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1. Introduction

The aim of this paper is threefold.

1) To extend the main Theorems of [13], [14] (which prove the existence and

structure of Cannon–Thurston maps for surface groups without acciden-

tal parabolics) to Kleinian groups corresponding to pared manifolds whose

boundary is incompressible away from cusps.1 This is the content of Theo-

rem 3.8.

2) To give a considerably shorter and more streamlined proof of the main step

of [11]. This is the content of Theorem 3.4.

3) To generalize a reduction Theorem of Klarreich [9] to the context of relative

hyperbolicity. This is the content of Theorem 3.1.

The main tool, Theorem 3.1, is a “reduction Theorem” ((3) above) which

allows us to deduce the existence and structure of Cannon–Thurston maps for the

inclusion of one relatively hyperbolic metric space into another, once we know

� This paper is part of Shubhabrata Das’ Ph.D. thesis written under the supervision of Mahan
Mj.

�� The �rst author is partly supported by a CSIR Junior Research Fellowship.
��� Research of second author partially supported by a Department of Science and Technology

Research grant.

1 A considerably more elaborate and somewhat clumsier proof had been sketched in an earlier
version of [13]. This proof has been excised from the present version of [13].
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the existence and structure of Cannon–Thurston maps for inclusions of certain

relatively quasiconvex subspaces into ends. The exact statement of Theorem 3.1

is somewhat technical. Su�ce to say, this is the appropriate relative hyperbolic

generalization of inclusions of geometrically �nite hyperbolic 3-manifolds Mgf

into degenerate hyperbolic 3-manifolds N h such that

a) the inclusion of a boundary component Sgf of Mgf into the end Eh of N h

it bounds is a homotopy equivalence.

b) Each Sgf is incompressible in Mgf .

We give the main application below.

Theorem 3.8. Suppose that N h 2 H.M; P / is a hyperbolic structure on a pared

manifold .M; P / with incompressible boundary @0M . Suppose further that N h

is not doubly degenerate. Let Mgf denotes a geometrically �nite hyperbolic

structure adapted to .M; P /. Then the map i W eMgf ! fN h extends continuously

to the boundary O{W bMgf ! cN h.

Let @i W @ eMgf ! @ fN h be the resulting Cannon–Thurston map extending

i W eMgf ! fN h. Then @i.a/ D @i.b/ for a ¤ b if and only if .a; b/ 2 R, where

R is the smallest closed equivalence relation containing the equivalence relations

generated by lifts of the ending laminations to eMgf .

The last statement is informally abbreviated by saying that the Cannon–

Thurston map identi�es precisely the end-points of leaves of the ending lamina-

tions. (Note that we have to pass to the transitive closure to get a precise statement.)

It is curious that the doubly degenerate case (dealt with in [13, 14]) is the single

exceptional case not amenable to the techniques of this paper.

The last step of the programme of proving the existence of Cannon–Thurston

maps for arbitrary �nitely generated Kleinian groups and describing their structure

is dealt with in [12].

Acknowledgments. The authors would like to thank the referee for a careful

reading and detailed and helpful comments and also for pointing out a gap in an

earlier draft.

2. Background

2.1. Relative hyperbolicity and quasiconvexity. Let .X; d/ be a path metric

space. A collection of closed subsets H D ¹H˛º of X will be said to be

uniformly separated if there exists D > 0 such that d.H1; H2/ � D for all distinct

H1; H2 2 H.



Semiconjugacies between relatively hyperbolic boundaries 735

De�nition 2.1 (Farb [6]). The electric space (or coned-o� space) E.X;H/ corre-

sponding to the pair .X;H/ is a metric space which consists of X and a collection

of vertices v˛ (one for each H˛ 2 H) such that each point of H˛ is joined to (coned

o� at) v˛ by an edge of length 1
2
. The sets H˛ shall be referred to as horosphere-

like sets and the vertices v˛ as cone-points.

X is said to be weakly hyperbolic relative to the collection H if E.X;H/ is a

hyperbolic metric space.

De�nition 2.2. A path  is an electric geodesic (resp. electric K-quasigeodesic)

if it is a geodesic (resp. K-quasigeodesic) in E.X;H/.

 is said to be an electric K-quasigeodesic in (the electric space) E.X;H/

without backtracking if  is an electric K-quasigeodesic in E.X;H/ and  does

not return to any horosphere-like set H˛ after leaving it.

Let i W X ! E.X;H/ denotes the natural inclusion of spaces. Then for a path

 � X , the path i./ lies in E.X;H/. Replacing maximal subsegments Œa; b� of

i./ lying in a particular H˛ by a path that goes from a to v˛ and then from v˛

to b, and repeating this for every H˛ that i./ meets we obtain a new path O .

If O is an electric geodesic (resp. P -quasigeodesic),  is called a relative geodesic

(resp. relative P -quasigeodesic). Paths (resp. geodesics or quasigeodesics) in X

shall be referred to as ambient paths (resp. geodesics or quasigeodesics). As above,

an ambient path is said to be without backtracking if it does not return to any

horosphere-like set H˛ after leaving it. We shall usually be concerned with the

case that  is an ambient geodesic/quasigeodesic without backtracking.

De�nition 2.3. Relative P -quasigeodesics in .X;H/ are said to satisfy bounded

region penetration if there exists B D B.P / so that for any two relative

P -quasigeodesics without backtracking ˇ,  , joining x; y the following two con-

ditions are satis�ed.

S imilar Intersection Patterns 1 . if precisely one of ˇ;  meets a horo-

sphere-like set H˛, then the length of this path (measured in the intrinsic path-

metric on H˛) from the �rst (entry) point to the last (exit) point (of the relevant

path) is at most B .

Similar Intersection Patterns 2. if both ˇ;  meet some H˛ then the

distance (measured in the intrinsic path-metric on H˛ ) from the entry point of ˇ

to that of  is at most B; similarly for exit points.

Replacing “P -quasigeodesic” by “geodesic” in the above de�nition, we obtain

the notion of relative geodesics in .X;H/ satisfying bounded region penetration.

Families of paths which enjoy the above properties shall be said to have similar

intersection patterns with horospheres.



736 Sh. Das and M. Mj

De�nition 2.4 (Farb [6]). X is said to be hyperbolic relative to the uniformly

separated collection H if

1) X is weakly hyperbolic relative to H;

2) for all P � 1, relative P -quasigeodesics without backtracking satisfy the

bounded penetration property.

Elements of H will be referred to as horosphere-like sets.

Gromov’s de�nition of relative hyperbolicity [7]

De�nition 2.5 (Gromov). For any geodesic metric space .H; d/, the hyperbolic

cone (analog of a horoball) H h is the metric space H � Œ0; 1/ D H h equipped

with the path metric dh de�ned by

1) dh;t ..x; t /; .y; t // D 2�tdH .x; y/, where dh;t is the induced path metric on

H �¹tº. Paths joining .x; t /; .y; t / and lying on H �¹tº are called horizontal

paths

2) dh..x; t /; .x; s// D jt � sj for all x 2 H and for all t; s 2 Œ0; 1/, and the

corresponding paths are called vertical paths;

3) for all x; y 2 H h, dh.x; y/ is the path metric induced by the collection of

horizontal and vertical paths.

De�nition 2.6. Let X be a geodesic metric space and H be a collection of

mutually disjoint uniformly separated subsets of X . The space X is said to be

hyperbolic relative to H in the sense of Gromov, if the quotient space G.X;H/,

obtained by attaching the hyperbolic cones H h to H 2 H by identifying .z; 0/

with z for all H 2 H and z 2 H , is a complete hyperbolic metric space. The

collection ¹H hW H 2 Hº is denoted as Hh. The induced path metric is denoted

as dh.

We shall refer to G.X;H/ as the Gromov cone for the pair .X;H/.

Theorem 2.7 (Bowditch [3]). The following are equivalent:

1) X is hyperbolic relative to the collection H of uniformly separated subsets

of X ;

2) X is hyperbolic relative to the collection H of uniformly separated subsets

of X in the sense of Gromov;

3) G.X;H/ is hyperbolic relative to the collection Hh.

De�nition 2.8. Let X be hyperbolic relative to the collection H. We call a set

W � X relatively K-quasiconvex if

1) W is hyperbolic relative to the collection W D ¹W \ H W H 2 Hº and

2) E.W;W/ is K-quasiconvex in E.X;H/.

W � X is relatively quasiconvex if it is relatively K-quasiconvex for some K.
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Ends. Let Y be hyperbolic rel. H. Now let B D ¹B˛º; ˛ 2 �, for some indexing

set �, be a collection of uniformly relatively quasiconvex sets inside Y . Here

each B˛ is relatively quasiconvex with respect to the collection ¹B˛ˇ º, given by

B˛ˇ D B˛ \ Hˇ . We also assume that the sets Hˇ are uniformly D-separated.

De�nition 2.9. Let Y be hyperbolic relative to the collection H and X be strongly

hyperbolic with respect to a collection J. A map i W Y ! X is strictly type-

preserving if

1) for every H 2 H, i.H/ � JH for some JH 2 J and

2) for every J 2 J, i�1.J / D ; or i�1.J / D HJ for some HJ 2 H.

A map of path-metric spaces is a length-isometry if it preserves lengths of

paths.

De�nition 2.10. A strictly type-preserving length-isometric inclusion i W Y ,! X

of relatively hyperbolic metric spaces is said to be an ends-inclusion if the follow-

ing conditions are satis�ed.

1) There exist collections J D ¹Jˇ º, H D ¹Hˇº such that X is hyperbolic rel. J

and Y is hyperbolic rel. H (note that ˇ ranges in the same indexing set).

2) There exists a collection B D ¹B˛º; ˛ 2 �, of relatively quasiconvex subsets

of Y . Each B˛ is relatively quasiconvex with respect to the collection ¹B˛ˇ º

given by B˛ˇ D B˛ \ Hˇ .

3) There exists a collection F D ¹F˛ � Xº; ˛ 2 �, of relatively quasiconvex

subsets of X (thought of as ends of X), such that B˛ D F˛ \ Y , 8˛ and

X D Y [ ¹
S

˛ F˛º. We also have the inclusion maps i˛W B˛ ! F˛ .

4) Each F˛ is strongly hyperbolic relative to the collection ¹F˛ˇ D F˛ \ Jˇ º.

5) If H0 is the subcollection of elements H 2 H such that H \ F˛ D ; for

all F˛ , then J D H0 [
S

˛;ˇ ¹F˛ˇ º.

We let H1 D H n H0.

Remark 2.11. It might be useful here to keep the motivating example of a pared

hyperbolic 3-manifold N with incompressible boundary (cf. De�nition 2.22 be-

low) in mind. We give an informal sketch of the setup to �x notions. In this situa-

tion, there exists a geometrically �nite manifold M and an embedding i W M ! N

such that N n M consists of �nitely many products of the form S � Œ0; 1/ for S

a �nite area hyperbolic surface. Then X (resp. Y ) in De�nition 2.10 corresponds

to the universal cover of N (resp. M ). The lifts of the S � ¹0º’s correspond to

¹B˛º. The lifts of the cusps of the S � Œ0; 1/’s correspond to ¹F˛ˇ º. There might

be cusps in M which have no curves parallel to the cusps of the S � ¹0º’s. Lifts

of such cusps correspond to H0. Finally, the lifts of the cusps of the S � ¹0º’s

correspond to H1.

M is often referred to as the relative Scott core of N .
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Remark 2.12. Note that the ends-inclusion i W Y ,! X induces an isometric

embedding O{WE.Y;B/ ! E.X;F/. Further, every point of E.X;F/ is within

bounded distance (in fact distance 1
2
) of the image of E.Y;B/. The points of

E.X;F/ not in the image of E.Y;B/ correspond precisely to points of F˛ n i˛.B˛/

for some ˛. It follows that for any electric geodesic (resp. P -quasigeodesic) � in

E.Y;B/, O{.�/ is an electric geodesic (resp. P -quasigeodesic) in E.X;F/.

Lemma 2.13. [3] Let X be a hyperbolic metric space and let B be a collection

of uniformly separated uniformly quasiconvex sets. Then X is weakly hyperbolic

relative to the collection B.

Let X be a ı-hyperbolic metric space, and B a family of C -quasiconvex,

D-separated, collection of subsets. Then by Lemma 2.13 (see also [6]),

Xel D E.X;B/ obtained by electrocuting the subsets in B is a (� D �.ı; C; D/)-

hyperbolic metric space. Now, let ˛ D Œa; b� be a hyperbolic geodesic in X and

ˇ be an electric P -quasigeodesic without backtracking joining a; b. Replace each

maximal subsegment, (with end-points p; q, say) starting from the left of ˇ lying

within some H 2 H by a hyperbolic geodesic Œp; q�. The resulting connected path

ˇea is called an electro-ambient path representative in X .

Note that ˇea need not be a hyperbolic quasigeodesic. However, the proof of

Proposition 4.3 of Klarreich [9] gives the following. (See [13, Lemma 2.5] for a

proof of the forward direction. The converse direction follows directly from the

proof of [9, Proposition 4.3].)

Lemma 2.14. Given ı, C; D; P there exists C3 such that the following holds.

Let .X; d/ be a ı-hyperbolic metric space and H a family of C -quasiconvex,

D-separated collection of quasiconvex subsets. Let .X; de/ denote the electric

space obtained by electrocuting elements of H. Then, if ˛; ˇea denote respectively

a hyperbolic geodesic and an electro-ambient P -quasigeodesic with the same end-

points, then ˛ lies in a (hyperbolic) C3 neighborhood of ˇea.

Conversely, given a hyperbolic geodesic ˛, there exists an electro-ambient

P -quasigeodesic ea lying in a (hyperbolic) C3 neighborhood of ˛.

We shall abbreviate this as: Hyperbolic geodesics lies hyperbolically close

to electro-ambient representatives of electric geodesics joining their end-points.

Conversely, given a hyperbolic geodesic there is an electro-ambient quasigeodesic

lying close to it.

A word of clari�cation here regarding the hypotheses of Lemma 2.14. D-sep-

aratedness is only a technical assumption. Given X;H, let

X1 D X
[

H2H

.H � Œ0; 1�/;
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equipped with the quotient topology, where .h; 0/ 2 .H � Œ0; 1�/ is identi�ed with

h 2 H � X . Then the collection ¹H � ¹1ºW H 2 Hº is automatically 2-separated

and the inclusion of X in Y is a quasi-isometry. However, the requirement

that each H is C -quasiconvex is an essential assumption and the conclusion of

Lemma 2.14 fails without this assumption. It is not su�cient to assume that X

is (weakly) hyperbolic relative to the collection H. A simple counterexample is

given by a doubly degenerate 3-manifold, with the 2 ends corresponding to the 2

elements of H. We are grateful to the referee for bringing this to our notice.

2.2. Cannon–Thurston maps. For a hyperbolic metric space X , the Gromov

bordi�cation will be denoted by xX .

De�nition 2.15. Let X and Y be hyperbolic metric spaces and i W Y ! X be an

embedding. A Cannon–Thurston map N{ from xY to xX is a continuous extension of

i to the Gromov bordi�cations xX and xY .

The following lemma from [10] gives a necessary and su�cient condition for

the existence of Cannon–Thurston maps.

Lemma 2.16. [10] A Cannon–Thurston map N{ from xY to xX exists for the proper

embedding i W Y ! X if and only if there exists a non-negative function M.N /

with M.N / ! 1 as N ! 1 such that the following holds.

Given y0 2 Y , for all geodesic segments � in Y lying outside an N -ball around

y0 2 Y , any geodesic segment in X joining the end points of i.�/ lies outside the

M.N /-ball around i.y0/ 2 X .

Note that due to stability of quasigeodesics, the above statement is also true if

geodesics are replaced by uniform quasigeodesics.

Let X and Y be hyperbolic relative to the collections HX and HY respectively.

Let bX D E.X;HX/; bY D E.Y;HY /. Let i W Y ! X be a strictly type-preserving

proper embedding. Then the proper embedding i W Y ! X induces a proper

embedding ihWG.Y;HY / ! G.X;HX / and a map O{W bX ! bY .

De�nition 2.17. A Cannon–Thurston map is said to exist for the pair X; Y of rela-

tively hyperbolic metric spaces and a strictly type-preserving inclusion i W Y ! X

if a Cannon–Thurston map exists for the induced map ihWG.Y;HY / ! G.X;HX /.

In [15] Lemma 2.16 was generalized to relatively hyperbolic metric spaces as

follows.

Lemma 2.18 ([15] Lemma 1.28). Let Y; X be hyperbolic rel. Y;X respectively.

Let Y h D G.Y;Y/; bY D E.Y;Y/ and Xh D G.X;X/; bX D E.X;X/. A Cannon–

Thurston map for i W Y ! X exists if and only if there exists a non-negative function

M.N / with M.N / ! 1 as N ! 1 such that the following holds.
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Suppose y0 2 Y , and O� in bY is an electric geodesic segment starting and

ending outside horospheres. If �b D O� n
S

K2Y K lies outside BN .y0/ � Y ,

then for any electric quasigeodesic Ǒ joining the end points of Oi. O�/ in bX ,

ˇb D Ǒ n
S

H2X H lies outside BM.N /.i.y0// � X .

The above necessary and su�cient condition for existence of Cannon–Thurston

map for relatively hyperbolic spaces can also be used as a de�nition of Cannon–

Thurston map for relatively hyperbolic spaces. Hence the following de�nition

makes sense.

De�nition 2.19. A collection of proper, strictly type preserving embedding

i˛W Y˛ ! X˛ of relatively hyperbolic spaces is said to extend to a collection of

uniform Cannon–Thurston maps if there exists M.N / ! 1 as N ! 1 such that

the functions M˛.N / (obtained in Lemma 2.18 above) satisfy M˛.N / � M.N /

for all ˛.

We shall often abbreviate Cannon–Thurston as CT in what follows. Lemma 2.18

says that it is enough to consider only the ‘bounded’-part of the electric quasi-

geodesic in a relatively hyperbolic space X in order to prove existence of CT

map. For ease of reference below, we make the following de�nition.

De�nition 2.20. Let X be hyperbolic rel. X. If � is a path in X , the bounded part

�b of � with respect to .X;X/ is de�ned as � n
S

H2X H .

If there is no ambiguity, we shall refer to the bounded part of � with respect to

.X;X/ simply as the bounded part of � .

We shall use the notion of electro-ambient path representatives to obtain an

alternate criterion for the existence of Cannon–Thurston maps in the case of an

ends-inclusion. Combining Lemma 2.18 with Lemma 2.14 we have the following.

Lemma 2.21. Let X; Y be hyperbolic rel. J;H respectively and i W Y ! X be

an ends-inclusion of relatively hyperbolic spaces. A Cannon–Thurston map for

i W Y ,! X exists if and only there exists a non-negative function M.N / with

M.N / ! 1 as N ! 1 such that the following holds.

Suppose y 2 Y , and O� in bY is an electric geodesic segment starting and ending

outside horospheres,such that �b D O� n
S

K2H K, the bounded part of O� lies

outside BN .y/ � Y .

Then for some electric quasigeodesic O� joining the end points of Oi. O�/ in bX , the

bounded part �b
ea D O�ea n [H2JH of the electro-ambient representative �ea (of O�)

lies outside BM.N /.i.y// � X .
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2.3. Pared manifolds. The main examples of interest in this paper are pared

3-manifolds.

De�nition 2.22. A pared manifold is a pair .M; P /, where M is a compact

irreducible 3-manifold with boundary ıM and P � ıM is a (possibly empty)

2-dimensional submanifold with boundary (of ıM ) such that

(1) any �1-injective map of a torus or Klein bottle into M is homotopic to a map

into ıM ;

(2) the fundamental group of each component of P injects into the fundamental

group of M ;

(3) the fundamental group of each component of P contains an abelian subgroup

with �nite index;

(4) any map C W .S1 � I; ı.S1 � I // ! .M; P / such that �1.C / is injective, is

homotopic rel boundary to P ;

(5) P contains every component of ıM which has an abelian subgroup of �nite

index.

A pared manifold .M; P / is said to have incompressible boundary if each

component of ı0M D ıM n P is incompressible in M .

Further, .M; P / is said to have no accidental parabolics if

(1) it has incompressible boundary and

(2) if some curve � on a component of ı0M is freely homotopic in M to a curve

˛ on a component of P , then � is homotopic to ˛ in ıM .

De�nition 2.23. [18, 19] A hyperbolic structure on a pared manifold .M; P / is

de�ned to be a complete hyperbolic structure on the interior of M given by a dis-

crete faithful representation �W �1.M/ ! Isom.H3/ such that any homotopically

nontrivial loop in M represented by a parabolic is homotopic into P . Further,

for any component Pi of P , and any homotopically essential curve  in �1.Pi/

(� �1.M/), �./ is a parabolic.

The space of hyperbolic structures on .M; P / is denoted by H.M; P /.

Let � D �.�1.M// � Isom.H3/. A hyperbolic structure on .M; P / is said to

be geometrically �nite (resp. in�nite) if � is a geometrically �nite (resp. in�nite)

Kleinian group. Thurston’s hyperbolization theorem [18, 19, 8, 16] ensures that

H.M; P / contains a geometrically �nite structure Mgf . Further, the limit set

of a geometrically �nite � is equivariantly homeomorphic to the boundary of

the Gromov cone G.X;H/ where X is the universal cover zM and the parabolic

subgroupsH correspond to the fundamental groups of the components of P . Very

often, in what follows we shall not be considering all ofH3=� but rather its convex
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core, or equivalently, the quotient of the convex hull of the limit set of � by �.

By slight abuse of notation, we shall continue to denote the convex core of Mgf

by Mgf .

We give a slightly di�erent but equivalent description of accidental parabolics

in terms of hyperbolic structures on .M; P /. Recall (De�nition 2.22 above) that

for a pared manifold .M; P /, any map C W .S1 � I; ı.S1 � I // ! .M; P / of an

annulus such that �1.C / is injective, is homotopic rel boundary to P . An element

 2 � is an accidental parabolic, if the converse is false, i.e.:

a) if there exists a homotopically essential map C W .S1�I; ı.S1�I // ! .M; P /

such that C.S1 � ¹0º/ is contained in ı0M , C.S1 � ¹1º/ is contained in

a component Pi of P , but C is not homotopic rel. boundary to a map

.S1 � I; ı.S1 � I // ! ıM ;

b) a geodesic representative of  in M is freely homotopic to the core curve of

the annulus C.S1 � I /.

A component Pi of P for which such a map C exists is called exceptional.

In summary an accidental parabolic is given by the core curve of a homotopi-

cally essential map C W .S1 � I; ı.S1 � I // ! .M; P / of an annulus into a pared

manifold .M; P / such that

a) C.S1 � ¹0º/ is contained in ı0M.D ıM n P /,

b) C.S1 � ¹1º/ is contained in a component Pi of P ,

c) C is not homotopic rel. boundary to a map .S1 � I; ı.S1 � I // ! ıM .

For a hyperbolic structure N h 2 H.M; P / adapted to .M; P /, an excep-

tional cusp is a cusp corresponding to an exceptional component Pi . Exceptional

horoballs are lifts of (neighborhoods of) exceptional cusps. Boundaries of excep-

tional horoballs are called exceptional horospheres.

We now describe how to adjoin exceptional cusps to ends having accidental

parabolics so that the resulting set can be treated on an equal footing with ends

containing no accidental parabolics.

Let E be an end of N h and † � ıM be its boundary. Let �1; � � � �k � † be all

the simple closed curves on † corresponding to accidental parabolics. Then each

�i is homotopic into an exceptional cusp and there is an embedded annulus Ai with

one boundary component �i and the other component � 0

i in the exceptional cusp.

We choose � 0

i to be geodesic in the canonical �at metric on the boundary of the

exceptional cusp. Then � 0

i bounds a totally geodesic annulus Ci contained in the

exceptional cusp bounded by � 0

i and isometric to the quotient of a 2-dimensional

horodisk by a cyclic parabolic group. Note that if the exceptional cusp is rank one,

then Ci equals the exceptional cusp. The union E
S

i

�
Ai

S
i Ci

�
will be termed

an augmented end.

We shall need the Thurston–Canary covering theorem [17, Chapter 9], [5] in

the context of pared manifolds. The version below combines the covering theorem

with the tameness theorems of Bonahon [2], Agol [1], and Gabai and Calegari [4].
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Theorem 2.24 ([17], [5]). Let M D H3=� be a complete hyperbolic 3-manifold.

A �nitely generated subgroup � 0 is geometrically in�nite if and only if it contains

a �nite index subgroup of a geometrically in�nite peripheral subgroup.

Another fact we shall need in this context is the following (see also [5]):

Lemma 2.25. Let E be an augmented degenerate end for a hyperbolic structure

N h on a pared manifold .M; P / with incompressible boundary. Let zE be a lift

of E to zM , equipped with this hyperbolic structure. Then zE is not relatively

quasiconvex in fN h if and only if there is a component F of ı0M such that

(1) F bounds a degenerate end other than E, and

(2) F is homotopic into E.

Proof. The proof is essentially a rerun of some of the arguments appearing in [2].

Suppose zE is not relatively quasiconvex in fN h. Then there exists a sequence of

closed curves �i on @E whose geodesic realizations i in N h satisfy d.i ; E/ ! 1

as i ! 1 (Section 2.2 of [2] proves the existence of closed curves satisfying

the above property). Then (cf. Proposition 5.1 of [2]) a subsequence of the �i ’s

converges to an ending lamination ƒ on @E. If ƒE is the ending lamination for

the end E, then ƒ is di�erent from ƒE .

If the support of ƒ is all of @E and ƒ contains no simple closed curve, then N h

is doubly degenerate. Else any simple closed curve in ƒ gives rise to an accidental

parabolic. Let F be a connected subsurface of @E supporting an ending lamination

contained in ƒ. Then F satis�es the conclusions of the Lemma. �

3. Reduction theorem and Kleinian groups

3.1. The main theorem. Before stating the main Reduction Theorem 3.1 below,

we brie�y sketch the proof idea in the special case of hyperbolic 3-manifolds N

with incompressible core M and no parabolics. For concreteness, suppose that N

has one end and that the end E D N n M is homeomorphic to S � Œ0; 1/ for a

compact hyperbolic surface S . Theorem 3.1 says in this case that if the inclusion

of zS into zE has a CT map, then so does the inclusion of zM into zN . The proof idea

is as follows.

Let E denote the collection of lifts of the end E to zN and let S denote the

collection of lifts of S to zM . Then by Lemma 2.25, each lift E˛ 2 E is relatively

quasiconvex in zN .

Let Œa; b� � zM be a geodesic in the intrinsic path metric on zM lying outside

a large ball about a �xed reference point m 2 zM . We want to construct an

electro-ambient P -quasigeodesic with respect to . zN;E/ lying outside a large ball

in zN . Towards this, �rst construct an electro-ambient P �quasigeodesic Œa; b�q
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with respect to . zM; S/ in zM joining a; b and lying within a P -neighborhood of

Œa; b� (by Lemma 2.14). This gives us a sequence of points a D a0; � � � an D b

such that the “odd subpaths” Œa2i ; a2iC1�q of Œa; b�q have interiors disjoint from

the elements of S, whereas the “even subpaths” Œa2iC1; a2iC2�q of Œa; b�q lie

entirely within some zS˛ 2 S. Since all these are subpaths of Œa; b�q, they all

lie outside a large ball about m. Now replace the even subpaths Œa2iC1; a2iC2�q
by a geodesic a2iC1; a2iC2 in the corresponding eE˛ 2 E joining a2iC1; a2iC2.

Since the inclusion of zS into zE has a CT map, it follows that each of the geodesic

segments a2iC1; a2iC2 lies outside a (uniformly) large ball about m. Concatenate

these together by interpolating the odd subpaths Œa2i ; a2iC1�q of Œa; b�q. This gives

an electro-ambient P �quasigeodesic a; b
q

with respect to . zN;E/ by Remark 2.12.

Further, a; b
q

also lies outside a large ball about m. Finally, by Lemma 2.14, the

hyperbolic geodesic in zN lies in a bounded neighborhood of a; b
q

and hence lies

outside a large ball about m. Lemma 2.16 now furnishes the required CT map.

We now proceed with the general case.

Theorem 3.1. Let Y; X;H; J;B D ¹B˛º;F D ¹F˛º;F˛ D ¹F˛ˇ º be as in

De�nition 2.10 and i W Y ! X be an ends-inclusion of spaces. Then the

ends inclusion i W Y ! X extends to a Cannon–Thurston map if the inclusions

i˛W B˛ ! F˛ extend uniformly to Cannon–Thurston maps for all ˛.

Proof. Fix a base point y 2 Y and consider a large enough ball UN .y/ � Y . Let

O� � bY D E.Y;H/ be an electric geodesic segment, starting and ending outside

elements of H. Let �b denote the bounded part of O� with respect to .Y;H/, and

assume that it lies outside UN .y/ � Y , i.e �b \ UN .y/ D ¿.

Let B0 D ¹B� 2 BW �b \ B� ¤ ; and UN .y/ \ B� ¤ ;º, where �b denotes the

closure of �b.

For each B� 2 B0, let �b.�/ D �b \ B� . Then �b.�/ lies outside UN .y/ \ B� .

Let y� be the nearest point projection of y on B� in the metric dY of Y . Since

F� \ Y D B� it follows that y� is also (up to bounded error) a nearest point

projection of y on F� in the metric dX on X . Then y� 2 UN .y/ \ B� . Let

dY .y; y�/ D R� . Consider the ball U.N �R� /.y�/, of radius N � R� about y� in Y .

U.N �R� /.y�/ \ B� is a ball in B�.� Y / of radius N � R� based at y� . We denote

this ball as U.�/. Then �b.�/ � B� n U.�/.

Let O� be the electric geodesic in bX D E.X; J/ joining the end points of O{. O�/.

Since bY is weakly hyperbolic rel. B, it follows that bX is weakly hyperbolic rel.

F. Let the electro-ambient path representative of O� with respect to F be O�ea.

Let �b
ea D O�ea n [J 2JJ be the bounded part of O�ea with respect to .X; J/. By

Remark 2.12, we may assume that �b
ea n [

S
F˛2F F˛ D �b n [

S
B˛2B B˛ , i.e. �b

ea

and �b coincide outside F.
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As per hypothesis, CT maps exist uniformly for each B� ,! F� . By

Lemma 2.21, there exists a function M.N / ! 1 as N ! 1 such that �b
ea.�/

lies outside UM.N �R�/.y�/, 8�. It is worth noting that the function M.N / is in-

dependent of � by de�nition of uniformity.

Since Y is properly embedded in X , it follows that there exists a function

M1.N / ! 1 as N ! 1 such that if x; y 2 Y and dY .x; y/ � N then

dX .i.x/; i.y// � M1.N /. It follows immediately that �b
ea n [

S
F˛2F F˛ lies

outside U X
M1.N /

.i.y//.

Hence �b
ea.�/ lies outside U X

M1.R�/CM.N �R�/
.i.y// – a ball of radius M1.R�/C

M.N � R�/ in X , i.e.

dX ..�b
ea.�/; i.y// � M1.R�/ C M.N � R�/

for all �.

Let

M2.N / D inf�.M1.R�/ C M.N � R�//;

and

M3.N / D min.M1.N /; M2.N /;

which is again a proper function of N , i.e. M3.N / ! 1 as N ! 1. This proves

that �b and �b
ea satisfy the criteria of Lemma 2.21.

Hence, the theorem follows. �

An important fact we used in the above proof is that

�b
ea n [

[

F˛2F

F˛ D �b n [
[

B˛2B

B˛;

i.e. �b
ea and �b can be chosen to coincide outside F. This followed from Re-

mark 2.12.

Now let @i denote the Cannon–Thurston map on the boundary @G.Y;H/ ob-

tained in Theorem 3.1. We would like to know exactly which points are identi�ed

by the CT map @i . Towards this, we set up some notation.

The inclusions i˛W B˛ ! F˛ induce CT maps @i˛W @G.B˛; B˛ˇ / ! @G.F˛; F˛ˇ /

by the hypothesis of Theorem 3.1. Each such map @i˛ induces an equivalence re-

lation R˛ on @G.B˛; B˛ˇ / given by aR˛b if and only if @i˛.a/ D @i˛.b/. Since

G.B˛; B˛ˇ / is quasiconvex in G.Y;H/ it follows that @G.B˛; B˛ˇ / embeds home-

omorphically in @G.Y;H/. Hence R˛ induces a natural equivalence relation (also

denoted as R˛) on @G.Y;H/ by identifying points on @G.B˛; B˛ˇ / with their im-

ages under inclusion in @G.Y;H/. We shall call the relation R˛ on @G.Y;H/ the CT

relation induced by i˛ . Let Rt denote the transitive closure of the union
S

˛ R˛.

Finally, letR denote the closure ofRt thought of as a subset of @G.Y;H/�@G.Y;H/
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with the product topology. ThusR is the smallest closed equivalence relation gen-

erated by the R˛’s.

As in the discussion preceding Theorem 3.1, we give a quick sketch of what

goes on in the special case of a hyperbolic 3-manifold N with incompressible core

M , one simply degenerate end E.D N n M/ and no parabolics. Let S D E \ M

be the single boundary component of M . Let E D ¹E˛º denote the lifts of E to zN ,

S˛ D E˛ \ zM , and S D ¹S˛º be the lifts of S to zM . Suppose that @i W @ zM ! @ zN

denotes the CT map given by Theorem 3.1. Let @i.a/ D @i.b/ for a ¤ b 2 @ zM .

Let � � zM be the bi-in�nite geodesic in zM joining a; b. Let an ! a and bn ! b

be points on �. Let �n (resp. �n) be the geodesic in zM (resp. zN ) joining an; bn.

By the converse direction of Lemma 2.14, we can approximate �n uniformly by an

electro-ambient quasigeodesic �n with respect to . zN;E/.

We now “reverse-engineer” an electro-ambient quasigeodesic Œan; bn�q with

respect to . zM;E/ from �n as follows. This step is exactly the opposite of the

corresponding step in the sketch before Theorem 3.1. We replace any max-

imal segment of �n lying inside an E˛ by a geodesic in the corresponding

S˛ 2 S to construct Œan; bn�q. Also, Œan; bn�q coincides with �n outside the E˛’s.

By Lemma 2.14, �n lies in a uniformly bounded neighborhood of Œan; bn�q . Also,

since Œan; bn�q n [
S

˛ S˛ coincides with �n n [
S

˛ E˛ and since �n converges

to @i.a/ D @i.b/ as n ! 1, it follows that Œan; bn�q converges (in the Haus-

dor� metric on the Gromov compacti�cation xM ) to a collection [r.cr ; dr/ of

bi-in�nite geodesics, with @i.cr/ D @i.dr/ D @i.a/ D @i.b/ for all r . By con-

struction of Œan; bn�q, each .cr ; dr/ lies entirely in a single S˛ and the CT map

@i˛W S˛ ! E˛ identi�es cr ; dr . This shows that the equivalence relation given by

the CT map @i W zM ! zN is generated by the equivalence relation given by the

CT maps @i˛W S˛ ! E˛ . Corollary 3.2 below generalizes this argument to the

relatively hyperbolic setup.

Corollary 3.2. Let Y; X;H; J;B D ¹B˛º;F D ¹F˛º;F˛ D ¹F˛ˇ º be as in

De�nition 2.10 and i W Y ! X be an ends-inclusion of spaces.

Also, let @i W @G.Y;H/ ! @G.X; J/ be the induced Cannon–Thurston map

on relative hyperbolic boundaries as in theorem 3.1. Then @i.a/ D @i.b/ for

a ¤ b 2 @G.Y;H/ if and only if aRb where R is the smallest closed equivalence

relation generated by the CT relations R˛ induced by i˛ .

Proof. Let RY denote the CT equivalence relation on @Y induced by the CT map

@Y ! @X given by Theorem 3.1. We have to show that R D RY .

Since i˛W B˛ ! Y is a quasi-isometric embedding, it follows that R˛ � RY .

Hence the transitive closureRt of the union
S

˛ R˛ is also contained in R. Finally,

since @i W @G.Y;H/ ! @G.X; J/ is continuous, it follows that RY is a closed

relation. Hence R � RY .
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It remains to show that RY � R. Suppose that .a; b/ 2 RY , i.e. @i.a/ D @i.b/

for some a ¤ b 2 @G.Y;H/. Then the geodesic � D .a; b/ � G.Y;H/ satis�es the

following.

If an; bn 2 .a; b/ � G.Y;H/ are such that an ! a; bn ! b, �n is the

subsegment of � joining an; bn, and �n is the geodesic in G.X; J/ joining an; bn,

then dG.X;J/.i.y/; �n/ ! 1 as n ! 1.

By the converse direction of Lemma 2.14, there exists P � 1 (independent of

a; b; n; an; bn) and hyperbolic P -quasigeodesic paths �n such that

(1) �n is an electro-ambient P �quasigeodesic with respect to .X;F/ lying within

a hyperbolic distance P of �n.

(2) There exists a sequence of points an D an;0; an;1; � � � ; an;kn
D bn on �n such

that

a) The “odd subpaths” an;2j ; an;2j C1 of �n joining an;2j and an;2j C1 have

interiors disjoint from all G.F˛ ; F˛ˇ / and

b) the “even subpaths” an;2j C1; an;2j C2 of �n joining an;2j C1 and an;2j C2

are entirely contained in some G.Fj ; Fjˇ /.

By Remark 2.12, the odd subpaths of �n joining an;2j ; an;2j C1 are actually

P �quasigeodesics in G.Y;H/. Also, since dG.X;J/.i.y/; �n/ ! 1 as n ! 1, it

follows that dG.Y;H/.y; an;2j ; an;2j C1/ ! 1 as n ! 1. In particular, for all j ,

dG.Y;H/.y; an;j / ! 1 as n ! 1.

We shall now reverse the construction used in the proof of Theorem 3.1.

Replace the even subpath an;2j C1; an;2j C2 (of �n) contained in G.Fj ; Fjˇ / by a

geodesic Œan;2j C1; an;2j C2�q in the corresponding G.Bj ; Bjˇ /. Interpolating the

odd subpaths of �n, we obtain an electro-ambient P -quasigeodesic with respect

to ..G.Y;H/;G.B˛; ¹B˛ˇº//. Let Œan; bn�q denote this electro-ambient P -quasi-

geodesic.

By Lemma 2.14, the geodesic in G.Y;H/ joining an; bn lies in a K.D K.P //-

neighborhood of Œan; bn�q. Passing to a subsequence if necessary, let Œan; bn�q
converges to Œa; b�q in the Hausdor� topology on the Gromov compacti�cation

G.Y;H/ of G.Y;H/. Let .a; b/q D Œa; b�q \ G.Y;H/. Then the geodesic �

lies in a K-neighborhood of .a; b/q. Thus .a; b/q is a countable union of bi-

in�nite geodesics .cr ; dr/ � G.Y;H/, such that � lies in a K-neighborhood of

[r .cr ; dr/. Here cr ; dr 2 @G.Y;H/. Also, each such .cr ; dr / is a limit of geodesic

segments contained in some (sequence of) G.B˛; ¹B˛ˇº/. Hence (passing to a

further subsequence if necessary) we can assume that each .cr ; dr/ is contained

in some G.Br ; ¹Brˇº/.

Again, since each cr or dr is a limit of points (an;r ) on �n and since

dG.X;J/.i.y/; �n/ ! 1 as n ! 1, all the cr ; dr get identi�ed with a; b under

the CT map @i .
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Further, by the construction of Œan; bn�q from �n, it follows that for any r , the

pair cr ; dr get identi�ed with each other under the CT map @ir (corresponding to

the inclusion of G.Br ; ¹Brˇº/ in G.Fr ; ¹Frˇ º/). Hence .cr ; dr / 2 Rr , where Rr is

the CT-relation induced by @ir .

Finally, since � lies in a K-neighborhood of [r.cr ; dr/, it follows that the pair

.a; b/ is contained in the smallest closed relation on @G.Y;H/�@G.Y;H/ generated

by Rr , i.e. .a; b/ 2 R. Hence RY � R and the proof is complete. �

3.2. Kleinian groups with no accidental parabolics. The �rst application

of Theorem 3.1 is to prove the existence of Cannon–Thurston maps for pared

3-manifolds with incompressible boundary and no accidental parabolics. We re-

call the main Theorem of [13]. Let S be a complete �nite area hyperbolic surface

with fundamental group H . Nontrivial elements of H represented by peripheral

loops of S are called parabolic elements of H . Let zS denote the universal cover

of S . Note that zS is isometric to H
2. Let xS D zS [ S1 denote the Gromov com-

pacti�cation of zS . For � a discrete faithful representation of H into Isom.H3/

taking parabolics to parabolics, � D �.H/ is called a surface Kleinian group. If,

in addition, � does not send any non-parabolic element of H to a parabolic, then �

is a surface Kleinian group without accidental parabolics. In Theorem 3.3 below,

the convex core of H3=� will be denoted by M and the union of zM with its limit

set will be denoted by xM . We are now ready to recall the main Theorem of [13].

Theorem 3.3 ([13]). Let � be a representation of a surface group H (correspond-

ing to the surface S ) into Isom.H3/ without accidental parabolics. Let M denote

(the convex core of ) H3=�.H/. Further suppose that i W S ! M , taking parabol-

ics to parabolics, induces a homotopy equivalence. Then the inclusion Q{W zS ! zM

extends continuously to a map of the compacti�cations N{W xS ! xM .

Theorem 3.4. Suppose that N h 2 H.M; P / is a hyperbolic structure on a pared

manifold .M; P / with no accidental parabolics. Further suppose that N h is not

a doubly degenerate manifold. Let Mgf denotes a geometrically �nite hyperbolic

structure adapted to .M; P /, then the map i W eMgf ! fN h extends continuously to

a map of the compacti�cations N{W Mgf ! N h.

Proof. We �rst show that the lift of each end to fN h is relatively quasiconvex.

Suppose not.

Then by Lemma 2.25 a lift zE of an end of N h to fN h is not relatively quasi-

convex in fN h if and only if there is a component F of ı0M such that

(1) F bounds a degenerate end other than E, and

(2) F is homotopic into E.
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If F is isotopic to a proper subsurface of @E, then the boundary curves of F

necessarily have to be accidental parabolics contadicting the hypothesis.

Else F is isotopic to all of @E, forcing N h is to be a doubly degenerate manifold

and again contadicting the hypothesis.

Hence the map i W eMgf ! fN h is an ends-inclusion.

The Theorem is now immediate consequence of Theorems 3.1 and 3.3. �

Remark 3.5. For the proof of Theorem 3.4 to work it su�ces to assume that each

augmented end of N h is relatively quasiconvex. This will be useful in the next

subsection when we deal with accidental parabolics.

To state the next theorem describing the point-pre-images of the CT map, we

set up some notation. Let N be (the convex core of) a hyperbolic structure on a

pared manifold .M; P / with relative Scott core Mgf . LetE D ¹E˛º denote the lifts

of the (relative) ends of N (i.e. the components of N nMgf ). Let S˛ D E˛ \ eMgf .

Let L˛ denote the lift of the ending lamination (for the end corresponding to E˛)

to S˛. Each L˛ induces an equivalence relation R˛ on @ eMgf as follows.

aR˛b if and only if a; b are ideal end-points of a leaf or complementary

ideal polygon of L˛ . Let R be the smallest closed equivalence relation (with

respect to the product topology on @ eMgf � @ eMgf ) containing all the equivalence

relations R˛.

In [14] we also identify the point pre-images of the Cannon–Thurston map.

Theorem 3.6. [14] Let G be a simply degenerate surface Kleinian group without

accidental parabolics. Then the Cannon–Thurston map @i W @ zS ! @ zM from

the (relative) hyperbolic boundary of G (which is the same as @ zS ) to its limit

set identi�es precisely the end-points of leaves of the ending laminations. More

precisely, let R denote the equivalence relation on @ zS given by aRb if and only if

a; b are endpoints of a (lift of a) leaf of the ending lamination or ideal boundary

points of a complementary ideal polygon. Then @i.a/ D @i.b/ if and only if aRb.

Now, combining Theorem 3.4, Corollary 3.2 and Theorem 3.6 we get:

Theorem 3.7. Suppose that N h 2 H.M; P / is a hyperbolic structure on a

pared manifold .M; P / such that that N h has no accidental parabolics. Let

Mgf denotes a geometrically �nite hyperbolic structure adapted to .M; P /. Let

@i W @ eMgf ! @ fN h be the Cannon–Thurston map extending i W eMgf ! fN h. Then

@i.a/ D @i.b/ for a ¤ b if and only if .a; b/ 2 R, where R is the smallest closed

equivalence relation containing the equivalence relations R˛.

3.3. Accidental parabolics. We shall now proceed to remove the restriction

on accidental parabolics from Theorem 3.4. The proof proceeds by applying

Theorems 3.1 and 3.3 twice successively.
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Theorem 3.8. Suppose that N h 2 H.M; P / is a hyperbolic structure on a pared

manifold .M; P / with incompressible boundary @0M . Suppose further that N h

is not doubly degenerate. Let Mgf denotes a geometrically �nite hyperbolic

structure adapted to .M; P /. Then the map i W eMgf ! fN h extends continuously

to the boundary N{W Mgf ! N h.

Let @i W @ eMgf ! @ fN h be the resulting Cannon–Thurston map extending

i W eMgf ! fN h. Then @i.a/ D @i.b/ for a ¤ b if and only if .a; b/ 2 R, where

R is the smallest closed equivalence relation containing the equivalence relations

generated by lifts of the ending laminations to eMgf .

Proof. First note that by Theorem 3.4 and Remark 3.5, the Theorem follows when

each augmented end is relatively quasiconvex. Next, by Lemma 2.25, it follows

that an augmented end E of N h is not relatively quasiconvex if and only if there

is a component F of ı0M such that

(1) F bounds a degenerate end other than E, and

(2) F is homotopic into E.

We construct another hyperbolic structure W h 2 H.M; P / as follows.

For each augmented end E of N h that is not relatively quasiconvex, let

F.E; i/; i D 1; � � � kE be the collection of components of ı0M satisfying the 2

conditions above. Replace the degenerate end having F.E; i/, i D 1; � � � kE as

boundary by a geometrically �nite end. We repeat this for every augmented end

that is not relatively quasiconvex. The resulting hyperbolic structure is denoted

by W h. We identify W h with its convex core for convenience, i.e. we excise the

geometrically �nite (�aring) ends.

Each augmented end E of W h is now relatively quasiconvex. By Theorem 3.4

and Remark 3.5, the map j W eMgf ! eW h extends continuously to the boundary

N| W Mgf ! W h.

Each F.E; i/ is parallel to a subsurface of @E and hence no other degenerate

end can have boundary parallel to a subsurface of F.E; i/ unless N h is doubly

degenerate (excluded by hypothesis). It follows that the augmented ends bounded

by F.E; i/ are relatively quasiconvex in N h. Hence the inclusion j2W eW h ! fN h

is an ends-inclusion and, by Theorem 3.4 and Remark 3.5, extends continuously

to the boundary j2W W h ! N h.

Since i D j2 ı j , it follows that the map i W eMgf ! fN h extends continuously

to the boundary N{W Mgf ! N h.

The last statement follows from (applying twice) the structure of the Cannon–

Thurston map given by Theorem 3.7. �
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