Groups Geom. Dyn. 10 (2016), 601[–618](#page-17-0) DOI 10.4171/GGD/358

Groups, Geometry, and Dynamics © European Mathematical Society

On the growth of a Coxeter group

Tommaso Terragni

Abstract. For a Coxeter system (W, S) let $a_n^{(W, S)}$ be the cardinality of the sphere of radius n in the Cayley graph of W with respect to the standard generating set S. It is shown that, if $(W, S) \preceq (W', S')$ then $a_n^{(W, S)} \le a_n^{(W', S')}$ for all $n \in \mathbb{N}_0$, where \preceq is a suitable partial order on Coxeter systems (cf. Theorem [A\)](#page-6-0).

It is proven that there exists a constant $\tau = 1.13...$ such that for any non-affine, non-spherical Coxeter system (W, S) the growth rate $\omega(W, S) = \limsup \sqrt[n]{a_n}$ satisfies $\omega(W, S) \ge \tau$ (cf. Theorem [B\)](#page-9-0). The constant τ is a Perron number of degree 127 over Q.

For a Coxeter group W the Coxeter generating set is not unique (up to W -conjugacy), but there is a standard procedure, the *diagram twisting* (cf. [[3](#page-15-0)]), which allows one to pass from one Coxeter generating set S to another Coxeter generating set $\mu(S)$. A generalisation of the diagram twisting is introduced, the *mutation*, and it is proven that Poincaré series are invariant under mutations (cf. Theorem [C\)](#page-12-0).

Mathematics Subject Classication (2010). Primary: 20F55; Secondary: 20F32, 05C25.

Keywords. Coxeter groups, growth of groups.

Introduction

The growth of finitely generated groups has been the subject of intensive investigations (cf. [[11,](#page-16-0) [12](#page-16-1)], [[13](#page-16-2)], [[9](#page-16-3)]) and led to ground-breaking results, e.g., M. Gromov showed that a finitely generated group has polynomial growth if, and only if, it is virtually nilpotent (cf. [[14](#page-16-4)]).

For a group G being generated by a finite symmetric set $X \subseteq G$ not containing the identity $1 \in G$ $1 \in G$, the growth rate¹ is defined by $\omega(G, X) = \limsup_n \sqrt[n]{a_n}$, where a_n is the number of elements in G which can be written as a product of n elements in X but which cannot be written as a product of less than n elements in X . If G is of subexponential growth, i.e., polynomial or intermediate growth, then $\omega(G, X) \leq 1$.

¹ The growth rate is often called *exponential growth rate*.

The set of isomorphism classes of Coxeter systems admits a partial order \leq , and the corresponding monotonicity result for growth sequences is proven.

Theorem [\(A\)](#page-6-0). Let (W, S) and (W', S') be Coxeter systems. If $(W, S) \preceq (W', S')$ *then* $a_n^{(W,S)} \le a_n^{(W',S')}$ *for all* $n \in \mathbb{N}_0$ *.*

Spherical and affine Coxeter systems have, respectively, growth rate zero and one. One of the main results of this paper can be stated as follows.

Theorem [\(B\)](#page-9-0). Let (W, S) be a non-affine, non-spherical Coxeter system. Then its *growth rate satisfies* $\omega(W, S) \ge \tau$, where $\tau = 1.13...$ *is an algebraic integer of degree* 127 *over* \mathbb{Q} *, which is also a Perron number with minimal polynomial* $m_{\tau}(t)$ *given in* §[4](#page-8-0)*. Moreover*, $\tau = \omega(W, S)$ *, where* (W, S) *is the hyperbolic Coxeter system* E_{10} *.*

A remarkable coincidence occurs (cf. Rem. [4.1\)](#page-9-1). Besides having the smallest minimal growth rate among Coxeter systems, E_{10} is also known to minimise a certain function λ_{ρ} which reflects, in the hyperbolic case, the metric properties of the orbifold defined by Tits' representation ρ (cf. [\[22\]](#page-16-5)).

For a group G with a finite symmetric generating set $X \subseteq G \setminus \{1\}$ one defines the growth series by $p_{(G,X)}(t) = \sum_{n \in \mathbb{N}_0} a_n t^n \in \mathbb{Z}[[t]]$, thus $\omega(G, X)$ coincides with the inverse of the radius of convergence of $p_{(G,X)}(t)$, considered as a power series over $\mathbb C$. For a Coxeter system (W, S) the growth series is also called the *Poincaré series* of (W, S) .

In [§5](#page-10-0) we define the new notion of a *mutation* $\mu(M, X, Y, \sigma)$ of a Coxeter matrix M, which induces an equivalence relation \sim on Coxeter systems. Mutations generalise diagram twisting (cf. [\[3\]](#page-15-0)) but in general they do not preserve the isomorphism class of the group. Nevertheless, the Poincaré series is invariant under mutations of the Coxeter matrix.

Theorem (C) . Let (W, S) and (W', S') be Coxeter systems satisfying $(W, S) \sim (W', S')$. Then $p_{(W,S)}(t) = p_{(W', S')}(t)$.

Thus, mutations provide a tool to produce finitely many non-isomorphic Coxeter groups with the same growth series. It is an open problem whether there exist infinitely many groups with the same growth series (cf. $[21]$, Chapter 1, Problems 1 and 2]).

Acknowledgements. I wish to thank J. Parkinson, P. Spiga and Th. Weigel for helpful discussions, and M. Bucher, T. Smirnova-Nagnibeda and A. Talambutsa for the simulating conversations during the conference "Geometric and analytic group theory" in Ventotene, Italy.

I would also like to thank R. Howlett for providing a copy of [\[17\]](#page-16-7), and the anonymous referees for helpful comments.

1. Growth of nitely generated groups

Let G be a finitely generated group, and let $X = X^{-1} \subset G \setminus \{1\}$ be a finite, symmetric set of generators. The *length* of $g \in G$ with respect to X is the minimal *n* such that $g = x_1x_2...x_n$ with $x_i \in X$; the *length function* will be denoted by $\ell_{(G,X)}$: $G \to \mathbb{N}_0$. It has a natural interpretation in terms of the metric on the Cayley graph $Cay(G, X)$.

For $n \in \mathbb{N}_0$, the ball in Cay(G, X) centred around 1_G with radius n will be denoted by

$$
B_n^{(G,X)} = \{ g \in G \mid \ell_{(G,X)}(g) \le n \},\
$$

and the corresponding sphere by

$$
A_n^{(G,X)} = \{ g \in G \mid \ell_{(G,X)}(g) = n \}.
$$

Their sizes are $a_n^{(G,X)} = |A_n^{(G,X)}|$ and $b_n^{(G,X)} = |B_n^{(G,X)}|$.

The central objects under investigation are the growth series

$$
p_{(G,X)}(t) = \sum_{n \in \mathbb{N}_0} a_n^{(G,X)} t^n \in \mathbb{Z}[[t]],
$$

and the growth rate

$$
\omega(G, X) = \limsup_{n \to \infty} \sqrt[n]{a_n^{(G,X)}}.
$$

Note that G has *exponential growth* if $\omega(G, X) > 1$ for some (and hence any) generating set X . The present paper only deals with finitely generated linear groups G. Therefore, G has *polynomial growth* with respect to some (and hence any) generating system X if $\omega(G, X) \le 1$ (cf. [\[28,](#page-17-1) Corollary 5]).

The *minimal growth rate* $\omega(G)$ is the infimum of $\omega(G, X)$, as X runs over all finite, symmetric generating sets of G .

2. Coxeter groups

Standard references for Coxeter groups include [\[4,](#page-15-1) [18\]](#page-16-8).

2.1. Coxeter systems. Let S be a finite set, and let M be an $(S \times S)$ -matrix such that $m_{s,s} = 1$, and $m_{s,r} = m_{r,s} \in \mathbb{Z}_{\geq 2} \cup \{\infty\}$ for all $s, r \in S$, $s \neq r$. Then M is a *Coxeter matrix* over S.

The *Coxeter system* associated with a Coxeter matrix M over S is the pair (W, S) where W is the group

$$
W = W(M) = \langle S \mid (sr)^{m_{s,r}} \text{ if } m_{s,r} < \infty \rangle. \tag{2.1}
$$

The Coxeter matrix M (or, equivalently, the presentation (2.1)) is often encoded in the Coxeter graph $\Gamma(M)$ (cf. [\[4,](#page-15-1) Chapter IV, n^o 1.9]). Either datum is called the *type* of (W, S) .

If $I \subseteq S$ let $W_I = \langle I \rangle \leq W$. The *parabolic subsystem* (W_I, I) is a Coxeter system in its own right, with Coxeter matrix $M_I = (m_{s,r})_{s,r \in I}$. Its Coxeter graph is the graph induced from Γ by the vertices in I, and

$$
\ell_{(W_I, I)} = \ell_{(W, S)}|_{W_I}.
$$
\n(2.2)

The finite set $\mathcal{F} = \mathcal{F}(W, S) = \{I \subseteq S \mid |W_I| < \infty\}$ is called the set of *spherical residues*.

A *Coxeter-isomorphism* $\varphi: (W, S) \to (W', S')$ of Coxeter systems of types *M* and M' respectively, is a bijection $\varphi: S \to S'$ such that $m'_{\varphi(s), \varphi(r)} = m_{s,r}$ for all $s, r \in S$.

Any Coxeter group (W, S) is linear via the Tits' reflection representation $\rho: W \to \text{GL}(\mathbb{R}^S)$ (cf. [\[4,](#page-15-1) Chapter V, §4]). The representation ρ is determined by the symmetric matrix^{[2](#page-3-0)} $B = B_M = \left(-\cos \frac{\pi}{m_{s,r}}\right)_{s,r \in S}$, and the signature of B induces the following tetrachotomy on irreducible Coxeter systems.

- (i) If B is positive definite, then (W, S) is *spherical*,
- (ii) if B is positive semidefinite with 0 a simple eigenvalue, then (W, S) is *affine*,
- (iii) if B has $|S|-1$ positive and 1 negative eigenvalue, then (W, S) is *hyperbolic*,^{[3](#page-3-1)} or
- (iv) none of the above conditions applies.

The irreducible Coxeter system (W, S) is spherical if, and only if, W is a finite group. The classification of spherical and affine systems is classical (cf. [\[4,](#page-15-1) Chapter VI]). For a characterisation of hyperbolic Coxeter systems see $\S 3.3$.

2.2. The word problem. If S is a finite set, let S^* be the free monoid^{[4](#page-3-2)} over S, equipped with the natural \mathbb{N}_0 -grading deg: $S^* \mapsto \mathbb{N}_0$, deg $(s) = 1$ for all $s \in S$, and the ShortLex total order with respect to some total order on S (cf. [\[10,](#page-16-9) §2.5]). For $s, t \in S$ and $m \in \mathbb{N}_0$ let $[s, t, m] \in S^*$ be the word

$$
[s, t, m] = \begin{cases} (st)^{m/2} & \text{if } 2 \mid m, \\ (st)^{\frac{m-1}{2}} s & \text{if } 2 \nmid m. \end{cases}
$$

² For short, we put $\frac{\pi}{\infty} = 0$.

³ There are several non-compatible notions of hyperbolicity, cf. [[8](#page-16-10), Note 6.9]. In the present work "hyperbolic" coincides with Bourbaki's notion (cf. [\[4,](#page-15-1) Chapter V, §4, Ex.13]).

⁴ Words in S^* are denoted in boldface: $w = s_1 s_2 ... s_n \in S^*$. A subword w' of w is either the empty word 1 or a word of the form $w' = s_i s_{i+1} \dots s_k$ for $1 \le i \le k \le n$.

Let M be a Coxeter matrix over S. The M*-operations* (or M*-moves*) on S are modifications of words of the following types:

$$
M^{(1)}: v(ss)u \longmapsto vu,\tag{2.3a}
$$

$$
M^{(2)}:v[s,r,m_{s,r}]u\longmapsto v[r,s,m_{s,r}]u,\quad \text{if }m_{s,r}<\infty.
$$
 (2.3b)

Let (W, S) be the Coxeter system of type M, and let $\pi_M : S^* \to W(M)$ be the canonical projection (of monoids). Then, for all $w \in S^*$,

$$
\deg(w) \ge \ell_M(\pi_M(w)).\tag{2.4}
$$

A word $w \in S^*$ is called *reduced* for (W, S) if equality holds in [\(2.4\)](#page-4-0). If $w \in W(M)$, there is a unique ShortLex-minimal element $\sigma_M(w) \in S^*$ such that $\pi_M \sigma_M(w) = w$. Thus, $\sigma_M : W(M) \to S^*$ is a section of π_M , with the additional property^{[5](#page-4-1)} that

$$
\deg(\sigma_M(w)) = \ell_M(w). \tag{2.5}
$$

A word $w \in S^*$ is called *M-reduced* if its degree cannot be decreased by applying any finite sequence of M-operations. If two words w, w' are connected by a sequence of M-moves, then they represent the same element in $W(M)$:

$$
\pi_M(w) = \pi_M(w'),\tag{2.6}
$$

and hence reduced words are M-reduced. Moreover, Tits solved the word problem as follows.

Theorem 2.3 ($[27]$, $[4$, Chapter IV, §1, Example 13]). *Let* (W, S) *be the Coxeter system with Coxeter matrix* M*.*

- (i) A word in S^* is reduced for (W, S) if, and only if, it is M -reduced.
- (ii) If $w, w' \in S^*$ are reduced words which represent the same element $\pi_M(w) = \pi_M(w') \in W$, then there is a sequence of M-operations taking w *to* w' , and this sequence entirely consists of $M^{(2)}$ -operations.

Following [\[2,](#page-15-2) §3.3 and §3.4], let

$$
\mathcal{R}_M(w) = \{w \in S^* \mid \pi_M(w) = w \text{ and } \deg(w) = \ell_M(w)\}
$$

be the set of the reduced words in S^* representing $w \in W(M)$.

Corollary 2.4. *For* $w, w' \in S^*$ *, and* $w \in W(M)$ *the following hold.*

- (i) $\sigma_M(w) \in \mathcal{R}_M(w)$.
- (ii) If $w \in \mathcal{R}_M(w)$, and there exists a sequence $w \stackrel{M}{\longmapsto} w'$ of M-moves taking w *to* w' *, then* $w' \in \mathcal{R}_M(w)$ *.*
- (iii) If $\pi_M(w) = \pi_M(w')$ and w' is reduced, then there exists a sequence of M*-moves*

$$
w\longmapsto w'.
$$

⁵ Actually, any section of π_M with property [\(2.5\)](#page-4-2) would suffice for the purposes of this paper.

2.5. Poincaré series. Coxeter systems are pairs consisting of a finitely generated group W and a finite, symmetric generating set S , and therefore the machinery described in [§1](#page-2-1) applies. In the context of Coxeter systems the growth series is also known as the *Poincaré series* $p_{(W,S)}(t)$ of (W, S) . If (W, S) is spherical then $p_{(W,S)}(t)$ is a polynomial, which can be explicitly computed in terms of the degrees of the polynomial invariants of (W, S) , simply known as the *degrees* of (W, S) (cf. [\[24\]](#page-17-3), [\[18,](#page-16-8) Chapter 3]). For arbitrary Coxeter systems, the Poincaré series can be computed using the following property.

Proposition 2.6 ($[25]$). Let (W, S) be a Coxeter system with Poincaré series $p_{(W,S)}(t)$. Then

$$
\frac{1}{p(w,s)(t^{-1})} = \sum_{I \in \mathcal{F}} \frac{(-1)^{|I|}}{p(w_I,I)}.
$$
\n(2.7)

where $\mathcal{F} = \mathcal{F}(W, S)$ *. In particular, the Poincaré series* $p_{(W,S)}(t)$ *is a rational function.*

It is often possible to focus only on irreducible systems.

Lemma 2.7. *Let* (W_1, S_1) *and* (W_2, S_2) *be Coxeter systems, and let*

$$
(W, S) = (W_1 \times W_2, S_1 \sqcup S_2)
$$

be their product. Then

 $\omega(W, S) = \max{\omega(W_1, S_1), \omega(W_2, S_2)}.$

Proof. The factorisation

$$
p_{(W,S)}(t) = p_{(W_1,S_1)}(t) \cdot p_{(W_2,S_2)}(t)
$$

holds (cf. [\[4,](#page-15-1) Chapter IV, n^o 1.8 and no 1.9]). Since Poincaré series are series with non-negative coefficients and with degree-zero coefficient equal to one, then

$$
\omega(W, S) \ge \max{\omega(W_1, S_1), \omega(W_2, S_2)}.
$$

On the other hand, the product $p(t)$ of two rational functions $p_1(t)$ and $p_2(t)$ is holomorphic *at least* in the smallest of the open disks centred in zero of radii ρ_1 , ρ_2 , where each of the two factors are holomorphic: thus

$$
\omega(W, S) = \frac{1}{\rho} \le \frac{1}{\min\{\rho_1, \rho_2\}} = \max\{\omega(W_1, S_1), \omega(W_2, S_2)\}.
$$

3. The partial order \leq on the class of Coxeter systems

The core of the proof of Theorem \bf{B} \bf{B} \bf{B} is the reduction to a finite set of elementary verifications. The tools which provide this reduction are the partial order \prec over the set of (Coxeter-isomorphism classes of) Coxeter systems, the corresponding monotonicity results, and the finiteness of the set of minimal non-affine, nonspherical Coxeter systems.

Let (W, S) and (W', S') be Coxeter systems with Coxeter matrices M, M' respectively. Define $(W, S) \preceq (W', S')$ whenever there exists an injective map $\varphi: S \to S'$ such that $m_{s,r} \leq m'_{\varphi(s),\varphi(r)}$ for all $s, r \in S$ (cf. [\[22,](#page-16-5) §6]).

In particular, if (W, S) and (W', S') are Coxeter-isomorphic (cf. [§2.1\)](#page-2-2) then $(W, S) \preceq (W', S')$ and $(W', S') \preceq (W, S)$. Therefore the preorder \preceq descends to a partial order on the set of Coxeter-isomorphism classes of Coxeter systems. With a mild abuse of notation we will avoid the distinction between a Coxeter system and its Coxeter-isomorphism class.

3.1. Monotonicity properties. The partial order \leq has the following important property.

Theorem A. Let (W, S) and (W', S') be Coxeter systems with Coxeter matrices M and M', respectively. Let $a_k = a_k^{(W,S)}$ $a_k^{(W,S)}$ and $a'_k = a_k^{(W',S')}$ k *be the growth sequences* with respect to the Coxeter generating set. If $(W, S) \preceq (W', S')$ then $a_k \le a'_k$ for *all* $k \in \mathbb{N}_0$.

Proof. Let $\varphi: S \to S'$ be an injective map realising the relation $(W, S) \preceq (W', S')$. Let $S'' = \text{im } \varphi \subseteq S'$, let $W'' = \langle S'' \rangle \leq W'$, and let (W'', S'') be the corresponding parabolic subsystem of (W', S') . Let $\psi: S \to S''$ be given by $\psi(s) = \varphi(s)$ for all $s \in S$. Therefore $\varphi = \iota \circ \psi$, where ι is the inclusion $S'' \subseteq S'$, and hence one has $(W, S) \preceq (W'', S'') \preceq (W', S').$

Let $a''_k = a_k^{(W'', S'')}$ $\binom{W'', S''}{k}$. Since (W'', S'') is a parabolic subgroup of (W', S') , then $\ell_{(W'',S'')} = \ell_{(W',S')}|_{W''}$, by [\(2.2\)](#page-3-3). Hence $A_k^{(W'',S'')} \subseteq A_k^{(W',S')}$ $\binom{(W^+,S^+)}{k}$, and then

$$
a_k'' \le a_k' \quad \text{ for all } k \in \mathbb{N}_0. \tag{3.1}
$$

We will now prove that $a_k \le a''_k$ for all k. Let M'' be the Coxeter matrix of (W'', S'') , and let $N = (m''_{\psi(s), \psi(r)})_{s,r \in S}$. Since ψ is a bijection, $(W(N), S)$ is Coxeter-isomorphic to (W'', S'') , and in particular it has growth sequence $a_k^{(W(N), S)} = a''_k$. Let B_k and B_k^N be the balls of radius k in Cay(W, S) and $Cay(W(N), S)$, respectively.

By hypothesis $m_{s,r} \leq n_{s,r}$ for all $s, r \in S$, and suppose that $N \neq M$. Without loss of generality, assume there exists a unique 2-subset $\{s_0, r_0\} \subseteq S$ such that $m_{s_0, r_0} < n_{s_0, r_0}$. Let $m = m_{s_0, r_0}$ and $n = n_{s_0, r_0}$.

Claim. For all k, the map $\eta_k = \pi_N \sigma_M |_{B_k} : B_k \to B_k^N$, where σ_M and π_N are *defined as in §[2.2](#page-3-4), is well defined and injective.*

Proof of the claim. First, notice that $\pi_N \sigma_M(B_k) \subseteq B_k^N$, since $\deg(\sigma_M(w)) =$ $\ell_M(w)$ by [\(2.5\)](#page-4-2) and $\ell_N(\pi_N(\sigma_M(w))) \leq \ell_M(w)$ by [\(2.4\)](#page-4-0). Hence η_k is well defined. Suppose $v, v' \in B_k$ satisfy $\eta_k(v) = \eta_k(v')$ and let $w = \eta_k(v) \in B_k^N$. Thus

$$
\pi_N \sigma_M(v) = \pi_N \sigma_M(v') = w = \pi_N \sigma_N(w).
$$

Then, by Corollary 2.4 , [\(iii\),](#page-4-4) there exist sequences of N-moves

$$
\sigma_M(v) \longmapsto \sigma_N(w) \longleftrightarrow \sigma_M(v'). \tag{3.2}
$$

Consider first the sequence $\sigma_M(v) \mapsto \sigma_N(w)$ on the left, and suppose it can be written as the concatenation of elementary N-moves

$$
\sigma_M(v) = u_0 \stackrel{v_0}{\longmapsto} u_1 \stackrel{v_1}{\longmapsto} u_2 \longmapsto \ldots \longmapsto u_r \stackrel{v_r}{\longmapsto} u_{r+1} = \sigma_N(w). \tag{3.3}
$$

Assume by contradiction, that there exists some t for which v_t is the $N^{(2)}$ -move

$$
\nu_t: \boldsymbol{u}_t = \boldsymbol{u}'[s_0, r_0, n] \boldsymbol{u}'' \longmapsto \boldsymbol{u}'[r_0, s_0, n] \boldsymbol{u}'' = \boldsymbol{u}_{t+1}, \tag{3.4}
$$

hence $n < \infty$, by [\(2.3\)](#page-4-5). Let t_0 be the minimum of such t's. Thus, the sequence of moves $v_{t_0-1} \circ v_{t_0-2} \circ \cdots \circ v_1 \circ v_0$ is a sequence of M-moves transforming $\sigma_M(v) \in \mathcal{R}_M(v)$ into u_{t_0} . Hence, by Corollary [2.4,](#page-4-3) [\(i\)](#page-4-6)[–\(ii\),](#page-4-7) $u_{t_0} \in \mathcal{R}_M(v)$. Since $n > m$ the word u_{t_0} has a subword of the form $[s_0, r_0, m + 1]$. Therefore one may apply the M-moves

$$
\begin{aligned} \n\boldsymbol{u}_{t_0} &= \boldsymbol{u}'[s_0, r_0, m+1] \boldsymbol{u}'' = \boldsymbol{u}' s_0[r_0, s_0, m] \boldsymbol{u}'' \\ \n&\mapsto \boldsymbol{u}' s_0[s_0, r_0, m] \boldsymbol{u}'' = \boldsymbol{u}' s_0 s_0[r_0, s_0, m-1] \boldsymbol{u}'' \\ \n&\mapsto \boldsymbol{u}'[r_0, s_0, m-1] \boldsymbol{u}'' = \boldsymbol{u}''', \n\end{aligned}
$$

and hence $deg(u_{t_0}) > deg u'''$, against the hypothesis that u_{t_0} is (M-)reduced. This gives the desired contradiction and, thus, no $N^{(2)}$ -move of the form [\(3.4\)](#page-7-0) can occur. Since all the remaining N-moves are also M -moves, the sequence (3.3) only consists of M -moves. An analogous argument applies to the sequence $\sigma_M(v') \mapsto \sigma_N(w)$. Hence, the sequences in [\(3.2\)](#page-7-2) entirely consist of M-moves, and by (2.6)

$$
v = \pi_M \sigma_M(v) = \pi_M \sigma_N(w) = \pi_M \sigma_M(v') = v',
$$

which proves the injectivity of η_k . Δ

Let now $v \in A_k^{(W,S)} \subseteq B_k$. Then $\deg(\sigma_M(v)) = k$, and the previous argument shows that $\sigma_M(v)$ is also N-reduced, therefore $\ell_N(\eta_k(v)) = \ell_N(\pi_N \sigma_M(v)) = k$.

It follows that the maps

$$
\vartheta_k = \eta_k|_{A_k}: A_k^{(W,S)} \to A_k^{(W(N),S)}
$$

are well defined injections, and hence

$$
a_k \le a_k^{(W(N),S)} = a_k'' \quad \text{for all } k \in \mathbb{N}_0. \tag{3.5}
$$

This, together with (3.1) , completes the proof.

Theorem [A](#page-6-0) has the following immediate consequence.

Corollary 3.2. If (W, S) and (W', S') are Coxeter systems such that one has $(W, S) \preceq (W', S')$, then

$$
\omega(W, S) \le \omega(W', S').
$$

3.3. Minimal non-spherical, non-affine Coxeter systems. Let X be the set of (Coxeter-isomorphism classes of) non-affine, non-spherical, irreducible Coxeter systems, and let $M = \min_{\prec} X$ be the set of \preceq -minimal elements of *X*.

It is well known that hyperbolic Coxeter systems are characterised as those systems such that every proper irreducible parabolic subsystem is either of spherical or affine type (cf. [\[4,](#page-15-1) Chapter V, §4, Example 13]). By minimality, M consists of hyperbolic Coxeter systems, which are classified in an infinite family of rank-three systems, and 72 exceptions of rank $|S| \geq 4$ (cf. [\[18,](#page-16-8) §6.8 and §6.9]). The infinite family consists of the $\langle a, b, c \rangle$ -triangle groups with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$, and among those only the $\langle 2, 3, 7 \rangle$, $\langle 3, 3, 4 \rangle$ and $\langle 2, 4, 5 \rangle$ -triangle groups are \preceq -minimal. Among the 72 exceptions, 35 are in *M* . Therefore,

Proposition 3.4 ($[22$, Theorem 6.6, Table 5]). $|\mathcal{M}| = 38$.

4. The minimal growth rate of Coxeter groups

Following the notation of $[15]$, let E_{10} be the Coxeter system with Coxeter graph

.E10/ ^D î :

Theorem B. If (W, S) is a non-spherical, non-affine Coxeter system, then its *growth rate satises*

$$
\omega(W, S) \geq \tau = 1.138078743\ldots,
$$

where τ *is the growth rate of the hyperbolic Coxeter system* E_{10} *. In particular,* τ *is the inverse of the smallest positive real root of the denominator of the Poincaré series* $p_{E10}(t)$ *of the Coxeter system* E_{10} *. Moreover,* τ *is an algebraic integer of degree* 127 *over* Q*, with minimal polynomial*

$$
m_{\tau}(t) = t^{127} - t^{125} - t^{120} + t^{118} - t^{116} - t^{115} + t^{109} + t^{106} + t^{103} + t^{102}
$$

+ $2t^{101} + t^{100} + t^{97} + t^{96} + t^{91} - t^{90} - 2t^{89} - t^{88} - t^{87} - t^{86}$
- $t^{85} - 2t^{84} - 2t^{83} - t^{82} - 2t^{81} - 3t^{80} - t^{79} - t^{78} - 2t^{77} - t^{76}$
- $t^{75} - t^{74} - t^{72} - t^{71} + t^{70} + t^{69} + 2t^{67} + 2t^{66} + t^{65} + 2t^{64}$
+ $2t^{63} + 2t^{62} + 3t^{61} + 2t^{60} + 2t^{59} + 3t^{58} + 3t^{57} + 2t^{56} + 2t^{55}$
+ $2t^{54} + t^{53} + 2t^{52} + 2t^{51} + t^{46} - t^{45} - 2t^{44} - t^{43} - t^{42} - 2t^{41}$
- $2t^{40} - 2t^{39} - 2t^{38} - 2t^{37} - 2t^{36} - 2t^{35} - t^{34} - 2t^{33} - 3t^{32} - t^{31}$
- $t^{29} - t^{28} - t^{27} + t^{25} + t^{22} + t^{21} + t^{20} + t^{19} + t^{18} + t^{17}$
+ $t^{16} + t^{15} + t^{14} + t^{13} + t^{12} - t - 1$.

The integer is a Perron number, i.e., an algebraic integer whose module stricly exceeds the module of its algebraic conjugates (cf. [\[19,](#page-16-12) [20\]](#page-16-13)*).*

Proof. By monotonicity of the function ω with respect to \prec (cf. Corollary [3.2\)](#page-8-2) and by Proposition [3.4,](#page-8-3) it suffices to compute $\omega(W, S)$ for finitely many (W, S) .

Moreover, $p_{(W,S)}(t)$ is power series with non-negative coefficients, and also a rational function, by Proposition [2.6.](#page-5-0) Thus, $\omega(W, S)$ is the inverse of the minimal, positive real root of the denominator of $p_{(W,S)}(t)$.

Theorem \bf{B} \bf{B} \bf{B} can be stated in terms of a gap in the set

 $\Omega = \{ \omega(W, S) \mid (W, S) \text{ Coxeter system} \} \subseteq \{0, 1\} \cup \mathbb{R}_{\geq \tau}.$

Remark 4.1. (i) The direct verifications for the 38 relevant Coxeter systems were performed with the help of the computational algebra system Magma (cf. [\[26\]](#page-17-5)). The code is available at

<https://sites.google.com/site/tomterragni/research/computations>

(ii) The denominator of $p_{E_{10}}(t)$ is $(t - 1)m_{\tau^{-1}}(t)$.

(iii) In many cases $\omega(W, S)$ is an algebraic integer, and also a Perron number. It is known that every Perron number λ is realised as the Perron–Frobenius eigenvalue of an aperiodic, non-negative integral matrix P_{λ} (cf. [\[20,](#page-16-13) Theorem 1]). Lind's proof is constructive, however the algorithm given in the proof may produce a Perron–Frobenius matrix of non-minimal size. It would be interesting to find a minimal-sized Perron–Frobenius matrix for τ .

(iv) The Poincaré series of (all but one) exceptional hyperbolic Coxeter systems are also listed in [\[7\]](#page-16-14). In the same paper, some radii of convergence are computed.

(v) It is quite surprising that τ is not realised as growth rate of any of the small rank Coxeter systems, instead it is associated with the Coxeter system E_{10} . However, the growth rate of one of the \prec -minimal rank-three hyperbolic Coxeter groups, namely the one with Coxeter system $(2, 3, 7)$, is Lehmer's number $\lambda_{\text{Lehmer}} = 1.17...$ (cf. [\[16\]](#page-16-15)), and an interesting coincidence occurs. Let

$$
\lambda_{\rho}(W, S) = \inf(\{\lambda_{\rho}(w) \mid w \in W\} \cap \mathbb{R}_{>1}),
$$

where $\lambda_{\rho}(w)$ is the spectral radius of the matrix $\rho(w)$, and ρ is Tits' reflection representation.

The number $\lambda_{\rho}(W, S)$ represents a universal bound for eigenvalues of elements in Coxeter groups. Moreover, if (W, S) is hyperbolic, then $\log \lambda_{\rho}(W, S)$ is interpreted as a lower bound for the length of non-degenerate, closed hyperbolic geodesics in the orbifold $H^{|S|-1}/W$.

McMullen proved that

$$
\inf_{(W,S)} \lambda_{\rho}(W,S) = \lambda_{\text{Lehmer}},
$$

the infimum being taken as (W, S) runs through the non-affine, non-spherical Coxeter systems (cf. $[22]$). The infimum is actually a minimum, and it is attained *exactly* for the Coxeter system E_{10} .

It would be interesting to understand this phenomenon.

5. Rigidity and growth

It is well known that there exist non Coxeter-isomorphic Coxeter systems for which the groups are abstractly isomorphic. For a discussion on the isomorphism problem for Coxeter groups, see [\[6,](#page-15-3) [23,](#page-17-6) [1\]](#page-15-4), and references therein.

5.1. Coxeter generating systems. Let G be a group generated by a finite set of involutions $R \subseteq G$. Then $M(R) = (\text{ord}(sr))_{s,r \in R}$ is a Coxeter matrix. Let (W, R) be the Coxeter system with Coxeter matrix $M(R)$. The identity on R induces a surjective homomorphism of groups $j_R: W \to G$. Moreover, when j_R is an isomorphism G is a *Coxeter group with Coxeter generating system* R.

If (W, S) is a Coxeter system and σ is either an inner automorphism or the automorphism of W induced by a Coxeter automorphism of (W, S) , then $\sigma(S)$ is another Coxeter generating system, and $(W, \sigma(S))$ is Coxeter-isomorphic to (W, S) . In general, any inner-by-Coxeter automorphism preserves the Coxeterisomorphism type. An automorphism which is not inner-by-Coxeter will be called *exotic*.

5.2. Isomorphisms of Coxeter groups. A major problem in the theory of Coxeter groups is to find all possible Coxeter generating systems of a given a Coxeter group W. If, for any two Coxeter generating sets R, S of W, the Coxeter systems (W, S) and (W, R) are Coxeter-isomorphic, then W is called *rigid*. It is well known that there exist non-rigid Coxeter groups, e.g., for n, m odd there are exotic isomorphisms

$$
W(I_2(2m)) \simeq W(I_2(m) \times A_1) \quad \text{and} \quad W(B_n) \simeq W(D_n \times A_1). \tag{5.1}
$$

There are standard procedures which realise exotic isomorphisms between Coxeter systems, e.g., Brady *et al.* introduced the *diagram twisting* (cf. [\[3,](#page-15-0) §4] and [§5\)](#page-10-0), and Howlett and Mühlherr introduced a construction, the *elementary reductions*, which deal with exotic isomorphisms $(W, S) \rightarrow (W, R)$ for which the set of reflections S^W is different from R^W (cf. [\[17\]](#page-16-7)). Reductions generalise the exotic isomorphisms (5.1) .

Several classes of Coxeter groups are known to be rigid, or rigid up to diagram twisting. For instance, if any of the following conditions is satisfied for a Coxeter generating system S of W, then W is rigid up to diagram twisting (cf. $[3, 1, 23]$ $[3, 1, 23]$ $[3, 1, 23]$ $[3, 1, 23]$).

- (i) (W, S) is right-angled, i.e., $m_{s,r} \in \{2, \infty\}$ for all $s, r \in S, s \neq r$;
- (ii) (W, S) is infinite and $m_{s,r} < \infty$ for all $s, r \in S$;
- (iii) (W, S) can act faithfully, properly and cocompactly on a contractible manifold;
- (iv) (W, S) is skew-angled, i.e., $m_{s,r} \neq 2$ for all $s, r \in S$;
- (v) $\Gamma_{\infty}(W, S)$ is a tree, where Γ_{∞} is the variant of the Coxeter graph defined in [\[4,](#page-15-1) Chapter IV, §1, Example 11].

5.3. Mutations of Coxeter groups

Definition 5.4. Let M be a Coxeter matrix over S , and suppose that there exists a partition $S = X \sqcup Y \sqcup T \sqcup Z$ and a Coxeter-automorphism σ of the subsystem (W_X, X) satisfying

- (i) $m_{t,y} = \infty$ for all $t \in T$ and $y \in Y$,
- (ii) $m_{z,y} < \infty$ for all $z \in Z$ and $y \in Y$, and
- (iii) for all $z \in Z$ and $x \in X$ one has $m_{z,\sigma(x)} = m_{z,x}$.

Then, the 4-tuple (M, X, Y, σ) is called *mutable*. Associated with a mutable tuple (M, X, Y, σ) there is a Coxeter matrix $\mu(M, X, Y, \sigma) = (n_{r,s})_{r,s \in S}$, its *mutation*, given by

$$
n_{s,r} = n_{r,s} = \begin{cases} m_{\sigma(r),s} & \text{if } r \in X, s \in Y, \\ m_{\sigma(r),\sigma(s)} & \text{if } r, s \in X, \\ m_{r,s} & \text{otherwise.} \end{cases}
$$
(5.2)

If (M, X, Y, σ) is mutable, then $(\mu(M, X, Y, \sigma), X, Y, \sigma^{-1})$ is mutable and it is called the *inverse mutable* 4-tuple since $\mu(\mu(M, X, Y, \sigma), X, Y, \sigma^{-1}) = M$. The relation "N is a mutation of M " is symmetric, and therefore its transitive closure is an equivalence relation \sim on Coxeter systems.

Remark 5.5. (i) The partition associated with a mutable tuple (M, X, Y, σ) is determined by X, Y together with conditions [\(i\)–](#page-12-1)[\(ii\),](#page-12-2) and therefore T, Z may be omitted from the notation.

(ii) Many Coxeter matrices M only admit trivially mutable tuples, i.e., tuples with $\sigma = id_X$. Even when a non-trivial tuple exists, it may happen that the associated mutation is Coxeter-isomorphic to M. If this is not the case, (M, X, Y, σ) is called *effective*.

(iii) The operation of mutation is a generalisation of the diagram twisting (cf. [\[3\]](#page-15-0)). Diagram twists are mutations satisfying the additional conditions (a) W_X is finite, (b) $\sigma(x) = x^{w_0(X)}$ is the conjugation by the longest element of W_X , and (c) $m_{z,x} = 2$ for all $z \in Z$ and $x \in X$. Effective diagram twists determine exotic isomorphisms of Coxeter groups.

Theorem C. Let (W, S) be a Coxeter system with Coxeter matrix M, and let (M, X, Y, σ) be a mutable tuple for (W, S) . Let $N = \mu(M, X, Y, \sigma)$, and let (W', S') be the Coxeter system with Coxeter matrix N .

Then there is a bijection

$$
\stackrel{\text{#}}{=} \mathcal{F}(W, S) \longrightarrow \mathcal{F}(W', S') = \mathcal{F}',
$$

such that (W_I, I) is Coxeter-isomorphic to $(W_{I^{\#}}', I^{\#})$ for all $I \in \mathcal{F}$ *. Moreover, if* $(W, S) \sim (W', S')$ then

$$
p_{(W,S)}(t) = p_{(W',S')}(t). \tag{5.3}
$$

Proof. Let $S = X \sqcup Y \sqcup Z \sqcup T$ decompose as in Def. [5.4,](#page-11-1) and let $I \in \mathcal{F}$. Since every edge of a spherical graph must have a finite label, then either

- (a) $I \subseteq X \sqcup T \sqcup Z$, or
- (b) $I \subset X \sqcup Y \sqcup Z$ and $I \cap Y \neq \emptyset$.

Suppose that (a) holds, then define $I^{\sharp} = \{r^{\sharp} = r \mid r \in I\}$. By [\(5.2\)](#page-12-3), for r^{\sharp} , $s^{\sharp} \in I^{\sharp}$ on has 7

$$
n_{r^{\sharp},s^{\sharp}} = n_{r,s} = \begin{cases} m_{\sigma(r),\sigma(s)} & \text{if } r,s \in X, \\ m_{r,s} & \text{if } r \in X, s \notin X, \\ m_{r,s} & \text{if } r,s \notin X. \end{cases}
$$

Since σ is a Coxeter-automorphism of (W_X, X) , then $m_{\sigma(r), \sigma(s)} = m_{r,s}$ for $s, r \in X$.

Suppose that (b) holds, then define $I^{\sharp} = \{r^{\sharp} \mid r \in I\}$, where now

$$
r^{\sharp} = \begin{cases} \sigma^{-1}(r) & \text{if } r \in X, \\ r & \text{if } r \notin X. \end{cases}
$$
 (5.4)

Then, for $r^{\sharp}, s^{\sharp} \in I^{\sharp}$, by [\(5.2\)](#page-12-3), [\(5.4\)](#page-13-0) and Def. [5.4,](#page-11-1) [\(iii\),](#page-12-4) one has

$$
n_{r^{\sharp},s^{\sharp}} = \begin{cases} m_{\sigma(r^{\sharp}),\sigma(s^{\sharp})} = m_{r,s} & \text{if } r^{\sharp}, s^{\sharp} \in X, \\ m_{\sigma(r^{\sharp}),s^{\sharp}} = m_{r,s} & \text{if } r^{\sharp} \in X, s^{\sharp} \in Y, \\ m_{r^{\sharp},s^{\sharp}} = m_{\sigma^{-1}(r),s} = m_{r,s} & \text{if } r^{\sharp} \in X, s^{\sharp} \in Z, \\ m_{r^{\sharp},s^{\sharp}} = m_{r,s} & \text{if } r,s \notin X. \end{cases}
$$

Hence, $N_{I^{\sharp}}$ and M_{I} determine Coxeter-isomorphic systems. It follows that $I^{\sharp} \in \mathcal{F}'$ and that (a) holds for I^{\sharp} if, and only if, (a) holds for I. Thus, the map $I \mapsto I^{\#}$ is a map which preserves the Coxeter-isomorphism type, and it is invertible (its inverse being the \sharp -map associated to the inverse mutable tuple). The identity (5.3) then follows from Steinberg's formula (2.7) .

Corollary 5.6. *Suppose that* W *is rigid up to diagram twisting, and let* S; R *be Coxeter generating systems for* W *(cf.* [§5.1](#page-11-2)*). Then*

$$
p_{(W,S)}(t) = p_{(W,R)}(t) \quad and \quad \omega(W,S) = \omega(W,R).
$$

Let $p_{W,Cox}(t)$ and $\omega_{Cox}(W)$ *be these common values.*

Theorem C implies that effective mutations which are not diagram twists can be regarded as procedures to produce non-isomorphic (and *a fortiori*, non Coxeterisomorphic) Coxeter systems with the same Poicaré series.

Example 5.7. Consider the rank-seven Coxeter system (W, S) with Coxeter matrix

$$
M = \begin{pmatrix} 1 & 3 & 3 & 2 & 3 & 4 & 2 \\ 3 & 1 & 3 & 2 & 3 & 4 & 2 \\ 3 & 3 & 1 & 2 & 2 & 4 & 3 \\ 2 & 2 & 2 & 1 & 3 & 3 & 2 \\ 3 & 3 & 2 & 3 & 1 & 2 & \infty \\ 4 & 4 & 4 & 3 & 2 & 1 & 3 \\ 2 & 2 & 3 & 2 & \infty & 3 & 1 \end{pmatrix}.
$$

Let $X = \{s_1, s_2, s_3, s_4\}, Y = \{s_5\}, Z = \{s_6\}, T = \{s_7\}, \text{ and let } \sigma = (1, 2, 3).$ Then (M, X, Y, σ) is mutable, with mutation displayed in Fig. [5.1.](#page-14-0) Moreover, $N = \mu(M, X, Y, \sigma)$ is a proper mutation, i.e., N is not obtained from M by diagram twisting.

Figure 5.1. A proper mutation.

5.8. A conjecture. Consider the group $PGL(2, \mathbb{Z}) \simeq (C_2 \times C_2) *_{C_2} S_3$. It is well known that PGL $(2, \mathbb{Z}) \simeq W$, where (W, S) is the Coxeter system $\langle 2, 3, \infty \rangle$ with Coxeter graph $\bullet \bullet \bullet \bullet$. Hence the minimal growth rate satisfies $\omega(PGL(2, \mathbb{Z})) \leq \omega(W, S) = \alpha$, where α is the *plastic number*, with minimal polynomial $m_{\alpha}(t) = t^3 - t - 1$. The converse inequality is proven by Bucher and Talambutsa (cf. $[5, §6]$).

Therefore, the following problem seems to be of some interest.

Conjecture D. *Let* W *be a Coxeter group rigid up to diagram twisting, and let* $\omega_{\text{Cox}}(W)$ be defined as in Corollary [5.6](#page-13-1). Then $\omega(W) = \omega_{\text{Cox}}(W)$.

Remark 5.9. (i) If W is a product of spherical and affine irreducible Coxeter systems, its Poincaré series depends on the chosen generating set. However, the minimal growth rate and the growth rate coincide $\omega(W) = \omega(W, S)$ and their common value is either 0 or 1, depending on the finiteness of the group only.

(ii) The rigidity hypothesis in Conj. [D](#page-14-1) cannot be relaxed since, in general, elementary reductions do not preserve the growth rate, as the following example shows. Let

$$
M = \begin{pmatrix} 1 & 3 & 2 & 3 & \infty \\ 3 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 3 & 2 \\ 3 & 2 & 3 & 1 & 4 \\ \infty & 2 & 2 & 4 & 1 \end{pmatrix}, \quad \Gamma(M) = \begin{pmatrix} s_2 \\ s_2 \\ s_3 \end{pmatrix} \begin{pmatrix} s_5 \\ s_4 \end{pmatrix}.
$$

Then $s₅$ is a pseudo-transposition, corresponding to the parabolic subsystem of type B_3 generated by $J = \{s_3, s_4, s_5\}$. Let $r_i = s_i$ for $i \in \{1, ..., 4\}$, let $r_5 = s_5s_4s_5$ and let $r_6 = w_0(J) = s_3s_4s_3s_5s_4s_3s_5s_4s_5$ be the longest element of the parabolic subsystem (W_J, J) . Then, $R = \{r_i \mid i \in \{1, ..., 6\}\}\$ is a Coxeter generating system for $W(M)$ (cf. [\[17\]](#page-16-7)). Its Coxeter matrix $M' = M(R)$ is

$$
M' = \begin{pmatrix} 1 & 3 & 2 & 3 & \infty & \infty \\ 3 & 1 & 2 & 2 & 2 & 2 \\ 2 & 2 & 1 & 3 & 3 & 2 \\ 3 & 2 & 3 & 1 & 2 & 2 \\ \infty & 2 & 3 & 2 & 1 & 2 \\ \infty & 2 & 2 & 2 & 2 & 1 \end{pmatrix}, \quad \Gamma(M') = \begin{pmatrix} r_2 \\ r_2 \\ r_3 \end{pmatrix}
$$

By direct computation one sees that $\omega(W, S) = 2.24167...$, while $\omega(W, R) =$ $2.61578...$

References

- [1] P. Bahls, *The isomorphism problem in Coxeter groups.* Imperial College Press, London, 2005. [Zbl 1113.20034](http://zbmath.org/?q=an:1113.20034) [MR 2162146](http://www.ams.org/mathscinet-getitem?mr=2162146)
- [2] A. Björner and F. Brenti, *Combinatorics of Coxeter groups.* Graduate Texts in Mathematics, 231. Springer, New York, 2005. [Zbl 1110.05001](http://zbmath.org/?q=an:1110.05001) [MR 2133266](http://www.ams.org/mathscinet-getitem?mr=2133266)
- [3] N. Brady, J. P. McCammond, B. Mühlherr, and W. D. Neumann, Rigidity of Coxeter groups and Artin groups. *Geom. Dedicata* **94** (2002), 91–109. [Zbl 1031.20035](http://zbmath.org/?q=an:1031.20035) [MR 1950875](http://www.ams.org/mathscinet-getitem?mr=1950875)
- [4] N. Bourbaki, *Éléments de mathématique.* Fasc. XXXIV. Chapitres IV–IV. Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968. Reprint, Springer etc., Berlin, 2007. [Zbl 0186.33001](http://zbmath.org/?q=an:0186.33001) [MR 0240238](http://www.ams.org/mathscinet-getitem?mr=0240238)
- [5] M. Bucher and A. Talambutsa, Exponential growth rates of free and amalgamated products. *Israel J. Math.* **212** (2016), no. 2, 521–546. [MR 3505396](http://www.ams.org/mathscinet-getitem?mr=3505396)
- [6] R. Charney and M. Davis, When is a Coxeter system determined by its Coxeter group? *J. London Math. Soc.* (2) **61** (2000), no. 2, 441–461. [Zbl 0983.20034](http://zbmath.org/?q=an:0983.20034) [MR 1760693](http://www.ams.org/mathscinet-getitem?mr=1760693)
- [7] M. Chapovalov, D. Leites, and R. Stekolshchik, The Poincaré series of the hyperbolic Coxeter groups with finite volume of fundamental domains. *J. Nonlinear Math. Phys.* **17** (2010), suppl. 1, 169–215. [MR 2827480](http://www.ams.org/mathscinet-getitem?mr=2827480)
- [8] M. W. Davis, *The geometry and topology of Coxeter groups.* London Mathematical Society Monographs Series, 32. Princeton University Press, Princeton, N.J., 2008. [Zbl 1142.20020](http://zbmath.org/?q=an:1142.20020) [MR 2360474](http://www.ams.org/mathscinet-getitem?mr=2360474)
- [9] P. de la Harpe, *Topics in geometric group theory.* Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. [Zbl 0965.20025](http://zbmath.org/?q=an:0965.20025) [MR 1786869](http://www.ams.org/mathscinet-getitem?mr=1786869)
- [10] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston, *Word processing in groups.* Jones and Bartlett Publishers, Boston, MA, 1992. [Zbl 0764.20017](http://zbmath.org/?q=an:0764.20017) [MR 1161694](http://www.ams.org/mathscinet-getitem?mr=1161694)
- [11] R. I. Grigorchuk, On Burnside's problem on periodic groups. *Funktsional. Anal. i Prilozhen.* **14** (1980), no. 1, 53–54; in Russian. English translation, *Functional Anal. Appl.* **14** (1980), no. 1, 41–43; in Russian. English translation, *Math. USSR-Izv.* **25** (1985), no. 2, 259–300. [Zbl 0595.20029](http://zbmath.org/?q=an:0595.20029) [MR 0565099](http://www.ams.org/mathscinet-getitem?mr=0565099)
- [12] R. I. Grigorchuk, Degrees of growth of nitely generated groups and the theory of invariant means. *Izv. Akad. Nauk SSSR Ser. Mat.* **48** (1984), no. 5, 939–985. [Zbl 0583.20023](http://zbmath.org/?q=an:0583.20023) [MR 0764305](http://www.ams.org/mathscinet-getitem?mr=0764305)
- [13] R. I. Grigorchuk and P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory. *J. Dynam. Control Systems* **3** (1997), no. 1, 51–89. [Zbl 0949.20033](http://zbmath.org/?q=an:0949.20033) [MR 1436550](http://www.ams.org/mathscinet-getitem?mr=1436550)
- [14] M. Gromov, Groups of polynomial growth and expanding maps. *Inst. Hautes Études Sci. Publ. Math.* **53** (1981), 53–73. [Zbl 0474.20018](http://zbmath.org/?q=an:0474.20018) [MR 0623534](http://www.ams.org/mathscinet-getitem?mr=0623534)
- [15] B. H. Gross, E. Hironaka, and C. T. McMullen, Cyclotomic factors of Coxeter polynomials. *J. Number Theory* **129** (2009), no. 5, 1034–1043. [Zbl 1183.11065](http://zbmath.org/?q=an:1183.11065) [MR 2516970](http://www.ams.org/mathscinet-getitem?mr=2516970)
- [16] E. Hironaka, What is : : : Lehmer's number? *Notices Amer. Math. Soc.* **56** (2009), no. 3, 374–375. [Zbl 1163.11069](http://zbmath.org/?q=an:1163.11069) [MR 2494103](http://www.ams.org/mathscinet-getitem?mr=2494103)
- [17] R. Howlett and B. Mühlherr, Isomorphisms of Coxeter groups which do not preserve reflections. Preprint 2004.
- [18] J. E. Humphreys, *Reection groups and Coxeter groups.* Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, 1990. [Zbl 0725.20028](http://zbmath.org/?q=an:0725.20028) [MR 1066460](http://www.ams.org/mathscinet-getitem?mr=1066460)
- [19] D. A. Lind, Entropies and factorizations of topological Markov shifts. *Bull. Amer. Math. Soc. (N.S.)* **9** (1983), no. 2, 219–222. [Zbl 0524.58034](http://zbmath.org/?q=an:0524.58034) [MR 0707961](http://www.ams.org/mathscinet-getitem?mr=0707961)
- [20] D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers. *Ergodic Theory Dynam. Systems* **4** (1984), no. 2, 283–300. [Zbl 0546.58035](http://zbmath.org/?q=an:0546.58035) [MR 0766106](http://www.ams.org/mathscinet-getitem?mr=0766106)
- [21] A. Mann, *How groups grow.* London Mathematical Society Lecture Note Series, 395. Cambridge University Press, Cambridge, 2012. [Zbl 1253.20032](http://zbmath.org/?q=an:1253.20032) [MR 2894945](http://www.ams.org/mathscinet-getitem?mr=2894945)
- [22] C. T. McMullen, Coxeter groups, Salem numbers and the Hilbert metric. *Publ. Math. Inst. Hautes Études Sci.* **95** (2002), 151–183. [Zbl 1148.20305](http://zbmath.org/?q=an:1148.20305) [MR 1953192](http://www.ams.org/mathscinet-getitem?mr=1953192)

- [23] B. Mühlherr, The isomorphism problem for Coxeter groups. In Ch. Davis and E. W. Ellers (eds.), *The Coxeter legacy*. Reflections and projections. American Mathematical Society, Providence, R.I., 2006, 1–15. [Zbl 1103.20031](http://zbmath.org/?q=an:1103.20031) [MR 2209018](http://www.ams.org/mathscinet-getitem?mr=2209018)
- [24] L. Solomon, The orders of the finite Chevalley groups. *J. Algebra* **3** (1966), 376–393. [Zbl 0151.02003](http://zbmath.org/?q=an:0151.02003) [MR 0199275](http://www.ams.org/mathscinet-getitem?mr=0199275)
- [25] R. Steinberg, *Endomorphisms of linear algebraic groups.* Memoirs of the American Mathematical Society, 80. American Mathematical Society, Providence, R.I., 1968. [Zbl 0164.02902](http://zbmath.org/?q=an:0164.02902) [MR 0230728](http://www.ams.org/mathscinet-getitem?mr=0230728)
- [26] T. Terragni, Data about hyperbolic Coxeter systems. Preprint 2015. [arXiv:1503.08764](http://arxiv.org/abs/1503.08764) [math.GR]
- [27] J. Tits, Le problème des mots dans les groupes de Coxeter. Symposia. In *Symposia Mathematica* (INDAM, Rome, 1967/68), Vol. 1, 175–185. [MR 0254129](http://www.ams.org/mathscinet-getitem?mr=0254129)
- [28] J. Tits, Free subgroups in linear groups. *J. Algebra* **20** (1972), 250–270. [Zbl 0236.20032](http://zbmath.org/?q=an:0236.20032) [MR 0286898](http://www.ams.org/mathscinet-getitem?mr=0286898)

Received December 18, 2013

Tommaso Terragni, Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca, Ed. U5, Via R. Cozzi 55, 20125 Milano, Italy

e-mail: tom.terragni@gmail.com