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On the growth of a Coxeter group

Tommaso Terragni

Abstract. For a Coxeter system .W;S/ let a.W;S/
n be the cardinality of the sphere of radius

n in the Cayley graph of W with respect to the standard generating set S . It is shown that,

if .W;S/�.W 0; S 0/ then a.W;S/
n � a.W 0;S 0/

n for all n 2 N0, where � is a suitable partial

order on Coxeter systems (cf. Theorem A).

It is proven that there exists a constant � D 1:13 : : : such that for any non-a�ne,

non-spherical Coxeter system .W;S/ the growth rate !.W;S/ D lim sup n
p
an satis�es

!.W; S/ � � (cf. Theorem B). The constant � is a Perron number of degree 127 over Q.

For a Coxeter group W the Coxeter generating set is not unique (up to W -conjugacy),

but there is a standard procedure, the diagram twisting (cf. [3]), which allows one to pass

from one Coxeter generating set S to another Coxeter generating set�.S/. A generalisation

of the diagram twisting is introduced, the mutation, and it is proven that Poincaré series are

invariant under mutations (cf. Theorem C).
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Introduction

The growth of �nitely generated groups has been the subject of intensive investi-

gations (cf. [11, 12], [13], [9]) and led to ground-breaking results, e.g., M. Gromov

showed that a �nitely generated group has polynomial growth if, and only if, it is

virtually nilpotent (cf. [14]).

For a groupG being generated by a �nite symmetric setX � G not containing

the identity 1 2 G, the growth rate1 is de�ned by !.G;X/ D lim supn
n
p
an,

where an is the number of elements in G which can be written as a product of n

elements in X but which cannot be written as a product of less than n elements

in X . If G is of subexponential growth, i.e., polynomial or intermediate growth,

then !.G;X/ � 1.

1 The growth rate is often called exponential growth rate.
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The set of isomorphism classes of Coxeter systems admits a partial order �,

and the corresponding monotonicity result for growth sequences is proven.

Theorem (A). Let .W; S/ and .W 0; S 0/ be Coxeter systems. If .W; S/�.W 0; S 0/

then a.W;S/n � a.W
0;S 0/

n for all n 2 N0.

Spherical and a�ne Coxeter systems have, respectively, growth rate zero and

one. One of the main results of this paper can be stated as follows.

Theorem (B). Let .W; S/ be a non-a�ne, non-spherical Coxeter system. Then its
growth rate satis�es !.W; S/ � � , where � D 1:13 : : : is an algebraic integer of
degree 127 over Q, which is also a Perron number with minimal polynomialm� .t /
given in §4. Moreover, � D !.W; S/, where .W; S/ is the hyperbolic Coxeter
system E10.

A remarkable coincidence occurs (cf. Rem. 4.1). Besides having the smallest

minimal growth rate among Coxeter systems, E10 is also known to minimise a

certain function �� which re�ects, in the hyperbolic case, the metric properties of

the orbifold de�ned by Tits’ representation � (cf. [22]).

For a group G with a �nite symmetric generating set X � G n ¹1º one de�nes

the growth series by p.G;X/.t / D
P

n2N0
ant

n 2 ZJtK, thus !.G;X/ coincides

with the inverse of the radius of convergence of p.G;X/.t /, considered as a power

series over C. For a Coxeter system .W; S/ the growth series is also called the

Poincaré series of .W; S/.

In §5 we de�ne the new notion of a mutation �.M;X; Y; �/ of a Coxeter ma-

trix M , which induces an equivalence relation � on Coxeter systems. Mutations

generalise diagram twisting (cf. [3]) but in general they do not preserve the iso-

morphism class of the group. Nevertheless, the Poincaré series is invariant under

mutations of the Coxeter matrix.

Theorem (C). Let .W; S/ and .W 0; S 0/ be Coxeter systems satisfying
.W; S/ � .W 0; S 0/. Then p.W;S/.t / D p.W 0;S 0/.t /.

Thus, mutations provide a tool to produce �nitely many non-isomorphic Cox-

eter groups with the same growth series. It is an open problem whether there exist

in�nitely many groups with the same growth series (cf. [21, Chapter 1, Problems 1

and 2]).
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1. Growth of �nitely generated groups

Let G be a �nitely generated group, and let X D X�1 � G n ¹1º be a �nite,

symmetric set of generators. The length of g 2 G with respect toX is the minimal

n such that g D x1x2 : : : xn with xi 2 X ; the length function will be denoted by

`.G;X/WG ! N0. It has a natural interpretation in terms of the metric on the Cayley

graph Cay.G;X/.

For n 2 N0, the ball in Cay.G;X/ centred around 1G with radius n will be

denoted by

B.G;X/n D ¹g 2 G j `.G;X/.g/ � nº;
and the corresponding sphere by

A.G;X/n D ¹g 2 G j `.G;X/.g/ D nº:

Their sizes are a
.G;X/
n D jA.G;X/n j and b

.G;X/
n D jB.G;X/n j.

The central objects under investigation are the growth series

p.G;X/.t / D
X

n2N0

a.G;X/n tn 2 ZJtK;

and the growth rate

!.G;X/ D lim sup
n!1

n

q

a
.G;X/
n :

Note that G has exponential growth if !.G;X/ > 1 for some (and hence

any) generating set X . The present paper only deals with �nitely generated linear

groups G. Therefore, G has polynomial growth with respect to some (and hence

any) generating system X if !.G;X/ � 1 (cf. [28, Corollary 5]).

The minimal growth rate !.G/ is the in�mum of !.G;X/, as X runs over all

�nite, symmetric generating sets of G.

2. Coxeter groups

Standard references for Coxeter groups include [4, 18].

2.1. Coxeter systems. Let S be a �nite set, and letM be an .S �S/-matrix such

that ms;s D 1, and ms;r D mr;s 2 Z�2 [ ¹1º for all s; r 2 S , s ¤ r . Then M is a

Coxeter matrix over S .

The Coxeter system associated with a Coxeter matrix M over S is the pair

.W; S/ where W is the group

W D W.M/ D hS j .sr/ms;r if ms;r <1i: (2.1)
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The Coxeter matrix M (or, equivalently, the presentation (2.1)) is often

encoded in the Coxeter graph �.M/ (cf. [4, Chapter IV, no 1.9]). Either datum

is called the type of .W; S/.

If I � S let WI D hI i � W . The parabolic subsystem .WI ; I / is a Coxeter

system in its own right, with Coxeter matrix MI D .ms;r /s;r2I . Its Coxeter graph

is the graph induced from � by the vertices in I , and

`.WI ;I / D `.W;S/jWI
: (2.2)

The �nite set F D F.W; S/ D ¹I � S j jWI j < 1º is called the set of spherical
residues.

A Coxeter-isomorphism 'W .W; S/! .W 0; S 0/ of Coxeter systems of types M

and M 0 respectively, is a bijection 'WS ! S 0 such that m0
'.s/;'.r/

D ms;r for all

s; r 2 S .

Any Coxeter group .W; S/ is linear via the Tits’ re�ection representation

�WW ! GL.RS / (cf. [4, Chapter V, §4]). The representation � is determined

by the symmetric matrix2 B D BM D
�

� cos �
ms;r

�

s;r2S
, and the signature of B

induces the following tetrachotomy on irreducible Coxeter systems.

(i) If B is positive de�nite, then .W; S/ is spherical,

(ii) if B is positive semide�nite with 0 a simple eigenvalue, then .W; S/ is a�ne,

(iii) ifB has jS j�1 positive and 1 negative eigenvalue, then .W; S/ is hyperbolic,3

or

(iv) none of the above conditions applies.

The irreducible Coxeter system .W; S/ is spherical if, and only if, W is a

�nite group. The classi�cation of spherical and a�ne systems is classical

(cf. [4, Chapter VI]). For a characterisation of hyperbolic Coxeter systems see §3.3.

2.2. The word problem. If S is a �nite set, let S� be the free monoid4 over S ,

equipped with the natural N0-grading degWS� 7! N0, deg.s/ D 1 for all s 2 S ,

and the ShortLex total order with respect to some total order on S (cf. [10, §2.5]).

For s; t 2 S and m 2 N0 let Œs; t; m� 2 S� be the word

Œs; t; m� D
´

.st/m=2 if 2 j m;

.st/
m�1

2 s if 2 − m:

2 For short, we put �
1

D 0.

3 There are several non-compatible notions of hyperbolicity, cf. [8, Note 6.9]. In the present
work “hyperbolic” coincides with Bourbaki’s notion (cf. [4, Chapter V, §4, Ex.13]).

4 Words in S� are denoted in boldface: w D s1s2 : : : sn 2 S�. A subword w
0 of w is either

the empty word 1 or a word of the form w
0 D sisiC1 : : : sk for 1 � i � k � n.
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Let M be a Coxeter matrix over S . The M -operations (or M -moves) on S�

are modi�cations of words of the following types:

M .1/Wv.ss/u 7�! vu; (2.3a)

M .2/WvŒs; r; ms;r �u 7�! vŒr; s; ms;r �u; if ms;r <1: (2.3b)

Let .W; S/ be the Coxeter system of type M , and let �M WS�! W.M/ be the

canonical projection (of monoids). Then, for all w 2 S�,

deg.w/ � `M .�M .w//: (2.4)

A word w 2 S� is called reduced for .W; S/ if equality holds in (2.4).

If w 2 W.M/, there is a unique ShortLex-minimal element �M .w/ 2 S� such that

�M�M .w/ D w. Thus, �M WW.M/! S� is a section of �M , with the additional

property5 that

deg.�M .w// D `M .w/: (2.5)

A word w 2 S� is called M -reduced if its degree cannot be decreased by

applying any �nite sequence of M -operations. If two words w;w0 are connected

by a sequence of M -moves, then they represent the same element in W.M/:

�M .w/ D �M .w0/; (2.6)

and hence reduced words areM -reduced. Moreover, Tits solved the word problem

as follows.

Theorem 2.3 ([27], [4, Chapter IV, §1, Example 13]). Let .W; S/ be the Coxeter
system with Coxeter matrix M .

(i) A word in S� is reduced for .W; S/ if, and only if, it is M -reduced.

(ii) If w;w0 2 S� are reduced words which represent the same element
�M .w/ D �M .w0/ 2 W , then there is a sequence ofM -operations taking w

to w
0, and this sequence entirely consists of M .2/-operations.

Following [2, §3.3 and §3.4], let

RM .w/ D ¹w 2 S� j �M .w/ D w and deg.w/ D `M .w/º
be the set of the reduced words in S� representing w 2 W.M/.

Corollary 2.4. For w;w0 2 S�, and w 2 W.M/ the following hold.

(i) �M .w/ 2 RM .w/.

(ii) If w 2 RM .w/, and there exists a sequence w
M7�! w

0 ofM -moves taking w

to w
0, then w

0 2 RM .w/.

(iii) If �M .w/ D �M .w
0/ and w

0 is reduced, then there exists a sequence of
M -moves

w 7�! w
0:

5 Actually, any section of�M with property (2.5) would su�ce for the purposes of this paper.
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2.5. Poincaré series. Coxeter systems are pairs consisting of a �nitely generated

group W and a �nite, symmetric generating set S , and therefore the machinery

described in §1 applies. In the context of Coxeter systems the growth series is

also known as the Poincaré series p.W;S/.t / of .W; S/. If .W; S/ is spherical

then p.W;S/.t / is a polynomial, which can be explicitly computed in terms of the

degrees of the polynomial invariants of .W; S/, simply known as the degrees of

.W; S/ (cf. [24], [18, Chapter 3]). For arbitrary Coxeter systems, the Poincaré

series can be computed using the following property.

Proposition 2.6 ([25]). Let .W; S/ be a Coxeter system with Poincaré series
p.W;S/.t /. Then

1

p.W;S/.t
�1/
D

X

I2F

.�1/jI j

p.WI ;I /.t /
; (2.7)

where F D F.W; S/. In particular, the Poincaré series p.W;S/.t / is a rational
function.

It is often possible to focus only on irreducible systems.

Lemma 2.7. Let .W1; S1/ and .W2; S2/ be Coxeter systems, and let

.W; S/ D .W1 �W2; S1 t S2/

be their product. Then

!.W; S/ D max¹!.W1; S1/; !.W2; S2/º:

Proof. The factorisation

p.W;S/.t / D p.W1;S1/.t / � p.W2;S2/.t /

holds (cf. [4, Chapter IV, no 1.8 and no 1.9]). Since Poincaré series are series with

non-negative coe�cients and with degree-zero coe�cient equal to one, then

!.W; S/ � max¹!.W1; S1/; !.W2; S2/º:

On the other hand, the product p.t/ of two rational functions p1.t / and p2.t / is

holomorphic at least in the smallest of the open disks centred in zero of radii

�1; �2, where each of the two factors are holomorphic: thus

!.W; S/ D 1

�
� 1

min¹�1; �2º
D max¹!.W1; S1/; !.W2; S2/º: �
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3. The partial order � on the class of Coxeter systems

The core of the proof of Theorem B is the reduction to a �nite set of elementary

veri�cations. The tools which provide this reduction are the partial order � over

the set of (Coxeter-isomorphism classes of) Coxeter systems, the corresponding

monotonicity results, and the �niteness of the set of minimal non-a�ne, non-

spherical Coxeter systems.

Let .W; S/ and .W 0; S 0/ be Coxeter systems with Coxeter matrices M , M 0

respectively. De�ne .W; S/�.W 0; S 0/ whenever there exists an injective map

'WS ! S 0 such that ms;r � m0
'.s/;'.r/

for all s; r 2 S (cf. [22, §6]).

In particular, if .W; S/ and .W 0; S 0/ are Coxeter-isomorphic (cf. §2.1) then

.W; S/�.W 0; S 0/ and .W 0; S 0/�.W; S/. Therefore the preorder � descends to a

partial order on the set of Coxeter-isomorphism classes of Coxeter systems. With

a mild abuse of notation we will avoid the distinction between a Coxeter system

and its Coxeter-isomorphism class.

3.1. Monotonicity properties. The partial order � has the following important

property.

Theorem A. Let .W; S/ and .W 0; S 0/ be Coxeter systems with Coxeter matricesM
andM 0, respectively. Let ak D a.W;S/k

and a0
k
D a.W

0;S 0/

k
be the growth sequences

with respect to the Coxeter generating set. If .W; S/�.W 0; S 0/ then ak � a0
k

for
all k 2 N0.

Proof. Let 'WS ! S 0 be an injective map realising the relation .W; S/�.W 0; S 0/.

Let S 00 D im ' � S 0, letW 00 D hS 00i � W 0, and let .W 00; S 00/ be the corresponding

parabolic subsystem of .W 0; S 0/. Let  WS ! S 00 be given by  .s/ D '.s/ for all

s 2 S . Therefore ' D � ı  , where � is the inclusion S 00 � S 0, and hence one has

.W; S/�.W 00; S 00/�.W 0; S 0/.

Let a00
k
D a

.W 00;S 00/

k
. Since .W 00; S 00/ is a parabolic subgroup of .W 0; S 0/, then

`.W 00;S 00/ D `.W 0;S 0/jW 00 , by (2.2). Hence A
.W 00;S 00/

k
� A.W

0;S 0/

k
, and then

a00
k � a0

k for all k 2 N0: (3.1)

We will now prove that ak � a00
k

for all k. Let M 00 be the Coxeter matrix

of .W 00; S 00/, and let N D .m00
 .s/; .r/

/s;r2S . Since  is a bijection, .W.N/; S/

is Coxeter-isomorphic to .W 00; S 00/, and in particular it has growth sequence

a
.W.N/;S/

k
D a00

k
. Let Bk and BN

k
be the balls of radius k in Cay.W; S/ and

Cay.W.N/; S/, respectively.

By hypothesis ms;r � ns;r for all s; r 2 S , and suppose that N ¤M . Without

loss of generality, assume there exists a unique 2-subset ¹s0; r0º � S such that

ms0;r0 < ns0;r0 . Let m D ms0;r0 and n D ns0;r0 .
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Claim. For all k, the map �k D �N�M jBk
WBk ! BN

k
, where �M and �N are

de�ned as in §2.2, is well de�ned and injective.

Proof of the claim. First, notice that �N�M .Bk/ � BN
k

, since deg.�M .w// D
`M .w/ by (2.5) and `N .�N .�M .w/// � `M .w/ by (2.4). Hence �k is well de�ned.

Suppose v; v0 2 Bk satisfy �k.v/ D �k.v0/ and let w D �k.v/ 2 BNk . Thus

�N�M .v/ D �N�M .v0/ D w D �N�N .w/:

Then, by Corollary 2.4, (iii), there exist sequences of N -moves

�M .v/ 7�! �N .w/ � [ �M .v
0/: (3.2)

Consider �rst the sequence �M .v/ 7�! �N .w/ on the left, and suppose it can be

written as the concatenation of elementary N -moves

�M .v/ D u0

�07�! u1

�17�! u2 7�! : : : 7�!ur

�r7�! urC1 D �N .w/: (3.3)

Assume by contradiction, that there exists some t for which �t is the N .2/-move

�t Wut D u
0Œs0; r0; n�u

00 7�! u
0Œr0; s0; n�u

00 D utC1; (3.4)

hence n < 1, by (2.3). Let t0 be the minimum of such t ’s. Thus, the sequence

of moves �t0�1 ı �t0�2 ı � � � ı �1 ı �0 is a sequence of M -moves transforming

�M .v/ 2 RM .v/ into ut0 . Hence, by Corollary 2.4, (i)–(ii), ut0 2 RM .v/. Since

n > m the word ut0 has a subword of the form Œs0; r0; mC 1�. Therefore one may

apply the M -moves

ut0 D u
0Œs0; r0; mC 1�u00 D u

0s0Œr0; s0; m�u
00

M .2/

7�! u
0s0Œs0; r0; m�u

00 D u
0s0s0Œr0; s0; m � 1�u00

M .1/

7�! u
0Œr0; s0; m� 1�u00 D u

000;

and hence deg.ut0/ > degu000, against the hypothesis that ut0 is (M -)reduced.

This gives the desired contradiction and, thus, noN .2/-move of the form (3.4) can

occur. Since all the remaining N -moves are also M -moves, the sequence (3.3)

only consists of M -moves. An analogous argument applies to the sequence

�M .v
0/ 7�! �N .w/. Hence, the sequences in (3.2) entirely consist of M -moves,

and by (2.6)

v D �M�M .v/ D �M�N .w/ D �M�M .v0/ D v0;

which proves the injectivity of �k. 4
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Let now v 2 A.W;S/
k

� Bk . Then deg.�M .v// D k, and the previous argument

shows that �M .v/ is also N -reduced, therefore `N .�k.v// D `N .�N�M .v// D k.

It follows that the maps

#k D �kjAk
WA.W;S/

k
! A

.W.N/;S/

k

are well de�ned injections, and hence

ak � a.W.N/;S/k
D a00

k for all k 2 N0: (3.5)

This, together with (3.1), completes the proof. �

Theorem A has the following immediate consequence.

Corollary 3.2. If .W; S/ and .W 0; S 0/ are Coxeter systems such that one has
.W; S/�.W 0; S 0/, then

!.W; S/ � !.W 0; S 0/:

3.3. Minimal non-spherical, non-a�ne Coxeter systems. Let X be the set of

(Coxeter-isomorphism classes of) non-a�ne, non-spherical, irreducible Coxeter

systems, and let M D min� X be the set of �-minimal elements of X .

It is well known that hyperbolic Coxeter systems are characterised as those sys-

tems such that every proper irreducible parabolic subsystem is either of spherical

or a�ne type (cf. [4, Chapter V, §4, Example 13]). By minimality, M consists of

hyperbolic Coxeter systems, which are classi�ed in an in�nite family of rank-three

systems, and 72 exceptions of rank jS j � 4 (cf. [18, §6.8 and §6.9]). The in�nite

family consists of the ha; b; ci-triangle groups with 1
a
C 1
b
C1
c
< 1, and among those

only the h2; 3; 7i, h3; 3; 4i and h2; 4; 5i-triangle groups are�-minimal. Among the

72 exceptions, 35 are in M . Therefore,

Proposition 3.4 ([22, Theorem 6.6, Table 5]). jM j D 38.

4. The minimal growth rate of Coxeter groups

Following the notation of [15], let E10 be the Coxeter system with Coxeter graph

�.E10/ D � � � � � � � � �

�
:
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Theorem B. If .W; S/ is a non-spherical, non-a�ne Coxeter system, then its
growth rate satis�es

!.W; S/ � � D 1:138078743 : : : ;

where � is the growth rate of the hyperbolic Coxeter system E10. In particular, �
is the inverse of the smallest positive real root of the denominator of the Poincaré
series pE10

.t / of the Coxeter system E10. Moreover, � is an algebraic integer of
degree 127 over Q, with minimal polynomial

m� .t / D t127 � t125 � t120 C t118 � t116 � t115 C t109 C t106 C t103 C t102

C 2t101 C t100 C t97 C t96 C t91 � t90 � 2t89 � t88 � t87 � t86

� t85 � 2t84 � 2t83 � t82 � 2t81 � 3t80 � t79 � t78 � 2t77 � t76

� t75 � t74 � t72 � t71 C t70 C t69 C 2t67 C 2t66 C t65 C 2t64

C 2t63 C 2t62 C 3t61 C 2t60C 2t59C 3t58 C 3t57 C 2t56 C 2t55

C 2t54 C t53 C 2t52C 2t51C t46 � t45 � 2t44 � t43 � t42 � 2t41

� 2t40 � 2t39 � 2t38 � 2t37 � 2t36 � 2t35 � t34 � 2t33 � 3t32 � t31

� t29 � t28 � t27 C t25 C t22 C t21 C t20 C t19 C t18 C t17

C t16 C t15 C t14 C t13 C t12 � t � 1:

The integer � is a Perron number, i.e., an algebraic integer whose module stricly
exceeds the module of its algebraic conjugates (cf. [19, 20]).

Proof. By monotonicity of the function ! with respect to � (cf. Corollary 3.2)

and by Proposition 3.4, it su�ces to compute !.W; S/ for �nitely many .W; S/.

Moreover, p.W;S/.t / is power series with non-negative coe�cients, and also a

rational function, by Proposition 2.6. Thus, !.W; S/ is the inverse of the minimal,

positive real root of the denominator of p.W;S/.t /. �

Theorem B can be stated in terms of a gap in the set

� D ¹!.W; S/ j .W; S/ Coxeter system º � ¹0; 1º [R�� :

Remark 4.1. (i) The direct veri�cations for the 38 relevant Coxeter systems were

performed with the help of the computational algebra system Magma (cf. [26]).

The code is available at

https://sites.google.com/site/tomterragni/research/computations

(ii) The denominator of pE10
.t / is .t � 1/m��1.t /.

https://sites.google.com/site/tomterragni/research/computations
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(iii) In many cases !.W; S/ is an algebraic integer, and also a Perron number.

It is known that every Perron number � is realised as the Perron–Frobenius

eigenvalue of an aperiodic, non-negative integral matrix P� (cf. [20, Theorem 1]).

Lind’s proof is constructive, however the algorithm given in the proof may produce

a Perron–Frobenius matrix of non-minimal size. It would be interesting to �nd a

minimal-sized Perron–Frobenius matrix for � .

(iv) The Poincaré series of (all but one) exceptional hyperbolic Coxeter sys-

tems are also listed in [7]. In the same paper, some radii of convergence are com-

puted.

(v) It is quite surprising that � is not realised as growth rate of any of the

small rank Coxeter systems, instead it is associated with the Coxeter system

E10. However, the growth rate of one of the �-minimal rank-three hyperbolic

Coxeter groups, namely the one with Coxeter system h2; 3; 7i, is Lehmer’s number

�Lehmer D 1:17 : : : (cf. [16]), and an interesting coincidence occurs. Let

��.W; S/ D inf.¹��.w/ j w 2 W º \R>1/;

where ��.w/ is the spectral radius of the matrix �.w/, and � is Tits’ re�ection

representation.

The number ��.W; S/ represents a universal bound for eigenvalues of ele-

ments in Coxeter groups. Moreover, if .W; S/ is hyperbolic, then log��.W; S/ is

interpreted as a lower bound for the length of non-degenerate, closed hyperbolic

geodesics in the orbifold HjS j�1=W .

McMullen proved that

inf
.W;S/

��.W; S/ D �Lehmer;

the in�mum being taken as .W; S/ runs through the non-a�ne, non-spherical

Coxeter systems (cf. [22]). The in�mum is actually a minimum, and it is attained

exactly for the Coxeter system E10.

It would be interesting to understand this phenomenon.

5. Rigidity and growth

It is well known that there exist non Coxeter-isomorphic Coxeter systems for

which the groups are abstractly isomorphic. For a discussion on the isomorphism

problem for Coxeter groups, see [6, 23, 1], and references therein.
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5.1. Coxeter generating systems. Let G be a group generated by a �nite set of

involutions R � G. ThenM.R/ D .ord.sr//s;r2R is a Coxeter matrix. Let .W;R/

be the Coxeter system with Coxeter matrix M.R/. The identity on R induces

a surjective homomorphism of groups jRWW ! G. Moreover, when jR is an

isomorphism G is a Coxeter group with Coxeter generating system R.

If .W; S/ is a Coxeter system and � is either an inner automorphism or the

automorphism of W induced by a Coxeter automorphism of .W; S/, then �.S/

is another Coxeter generating system, and .W; �.S// is Coxeter-isomorphic to

.W; S/. In general, any inner-by-Coxeter automorphism preserves the Coxeter-

isomorphism type. An automorphism which is not inner-by-Coxeter will be called

exotic.

5.2. Isomorphisms of Coxeter groups. A major problem in the theory of Cox-

eter groups is to �nd all possible Coxeter generating systems of a given a Coxeter

group W . If, for any two Coxeter generating sets R; S of W , the Coxeter sys-

tems .W; S/ and .W;R/ are Coxeter-isomorphic, then W is called rigid. It is well

known that there exist non-rigid Coxeter groups, e.g., for n;m odd there are exotic

isomorphisms

W.I2.2m// ' W.I2.m/ � A1/ and W.Bn/ ' W.Dn � A1/: (5.1)

There are standard procedures which realise exotic isomorphisms between Coxeter

systems, e.g., Brady et al. introduced the diagram twisting (cf. [3, §4] and §5),

and Howlett and Mühlherr introduced a construction, the elementary reductions,
which deal with exotic isomorphisms .W; S/ ! .W;R/ for which the set of

re�ections SW is di�erent from RW (cf. [17]). Reductions generalise the exotic

isomorphisms (5.1).

Several classes of Coxeter groups are known to be rigid, or rigid up to diagram

twisting. For instance, if any of the following conditions is satis�ed for a Coxeter

generating system S of W , then W is rigid up to diagram twisting (cf. [3, 1, 23]).

(i) .W; S/ is right-angled, i.e., ms;r 2 ¹2;1º for all s; r 2 S , s ¤ r ;
(ii) .W; S/ is in�nite and ms;r <1 for all s; r 2 S ;

(iii) .W; S/ can act faithfully, properly and cocompactly on a contractible mani-

fold;

(iv) .W; S/ is skew-angled, i.e., ms;r ¤ 2 for all s; r 2 S ;

(v) �1.W; S/ is a tree, where �1 is the variant of the Coxeter graph de�ned in

[4, Chapter IV, §1, Example 11].

5.3. Mutations of Coxeter groups

De�nition 5.4. Let M be a Coxeter matrix over S , and suppose that there exists

a partition S D X t Y t T tZ and a Coxeter-automorphism � of the subsystem

.WX ; X/ satisfying
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(i) mt;y D1 for all t 2 T and y 2 Y ,

(ii) mz;y <1 for all z 2 Z and y 2 Y , and

(iii) for all z 2 Z and x 2 X one has mz;�.x/ D mz;x .

Then, the 4-tuple .M;X; Y; �/ is called mutable. Associated with a mutable tuple

.M;X; Y; �/ there is a Coxeter matrix �.M;X; Y; �/ D .nr;s/r;s2S , its mutation,

given by

ns;r D nr;s D

8

ˆ

<

ˆ

:

m�.r/;s if r 2 X; s 2 Y;
m�.r/;�.s/ if r; s 2 X;
mr;s otherwise.

(5.2)

If .M;X; Y; �/ is mutable, then .�.M;X; Y; �/; X; Y; ��1/ is mutable and it

is called the inverse mutable 4-tuple since �.�.M;X; Y; �/; X; Y; ��1/ D M .

The relation “N is a mutation of M” is symmetric, and therefore its transitive

closure is an equivalence relation � on Coxeter systems.

Remark 5.5. (i) The partition associated with a mutable tuple .M;X; Y; �/ is

determined by X , Y together with conditions (i)–(ii), and therefore T;Z may be

omitted from the notation.

(ii) Many Coxeter matrices M only admit trivially mutable tuples, i.e., tuples

with � D idX . Even when a non-trivial tuple exists, it may happen that the asso-

ciated mutation is Coxeter-isomorphic to M . If this is not the case, .M;X; Y; �/

is called e�ective.

(iii) The operation of mutation is a generalisation of the diagram twisting

(cf. [3]). Diagram twists are mutations satisfying the additional conditions

(a) WX is �nite, (b) �.x/ D xw0.X/ is the conjugation by the longest element

of WX , and (c) mz;x D 2 for all z 2 Z and x 2 X . E�ective diagram twists

determine exotic isomorphisms of Coxeter groups.

Theorem C. Let .W; S/ be a Coxeter system with Coxeter matrix M , and let
.M;X; Y; �/ be a mutable tuple for .W; S/. Let N D �.M;X; Y; �/, and let
.W 0; S 0/ be the Coxeter system with Coxeter matrix N .

Then there is a bijection

]WF D F.W; S/ �! F.W 0; S 0/ D F
0;

such that .WI ; I / is Coxeter-isomorphic to .W 0
I] ; I

]/ for all I 2 F. Moreover,
if .W; S/ � .W 0; S 0/ then

p.W;S/.t / D p.W 0;S 0/.t /: (5.3)
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Proof. Let S D X t Y t Z t T decompose as in Def. 5.4, and let I 2 F. Since

every edge of a spherical graph must have a �nite label, then either

(a) I � X t T tZ, or

(b) I � X t Y tZ and I \ Y ¤ ;.
Suppose that (a) holds, then de�ne I ] D ¹r] D r j r 2 I º. By (5.2), for r]; s] 2 I ]
on has

nr];s] D nr;s D

8

ˆ

<

ˆ

:

m�.r/;�.s/ if r; s 2 X;
mr;s if r 2 X; s 62 X;
mr;s if r; s 62 X:

Since � is a Coxeter-automorphism of .WX ; X/, then m�.r/;�.s/ D mr;s for

s; r 2 X .

Suppose that (b) holds, then de�ne I ] D ¹r] j r 2 I º, where now

r] D
´

��1.r/ if r 2 X;
r if r 62 X:

(5.4)

Then, for r]; s] 2 I ], by (5.2), (5.4) and Def. 5.4, (iii), one has

nr];s] D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

m�.r]/;�.s]/ D mr;s if r]; s] 2 X;
m�.r]/;s] D mr;s if r] 2 X; s] 2 Y;
mr];s] D m��1.r/;s D mr;s if r] 2 X; s] 2 Z;
mr];s] D mr;s if r; s 62 X:

Hence, NI] and MI determine Coxeter-isomorphic systems. It follows that

I ] 2 F
0 and that (a) holds for I ] if, and only if, (a) holds for I . Thus, the

map I 7! I ] is a map which preserves the Coxeter-isomorphism type, and it

is invertible (its inverse being the ]-map associated to the inverse mutable tuple).

The identity (5.3) then follows from Steinberg’s formula (2.7). �

Corollary 5.6. Suppose that W is rigid up to diagram twisting, and let S;R be
Coxeter generating systems for W (cf. §5.1). Then

p.W;S/.t / D p.W;R/.t / and !.W; S/ D !.W;R/:

Let pW;Cox.t / and !Cox.W / be these common values.

Theorem C implies that e�ective mutations which are not diagram twists can

be regarded as procedures to produce non-isomorphic (and a fortiori, non Coxeter-

isomorphic) Coxeter systems with the same Poicaré series.
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Example 5.7. Consider the rank-seven Coxeter system .W; S/ with Coxeter ma-

trix

M D

0

B

B

B

B

B

B

B

B

@

1 3 3 2 3 4 2

3 1 3 2 3 4 2

3 3 1 2 2 4 3

2 2 2 1 3 3 2

3 3 2 3 1 2 1
4 4 4 3 2 1 3

2 2 3 2 1 3 1

1

C

C

C

C

C

C

C

C

A

:

Let X D ¹s1; s2; s3; s4º, Y D ¹s5º, Z D ¹s6º, T D ¹s7º, and let � D .1; 2; 3/.

Then .M;X; Y; �/ is mutable, with mutation displayed in Fig. 5.1. Moreover,

N D �.M;X; Y; �/ is a proper mutation, i.e., N is not obtained from M by

diagram twisting.

s1

s2

s3s4

s5

s6

s7

4

4
4

1

�

�

s2

s3

s1s4

s5

s6

s7

4

4
4

1

Figure 5.1. A proper mutation.

5.8. A conjecture. Consider the group PGL.2;Z/ ' .C2 � C2/ �C2
S3.

It is well known that PGL.2;Z/ ' W , where .W; S/ is the Coxeter system

h2; 3;1i with Coxeter graph � � �1
. Hence the minimal growth rate satis-

�es !.PGL.2;Z// � !.W; S/ D ˛, where ˛ is the plastic number, with minimal

polynomial m˛.t / D t3 � t � 1. The converse inequality is proven by Bucher and

Talambutsa (cf. [5, §6]).

Therefore, the following problem seems to be of some interest.

Conjecture D. Let W be a Coxeter group rigid up to diagram twisting, and let
!Cox.W / be de�ned as in Corollary 5.6. Then !.W / D !Cox.W /.

Remark 5.9. (i) If W is a product of spherical and a�ne irreducible Coxeter

systems, its Poincaré series depends on the chosen generating set. However, the

minimal growth rate and the growth rate coincide !.W / D !.W; S/ and their

common value is either 0 or 1, depending on the �niteness of the group only.
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(ii) The rigidity hypothesis in Conj. D cannot be relaxed since, in general,

elementary reductions do not preserve the growth rate, as the following example

shows. Let

M D

0

B

B

B

B

@

1 3 2 3 1
3 1 2 2 2

2 2 1 3 2

3 2 3 1 4

1 2 2 4 1

1

C

C

C

C

A

; �.M/ D
s1

s2

s3s4

s5

1
4 :

Then s5 is a pseudo-transposition, corresponding to the parabolic subsystem of

type B3 generated by J D ¹s3; s4; s5º. Let ri D si for i 2 ¹1; : : : ; 4º, let

r5 D s5s4s5 and let r6 D w0.J / D s3s4s3s5s4s3s5s4s5 be the longest element

of the parabolic subsystem .WJ ; J /. Then, R D ¹ri j i 2 ¹1; : : : ; 6º º is a Coxeter

generating system for W.M/ (cf. [17]). Its Coxeter matrix M 0 DM.R/ is

M 0 D

0

B

B

B

B

B

B

@

1 3 2 3 1 1
3 1 2 2 2 2

2 2 1 3 3 2

3 2 3 1 2 2

1 2 3 2 1 2

1 2 2 2 2 1

1

C

C

C

C

C

C

A

; �.M 0/ D
r1

r2

r3r4

r5

r6

1

1

4 :

By direct computation one sees that !.W; S/ D 2:24167 : : : , while !.W;R/ D
2:61578 : : : .
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