups embed in vertex groups, embeddings of vertex groups de�ne also
embeddings of the edge groups in �1.X; x/; their image in �1.X; x/ are called
edge subgroups and they all lie in vertex subgroups. For v 2 VX and e 2 EX,
the corresponding vertex and edge subgroups will be denoted by Gv, Ge.

Lemma 2.8. One can construct maximal trees TN of N and TM of M such that,

for all e 2 TN, p.e/ 2 TM.

Proof. Apply a usual algorithm to construct a maximal tree TN of N: initially TN

is reduced to a vertex of N; while VTN 6D VN add to TN some edges e; Ne and the
vertex v such that v 62 VNnVTN and t.e/ D v, t.Ne/ 2 VTN. Adapt this algorithm to
the search of TM so that, for all e 2 ETN, p.e/ 2 ETM: initially TM is reduced to a
vertex of M; while VTM 6D VM add to TM some edges e; Ne and the vertex v where
e 2 p.ETN/, v 62 VM n VTM and t.e/ D v, t.Ne/ 2 VTM. One veri�es immediately
that the algorithm produces a maximal tree TM with the required property.

� Construct maximal trees TM of M and TN of N as above and �x x 2 VM and

Qx 2 p�1.x/; that de�nes the vertex and edge subgroups of �1.M; x/ and �1.N; Qx/.

Now that maximal trees TM; TN of M; N and base-points x 2 VM, Qx 2 VN are
given one can talk of Seifert vertex subgroups and non-Seifert vertex subgroups

of �1.N; Qx/ (respectively as those that come from puntured Seifert �bered pieces,
and those that don’t) and similarly of ¹1º, Z ˚ Z, Z2 and Z Ì Z, edge subgroups

of �1.M; x/ and (for the two former) of �1.N; Qx/. One also partition vertex sub-
groups of �1.M; x/ into Seifert and non-Seifert vertex subgroups, accordingly to
the partition of vertex subgroups of �1.N; Qx/.
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In a graph of group X, given a maximal tree T of X, an .X; x/-loop  is said to
be cyclically reduced whenever

(i)  is a reduced .X; x/-loop, and

(ii) either its length is less than 2 or

 D .1; e1; : : : ; 1; ep; 1/.g0; epC1; : : : ; en; gn/.1; Nep; 1; : : : ; Ne1; 1/

where .e1; : : : ; ep/ is the simple path in T from x to t.en/ (eventually reduced
to .x/) and either epC1 6D Nen or gng0 62 �en

.G.en//.

We can now state basic algorithms that help working with elements in �1.M/

and �1.N/.

Lemma 2.9 (basic algorithms in �1.M/). Let p W N ! M be the covering found

above. Fix elements x 2 VM and Qx 2 p�1.x/ � VN; then

(i) Cyclic reduction. �ere is an algorithm which given a .M; x/-loop 

change it into a cyclically reduced .M; x/-loop  0, such that ;  0 represent

conjugate elements in �1.M; x/.

(ii) Algorithm GWP.H; G/ . �ere is an algorithm which given a

.M; x/-loop  decides whether  represents an element of �1.M; x/ lying

in p�.�1.N; Qx//, and if so, constructs a .N; Qx/-loop  0, with the same length

as  , and such that p#. 0/ D  . Moreover, whenever  is reduced (resp.

cyclically reduced) then so is  0.

Proof. We prove separately (i) and (ii).

Proof of (i). �e �rst step changes  into a reduced .M; x/-loop which repre-
sents the same element of �1.M; x/; this is done by applying the algorithm given
by Lemma 2.6.(iv) for the generalized word problem in edge subgroups of some
vertex groups. If the reduced .M; x/-loop obtained, say  D .g0; e1; : : : ; en; gn/,
has length n < 2, or if e1 6D Nen then  is cyclically reduced and the process
stops. Otherwise, n � 2 and e1 D Nen; use Lemma 2.6.(iv) to decide whether
gng0 2 �en

.G.en//. If not then the .M; x/-loop obtained is cyclically reduced and
the process stops; if yes change it into

 0 D .1; e0
1; : : : ; 1; e0

p/ .�e1
.gng0/g1; e2; g2; : : : ; en�1; gn�1/„ ƒ‚ …

 00

.Ne0
p; 1; : : : ; Ne0

1; 1/

where .1; e0
1; : : : ; 1; e0

p/ is the simple path in T from x to t.e1/;  00 is a reduced
.M; t.e1//-loop. Consider the .M; x/-loop ˛ D .1; e0

1; : : : ; 1; e0
p; 1; Ne1; gn/, then
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 0 D ˛˛�1 in �1.M; x/. If  00 is cyclically reduced then  0 is cyclically reduced
and the process stops. Otherwise apply the same process to the .M; t.e1//-loop  00,
and so on; after an eventual reduction of the pre�x path in T one �nally obtains a
cyclically reduced .M; x/-loop which represents a conjugate of  in �1.M; x/.

Proof of (ii). For each vertex group H.v/ of N one considers its image pv.H.v//

in G.p.v//, denoted H.p.v//, that one identi�es with H.v/; it has index at most 2.
We consider the generating sets Sv of G.v/ and S 0

v of H.v/ as in Lemma 2.6.(i).
For each v 2 VM, and for each word w on Sv [ S�1

v de�ning an element in
H.v/ � G.v/ denote by Nw the word on S 0

v [ S 0�1
v , given by Lemma 2.6.(ii), equal

to w in G.v/.
As in the proof of Lemma 2.7, let

VM D VMC t VM�;

VN D ¹vCI v 2 VMº t ¹v�I v 2 VMCº

and elements �.e/ 2 G.t.p.e// for all e 2 EN de�ned by the covering p W N ! M,
with Qx D t.vC/ whenever x D t.v/. Given a .M; x/-loop

 D .g0; e1; : : : ; en; gn/

where each gi 2 G.vi/ is given by a word on Svi
[ S�1

vi
, one algorithmically

change it into a .N; Qx/-loop by applying the following transformation rules from
the left to the right.

Case n D 0 . For all w0, a word on Sx [ S�1
x ,

w0 7�!

8
<
:

Nw0 w0 2 H.x/;

w0 w0 62 H.x/:

Case n > 0 . For all wi , a word on St.NeiC1/ [ S�1
t.NeiC1/

,

wi ; eiC1; wiC1 7�!

8
<
:

Nwi ; eC
iC1; wiC1 wi 2 H.t.NeiC1//;

wi�.NeiC1/; e�
iC1; �.eiC1/�1wiC1 wi 62 H.t.NeiC1//I

for all wn a word on St.en/ [ S�1
t.en/

,

e˙
n ; wn 7�!

8
<
:

e˙
n ; Nwn wn 2 H.x/;

e˙
n ; wn wn 62 H.x/:
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If one denotes by  0 D .g0
0; e˙

1 ; : : : ; e˙
n ; g0

n/ the loop obtained, then  0 is a
.N; Qx/-loop if and only if g0

n 2 H.t.en// if and only if  represents a element in
p�.�1.N; Qx//, and in such case p#. 0/ D  . In particular, since p# induces an
homomorphism p� W �1.N; Qx/ ! �1.M; x/, when  0 is not reduced then neither is
 . �e same argument applied in �1.M; y/ for y D t.e1/ shows that whenever 

is cyclically reduced then so is  0.

� In the following we usually write

G D �1.M; x/; H D �1.N; Qx/

with H identi�ed with the subgroup p�.H/ of G.

We now make a review of what is known on basic Dehn problems in G

and H .

Lemma 2.10. �e following algorithmic problems are known to be solvable in G

and H .

(i) Algorithms WP.H/ , CP.H/ . �e word and conjugacy problems in H .

(ii) Algorithm WP.G/ . �e word problem in G.

(iii) Algorithms WP.H.v// , CP.H.v// . �e word and conjugacy problems

in vertex subgroups of H .

(iv) Algorithms WP.G.v// , CP.G.v// . �e word and conjugacy problems

in vertex subgroups of G.

Proof. (i) By hypothesis the 3-manifold N is orientable and geometrisable.
A solution to the conjugacy problem in H is given in [26]. Let’s give some de-
tails for a solution to the word problem. Note that H is a �nitely presentable
group. According to [11, �eorem 12.4.7] either H D �1.N/ is automatic or N
is closed and modeled on one of Nil, Sol geometries. Automatic groups have
solvable word problems (in quadratic time, cf. [11, �eorem 2.3.10]). A �nitely
presented group that contains a �nite index subgroup with solvable word prob-
lem also has a solvable word problem; indeed their Dehn functions are equivalent
([5, Proposition 1.3.4 and Exercise 1.3.5]); note also that the �nite index subgroup
is also �nitely presentable. When N is modeled on Nil then H is virtually nilpo-
tent, and �nitely generated nilpotent groups have solvable word problem (in linear
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time, cf. [14]). When N is modeled on Sol then H is virtually Z˚ Z Ì� Z with �

Anosov (cf. [30, �eorem 5.3.(i)]) where a solution to the word problem is easily
provided by rewriting any element as a couple in Z˚Z�Z. In any case H has a
solvable word problem.

(ii) Since G is �nitely presentable and contains a �nite index subgroup H

having a solvable word problem, so does G by the same argument as above.

(iii) Let Hv be a vertex subgroup of H ; in such case the solution is provided
by [11, 24] or [26] depending on whether Hv is biautomatic or arises from a piece
modeled on Nil-geometry.

(iv) Let Gv be a vertex subgroup of G; in cases it comes from an orientable
piece the same argument as in (iii) applies. Otherwise: a non-orientable 3-manifold
cannot be modeled on Nil-geometry (cf. [30]); it follows from [11, 24] that Gv

is biautomatic and hence has solvable word and conjugacy problems ([11, �eo-
rem 2.5.7]).

We will make a heavy use of these basic algorithms. Another main ingredi-
ent will be that following algorithm �nding the centralizer of any element in H .
In case of Haken orientable 3-manifolds the structure of centralizers are quite
simple and related to the JSJ decomposition as stated in [19, �eorem VI.I.6]; one
deduces the centralizers in groups of geometrisable orientable 3-manifolds, that
one can compute, as follows.

Lemma 2.11 (algorithm ZP.H/ for centralizers in H ). Let u 2 H X¹1º as above.

�en exactly one of the following assertions occurs:

(i) its centralizer ZH .u/ is in�nite cyclic and does not lie in the conjugate of a

Seifert vertex subgroup;

(ii) ZH .u/ lies in the conjugate of a Seifert vertex subgroup Hv;

(iii) ZH .u/ is conjugate to a Z ˚ Z edge subgroup He and does not lie in the

conjugate of a Seifert vertex subgroup.

�ere is an algorithm that determines which case occurs, and in cases (ii) and (iii)
produces all possible vertex or edge subgroups Hv, He and conjugating elements.

Proof. First note that in case of an empty tori decomposition for N, since in
groups of hyperbolic closed manifolds non-trivial centralizers are all in�nite cyclic
(cf. [30]), the former assumption follows from [19, �eorem VI.I.6] and the lat-
ter assumption from Lemma 2.5. So we suppose in the following that the tori
decomposition of N is non-empty.
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We are given an element u 2 H by a .N; Qx/-loop and are interested in its
centralizer; �rst apply the algorithm of Lemma 2.9.(i) to p#.u/ followed by that
one of Lemma 2.9.(ii) to change u into a cyclically reduced .N; Qx/-loop v conjugate
to u in H ; it �nds h 2 H such that huh�1 D v. Obviously ZH .v/ D h ZH .u/ h�1,
so that in the following we suppose that u is a cyclically reduced .N; Qx/-loop.

Let EN0 be the subset of EN of those edges whose groups are all trivial
(i.e. related to spheres in the topological decomposition of N). Denote N1; : : : Np

the connected components of the graph obtained from N by deleting all edges in
EN0. Together with N this de�nes graphs of groups N1; : : : Np by restricting N

to the respective subgraphs N1; : : : ; Np. �e choice of base points Qx1; : : : ; Qxp in
N1; : : : ; Np together with the maximal tree TN de�nes natural monomorphisms
from �1.N1; Qx1/; : : : ; �1.Np; Qxp/ into H D �1.N; Qx/. Moreover H splits as the
free product �1.N; Qx1/ � � � � � �1.Np; Qxp/ � Fn, for Fn a free group of �nite rank.
Note that N1; : : : ; Np are graphs of groups related to the decompositions of the
yN1,: : : ; yNp along the tori appearing in Lemma 2.4, and that the images of
�1.N1; Qx1/; : : : ; �1.Np; Qxp/ into H D �1.N; Qx/ coincide up to conjugacy with
those induced by the inclusions of N1; : : : ;Np into N.

One obtains from u a cyclically reduced sequence with respect to the free prod-
uct. If its length is positive then ZH .u/ is in�nite cyclic, the case (i) occurs;
otherwise ZH .u/ lies in one of the free product factors ([23, Corollary 4.1.6]).
In the latter case it follows from [19, �eorem VI.1.6] and [19, characteristic pair
�eorem] that exactly one of the assertions (i), (ii) or (iii) occurs; this proves the
�rst assumption.

We now return to the algorithm: if u passes through an edge in EN0, then the
case (i) occurs and otherwise ZH .u/ is included in some factor, say �1.N1; Qx1/,
that one can decide from u. Suppose in the following that u lies in K , �1.N1; Qx1/,
and write u as a cyclically reduced .N1; Qx1/-loop.

�e algorithm is constructed on procedures and arguments stated in [26], which
apply here since N1 is related to the tori decomposition of the orientable irre-
ducible geometrisable 3-manifold yN1. Suppose that u is conjugate in K to an
element u0 in a vertex subgroup Hv0 , for some v0 2 VN1. According to [26,
�eorem 3.1], since u is cyclically reduced one of the following cases occurs in
K D �1.N1; Qx1/:

(i) u lies in Hv0 and u, u0 are conjugate in Hv0 , or

(ii) u lies in a vertex subgroup Hv, v 2 VN1, and there is a sequence .c1; : : : ; cn/

of elements of edge subgroups such that u is conjugate to c1 in Hv, u0 is
conjugate to cn in Hv0 and for any i D 1 : : : n � 1, either .e; ci ; Ne/ D ciC1 for
some e 2 EN1 or ci and ciC1 are conjugate in some vertex subgroup.
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Let’s return to the algorithm; given a cyclically reduced .N1; Qx1/-loop u one
can decide whether u lies in a vertex subgroup. If not then with the above, u is not
conjugate to a vertex subgroup and assertion (i) occurs: ZH .u/ is in�nite cyclic.
So in the following we will suppose that u lies in a vertex subgroup Hv of K,
for some v 2 EN1.

First consider the particular case where yN1 is a T2-bundle over S1 modeled on
Sol (cf. �eorem 5.3, [30]). �is occurs when N1 is a cycle with one or two vertices
(resp. edges) and all vertex and edge groups are free abelian with rank 2. In such
case K splits as .Z ˚ Z/ Ì� Z for some � 2 SL2Z Anosov and the left factor
coincides with all vertex and edge subgroups of K. It follows easily from the fact
that � has no eigenvalue with modulus 1 that the centralizer of any element in K is
either in�nite cyclic or consists in the whole left factor Z˚Z. Hence assertion (ii)
occurs.

Now consider the remaining cases when yN1 is not aT2-bundle over S1 modeled
on Sol. Using the Seifert invariants obtained by the algorithm Top4 (Lemma 2.5)
one decides which vertex subgroup is a Seifert subgroup and among them which
comes from a T2 � I piece (those with basis an annulus and no exceptional �ber);
note that the latter correspond to vertex subgroups which are free abelian with
rank 2 (�eorem 10.5, [16]). Use the following process to �nd all elements in
vertex subgroups conjugate to u in Hv.

– If Hv is not a Seifert vertex subgroup; then according to [26, Proposition
4.1], u is conjugate in Hv to at most 1 element lying in at most one edge subgroup,
that using [26, �eorem 6.3], one �nds together with a conjugating element in Hv.

– If Hv ' Z ˚ Z; u lies both in the two edge subgroups and is not conjugate
in Hv to any other element.

– If Hv is a Seifert vertex subgroup and Hv 6' Z ˚ Z. According to [26,
Proposition 4.1], either u is conjugate in Hv to at most 1 element lying in at most
one edge subgroup, or u lies in a �ber of Hv, i.e. is a power of a regular �ber
in a Seifert �bration of the corresponding piece and u lies in the intersection of
all edge subgroups in Hv. One decides using [26, Proposition 5.1] (note also that
deciding whether u lies in a �ber of Hv is easily done by checking with a so-
lution to the word problem whether for all generators s of Hv, sus�1 D u˙1,
cf. [19, Lemma II.4.2.(i)]).

Pursue the process with the successive conjugates in the edge subgroups ob-
tained, the acylindricity of N1 ([26, Lemma 4.1]) ensures that it �nally stops and
one �nally obtains a �nite list of all elements in vertex and edge subgroups to
which u is conjugate, as well as conjugating elements.
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�e minimality of the JSJ decomposition of yN1 ensures that u is neither con-
jugate to the �bers of two Seifert vertex subgroups 6' Z ˚ Z nor to the �bers
of two Seifert vertex subgroups ' Z ˚ Z. �en with the above, together with
[19, �eorem VI.I.6], one �nally obtains exactly one of the following cases.

– u is conjugate neither to a Seifert vertex subgroup nor to an edge subgroup:
ZH .u/ ' Z and assertion (i) occurs.

– u is conjugate to a Seifert vertex subgroup Hv0 and is not conjugate to a
�ber of any Seifert vertex subgroup 6' Z ˚ Z. In that case ZH .u/ lies up to
conjugacy in Hv0 and assertion (ii) occurs.

– u is conjugate to the �ber of a Seifert vertex subgroup Hv0 6' Z ˚ Z;
ZH .u/ lies up to conjugacy in Hv0 and assertion (ii) occurs.

– u does not lie in the conjugate of any Seifert vertex subgroup but lies in the
conjugate of an edge subgroup He; ZH .u/ D He and assertion (iii) occurs.

�is achieves the proof.

2.4. Step 4: the conjugacy algorithm. We construct in this section the algo-
rithm that solves conjugacy problem in G. Whenever u D hvh�1 we shall use the
notation u D vh or u � v.

� Suppose that u and v 2 G are given by a couple of .M; x/-loops and one wants

to decide whether u � v in G.

First use the solution GWP.H; G/ (Lemma 2.9.(ii)) to the generalized word
problem of H in G to decide whether u; v lie in H other not.

� If either u or v lies in H .

Since H has index 2 in G, if u and v lie in di�erent classes of H=G they
are de�nitely not conjugate in G. If u and v both lie in H , then the solution
CP.H/ (Lemma 2.10.(i)) to the conjugacy problem in H together with the fol-
lowing lemma allow to decide whether u and v are conjugate in G.

Lemma 2.12 (algorithm CP1.K/). Let K be a group and L an index 2 subgroup

of K with solvable conjugacy problem. Given any couple of elements u; v 2 L

one can decide whether u and v are conjugate in K.

Proof. Given a set of representative a0 D 1; a1 of L=K, in order to decide whether
u; v 2 L are conjugate in K it su�ces to check whether u is conjugate in L to any
of the aiva�1

i for i D 0; 1.
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� In the following both u and v lie in G X H and are supposed to be cyclically

reduced.

�is can be done by applying the algorithm in Lemma 2.9.(i) to change u and
v into two cyclically reduced .M; x/-loops, respective conjugates of u, v in G.

Decide whether u, v have order 2; according to [32] it occurs when u; v lie
in vertex subgroups of G, so use a solution to the word problem in those vertex
subgroups (Lemma 2.10.(iv)) to check whether u2 D 1, v2 D 1 (or WP.G/,
Lemma 2.10.(ii)). If exactly one of the relations occurs then u and v are not con-
jugate in G.

� If both u and v have order 2.

In such case the following lemma allows to decide whether u and v are conju-
gate other not.

Lemma 2.13 (algorithm CP2.G/). One can decide for any pair of order 2 ele-

ments u; v 2 G whether u and v are conjugate in G.

Proof. Recall the systemP of essential projective planes in M as in §2.2 ; they are
necessarily pairwise non parallel. It follows from [10], [33], [34] that each order
2 element in G is conjugate to some Z2-edge subgroup of G and that all Z2-edge
subgroups are pairwise non conjugate in G.

Let u, v be cyclically reduced element of order 2 lying in respective vertex
subgroups Gv, Gv0 . According to [10] (or [16, �eorem 9.8.(i)]) and [34, Propo-
sition 2.2], u and v are necessarily conjugate in Gv and Gv0 to the generators of
the Z2-edge subgroups. One decides so using the solutions CP.Gv/, CP.Gv0/

(Lemma 2.10.(iv)) to the conjugacy problems in Gv and Gv0 . �en u, v are con-
jugate in G if and only if they are conjugate to the non-trivial element in a same
Z2-vertex subgroup, or to the non-trivial elements in two Z2-vertex subgroups
coming from opposite edges e, Ne 2 EM.

We will be concerned in the following with the remaining case: u; v both lie
in G X H and both have order di�erent than 2. According to [10] both u and v

must have in�nite order in G.

� In the following both u and v lie in G X H and have in�nite order.

Use algorithm CP1.G/ (Lemma 2.12) to decide whether u2 � v2 in G and
�nd, if any, k 2 G that conjugates u2 into v2; if such k 2 G does not exist then u,
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v are not conjugate in G. So we suppose in the following that u2 � v2 in G and
we are given an element k 2 G such that u2 D .v2/k in G; such a conjugating
element is implicitly provided (going into the lines of the proof) by the conjugacy
algorithm in [26].

� In the following u2 and v2 are supposed to be conjugate in G and we are given

k 2 G such that u2 D .v2/k.

We �rst need to �x some notations which will be useful in the following. De-
note by

ZG.v/ D ¹u 2 G j uv D vuº

the centralizer of v in G and by

CG.u; v/ D ¹k 2 G j u D vkº:

�e subset CG.u; v/ of G is either empty (when u 6� v) or equal to k:ZG.v/ for
any k 2 G such that u D vk. �e set CG.u2; v2/ D k:ZG.v2/ is non empty.
It obviously contains the set CG.u; v/; note also that ZG.v2/ contains ZG.v/ as
a subgroup as well as ZH .v2/ as an index 2 subgroup; ZG.v2/ is generated by
ZH .v2/ and v.

We are now interested in the centralizer ZH .v2/ of v2 in H . Apply the algo-
rithm ZP.H/ (Lemma 2.11) to check whether it is in�nite cyclic or conjugate into
a Seifert vertex subgroup or to a Z ˚ Z-edge subgroup of H . It provides, if any,
the Seifert vertex subgroup Hv or edge subgroup He of H and the conjugating
element h 2 H such that hZH .v2/h�1 lies in Hv or He.

� Check whether ZH .v2/ is in�nite cyclic or is conjugate to aZ˚Z-edge subgroup

or into a Seifert vertex subgroup of H .

We further treat separately the former case and the two latter cases.

� Case (i). ZH .v2/ is in�nite cyclic.

In that case, ZG.v2/ contains Z as an index 2 subgroup. If ZG.v2/ is torsion-
free then it must be cyclic, say ZG.v2/ D hwi. But since v 2 ZG.v2/, v is
a power of w so that w 2 ZG.v/, and since ZG.v/ � ZG.v2/, it implies that
ZG.v/ D ZG.v2/ D hwi. If ZG.v2/ is not torsion-free, let us denote by t a
generator of its index 2 subgroup ZH .v2/. �e group ZG.v2/ is generated by v

and t and must be one of the two groups appearing in the following lemma.
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Lemma 2.14 (groups with torsion containing Z as an index 2 subgroup). A group

K with torsion and generators v; t , such that hti ' Z has index 2 in K must be

one of

hv; t j Œv; t � D 1; v2 D t2ni ' Z ˚ Z2;

hv; t j tv D t�1; v2 D 1i ' Z2 � Z2:

Proof. �e group K admits as presentation hv; t j tv D t˙1; v2 D tpi for some
p 2 Z. �e set K X hti contains an element w with �nite order m 6D 0.
In particular wm lies in the index 2 subgroup hti so that m must be even; hence K

contains an element t�nv with order 2, for some n 2 Z. Suppose �rst that tv D t ,
so that 1 D .t�nv/2 D t�2nCp. It follows that p D 2n and one obtains the �rst
presentation. Suppose then that tv D t�1; one has 1 D .t�nv/2 D v2 and one
obtains the second presentation.

�e latter group cannot occur since v has in�nite order. Concerning the former
group, since Œv; t � D 1, one has ZG.v/ D ZG.v2/. Hence whenever ZH .v2/ is
in�nite cyclic then ZG.v/ D ZG.v2/ and the following lemma allows us to decide
whether u � v in G.

Lemma 2.15 (algorithm CP3.K/). Let K be a group and L be an index 2 sub-

group of K. Suppose that L has a solvable conjugacy problem. Let v 2 K X L

such that ZK.v/ D ZK.v2/. �en one can decide for any u 2 K whether u and v

are conjugate in K.

Proof. Since L has solvable conjugacy problem, L has solvable word problem,
and hence K also has solvable word problem. Let v 2 K be as above, and sup-
pose one wants to decide for some given u 2 K whether u � v in K. With
Lemma 2.12 one can decide whether u2 and v2 are conjugate in K. If not then u

and v are de�nitely not conjugate in K. So suppose that u2 D kv2k�1 for some
k 2 K that one can e�ectively �nd using a solution to the word problem in K

(in our purpose k is provided by the solution of [26] to conjugacy in H ), so that
CK.u2; v2/ D kZK.v2/. Obviously CK.u; v/ � CK.u2; v2/ and moreover since
ZK.v2/ D ZK.v/, if CK.u; v/ is non-empty it must equal CK.u2; v2/. Hence to
decide whether u and v are conjugate in K it su�ces to decide using the solution
to the word problem in K whether u D vk other not.
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� Cases (ii) and (iii). ZH .v2/ is conjugate in H to a subgroup of a Seifert vertex

subgroup or to a Z ˚ Z-edge subgroup of H .

Let h 2 H be given by the algorithm ZP.H/ (Lemma 2.11) and such that
hZH .v2/h�1 lies into a Seifert vertex subgroup Hv or an edge subgroup He of H .
Let Gv � Hv and Ge � He be the corresponding Seifert vertex subgroup or edge
subgroup in G. Since hZH .v2/h�1, and in particular hv2h�1, lie in Gv or Ge one
may expect that hvh�1 also lies in Gv, Ge. �is turns to be false in general, though
only in speci�c cases.

Lemma 2.16 (square root of an element of G lying in a vertex or edge subgroup).
Let v be a cyclically reduced element of G X H with in�nite order and h 2 H , be

such that ZH .v2/h lies in a vertex or edge subgroup of G. �en either

(i) ZH .v2/h and vh both lie in a same vertex subgroup or edge subgroup of G,

or

(ii) v lies in a vertex subgroup which contains Z ˚ Z as an index 2 subgroup,

and does not lie in any edge subgroup.

Proof. Consider the cyclically reduced .M; x/-loop v, it takes one of the forms

v D .1; e1; 1; : : : ; en; 1/.vn; enC1; : : : ; em; vm/.1; Nen; : : : ; 1; Ne1; 1/

or

v D .v1; e; v2/;

or

v D .v0/:

�en v2 takes one of the forms

v2 D .1; e1; 1; : : : ; en; 1/

.vn; enC1; : : : ; em; vmvn; enC1; : : : ; em; vm/

.1; Nen; : : : ; 1; Ne1; 1/

or

v2 D .v1; e; v2v1; e; v2/;

or

v2 D .v2
0/;

which are cyclically reduced except possibly in the �rst case when m D n. Hence
if v2 lies in a vertex (or edge) subgroup, then v also lies in a vertex subgroup (not
necessarily the same) of G.
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Write, using the algorithm of Lemma 2.9.(ii), v2 into a cyclically reduced
.N; Qx/-loop; v2 is conjugate to a vertex or edge subgroup of H and according
to [26, �eorem 3.1] v2 lies in a vertex subgroup Hv of H and is conjugate in
Hv to one of its edge subgroup He. Hence v; v2 both lie in a vertex subgroup Gv

of G and v2 is conjugate in Gv to an edge subgroup Ge. Moreover if whenever
v; v2 both lie in a conjugate wGvw�1 of a vertex subgroup and zv2z�1, for some
z 2 wGvw�1, lies in wGew

�1, for Ge an edge subgroup of Gv, one has that zvz�1

also lie in wGew
�1, then necessarily, for all g 2 G, if gv2g�1 lies in a vertex

or edge subgroup of G, then gvg�1 lies in the same vertex or edge subgroup.
In particular assumption (i) holds.

So suppose in the following that, up to conjugacy, v; v2 both lie in a vertex
subgroup Gv, and that for some z 2 Hv, zv2z�1 lies in an edge subgroup Ge of
Gv while zvz�1 does not. Since v 62 H , the piece Mv in the topological decom-
position of M associated to the vertex v is non-orientable; let Nv be its orientation
cover. Since v has in�nite order the edge e can be associated to either T2 or K2.

First case. e is associated to T2. �en Nv has two T2 in its boundary which
give rises up to conjugacy to two edge subgroups Ge and vGev

�1 in Hv. But since
zv2z�1 2 Ge, v2 lies in both conjugates of Ge and vGev

�1 in Hv (with respective
conjugating elements z�1 and vz�1v�1). Hence by [26, Proposition 4.1], cNv is
a Seifert �ber space and v2 is a power of a regular �ber of a Seifert �bration.
If Hv 6' Z ˚ Z then (see the end of the proof of Lemma 2.11) ZH .v2/ � Hv

and ZG.v2/ � Gv; assumption (i) occurs. Otherwise v lies in a vertex subgroup
containing Z ˚ Z as an index 2 subgroup.

Second case. e is associated to K2. �en Nv has one T2 in its boundary which
gives rise to the vertex subgroup He D Ge \ H of H . Since zv2z�1 2 He,
one has that v2 lies in both conjugates of He and vHev

�1 in Hv (with respective
conjugating elements z�1 and vz�1v�1). Let w 2 Gv such that He and w generate
Ge; there exists t 2 Hv X He such that v D tw. Since wHew

�1 D He one has also
that v2 lies in two conjugates of He in Hv (with respective conjugating elements
z�1 and vz�1v�1t ). Since zvz�1 62 Ge, necessarily zvz�1v�1t 62 He and it follows
from [26, Proposition 4.1] that v2 is a power of a regular �ber in a Seifert �bration
of yNv. �e conclusion follows as in the �rst case.

By taking successive conjugates of v in adjacent vertex subgroups of G, one
�nally obtains that either assumption (i) occurs or at some stage one obtains a
conjugate of v which lies in a vertex subgroup Gv containing Z˚Z as an index 2
subgroup, and does not lies in some conjugate in Gv of an edge subgroup Ge that
contains Z ˚ Z. Note using the following Lemma, that in such case, since on the
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one hand such edge subgroup is normal and on the other v has in�nite order, then
v is not conjugate in Gv to any of the edge subgroups of Gv. So �nally, in case
one of the successive conjugates of v lies in such a vertex subgroup Gv containing
a Z ˚ Z of index 2, then this can arise only at initial step, that is v 2 Gv: in such
case conclusion (ii) occurs.

Lemma 2.17 (description of the non-orientable pieces whose groups containZ˚Z

as an index 2 subgroup). Let Gv be a vertex subgroup of G which is not included

in H and which contains Z˚Z as an index 2 subgroup . Let Mv be the 3-manifold

associated to the vertex v of M and let

St.v/ D ¹e 2 EM; t.e/ D vº:

�en exactly one of the following cases occurs.

(1) Mv is the product of a Moebius band with S1, @Mv consists of one T2,

St.v/ D ¹eº,

Gv D ha; b; t j Œa; b� D Œb; t � D 1; t2 D ai ' Z ˚ Z

and

Ge ' Z ˚ Z

is generated by a and b.

(2) Mv is homeomorphic to K2 � I, @Mv consists of two K2, St.v/ D ¹e1; e2º,

Ge D ha; b; t j Œa; b� D 1; bt D b�1; t2 D ai ' Z Ì Z

and

Ge1
D Ge2

D Gv:

(3) @Mv consists of one T2 and four P2I St.v/ D ¹e0; e1; e2; e3; e4º,

ha; b; t j Œa; b� D 1; at D a�1; bt D b�1; t2 D 1i ' .Z ˚ Z/ Ì�I Z2;

and

Ge0
D ha; bi ' Z ˚ Z

and

Gei
' Z2; i D 1 : : : 4

are generated respectively by

t; at; bt; abt:



�e conjugacy problem in groups of non-orientable 3-manifolds 515

Moreover, two elements u D an1bm1 t and v D an2bm2 t are conjugate in Gv if

and only if, respectively:
8
<
:

n1 D n2;

m1 D m2I
(1)

8
<
:

n1 D n2;

m1 D m2 mod 2I
(2)

8
<
:

n1 D n2 mod 2;

m1 D m2 mod 2:
(3)

Proof. �e group Gv is the fundamental group of the non-orientable 3-manifolds
Mv which is two covered by a possibly punctured T2 � I; the cover involution
extends to an orientation reversing involution � ofT2�Iwith at most isolated �xed
points. It is known (cf. details in [22]) that there are up to isotopy 5 involutions
with at most isolated �xed points on T2 � I, among which 3 are non-orientable.
We set here I D Œ0; 1� and S1 D R=2�Z. According to [21], up to isotopy � factors
as a product �..x; y/; t / D .�.x; y/; t / or �..x; y/; t / D .�.x; y/; 1 � t / for � an
homeomorphism of T2. �ere are up to isotopy 5 involutions of the torus. �ey
are

1. �.x; y/ D .x C �; y/ with no �xed point and orbit space T2,

2. �.x; y/ D .�x; y/ with �xed point set S1 � S0 and orbit space S1 � I,

3. �.x; y/ D .y; x/ with �xed point set a circle and orbit space a Moebius band,

4. �.x; y/ D .x C �; �y/ with no �xed point and orbit space K2,

5. �.x; y/ D .�x; �y/ with �xed point set 4 points and orbit space S2,

among them only 1 and 5 are orientation preserving. Since � is non-orientable and
has at most isolated �xed points, the only 3 possibilities are the following ones.

(1) �.x; y; t / D .xC�; y; 1�t /. Mv D T2 �I=� is the twisted I -bundle over the
torus, otherwise said the product of a Moebius band with S1, and Gv admits
the �rst presentation.

(2) �.x; y; t / D .x C �; �y; t/. Mv D T2 � I=� is K2 � I and Gv admits the
second presentation.
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(3) �.x; y; t / D .�x; �y; 1 � t /. Mv D T2 � I=� has orientation covering space
T2 � I minus 4 balls centered on the �xed points, its boundary consists of
four P2 and one T2, and Gv admits the third presentation. Mv can be seen
as: let P be two copies of P2 � I glued along two disks in their boundary,
@P consists of one K2 and two P2 and K2 contains one annulus which is
essential in P. Glue two copies of P on this annulus to obtain Mv (cf. details
in [22]).

�e conjugacy criteria are obtained by direct computations.

Now several cases can occur, that one checks using the following lemma.

Lemma 2.18. One of the following cases occur:

(a) ZG.v2/ is conjugate to a subgroup of a Seifert vertex subgroup Gv of GI

(b) ZG.v2/ is conjugate to an edge subgroup Ge of GI

(c) ZG.v2/ is conjugate neither into a Seifert vertex subgroup nor to an edge

subgroup of G. Both u and v lie in vertex subgroups containing Z˚Z as an

index 2 subgroup, and do not lie in any edge subgroup.

One can decide which case occurs.

Proof. �at case (a), (b) or (c) occurs follows from Lemma 2.16 applied to u

and v (when applying Lemma 2.16 to u, if k 62 h use the conjugating element
hk�1u 2 H rather than hk�1 62 H ), since ZG.v2/ is generated by on the one
hand ZH .v2/ and v and on the other by ZH .v2/ and u. �e algorithm ZP.H/

returns all vertex or edge subgroups of H containing ZH .v2/. Using the algo-
rithm in Lemma 2.6.(iv) one �nds all vertex and edge subgroups containing v, u.
A vertex subgroup Gv contains Z ˚ Z as an index 2 subgroup if and only if Hv

is associated to a Seifert piece with among its Seifert invariants, has basis S1 � I

and no exceptional �ber.

� Cases (a) and (b). ZG.v2/ is conjugate to a subgroup of a Seifert vertex subgroup

Gv or to an edge subgroup Ge of G.

In such cases change v into hvh�1 and u into hk�1ukh�1 so that u; v both lie
in Gv or Ge and u2 D v2.
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� Change v and u into their respective conjugate hvh�1 and hk�1ukh�1

in Gv, Ge.

We now return to each of cases (a), (b).

� Case (a): ZG.v2/ lies in a Seifert vertex subgroup Gv of G.

One decides whether u � v in G, using the following lemma and the solution
to the conjugacy problem in Gv (Lemma 2.10.(iv)).

Lemma 2.19 (in case ZG.v2/ is included in a Seifert vertex group). If ZG.v2/ is

included in a Seifert subgroup Gv of G, then a solution to the conjugacy problem

in Gv allows to decide whether u � v in G.

Proof. One has by hypothesis that CG.u2; v2/ D ZG.v2/ is included in Gv. Since
CG.u2; v2/ � CG.u; v/, if u and v are conjugate in G, they must also be conjugate
in Gv, that one can decide using CP.Gv/ (Lemma 2.10.(iv)).

� Case (b). ZG.v2/ lies in an edge subgroup Ge of G.

In such case one decides whether u � v using the following lemma.

Lemma 2.20 (algorithm CP.ZÌZ/). If ZG.v2/ is included in an edge subgroup

Ge of G, then one can decide whether u � v in G.

Proof. Necessarily Ge D ZG.v2/ is isomorphic to the group of the Klein bottle
which has generators t; b in G with �nite presentation

Ge D ht; b j tbt�1 D b�1i:

Set a D t2 to obtain the alternative presentation

ha; b; t j Œa; b� D 1; t2 D a; bt D b�1iI

then use the algorithm in Lemma 2.6.(iv) to write u and v on the generators a; b; t ,
say u D an1bm1 t and v D an2bm2 t . �en by Lemma 2.17, u � v in Gv if and only
if n1 D n2 and m1 D m2 mod 2, and one can decide whether u � v in Ge. Since
here again CG.u; v/ D ZG.v/ � Ge, one has �nally that u � v in Ge if and only
if u � v in G.
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� Case (c). ZG.v2/ is conjugate neither to a subgroup of a vertex subgroup nor

to an edge subgroup of G.

In that case both u and v lie in vertex subgroups Gv1
, Gv2

of G which both
contain Z ˚ Z as an index 2-subgroup and do not lie in any edge subgroup. Now
two cases can occur, according to whether u; b both lie in a same vertex subgroup
v1 D v2 other not. One concludes in each case by using the following lemma as
well as a solution to the word problem in Gv1

.

Lemma 2.21. When u; v both lie in vertex subgroup Gv1
, Gv2

containing Z ˚ Z

as index 2 subgroups and do not lie in any edge subgroup:

(i) if v1 6D v2 then u and v are not conjugate in GI

(ii) if v1 D v2, then u and v are conjugate in G if and only if u D v.

Proof. Case (2) of Lemma 2.17 cannot occur, since u; v do not lie in an edge
subgroup (Lemma 2.16), and neither can occur case (3) since u, v have in�nite
order: case (1) of Lemma 2.17 holds.

Denote by Ge1
, Ge2

the respective Z ˚ Z-edge subgroups of Gv1
, Gv2

(cf. case (1) of Lemma 2.17). Since Gei
is normal in Gvi

, i D 1; 2, by hypoth-
esis u, v are not conjugate in Gvi

to any element in Gei
, i D 1; 2.

Case (i). By deleting the pair of edges e1; Ne1 in M, G splits as an amalgamated
product K �Ge1

Gv1
. �e element u lies in the right factor Gv1

while v lies in the
left factor K. Since u is not conjugate in Gv1

to an element of Ge1
, it follows from

[23, �eorem 4.6] that u and v are not conjugate in G.

Case (ii). Here, u; v 2 Gv1
and the same argument as in (i) shows that u and v are

conjugate in G if and only if they are conjugate in Gv1
, and since Gv1

is abelian,
if and only if they are equal.
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Figure 8. �e organigram of the algorithm.



520 J.-Ph. Préaux

References

[1] H. Bass, Covering theory for graphs of groups. J. Pure Appl. Algebra 89 (1993), no. 1-
2, 3–47. Zbl 0805.57001 MR 1239551

[2] L. Bessières, G. Besson, M. Boileau, S. Maillot, and J. Porti, Geometrisation of 3-

manifolds. EMS Tracts in Mathematics, 13. European Mathematical Society (EMS),
Zürich, 2010. Zbl 1244.57003 MR 2683385

[3] F. Bonahon, Geometric structures on 3-manifolds. In R. J. Daverman and R. B. Sher
(eds.), Handbook of geometric topology. North-Holland, Amsterdam, 2002, 93–164.
Zbl 1886669 Zbl 1886666 (collection) MR 0997.57032 MR 0977.00029 (collection)

[4] O. Bogopolski, A. Martino, O. Maslakova, and E. Ventura, �e conjugacy prob-
lem is solvable in free-by-cyclic groups. Bull. London Math. Soc. 38 (2006), no. 5,
787–794. Zbl 1116.20027 MR 2268363

[5] M. R. Bridson, �e geometry of the word problem. In M. R. Bridson and
S. M. Salamon (eds.), Invitations to geometry and topology. Oxford Graduate Texts
in Mathematics, 7. Oxford University Press, Oxford, 2002, 29–91. MR 1967746
MR 1967744 (collection) Zbl 0996.54507 Zbl 1002.57002 (collection)

[6] D.J. Collins, R. Grigorchuk, P. Kurchanov, and H. Zieschang, Combinatorial group

theory and applications to geometry. Springer, Berlin, 1998. Zbl 0997.20500
MR 1658468

[7] M. Dehn, Über die Topologie des dreidimensionalen Raumes. Math. Ann. 69 (1910),
no. 1, 137–168. JFM 41.0543.01 MR 1511580

[8] M. Dehn, Über unendliche diskontinuierliche Gruppen. Math. Ann. 71 (1911), no. 1,
116–144. JFM 42.0508.03 MR 1511645

[9] M. Dehn, Transformation der Kurven auf zweiseitigen Flächen. Math. Ann. 72 (1912),
no. 3, 413–421. JFM 43.0571.03 MR 1511705

[10] D. B. A. Epstein, Projective planes in 3-manifolds. Proc. London Math. Soc. (3) 11

(1961), 469–484. Zbl 0111.18801 MR 0152997

[11] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and
W. P. �urston, Word processing in groups. Jones and Bartlett Publishers, Boston,
MA, 1992. Zbl 0764.20017 MR 1161694

[12] D. J. Collins and C. F. Miller III, �e conjugacy problem and subgroups of �nite
index. Proc. London Math. Soc. (3) 34 (1977), no. 3, 535–556. Zbl 0364.20043
MR 0435227

[13] S. M. Gersten and H. Short, Small cancellation theory and automatic groups: Part II.
Invent. Math. 105 (1991), no. 3, 641–662. Zbl 0734.20014 MR 1117155

[14] O. Goodman and M. Shapiro, On a generalization of Dehn’s algorithm. Internat.

J. Algebra Comput. 18 (2008), no. 7, 1137–1177. Zbl 1227.20033 MR 2468741

[15] H. Hatcher, Notes on basic 3-manifold topology. Course notes, 2007.
http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf

http://zbmath.org/?q=an:0805.57001
http://www.ams.org/mathscinet-getitem?mr=1239551
http://zbmath.org/?q=an:1244.57003
http://www.ams.org/mathscinet-getitem?mr=2683385
http://zbmath.org/?q=an:1886669
http://zbmath.org/?q=an:1886666
http://www.ams.org/mathscinet-getitem?mr=0997.57032
http://www.ams.org/mathscinet-getitem?mr=0977.00029
http://zbmath.org/?q=an:1116.20027
http://www.ams.org/mathscinet-getitem?mr=2268363
http://www.ams.org/mathscinet-getitem?mr=1967746
http://www.ams.org/mathscinet-getitem?mr=1967744
http://zbmath.org/?q=an:0996.54507
http://zbmath.org/?q=an:1002.57002
http://zbmath.org/?q=an:0997.20500
http://www.ams.org/mathscinet-getitem?mr=1658468
http://zbmath.org/?q=an:41.0543.01
http://www.ams.org/mathscinet-getitem?mr=1511580
http://zbmath.org/?q=an:42.0508.03
http://www.ams.org/mathscinet-getitem?mr=1511645
http://zbmath.org/?q=an:43.0571.03
http://www.ams.org/mathscinet-getitem?mr=1511705
http://zbmath.org/?q=an:0111.18801
http://www.ams.org/mathscinet-getitem?mr=0152997
http://zbmath.org/?q=an:0764.20017
http://www.ams.org/mathscinet-getitem?mr=1161694
http://zbmath.org/?q=an:0364.20043
http://www.ams.org/mathscinet-getitem?mr=0435227
http://zbmath.org/?q=an:0734.20014
http://www.ams.org/mathscinet-getitem?mr=1117155
http://zbmath.org/?q=an:1227.20033
http://www.ams.org/mathscinet-getitem?mr=2468741
http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf


�e conjugacy problem in groups of non-orientable 3-manifolds 521

[16] J. Hempel, 3-manifolds. Annals of Mathematics Studies, 86. Princeton University
Press, Princeton, N.J., and University of Tokyo Press, Tokyo, 1976. Zbl 0345.57001
MR 0415619

[17] W. Jaco, D. Letscher, and J. Rubinstein, Algorithms for essential surfaces in 3-
manifolds. In A. J. Berrick, M. C. Leung, and X. Xu (eds.), Topology and geometry:

commemorating SISTAG. Contemporary Mathematics, 314. American Mathematical
Society, Providence, R.I., 2002, 107–124. Zbl 1012.57029 Zbl 1001.00029 (collection)
MR 1941626 MR 1944376 (collection)

[18] W. Jaco and J. Tollefson, Algorithms for the complete decomposition of a closed 3-
manifold. Illinois J. Math. 39 (1995), no. 3, 358–406. Zbl 0858.57018 MR 1339832

[19] W. Jaco and P. Shalen, Seifert �bered spaces in 3-manifolds. Mem. Amer. Math.

Soc. 21 (1979), no. 220. Zbl 0415.57005 MR 0539411

[20] D. Johnson, Topics in the theory of group presentations. London Mathematical Soci-
ety Lecture Note Series, 42. Cambridge University Press, Cambridge and New York,
1980. Zbl 0437.20026 MR 0695161

[21] P. K. Kim and J. L. Tollefson, PL involutions of �bered 3-manifolds. Trans. Amer.

Math. Soc. 232 (1977), 221–237. Zbl 0376.57021 MR 0454981

[22] E. Luft and D. Sjerve, Involutions with isolated �xed points. Trans. Amer. Math.

Soc. 285 (1984), no. 1, 305–336. Zbl 0566.57022 MR 0748842

[23] W. Magnus, A. Karass, and D. Solitar, Combinatorial group theory. Presentations of
groups in terms of generators and relations. Interscience Publishers (John Wiley &
Sons), New York etc., 1966. Zbl 0138.25604 MR 0207802

[24] W. Neumann and L. Reeves, Regular cocycles and biautomatic structures. Internat.

J. Algebra Comput. 6 (1996), no. 3, 313–324. Zbl 0928.20028 MR 1404809

[25] P. Novikov, On the algorithmic unsolvability of the word problem in group theory.

Trudy Mat. Inst. Steklov 44, Izdat. Akad. Nauk SSSR, Moscow, 1955. In Russian.
Zbl 0068.01301 MR 0075197

[26] J.-P. Préaux, Conjugacy problem in groups of oriented geometrizable 3-manifolds.
Topology 45 (2006), no. 1, 171–208. Zbl 1088.57001 MR 2170497

[27] S, Rees and L. Soicher, An algorithmic approach to fundamental groups and cov-
ers of combinatorial cell complexes. J. Symbolic Comput. 29 (2000), no. 1, 59–77.
Zbl 0942.57002 MR 1743389

[28] J. Rotman, An introduction to the theory of groups. 4þed. Graduate Texts in Mathe-
matics, 148. Springer, New York, 1995. Zbl 0810.20001 MR 1307623

[29] J. Rubinstein, An algorithm to recognize the 3-sphere. In S. D. Chatterji, ro-

ceedings of the International Congress of Mathematicians. Vol. I. (Zürich, 1994)
Birkhäuser Verlag, Basel, 1995, 601–611. Zbl 0864.57009 Zbl 0829.00014 (collec-
tion) MR 1403961 MR 1403907 (collection)

[30] P. Scott, �e geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), no. 5,
401–487. Zbl 0561.57001 MR 0705527

http://zbmath.org/?q=an:0345.57001
http://www.ams.org/mathscinet-getitem?mr=0415619
http://zbmath.org/?q=an:1012.57029
http://zbmath.org/?q=an:1001.00029
http://www.ams.org/mathscinet-getitem?mr=1941626
http://www.ams.org/mathscinet-getitem?mr=1944376
http://zbmath.org/?q=an:0858.57018
http://www.ams.org/mathscinet-getitem?mr=1339832
http://zbmath.org/?q=an:0415.57005
http://www.ams.org/mathscinet-getitem?mr=0539411
http://zbmath.org/?q=an:0437.20026
http://www.ams.org/mathscinet-getitem?mr=0695161
http://zbmath.org/?q=an:0376.57021
http://www.ams.org/mathscinet-getitem?mr=0454981
http://zbmath.org/?q=an:0566.57022
http://www.ams.org/mathscinet-getitem?mr=0748842
http://zbmath.org/?q=an:0138.25604
http://www.ams.org/mathscinet-getitem?mr=0207802
http://zbmath.org/?q=an:0928.20028
http://www.ams.org/mathscinet-getitem?mr=1404809
http://zbmath.org/?q=an:0068.01301
http://www.ams.org/mathscinet-getitem?mr=0075197
http://zbmath.org/?q=an:1088.57001
http://www.ams.org/mathscinet-getitem?mr=2170497
http://zbmath.org/?q=an:0942.57002
http://www.ams.org/mathscinet-getitem?mr=1743389
http://zbmath.org/?q=an:0810.20001
http://www.ams.org/mathscinet-getitem?mr=1307623
http://zbmath.org/?q=an:0864.57009
http://zbmath.org/?q=an:0829.00014
http://www.ams.org/mathscinet-getitem?mr=1403961
http://www.ams.org/mathscinet-getitem?mr=1403907
http://zbmath.org/?q=an:0561.57001
http://www.ams.org/mathscinet-getitem?mr=0705527


522 J.-Ph. Préaux

[31] H. Seifert and W. �relfall, A textbook of topology. Pure and Applied Mathematics,
89. Academic Press, New York and London, 1980. Zbl 0469.55001 MR 0575168

[32] J-P. Serre, Arbres, amalgames, SL2. Astérisque, No. 46. Société Mathématique de
France, Paris, 1977. Zbl 0369.20013 MR 0476875

[33] J. Stalling, On �bering certain 3-manifolds. In Topology of 3-manifolds and re-

lated topics. (Proc. �e Univ. of Georgia Institute, 1961.) Prentice-Hall, Englewood
Cli�s, N.J., 1962, 95–100. Zbl 1246.57049 Zbl 0132.20102 (collection) MR 0158375
MR 0141085 (collection)

[34] G. Swarup, Projective planes in irreducible 3-manifolds. Math. Z. 132 (1973),
305–317. Zbl 0249.57003 MR 0322883

[35] W. P. �urston, �e geometry and topology of 3-manifolds. Preprint 1980. Princeton
University. http://library.msri.org/books/gt3m/

[36] J. Tollefson, Free involutions on non-prime 3-manifolds. Osaka J. Math. 7 (1970),
161–164. Zbl 0198.28503 MR 0266184

Received March 5, 2012

Jean-Philippe Préaux, Institut de Mathématiques (I2M), UMR 7373,
Aix-Marseille Université, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13,
France

e-mail: preaux@cmi.univ-mrs.fr

http://zbmath.org/?q=an:0469.55001
http://www.ams.org/mathscinet-getitem?mr=0575168
http://zbmath.org/?q=an:0369.20013
http://www.ams.org/mathscinet-getitem?mr=0476875
http://zbmath.org/?q=an:1246.57049
http://zbmath.org/?q=an:0132.20102
http://www.ams.org/mathscinet-getitem?mr=0158375
http://www.ams.org/mathscinet-getitem?mr=0141085
http://zbmath.org/?q=an:0249.57003
http://www.ams.org/mathscinet-getitem?mr=0322883
http://library.msri.org/books/gt3m/
http://zbmath.org/?q=an:0198.28503
http://www.ams.org/mathscinet-getitem?mr=0266184
mailto:preaux@cmi.univ-mrs.fr

	Introduction
	Statement of the results
	Proof of Theorem AA
	References

