Groups Geom. Dyn. 10 (2016), 619-648 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/359 © European Mathematical Society

Maximal subgroups of multi-edge spinal groups

Theofanis Alexoudas, Benjamin Klopsch, and Anitha Thillaisundaram

Abstract. A multi-edge spinal group is a subgroup of the automorphism group of a regular
p-adic rooted tree, generated by one rooted automorphism and a finite number of directed
automorphisms sharing a common directing path. We prove that torsion multi-edge spinal
groups do not have maximal subgroups of infinite index. This generalizes a result of
Pervova for GGS-groups.
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1. Introduction

Branch groups are groups acting spherically transitively on a spherically homo-
geneous infinite rooted tree and having subnormal subgroup structure similar to
the corresponding structure in the full group of automorphisms of the tree. Early
constructions were produced by Grigorchuk [5] and Gupta and Sidki [8], and they
were generalized to so-called GGS-groups. The class of branch groups provides
important and easily describable examples for finitely generated groups of inter-
mediate word growth, or for finitely generated infinite torsion groups; cf. the Gen-
eral Burnside Problem.
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We deal here with multi-edge spinal groups acting on the regular p-adic rooted
tree T, for p an odd prime. A multi-edge spinal group G = {(a, by, ..., b,) is gen-
erated by a rooted automorphism a and a finite number of directed automorphisms
bi,...,by, for some r € {l,..., p — 1}; see Section 3 for details. These groups
generalize GGS-groups, which correspond to the special case r = 1. In particular,
every torsion multi-edge spinal group is an infinite p-group. Moreover we show
that, apart from one possible exception, multi-edge spinal groups are branch; see
Proposition 3.7.

Pervova [11, 12] proved that the Grigorchuk group and torsion GGS-groups do
not contain maximal subgroups of infinite index. Equivalently, these groups do
not contain proper dense subgroups with respect to the profinite topology. On the
other hand — prompted by a question of Grigorchuk, Bartholdi and Sunik [2] —
Bondarenko gave in [3] a non-constructive example of a finitely generated branch
group that does have maximal subgroups of infinite index. Hence we face the
following problem.

Problem 1.1. Characterize among finitely generated branch groups those that
possess maximal subgroups of infinite index and those that do not.

In particular, Bondarenko’s method — by itself — does not apply to groups acting
on the regular p-adic rooted tree 7" that are residually finite-p. It is natural to test
how far Pervova’s results in [12] can be extended and multi-edge spinal groups
form a suitable generalization of GGS-groups.

Theorem 1.2. Let G be a multi-edge spinal group acting on the regular p-adic
rooted tree, for p an odd prime, and suppose that G is torsion. Then every maximal
subgroup of G is normal of finite index p.

As indicated in [12], one motivation for our investigation comes from a conjec-
ture of Passman concerning the group algebra K[G] of a finitely generated group
G over a field K with char K = p. The conjecture states that, if the Jacobson rad-
ical J(K[G]) coincides with the augmentation ideal A(K[G]) then G is a finite
p-group; see [9, Conjecture 6.1]. In [9], Passman showed that if J(K[G]) =
A(K[G]) then G is a p-group and every maximal subgroup of G is normal of
index p. Hence multi-edge spinal groups that are torsion yield natural candidates
for testing Passman’s conjecture. It is important to widen this class of candidates,
as even the Gupta-Sidki group for p = 3 does not satisfy J(K[G]) = A(K[G]);
this follows from [14].

Grigorchuk and Wilson [7] have generalized Pervova’s results in [11] and [12]
by means of commensurability. Two groups are said to be commensurable if
they have isomorphic subgroups of finite index. Let G be as in Theorem 1.2.
From [7, Lemma 1], it follows that whenever G is a subgroup of finite index in a
group H then H does not have maximal subgroups of infinite index. Using this
and [7, Lemma 3] we derive the following consequence of Theorem 1.2.
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Corollary 1.3. Let G be as in Theorem 1.2. If H is a group commensurable with
G then every maximal subgroup of H has finite index in H.

Finally, we remark that most parts of the proof of Theorem 1.2 go through under
the assumption that the group is just infinite and not necessarily torsion. One may
therefore speculate that, in fact, every just infinite multi-edge spinal group has the
property that all its maximal subgroups are of finite index.

2. Preliminaries

In the present section we recall the notion of branch groups and establish pre-
requisites for the rest of the paper. For more details, see [2, 6].

2.1. Theregular p-adic rooted tree and its automorphisms. Let T the regular
p-adic rooted tree, for an odd prime p. Let X be an alphabet on p letters, e.g.,
X =1{1,2,..., p}. The set of vertices of T can be identified with the free monoid
X; in particular, the root of T’ corresponds to the empty word &. For each word
v € X and letter x, an edge connects v to vx. There is a natural length function on
X, and the words w of length |w| = n, representing vertices that are at distance n
from the root, constitute the nth layer of the tree. The tree is called regular because
all vertices have the same out-degree p, and the boundary dT consisting of all
infinite rooted paths is in one-to-one correspondence with the p-adic integers.
More generally, one considers rooted trees that are not necessarily regular, but
spherically homogeneous, meaning that vertices of the same length have the same
degree.

We write T,, for the full rooted subtree of 7 that has its root at a vertex u and
includes all vertices v with u a prefix of v. As T is regular p-adic, for any two
vertices u and v the subtrees T3, and T, are isomorphic under the map that deletes
the prefix u and replaces it by the prefix v. We refer to this identification as the
natural identification of subtrees and write 7}, to denote the subtree rooted at a
generic vertex of level n.

We observe that every automorphism of 7" fixes the root and that the orbits
of Aut(T) on the vertices of the tree T are precisely its layers. Consider an
automorphism f € Aut(7T). The image of a vertex u under f is denoted by
u’. For a vertex u, thought of as a word over X, and a letter x € X we have
(ux)” = u/ x’ where x’ € X is uniquely determined by u and f. This induces a
permutation f(u) of X so that

(ux)’ = u/ x7®.
The automorphism f is called rooted if f(u) = 1 for u # @. Itis called directed,

with directing path £ € 9T, if the support {u | f(u) # 1} of its labelling is infinite
and contains only vertices at distance 1 from .
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The section of f at a vertex u is the unique automorphism f, of T = T,
given by the condition (uv)’ = u/ v/« forv € X.

2.2. Subgroups of Aut(7). Let G be a subgroup of Aut(7) acting spherically
transitively, i.e., transitively on every layer of T. The vertex stabilizer Stabg (u)
is the subgroup consisting of elements in G that fix the vertex u. For n € NN,
the nth level stabilizer Stabg (n) = N)y|=, Stabg (v) is the subgroup consisting of
automorphisms that fix all vertices at level n. Note that elements in Stabg () fix
all vertices up to level n and that Stabg (n) has finite index in G.

The full automorphism group Aut(7’) is a profinite group. Indeed,

Aut(T) = 1(&1 Aut(T,)),
n—>oo

where T[,) denotes the subtree of 7" on the finitely many vertices up to level n.
The topology of Aut(T") is defined by the open subgroups Stabayr)(n),
n € IN. The level stabilizers Stabg (1), n € IN, form a natural family of princi-
pal congruence subgroups for G. The subgroup G of Aut(7T') has the congruence
subgroup property if the profinite topology and the congruence topology on G
coincide, i.e., if for every subgroup H of finite index in G, there exists some n
such that Stabg (n) C H.

Every g € Stabayr)(n) can be identified with a collection gy, ..., gy of
elements of Aut(7,), where p” is the number of vertices at level n. Indeed,
denoting by uy, ..., upn the vertices of T at level n, there is a natural isomorphism

" n
Stabayr) (1) = ]‘Lzl Aut(Ty,) = Aut(T,) x ¥ x Aut(Ty,).

Since T is regular, Aut(7},) is isomorphic to Aut(7") after the natural identification
of subtrees. Therefore the decomposition g = (g1, . .., gp») defines an embedding

V' Stabaury(n) — ]_[f’=1 Aul(T,,,) 2= Aut(T) x - x Aut(T).

We write UMG for the restriction of the vertex stabilizer Stabg (1) to the subtree
rooted at a vertex u. Since G acts spherically transitively, the vertex stabilizers at
every level are conjugate under G. We write U for the common isomorphism
type of the restriction of the nth level vertex stabilizers, and we call it the nth upper
companion group of G. We say that G is fractal if every upper companion group
US coincides with the group G, after the natural identification of subtrees.

Next, the subgroup Rstabg (1), consisting of all automorphisms in G that fix
all vertices v of T not having u as a prefix, is called the rigid vertex stabilizer of
u in G. For a vertex u € T, we write Rstabg (1), for the restriction of the rigid
vertex stabilizer to the subtree rooted at u. The rigid nth level stabilizer is the
product

Rstabg (n) = [ Rstabg (u;) < G
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of the rigid vertex stabilizers of the vertices u;,...,upn at level n. Since G acts
spherically transitively, the rigid vertex stabilizers at each level are conjugate un-
der G. The common isomorphism type L& of the nth level rigid vertex stabilizers
is called the nth lower companion group of G.

2.3. Branch groups. More generally, we recall that a spherically homogeneous
infinite rooted tree T = T is constructed over a sequence of alphabets X, X», ...
with |X;| = m; > 2, where m = (m,);2, is a sequence of natural numbers, in
such a way that all vertices at the same level n — 1 have the same out-degree m,,.
In the case of a regular p-adic rooted tree, for p an odd prime, the branching
sequence is constant: m = (p, p, ...).

Definition 2.1 ([6]). A group G is a branch group, if there is a spherically
homogeneous rooted tree T = T, with branching sequence m = (m,)5>,, and
an embedding G < Aut(7’) such that

(1) the group G acts transitively on each layer of the tree;

(2) for each level n there exists a subgroup L, of the automorphism group
Aut(T,) of the full subtree 7, rooted at a level n vertex such that the direct
product

H, = Lf,l) X oee X LS,N”) < Stabayyr)(n), where L,(,j) >~ L,,

of N, = ]_[:.’=1 m; copies of L, is normal and of finite index in G.

There exists an alternative and more intrinsic algebraic definition, which
can also be found in [6]. For a fixed embedding G < Aut(7T), the pair
((Ln)y2,, (Hp)o2,) is called a branch structure. If G is branch then a ‘standard’

branch structure is given by ((L$)%,, (Rstabg (n))%2,). Thus condition (2) of
the definition means that all rigid level stabilizers Rstabg (n) are of finite index

in G.

3. Multi-edge spinal groups

Let T be the regular p-adic rooted tree, for an odd prime p. The vertices of T can
be identified with words over an alphabet X of size p; sometimes it is convenient
to label them explicitly by finite sequences in {1,..., p}. Let £ = (/,);2, be an
infinite path in T starting at the root, with /,, = x; ---x, where x1,...,x, € X.
Foreveryn > 1and y € X \ {x,}, we denote by s, , the immediate descendants
of [,—1 not lying in £. The doubly indexed family S = (s5,))n,, is a multi-edge
spine in T. Recall that Aut(7T) acts transitively within the layers of 7', and in
particular, on the boundary d7. Hence, conjugating by an element of Aut(7),
we may choose, for simplicity, the spine to be associated to the rightmost infinite
path (&, up, upp, .. .) starting at the root vertex of the tree.
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3.1. Construction of multi-edge spinal groups. By a we denote the rooted
automorphism, corresponding to the p-cycle (12 ... p) € Sym(p), that cyclically
permutes the vertices uy, ..., u, of the first level. Recall the coordinate map

Y1 Stabauyr) (1) = Aut(Ty,) x -+ x Aut(Ty,) = Aut(T) x -*- x Aut(T).
Given r € IN and a finite r-tuple E of (Z/ pZ)-linearly independent vectors
e = (ei1,€i2,...,eip1) € (Z/pZ)P"", ie{l,....r}
we recursively define directed automorphisms by, ..., b, € Stabayyr)(1) via
Y1(b;) = (@1, a2, ..., a% P b;), i€{l,...,r}.

We call the subgroup G = Gg = (a, by, ..., b;) of Aut(T) the multi-edge spinal
group associated to the defining vectors E. We observe that (a) = C, and
(b1,...,by) = C, are elementary abelian p-groups.

By choosing only one vector

e=(e1,....ep—1) € (Z/pZ)P~"
and defining an automorphism b of Aut(7") via
Yi(b) = (@', ...,a°?= ', b)

we obtain the GGS-group G) = (a,b) corresponding to the defining vector e.
For instance, the Gupta-Sidki group for the prime p arises by choosing e =
(1,-1,0,...,0); see [8].

3.2. General properties of multi-edge spinal groups. The proof of the follow-
ing result is straightforward; details may be found in [1].

Proposition 3.1. Let G be a multi-edge spinal group. Then every section of every
element of G is contained in G. Moreover, G acts spherically transitively on the
tree T and G is fractal.

The next theorem, adapted to the present context, gives necessary and sufficient
conditions for a multi-edge spinal group to be periodic.

Theorem 3.2 ([6, 15]). Let Gg = {(a,b1,...,b;) be a multi-edge spinal group
corresponding to an r-tuple of defining vectors E = (e;)!_,. Then G is an infinite
p-group if and only if for every e; = (e 1,...,¢€i p—1),

p—1
> € =0 (modp).
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The next lemma shows: by a ‘change of coordinates’, we can arrange that
e1,1 = 1 in the defining vector e; of a multi-edge spinal group Gg.

Lemma 3.3. Let G = Gg be a multi-edge spinal group. Then there exists
an automorphism f € Aut(T) of the form f = fofi = fi1fo, where fo
is a rooted automorphism corresponding to a permutation x € Sym(p) and
f1 € Stabg (1) with Y11 (f1) = (f. ..., f), such that G/ = Gg = (a,b1,...,by)is
a multi-edge spmal group generated by the rooted automorphlsm a and dzrected

automorphisms by = b{, by = b satisfying V1 (b;) = (a%-1, ..., a%r—1,b;)
Jorie{l,....r}withe;; = 1.
Proof. Since the defining vectors ey, ..., e, for G are linearly independent over

7./ pZ., each e; satisfies

e =(¢1,....€,p-1) Z0 (mod p).

In particulare; # 0 (mod p). Without loss of generality, assume thate; = k for

some k € {1,..., p— 1}; otherwise we replace b; by a power of itself. Then there
exists some / € {1,..., p— 1} such that k/ = 1 (mod p). Define a permutation
7w € Sym(p)by xm = Ix, where x € {1, ..., p}represents a vertex in the first level

of the tree T. Observe that x7~! = kx forall x € {1,..., p}. We consider the
automorphism f = fy f1 = fi fo € Aut(T), where f is a rooted automorphism
corresponding to the permutation 7 € Sym(p) and f; € Stabg (1) is given by

vilf)=(,.... f)
Setd = (a¥)/ = (a¥)/0. Then, forall x € {1,..., p},

x4 = xf0 4" o = (kx)d fo = (kx +k)T0 = (kx+k) = x+1=x* (mod p).

Hence @ = a. It follows that a = (a¥)” = (a/)¥, implying a/ = a'.
Setting b; = (b;) fori € {1,...,r}, we obtain
= (f7N L Y@k, ek, abiktr L aiek b (fo, f)

—— ——
1™ resp. (I + 1)™ coord.

= (ale’?k, .. .,alei~1’—k,l;,~).

In particular, é;,1 = le; x = Ik = 1 (mod p). Thus f as defined above has the
required properties. t

In preparation for Proposition 3.5 we establish the following lemma.

Lemma 3.4. Let Gg = (a, by, ..., b;) be a multi-edge spinal group associated to
an r-tuple E with r > 2. Then there exists an r-tuple of defining vectors E such
that Gy is conjugate to Gy by an element f € Aut(T) as in Lemma 3.3 and the
Jollowing hold:
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(1) ;1 =1 (mod p) foreachi €{1,...,r};
Q) ifr =2and p = 3, thené; = (1,0),&, = (1, 1);
) ifr =2and p > 3, then either
(a) foreachi € {1,2} there exists k € {2, ..., p — 2} such that

Cik—18i k41 # €7y (mod p),
or
(b) €, =(1,0,...,0,0),&, = (1,0,...,0,1);
4) ifr = 3 then foreachi € {1,...,r} there exists k € {2,..., p — 2} such that
8ik—18ik+1 # €7 (mod p).
Proof. We split the proof into two cases: r > 3 and r = 2.

Casek 1. Suppose r > 3. Observe that p > 5 and consider the r x (p — 1)-matrix

€1,1 el,p_l

€21 ... €2p-1
M(E) =

er’l e er,p_l

encoding the defining vectors for the group Gg. By Lemma 3.3, we may assume
that e; ; # 0. Using elementary row operations, we transform M (E) into reduced
row-echelon form:

1 a; am 0 *x ... x 0 =x *
0 O 0O 1 % ... %= 0 =% *
O 0 ... 0 00 ... 01 % ... %
where m > 0, ay,...,a, € Z/pZ and the symbols * denote other, unspecified

elements of Z/ pZ.. Adding the st row to all other rows, we obtain

1 a9 ... an 0 x ... % 0 =x *
- 1 a9 ... anp 1 = ... % 0 x ... x%
ME)=]| . . : : : : - (3.1
1 ai ... ap, 0 % ... x 1 *x ... x%
The row operations that we carried out yield a new set of generators for (b1,.. ., b;),

corresponding to an r-tuple E of defining vectors that are encoded in the rows
of M(E).
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Leti € {1,...,r} and consider the ith row of M (E). We identify two patterns
which guarantee that the ith row satisfies the condition in (4):

(* ... x xy0 % ... %), (A)
(% ... %*x 0y x % ... %), B)

where x,y € Z/pZ with y # 0 and the symbols * again denote unspecified
elements. Observe that, if the patterns (A) and (B) do not appear in the ith
row, then the row does not have any zero entries at all or must be of the form
(%0 ... 0 %).

Suppose first that 2 < i < r — 1. In this case the i th row contains at least one
zero entry and cannot be of the form (x 0 ... 0 *). Hence the pattern (A) or (B)
occurs.

Next suppose that i = r and assume that patterns (A) or (B) do not appear. As
r > 3 the rth row contains at least one zero entry and consequently has the form
(10 ... 01). Changing generators, we may replace the rth row by the rth row
minus the 2nd row plus the 1st row, yielding

(10 ... 0 =1 % ... % 1) (3.2)

with m zeros between the entries 1 and —1. If m > 0 then pattern (B) occurs in
this new row. Suppose that m = 0. Then the row takes the form

(1 =1 % ... % 1). (3.3)
For the condition in (4) to fail, we would need the row to be equal to
(I -1 1 —-1...1-1)

with the final entry being —1 as p — 1 is even. This contradicts (3.3).

Finally, suppose thati = 1. Similarly as above, we assume that patterns (A)
and (B) do not occur. Since it contains at least one zero entry, the 1st row is of the
form

(1 0 ... 0 %) (3.4)

and we change generators as follows. Generically, we replace the 1st row by the
Ist row plus the 2nd row minus the 3rd row. Only if r = 3 and we already changed
the rth row as described above, we replace the 1st row by 2 times the 1st row minus
the 3rd row. In any case, this gives a new 1st row:

(1 0 ... 01 % ... x —1 % ... %)

with m zeros between the entries 1 and 1. If m > 0 then pattern (B) occurs.
Suppose that m = 0 so that the new row takes the form

(L 1 % ... % =1 % ... ). (3.5)
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For the condition in (4) to fail, the row would have to be of the form (1 1 ... 1)
contradicting (3.5).

Caske 2. Suppose r = 2. The statement in (2) for p = 3 can clearly be achieved
by a simple change of generators. Now we suppose that p > 3. By Lemma 3.3,
we may assume that e1 ; # 0. Using elementary row operations, we transform the
2 x (p — 1)-matrix M(E) encoding the defining vectors into reduced row-echelon

form
1 a 0b
0 0 1 c)
where at most one of (§) or () could be the empty matrix. Further row opera-

tions, corresponding to multiplication on the left by (i JZ’), where y,z € Z/pZ
with y £ z are to be specified below, yield

~ (1 a y b+yc
M(E)_(l a z b+zc) (3.:6)

encoding an r-tuple E of defining vectors for a new set of generators.
First suppose that a = 0 is not empty and zero. If b = () then

~ (1 0 ... 0y
wB=(1 570 )
leads to (3)(b). Otherwise, if b # (), we choose y = 1 and z = —1 (mod p),
yielding pattern (B) in both rows so that the condition in (3)(a) holds.
Next suppose that a = (ay ... a,) # 0 is not empty and non-zero. Suppose
further that the truncated rows (1 a y), (1 a z) do not yet satisfy the condition

in (3)(a). Then pattern (B) does not occur in these and a cannot have any zero
entries. Consequently, there exists A € Z/ pZ \ {0} such that M (E) is of the form

~ 1 A A2 .0 A™ oy % . %
M(E)_(l A A2 A" ok L. *)

As p > 3, we can choose y,z € Z/pZ with y # z and y,z # A1 (mod p) so
that the condition in (3)(a) is satisfied.
Finally suppose that a = (). Then

= (1 y bi+ycr * ... %
M(E)_(l z bi4+zer x ... %

for suitable by, ¢1 € Z/ pZ. We can choose y, z € Z/ pZ with y  z such that
y2# by +yc; and z?># by +zc; (mod p),

because quadratic equations have at most two solutions and p > 3. Once more,
the condition in (3)(a) is fulfilled. O



Maximal subgroups of multi-edge spinal groups 629

The next result mimics [4, Lemma 3.2], which applies to GGS-groups. We
remark that there are no new exceptions, in addition to the GGS-group

§={a,b) with yY1(b) =(a,a,...,a,b), 3.7

arising from a constant defining vector (1,..., 1).

Proposition 3.5. Let G = (a, by, ..., b,) be a multi-edge spinal group that is not
conjugate to G in Aut(T'). Then

Y1(y3(Stabg (1)) = y3(G) x ¥+ x y3(G).
In particular,
y3(G) x ¥+ x y3(G) € ¥1(y3(G)).
Proof. From v (Stabg (1)) € G x -*- x G, we deduce that

¥1(y3(Stabg (1)) € y3(G) x ¥+ x y3(G),

and so it suffices to prove the reverse inclusion. For r = 1, the result has been
proved in [4, Lemma 3.2]. Hence suppose that r > 2. For convenience, we prove
the result in the isomorphic setting given by Lemma 3.4. That is, since

¥1(y3(Stabg (1)) = 1 (y3(Stabg (1))7) = ¥1 (y3(Stabg + (1))

and
(3(G) x -+ x y3(G))T = y3(GT) x -+ x y3(G7),

for f as in Lemma 3.4, we may assume that y;(b;) = (a%1,...,a% »=1 b;)
with e;; = 1, fori € {1,...,r}, and that the additional assertions (2), (3), (4)
of Lemma 3.4 hold. Moreover, by Proposition 3.1 the group G acts spherically
transitively, hence it suffices to show that

73(G) x 1 x -+ x 1 C Y1 (y3(Stabg (1)).

We divide the argument into two cases.

Casek 1. Suppose (r, p) # (2,3). By Proposition 3.1, the group G is fractal. Since
v3(G) = ([a, b;i,a],[a,bi,b;] | 1 <i,j <r)Y, it suffices to construct elements in
y3(Stabg (1)) whose images under v yield

(la,bi,a],1,....1) and ([a,b;,b;],1,...,1), 1<i,j<r.
First suppose thati € {1,...,r} withe; ,—; =0 (mod p). Then

Y1(b;) = (a,a®2,...,a%r=2,1,b;).
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Noting that [bi,b;‘] = (x,1,...,1,%) for j € {1,...,r}, where the symbols *
denote unspecified entries and the second * equals O if j = i, we deduce that

V(6. b}, bi]) = (la. bi.al. 1,.... 1),

Yi([bi. b7, b)) = ([a. bi. bi]. 1..... 1),
and for j € {1,...,r} with j #£ i,

Vi([bi, b, b)) = (la, bi, bj], 1,..., 1),

Yi([bi, b7, b)) = ([a, bj. bi]. 1,.... 1).

Next suppose thati € {1,...,r} withe; ,—; # 0 (mod p). By properties (3)
and (4) in Lemma 3.4, there exists k € {2,..., p—2} suchthate; x_je; x+1 # eik
(mod p), apart from an exceptional case which only occurs for r = 2 and which
we deal with separately below. Set

g = (bR e

so that 5
V1(gik) = (@Cix™ k=1l ek 1),

Since eik —ejk—1€ik+1 7 0 (mod p), there is a power g; of g; x such that
V1(gi) = (a,*,...,x,1).
Additionally, since
Yr (b (")) = (ba e kL x 1),
with the help of g; we get an element 4; € Stabg (1) such that
Yi(hi) = (bi, *,...,%,1).
Consequently, we obtain
vi([bi, b, gi]) = (la, bi,al, 1,...,1),
V1([bi, b, hi]) = ([a, bi, bi], 1, ..., 1),
and for j € {1,...,r} with j # i,
Vi([bi, bi, hi]) = ([a,b;, bi], 1,..., 1),
and
Yi([bi. b hj]) = (la. bi. byl 1,.... 1) ifejp1 #0,
V1([bi, b, b)) = (la, bi, b;], 1,...,1) ifejp—1 = 0 (as in the previous part).

Thus we have constructed all necessary elements.
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It remains to deal with the exceptional case which occurs only for r = 2, and
hence p > 3. According to property (3)(b) in Lemma 3.4 we have

er=(1,0,...,0), e =(1,0,...,0,1),

so that
blz(a,l,...,l,l,bl), bzz(a,l,...,l,a,bz).

We simply replace g in the above argument by bgz = (a,by,a,1,...,1),and then
proceed similarly.

CAsE 2. Suppose (r, p) = (2,3). Here G’ = y2(G) = ([a, b1]. [a. b])¢ and as
(aba.bya™") = (b3, baa™") = (a.by).

we have

y3(G) = ([a. b1.al.a. by, b1]. [a. by, ba). [a. ba, bi]. [a. by, aby]. [a. by, baa™'])€.

By property (2) in Lemma 3.4, we may assume e; = (1,0) and e; = (1,—1) so
that
wl(bl) = (d, 1,b1) and Wl(bz) = (Cl,a_l,bz).

Arguing as in the previous case, it suffices to manufacture, in addition to the
elements already constructed there, elements of y3(Stabg (1)) whose images under
Yy are ([a, by, aby], 1,1) and ([a, by, boa™ '], 1, 1). We compute

Y1 (bab§) = (aby. 1.bpa™") and Wl(bgbgz) = (bra ' aby, 1),
yielding
wl([bz,bg,bgbgz]) = ([a, by, bra™ '], 1, 1),
Y53 bg. bab§D) = ([a, bz, abal 1. 1), D
The following consequence paves the way to proving branchness.

Proposition 3.6. Let G be a multi-edge spinal group that is not Aut(T)-conjugate
to the GGS-group G in (3.7). Then y3(G) < Rstabg (u),, for every vertex u of T,
after the natural identification of subtrees.

Proof. Let u be a vertex of T at level n. We inductonn. If n = Othenu = @ is
the root vertex and the claim holds trivially. Now suppose that n > 0. Writing u
asu = vy, where v is a vertex at level n — 1 and y € X, we conclude by induction
that y3(G) € Rstabg (v),. By Proposition 3.5,

y3(G) x £ x y3(G) € ¥1(y3(G)) C ¥1 (Rstabg (v))
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so that, in particular,
Ix--x1xy3(G)x1x---x1C ¢ (Rstabg(v)y),

where y3(G) is located at position u in the subtree T, rooted at v. Hence y3(G) C
Rstabg (u),,. O

Proposition 3.7. Let G be a multi-edge spinal group that is not Aut(T )-conjugate
to the GGS-group G in (3.7). Then G is a branch group.

Proof. In view of Proposition 3.1 it suffices to show that every rigid level stabilizer
Rstabg (n) is of finite index in G. The nilpotent quotient G/y3(G) is generated by
finitely many elements of finite order and hence finite. Thus y3(G) has finite index
in G. By Proposition 3.6, the image of Rstabg () under the maps v, contains
the direct product of p” copies of y3(G). Since the image of any level stabilizer
Stabg () under the injective map v, is contained in the direct product of p” copies
of G, we deduce that Rstabg (n) is of finite index in Stabg (n) and hencein G. O

Theorem 3.8 ([6, Theorem 4]). A branch group G with branch structure
((Lp)yZy, (Hu)SZ,) is just infinite if and only if for each n > 1, the index of the

n=1"
commutator subgroup L), in L, is finite.

Corollary 3.9 ([6, Section 7]). Every finitely generated, torsion branch group G
is just infinite.

Proof. As G is branch, L, = L,? is of finite index in G. Hence L, is a finitely
generated torsion group and L, /L), is finite abelian. O

We do not know a proof that the GGS-group G in (3.7) is not branch. From
properties that were established in [4] we derive the following result.

Proposition 3.10. The GGS-group G in (3.7) is not just infinite.

Proof. Write G = § = (a, b) with ¥, (b) = (a,...,a.b), and put K = (ha=")%.
From [4, Section 4] we have that

(1) |G : K| = pand K’ = ([(ba~")?, ba='])¢ < Stabg(1);

(2) |G/K’Stabg (n)| = p"*! for every n € N withn > 2.

Hence K’ is a non-trivial normal subgroup of infinite index in G. O
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What about just infinite multi-edge spinal groups that are not torsion? For
p > 5, itis shown in [6, Example 7.1] that the non-torsion group G = {(a, b) with
Y1(b) = (a,1,...,1,b) is just infinite, and more generally in [6, Example 10.2]
that G = (a, b) with ¥1(b) = (a®',a®2,...,a%~4,1,1,1,b) where e; # 0 is just
infinite. For the latter example, when ) 7, =_14 e; # 0 (mod p), then the group is
non-torsion.

Now let G be the multi-edge spinal group with defining vectors e; of the form
(ei,1.€i2....,€i p—2, € p—1) satisfying e; ; # 0 (mod p) and e; p—3 = €; p—2 =
ei,p—1 = 0 (mod p) for every i € {1,...,r}. Asin [6, Example 10.2], it can be
shown that G is just infinite, and furthermore when Zj-’ ;f ei,; # 0 (mod p) for at
leastonei € {1,...,r}, then G is non-torsion. It is not always the case that the last
three entries of the defining vectors are to be zero. For example, the non-torsion
multi-edge spinal group G withe; 1 = e; p—> = e€; ,—1 = 0(mod p)ande; » # 0
(mod p) is likewise just infinite.

4. Theta maps

Here we determine the abelianization G/ G’ of a multi-edge spinal group G. Then
we define a natural length function on elements of the commutator subgroup G’'.
Akin to Pervova’s work [12], we introduce two theta maps ©1, ®,: G’ — G’ which
are key to establishing that all maximal subgroups of G are of finite index. We
prove that the length of every element of the commutator subgroup of length at
least 3 decreases under repeated applications of a combination of these maps. Our
use of two theta maps, instead of one as in [12] allows us to significantly simplify
the calculations.

4.1. Abelianization of multi-edge spinal groups. Recall that every element g
of the free product Fryep I') of a family of groups (I'y)iea can be uniquely
represented as a reduced word in Lijea Dy, ie., a word g = g1g2- - gn, Where
ne€NU{0}, Ar,...., A4y € AwithA; # A forl <i <n-—1,and1 # g; € ['y,
foreachi € {1,...,n}.

Let G = Gg = {(a,b1,...,b,) be a multi-edge spinal group acting on the
regular p-adic rooted tree 7', for an odd prime p. Here E is the r-tuple of defining
vectors €; = (ej.1,...,¢€;,p—1),fori € {1,...,r}.

In order to study G/ G’ we consider

H =(a,by,....by |a? =bP =...=b" =1, and @.1)
<

[bAi,Bj] =1forl
. l;,) of a cyclic group (a) =~ C, and an elementary

the free product (@) * (by,
.»by) = Cj. There is a unique epimorphism =: H — G

by
abelian group (151, .. ,13,
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such that a — a and Bi — b; fori € {l,...,r}, inducing an epimorphism from
H/H' =~ {(a) x (131, .. .,l;r) ~ le“ onto G/G’. We want to show that the latter
is an isomorphism; see Proposition 4.3 below.

Let h € H. As discussed, each & can be uniquely represented in the form

h=as- B pPryas . asm - (BPrm .. pPrmy . gt (4.2)
where m € NU {0} and s1, ..., 8m+1, B1.1+ - - -» Brm € Z/ pZ with
si #0 (mod p) fori € {2,...,m},
and for each j € {1,...,m},

Bi,j #0 (mod p) foratleastonei € {1,...,r}.

We denote by d(h) = m the length of h, with respect to the factor (151, e b
Clearly, for iy, h, € H we have

d(h1hz) < 3(h1) 4 9(h2). (4.3)

In addition, we define exponent maps

m+1
ealh) =) _ s €Z/pZ (4.42)
and
m
gl;i(h)=zj=1,3,~,, €Z/pZ forie{l,....r} (4.4b)
with respect to the generating set a, by,....by.

The surjective homomorphism
H — (Z/pZ) x (2] pZ)", h+— (ea(h).ep (h).....&; (h)) 4.5)

has kernel H’ and provides an explicit model for the abelianization H/H'.
The group L(H) = (b1, ..., b,)H is the kernel of the surjective homomorphism

H —7/pZ, hv+— ¢gz(h).
Each element # € L(H) can be uniquely represented by a word of the form
h= @) - @)™, (4.6)

where m € N U {0} and t,,...,t,, € Z/pZ with t; # t;4; (mod p) for
jef{l,...,m—1},and for each j € {1,...,m},

& = b0 bPr e by, b\ (1) 4.7)
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Let o denote the cyclic permutation of the factors of H x-?-x H corresponding
to the p-cycle (12 ... p). We consider the homomorphism

®:L(H)— H x-* xH
defined by
O(h3"y = (@1, a% =1 b)) fori €{l,....r}k € Z/pZ.

Lemma 4.1. Let H be as above, and h € L(H) with ®(h) = (hy,...,hp). Then
b d(hi) < 3(h), and d(hi) < T2 for each i € {1,..., p}.

Proof. Suppose that / is of length d(h) = m as in (4.6). For each j € {1,...,m}
the factor (¢ j)&tj in (4.6) contributes to precisely one coordinate of ® (%) a factor
¢; and to all other coordinates a power of a. Therefore Y-7_, d(h;) < m.
Nowleti € {1,..., p}. The maximum length in the i th coordinate occurs when
h;i is of the form ¢.a*Cx ...a*¢. with m factors, where the symbols * represent
suitable indices or exponents. Therefore d(h;) < [m/2]. O

The following proposition provides a recursive presentation for a multi-edge
spinal group. It can be extracted from a result of Rozhkov [13]; a self-contained
proof for multi-edge spinal groups is included in [1].

Proposition4.2. Let G = (a, by, ..., b;) be a multi-edge spinal group, and H as
in (4.1). Consider the subgroup K =\ J,—, K of H, where

Ko={1} and K, = q>_1(Kn_1 XX Kp_1) forn>1.
Then K € L(H) = (131,...,13,)H, and K is normal in H. Moreover, the

epimorphism w: H — G given by @ + a, b; +— b;, fori € {l1,...,r}, has
ker(w) = K. In particular, G =~ H/K.

Next we describe the abelianization of a multi-edge spinal group.

Proposition 4.3. Let G = (a, by, ..., by) be a multi-edge spinal group, and H as
in (4.1). Then the map H — (Z,/ pZ) x (Z.) pZ)" in (4.5) factors through G/ G'.
Consequently,

G/G'=~ H/H =~ C]*.

Proof. Below we prove that
o '(H'x2.-xH')<H'. (4.8)

Let K = (JpyooKn < L(H) be as in Proposition 4.2 so that the natural epi-
morphism 7: H — G has ker(xr) = K, and G =~ H/K. From (4.8), we de-
duce by induction that K,, < H’ for all n € IN U {0}, hence K < H’ and
G/G'~ H/H'K = H/H'.
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It remains to justify (4.8). Consider an arbitrary element 2 € L(H) as in (4.6)
and (4.7). We write ®(h) = (hy,...,hp). Fori e {1,...,r}and k € {1,..., p},
let 813i,k(h) be the sum of exponents B; ;, j € {1,...,m} with t; = k, so that
€p, (hy) = €p, «(h). It follows that for eachi € {1,...,r},

e, () =Y Bii = e =D e ). (@49)

Now suppose that 7 ¢ H’. From (4.5) and ¢;(H) = 0 we deduce that
€5, (h) #£ 0 for at least one i € {1,...,r}. Thus (4.9) implies that €, (hg) £ 0

for some k € {1,..., p}and ®(h) & H' x .2. x H'. Therefore (4.8) holds. O

As above, let G = {(a, by, ..., b;) be amulti-edge spinal group,and7: H — G
the natural epimorphism with H as in (4.1). The length of g € G is

d(g) = min{d(h) | h € =7 (g)}.

Based on (4.3), one easily shows that for g1, g> € G,

d(g182) < 9(g1) + 9(g2). (4.10)

Moreover, using Proposition 4.3 we may define £,(g). €p,(g). .. ., €5,(8) € Z/ pZ
via any pre-image i € 77! (g):

(€a(8). €, (8). - - - ep,(8)) = (ea(h). &5 (h),....e5 (). (4.11)

We record the following direct consequences of Lemma 4.1.

Lemma 4.4. Let G be a multi-edge spinal group as above, and g € Stabg (1) with

V1(8) = (&1, 8p). Then X0_, 0(gi) < 0(g), and d(g:) < [*E7 for each
ied{l,...,p}
In particular, if d(g) > 1 then 0(g;) < d(g) for everyi €{l,..., p}.

4.2. Length reduction. We continue to consider a multi-edge spinal group
G = Gg = {a,by,...,b;) acting on the regular p-adic rooted tree T, for an
odd prime p. Here E is the r-tuple of defining vectors ¢; = (e; 1, ..., e; p—1), for
i € {1,...,r}. In preparation for the investigation of maximal subgroups of G,
we introduce in the present section two length decreasing maps ®1, ©,: G’ — G'.
Based on Lemma 3.3, we assume thate; ; = 1. Also, let

n=max{j €{l,....p—1}]ey; #0 (mod p)}.

Generically, we have n > 2, while the exceptional case n = 1 corresponds to
by of the form v (b1) = (a,1,...,1,by). The special case n = 1 will be dealt
with slightly differently in what follows, and it only applies to a specific family of



Maximal subgroups of multi-edge spinal groups 637

groups. We remark that, if G is torsion, then Theorem 3.2 automatically yields
n>2.
Clearly,
G = (la.b]|ie{l,....r})°

is a subgroup of
Stabg (1) = (by,....b,)°.

Every g € Stabg (1) has a decomposition

v1(g) = (g1,---. &p),

where each g; € Uqu =~ G is an element of the upper companion group acting on

the subtree rooted at a first level vertex u;, j € {1,..., p}, and we define
@j: Stabg (1) — Aut(Ty;), ¢;(g) = gj- (4.12)
It is customary and useful to write (g1, ..., gp) in place of g € Stabg (1) to carry

out certain computations.

We are interested in projecting, via ¢,, the first level stabilizer Stabps (1) of
a subgroup M < G, containing b; and an ‘approximation’ az € aG’ of a, to
a subgroup of Aut(7y,). Writing ¥1(z) = (z1,...,zp) and conjugating b; by
(az)~!, we obtain

—1 -1
b = (z-(a.a®2,....a® " by) -z
_ _ — -1 _
= (@1 (@ 2)7" . (@) b )
_ e1.2y25 ! el p—1\Zp2 zt o
= ((a®*»)*2 ,...,(a )r=1,b," ,a*1 ).
Therefore :
- —1
o0\ ) =a* =ala. 27

and this motivates us to define
01:G' — G, 01(z) =[a,z{"].

The map ©, is obtained similarly. As e, # 0, we find k € Z/pZ such that
kei, =1 (mod p). Writing é;,; = ke ; for j € {1,..., p — 1}, we obtain by
induction on p — n that

(bIIC)(aZ)P—" _ (Z—l . (aE” N aél.n—l .a, a51~”+1, o aE‘!P_‘ , b]f)a . Z)(gz)l’—n—l

= ((bllc)zl’ (aEI.l)Zz’ o (aél,n—l)zn’azn+1’ _— *)(az)l’—"—l

= (*7 e *1 aZnJ,-lZn—‘,-Z’"Zp)’
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where the symbols * represent unspecified components. Therefore
0, (B5) " ™Y = 4175 — ala 2y e2)]
and this motivates us to define
02:G'— G', Ox(z) =[a,znt1...2p)]

To deal with the case n = 1, we define € to be the family of all multi-edge
spinal groups G = (a, by, ..., b;) that satisfy

Y1(br) = (a,1,...,1,b1),
ei1 =1 (mod p) foreveryi € {1,...,r}, (4.13)
ei,p—-1 #0 (mod p) for atleastone i € {1,...,r}.

We remark that, by Theorem 3.2, there are no torsion groups in €.

Theorem 4.5. Let G = (a,by,...,b;) be a multi-edge spinal group acting
on the regular p-adic rooted tree T, for an odd prime p. Suppose G is not
Aut(T)-conjugate to a group in E. Then the length d(z) of an element z € G’
decreases under repeated applications of a suitable combination of the maps ©,
and ®, down to length 0 or 2.

Proof. Let z € G'. We observe that d(z) # 1; see Proposition 4.3. Suppose that
d(z) =m > 3. Then z € G’ C Stabg (1) has a decomposition

Yi(z) = (21, ..., 2p).
From Lemma 4.4 and (4.10) we obtain d(z;) < [%] for j € {1,..., p} and
d(z1) + 0(zZn41-+-2p) < m.
If (z1) < % then 3(®1(z)) < m, and likewise if d(zp+1---2p) < 75 then
9(®,(z)) < m. Hence we may suppose that m = 2u is even and
d(z1) = 0(zn41---2p) = .
We write z,, 11 -+ -z, as

S1 K

a .Cl.asz.....aﬂ.cu.asu+l’

where si,...,5,+1 € Z/pZ with s; # 0 (mod p) fori € {2,...,u} and
Cly....cy € (b1,...,b;) \ {1}, and distinguish two cases. To increase the read-
ability of exponents we use at times also the notation s(i) = s;.
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Cask 1. Suppose 5,41 = 0 (mod p). Expressing
@2(2) — [a’ Zn41-t 'Zp] — [a’ aSlclaS2 .. .asﬂ«cu]

as a product of conjugates of the cl.jEl by powers of a and relabelling the cl.jEl as ¢
for j € {l,...,m}, we get

gl s . c_a1+S(M)+“‘+S(2) — gSW)+-+s5(2) — g5

Oa(z) = 8- a S e 28 G (4.14)

Consider now
V1(02(2)) = (©2(2))1. - .., (02(2))p).
If 0((®2(2))1) < w then ®1(0,(z)) has length less than m. Hence we suppose

I((O2(2))1) = .

Using the symbol * for unspecified exponents, we deduce from (4.14) that the
first components (Ej“*)l forodd j € {1,...,m—1} mustbe non-trivial elements of
(b1,...,by), and the (Ej“*)l foreven j € {2,...,m—2} mustbe non-trivial powers
of a. In particular, looking at the (7n — 1)th term we require s, = 1 (mod p). This
implies that the second factor in (4.14) is 62"2.

In the special case n =1, ¢; ,—1 = 0 (mod p) foreveryi € {1,...,r} and so
we immediately get a contradiction, because (52“2)1 contributes a trivial factor 1
to (®,(z)); instead of a non-trivial power of a.

In the generic case n > 2 we claim 9((®2(2))n+1---(O2(2))p) < K,
leading to 9(®,(®,(z))) < m. Indeed, only factors c'j“* in (4.14) for even
j € {2,...,m} can contribute non-trivial elements of (by,...,b;) to the prod-
uct (02(2))n+1--+(©2(2)),. But since n > 2, the second factor 52‘12 in (4.14)
contributes only a power of a.

CAsE 2. Suppose s;,+1 # 0 (mod p). Similarly as in Case 1, we write

@2(2) _ c_1al+S(u+l) . c_2al+S(u+l)+s(u) . C_',?,S_(;H_l)—i_x(m . c_rZS(u-H) ’ (4‘15)
where the cl.jEl are relabelled as ¢; for j € {1,...,m}. As before, it suffices to
show that ((©2(2))1) < p or 3((O2(2))n+1 -+ (O2(2))p) < .

Suppose d((®2(z))1) = . Then either

@) (c'j“*)l forodd j € {1,...,m — 1} is a non-trivial element of (by,...,b,),
and (Ej“*)l foreven j € {2,...,m — 2} is a non-trivial power of a; or
(ii) (c'j”*)l for even j € {2,...,m} is a non-trivial element of (b1, ..., b,), and

(c'ja*)l forodd j € {3,...,m — 1} is a non-trivial power of a.
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In case (i), we deduce from the (m — 1)th term in (4.15) that
Su+1+ s, =1 (mod p),
and the second term in (4.15) is equal to 52"2. We may argue as in Case 1 that

I((O2(2))n+1-++(O2(2))p) < p so that 3(02(02(z2))) < m.
In case (ii), we deduce from the mth term in (4.15) that

Su+1 =1 (mod p),
and the first term in (4.15) is Efz. In the generic situation n > 2 we argue similarly

as in Case 1 that 0((®2(z2))n+1---(O2(2))p) < w so that (O2(0,(z))) < m.
It remains to deal with the special situation » = 1, which makes use of the fact

that the defining vectors satisfy e; ,—; = 0 for every i € {1,...,r}. Form > 6
the argument follows as before. For m = 4, proceeding similarly, we obtain
B,(z) = Efzc"z“ ¢3¢y, 50 (O2(z))1 = ba“c for some b,c € (by,...,b,) and

w € Z/ pZ. Thus subject to relabelling,
©1(04(2)) = e e " . (4.16)

As before, for 3(01(05(z))1) = 2, we need (53“*)1 to be a non-trivial element of
(b1,...,b;) and (52"*)1 to be a non-trivial power of a. Looking at the third term

of (4.16), we require w = —1. However, then 52“2 contributes a trivial factor 1
to ®1(®2(z)); instead of a non-trivial power of a. Hence we see that the length
decreases, as required. |

5. Maximal subgroups

In the present section we prove Theorem 1.2 about maximal subgroups of torsion
multi-edge spinal groups. Asin [12], it is convenient to phrase part of the argument
in terms of proper dense subgroups with respect to the profinite topology.

5.1. Dense subgroups. We recall that the cosets of finite-index subgroups of a
group G form a base for the profinite topology on G. The group G contains max-
imal subgroups of infinite index if and only if it contains proper dense subgroups
with respect to the profinite topology. Indeed, a subgroup H of G is dense with
respect to the profinite topology if and only if G = NH for every finite-index
normal subgroup N of G. Therefore every maximal subgroup of infinite index in
G is dense and every proper dense subgroup is contained in a maximal subgroup
of infinite index.
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For the rest of the section, we fix a just infinite multi-edge spinal group

G = Gg = {(a,b1,...,b,) acting on the regular p-adic rooted tree 7', for an
odd prime p. Here E is the r-tuple of defining vectors ¢; = (e; 1, ..., e; p—1), for
i €{l,...,r}. Foravertex u of T, we write

G, =USf =G

to denote the upper companion group at the vertex u. Every subgroup M of G
gives rise to a subgroup
M, =UM <G, =G.

Proposition 5.1 ([12, Proposition 3.2]). Let T be a spherically homogeneous
rooted tree and let G < Aut(T) be a just infinite group acting transitively on
each layer of T. Let M be a dense subgroup of G with respect to the profinite
topology. Then

(1) the subgroup M acts transitively on each layer of the tree T,

(2) for every vertex u € T, the subgroup M, is dense in G, with respect to the
profinite topology.

The next result extends [12, Lemma 3.3], which addresses just infinite GGS-
groups. Here we give a different and shorter proof for just infinite multi-edge
spinal groups.

Proposition 5.2. Let G be a just infinite multi-edge spinal group. Let M be a
proper dense subgroup of G, with respect to the profinite topology. Then M,, is a
proper subgroup of Gy, for every vertexu of T.

Proof. Assume on the contrary, that there exists a vertex u of 7 such that
M, = Gy. Let u be a vertex of minimal length n with the specified property,
and suppose ¥ = wx where |[w| = n— 1. By Proposition 5.1 and induction, M, is
a proper dense subgroup of G,. Since G, is isomorphic to G, we have |u| = 1,
say u = u; among the vertices uy,...,u, atlevel 1.

Let R = Rstabys(u),. By our assumption, we have R < M,, = G,,. Since
G, = G is just infinite, either R has finite index in G, or R is trivial.

Suppose first that R has finite index in G,. Then

|G : M| < |G : Rstaby(1)|
= |G : Stabg (1)] | Stabg (1) : Rstabys (1)]

14 14
< |G : Stabg (1)| “_L-=1 Gu, [T, Rstabas ),
< |G : Stabg(1)| |Gy : R|?

is finite. But, being a proper dense subgroup, M has infinite index in G.
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Hence R is trivial, and so Rstaby (1) is trivial. Thus
|G/ Rstabg (1)| > |M/ Rstabps (1)| = |M |

is infinite.

By Proposition 3.10, the group G is not Aut(7")-conjugate to the GGS-group G
in (3.7). Hence Proposition 3.7 shows that G is a branch group. Thus Rstabg (1)
has finite index in G, a contradiction. O

Proposition 5.3. Let G = (a, by, ..., b;) be ajust infinite multi-edge spinal group
and M a dense torsion subgroup of G, with respect to the profinite topology.
Foreachi € {1,...,r}, there is a vertex u of T and an element g € Stabg (u)
acting on Ty, as a* for some k € 7./ pZ under the natural identification of T,
and T, such that

i Mmé#), = (Mu)”k is a dense torsion subgroup of G, = G,

(ii) there exists b € (by,...,b,) with ey, (b) # 0 such that b € (Mu)”k.

Proof. Clearly, it suffices to prove the claim for i = 1. Assuming that there are u
and k such that (ii) holds, then as G,, = G there exists g € Stabg (1) satistying (i).
Hence it suffices to show that such u and k exist.

Since |G : G'| is finite, G’ is open in the profinite topology. Thus we find
x € M NbG'. In particular, x € Stabg (1) with &5, (x) # 0 (mod p). We argue
by induction on d(x) > 1.

First suppose that d(x) = 1. Then x has the form x = b@*, where
b e (by,...,by) withep (b) #0 (mod p)andk € {0,1,..., p—1}. Thus choos-
ing the vertex u to be the root of the tree T', we have b € (Mu)“_k.

Now suppose that d(x) > 2. Recall from (4.4) and (4.11) the definition of
&p, (x), and from (4.12) the definition of the maps ¢;: Stabg (1) — Gy;, where
Ui, ..., up denote the first level vertices of 7. For any vertex u of T, the subtree
T, has a natural identification with T and G,, = G. We freely use the sym-
bols a, by, ..., b, to denote also automorphisms of 7, under this identification.
We claim that

€by (P1(X)) + -+ + £, (9p(x)) = £, (x) #0  (mod p). (S.D

To see this, write x as a product of conjugates bf‘* of the directed generators
bi, i € {1,...,r}, by powers a*, where the symbol * represents unspecified
exponents. Then &5, (x) is the number of factors of the form bf*. Each of
these factors contributes a directed automorphism b7 in a unique coordinate, and
none of the other factors bg*, e b;‘* contributes a b; in any of the coordinates.
Hence (5.1) holds.
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By (5.1), there exists j € {l,..., p} such that g, (¢;(x)) # 0 (mod p).
Moreover, Lemma 4.4 shows that

(gj (x)) = [0(x)/2] = (3(x) +1)/2 < 3(x). (5.2)

Suppose that X = ¢;(x) € M,; belongs to Stabg,; (1), where we write
u(j) = u; for readability. By Proposition 5.1, the subgroup M, is dense in
Gy, = G. Since gp, (%) # 0 (mod p) and 9(¥) < d(x), the result follows by
induction.

Now suppose that ¢; (x) & Stabg,, ;, (1). For £ € {1,..., p} we claim that

u(Jj)
&b, (9e(9j (X)7)) = €p,(¢j (x)) 0 (mod p). (5.3)
To see this, observe that ¢; (x) is of the form
¢;(x) = d*h,
for k # 0 (mod p) and & € Stabg,,;, (1) with Y1 (h) = (h1,..., hp), say. Hence
raising ¢; (x) to the prime power p, we get
(07 = (@ny? = p" " R g,
and thus for £ € {1,..., p},
0@ (x)?) = hihy---hy (mod G,,).

Here u;; denotes the {th descendant of u;. Arguing similarly as for (5.1), this
yields

e, (9e(@j (X)P)) = ep, (h1) + -+ + ep, (hp) = €5, (h) = €p,(¢j(x)) (mod p)

and (5.3) holds.
Furthermore, we claim that

(@i (X)P)) = (g;(x)) < I(x). (5.4)

The second inequality comes from (5.2). To see that the first inequality holds, we
note that

0e(0; ()?) = oo (h®" ™) - e (W ) (),

and d(¢; (x)) = d(h). We write & as a product of (&) conjugates cj‘.’* of directed
automorphisms ¢; € (b1, ..., b;), where the symbol * represents unspecified ex-
ponents. Each factor c]‘.‘* contributes a directed automorphism ¢; in a unique co-
ordinate and powers of « in all other coordinates. Focusing on the £th coordinate,
we can write ¢y (¢;(x)?) as a product of powers of a and the d(h) directed auto-
morphisms ¢; € (by,...,b,). Hence (5.4) holds.
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If x = @u(pj(x)?) € My, belongs to Stabg,,,, (1), we argue as follows.
By Proposition 5.1, the subgroup My, is dense in G,;, = G. Since ¢, (X) # 0
(mod p) and d(X) < d(x), the result follows by induction.

In general, we apply the operation y + ¢;(y#) more than once. Since M is
a torsion group, x € Stabys (1) and ¢; (x) have finite order. Clearly, if y € G has
finite order then ¢, (y?) has order strictly smaller than y. Thus after finitely many
iterations, we inevitably reach an element

¥ = e @eoe (@ (X)P)P)P - )P) € My, ,

which in addition to the inherited properties e, (X) # 0 (mod p) and 9(X) < d(x)
satisfies X € Stabg,,;,..,, (1). As before, the proof concludes by induction. O

Recall the definition of the family € of groups by means of (4.13).

Proposition 5.4. Let G = (a, by, ..., b;) be a multi-edge spinal group. Suppose
G is not Aut(T)-conjugate to a group in E. Let M be a dense subgroup of G, with
respect to the profinite topology, and suppose that by € M. Then there exists a
vertexu of T and an element g € Stabg (1) actingon Ty, asd € {(by, ..., b;) under
the natural identification of T,, and T, such that

({) (M®), = (My)? is a dense subgroup of G, = G,

(i) a,b; € (My,)%.

Proof. Akin to the proof of Proposition 5.3, it suffices to establish the existence
of u and d such that (ii) holds. Observe that G’ is open in G. Since M is dense
in G, there is z € G’ such that az € M. Write ¥1(z) = (z1,. .., zp).

Let u, denote the pth vertex at level 1. The coordinate map ¢, allows us
to restrict Stabps (1) to M,,,. Clearly, by € M implies by = ¢,(b1) € My,.
Based on Lemma 3.3, we assume that the defining vector e; for »; has first
coordinate e;;; = 1. Consider the theta maps ®;, ®, defined in Section 4.2,
with reference to b;. By their definition, a ®1(z) and a ©,(z) belong to M,,,.
Moreover, repeated application of ¢, corresponds to repeated applications of ©;
and ®,. By Proposition 5.1 and Theorem 4.5, we may assume that d(z) € {0, 2}.
If d(z) = 0 we are done (with d = 1).

Thus we may assume that d(z) = 2 and we write z = p=a" ca" for
b,ce(by,....b)\{l}and m,k € Z/pZ with m # k.

Caske 1. Suppose m,k # 1. Here z; = a¥ for some w € Z/pZ. Thus
O1(z) =la,z7' 1 =[a.a™™] =1,and a € My,,.
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Cask 2. Suppose m = 1, k # 1. Here

Ui(h™) = (b %, ....%) and Y1) = (@Y%, *,..., %),

where w € Z/pZ and the symbols * denote unspecified entries. Hence z; =
b~a¥ so that ©1(z) = [a,z]!] = [a, b]. This gives a O1(z) = b~ 'ab. Remem-
bering that b, and » commute, we obtain a, b; € (Mup)b_l.

Cask 3. Suppose m # 1,k = 1. Here
Ui(b™") = (@¥, *,...,%x) and Y1(c?) = (¢, *,...,%),

where w € Z/ pZ and the symbols % denote unspecified entries. Hence z; = a%¢
so that ©(z) = [a,z]'] = @ e Ifw % —1 (mod p), we are back in
Case 1 or Case 2.
Suppose that w = —1 (mod p). Then ®;(z) = ¢® ¢4, where
@ = (),¢,%,...,%) and ¢ 9= (c"L % ..., %)
and the symbols * denote unspecified powers of a. We recall from the definition of
0, that in the generic case n > 2 this gives ©»(®1(z)) = 1, hence a, by € My,
where up, is the p?th vertex at level 2. In the special case n = 1 we have
®1(0®1(z)) = [a, c]. In this case we proceed similarly as in Case 2. O

Proposition 5.5. Let G be a just infinite multi-edge spinal group. Suppose G is
not Aut(T)-conjugate to a group in €. Let M be a dense torsion subgroup of G,
with respect to the profinite topology. Then there exists a vertex u of T such that
M, =G, =0G.

Proof. We first remark that for a vertex u of T and g € G,
(Mg)ug =Gy &= M, =G,. (5.5

Now by Proposition 5.3, there exists a vertex u; of 7 and g € Stabg(u;)
such that x; € (M?8),, with x; € (b1,...,b;) and &p,(x1) # 0. We modify
our generating set of directed automorphisms, by taking by = x; instead of b;.
Using (5.5) we may assume, without loss of generality, that b; € M,y,.

By Proposition 5.4, there exists a vertex u;v of Ty, and h € Stabg (u;v) with
a, 151 € (Mh)ulv. Once more by (5.5), we may assume that a, 151 € My,v.

Applying Proposition 5.3 again, we see that there exists k € Z/pZ and a
vertex ujvuy of Ty, such that x, € (Mulvuz)”k with x, € (El,bz, ...,b;) and
ep,(x2) # 0. Note that &5, is now defined with respect to the new generating
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set 151, by, ..., b, of directed automorphisms. Since a, 151 € My, ., it follows that
a,by € M,y vu,; recall Proposition 3.1 with respect to the multi-edge spinal group
(a,lEl). In particular, (Mulvuz)“k = My, vu,. Hence, replacing b, by 152 = Xa,
we obtain a, 151,152 € My, vu,. Continuing in this manner, we arrive at a vertex
U =UVUy Uy suchthata,El, .. .,5, € M, where a,l51, .. .,l5r is a generating
set for G,,. O

Theorem 5.6. Let G = (a, by, ..., b,) be a just infinite multi-edge spinal group.
Suppose G is not Aut(T)-conjugate to a group in €. Then G does not contain any
proper dense torsion subgroups, with respect to the profinite topology.

Proof. Suppose on the contrary that M is a proper dense torsion subgroup of
G, with respect to the profinite topology. By Proposition 5.2, for every vertex
u € T we have M,, is properly contained in G,,. However, by Proposition 5.5, the
subgroup M, is all of G = G,,. This gives the required contradiction. |

Since € does not contain any torsion groups and every torsion multi-edge
spinal group is a p-group, Theorem 1.2 is a direct consequence of Theorem 5.6.
We finish by proving Corollary 1.3.

Proof of Corollary 1.3. Suppose that G = Gg = (a, by, ..., b;), the multi-edge
spinal group associated to some defining vectors E. By Theorem 1.2, all maximal
subgroups of G have finite index. Since G is residually finite and just infinite,
its chief factors are finite. Hence [7, Lemma 3] shows that, if K is a subdirect
subgroup of some direct product G x --- x G of copies of G, then all maximal
subgroups of K are of finite index.

Let H be a group commensurable with G, and fix a finite index subgroup L
of H that is isomorphic to a finite index subgroup K of G. Fori € {1,...,r},
we write G; = (a,b;) for the GGS-subgroup of G, generated by a and b;.
By [10], each of these GGS-groups G; has the congruence subgroup property.
Since K N G; has finite index in G;, there is m; € IN such that

Stabg, (m;) € K N G; € K.

Since Stabg, (m;) is subdirect in G; x 2T x G;, we conclude that the group

Stabg (m) is subdirect in G x ?-- x G for m = max{m; | 1 <i <r).

As observed above, this implies that all maximal subgroups of Stabg (m) are
of finite index. Since Stabg () has finite index in K and L = K has finite index
in H, we deduce from [7, Lemma 1] that all maximal subgroups of H have finite
index. O
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Alexoudas’ Ph.D. thesis [1].
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