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Abstract. We give a short proof of a theorem of Handel and Mosher [21] stating that any

�nitely generated subgroup of Out.FN / either contains a fully irreducible automorphism,

or virtually �xes the conjugacy class of a proper free factor of FN , and we extend their

result to non �nitely generated subgroups of Out.FN /.

Mathematics Subject Classi�cation (2010). 20F65.

Keywords. Out.FN /, subgroup classi�cation.

Introduction

Let N � 2, and let FN denote a �nitely generated free group of rank N . A free
factor of FN is a subgroup A of FN such that FN splits as a free product of the

form FN D A �B , for some subgroup B � FN . An automorphism ˆ 2 Out.FN /

is fully irreducible if no power of ˆ preserves the conjugacy class of any proper

free factor of FN . The goal of this paper is to give a short proof of the following

classi�cation theorem for subgroups of Out.FN /, which was shown by Handel

and Mosher in the case of �nitely generated subgroups of Out.FN / in [21].

Theorem 0.1. Every (possibly non �nitely generated) subgroup of Out.FN / either

� contains two fully irreducible elements that generate a rank two free sub-
group, or

� is virtually cyclic, generated by a fully irreducible automorphism, or

� virtually �xes the conjugacy class of a proper free factor of FN .

Our proof of Theorem 0.1 involves studying the action of subgroups of

Out.FN / on the free factor complex, whose hyperbolicity was proved by Bestv-

ina and Feighn in [4] (see also [33] for an alternative proof) and whose Gromov

boundary was described by Bestvina and Reynolds [6] and Hamenstädt [20].
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We also use elementary tools that originally arose in the study of random walks

on groups, by studying stationary measures on the boundaries of outer space and

of the free factor complex.

Theorem 0.1 has already found various applications, for example to the study of

morphisms from lattices to Out.FN /, see [7] or to spectral rigidity questions [9].

Handel and Mosher have generalized Theorem 0.1 in a recent series of pa-

pers [22, 23, 24, 25, 26] to give a complete classi�cation of �nitely generated

subgroups of Out.FN /, analogous to Ivanov’s classi�cation of subgroups of the

mapping class group of a �nite type oriented surface [29].
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1. Review

1.1. Gromov hyperbolic spaces. A geodesic metric space .X; d/ is Gromov
hyperbolic if there exists ı > 0 such that for all x; y; z 2 X , and all geodesic

segments Œx; y�; Œy; z� and Œx; z�, we have Nı.Œx; z�/ � Nı.Œx; y�/ [ Nı.Œy; z�/

(where given a subset Y � X and r 2 RC, we denote by Nr .Y / the r-

neighborhood of Y in X). The Gromov boundary @X of X is the space of equiva-

lence classes of quasi-geodesic rays inX , two rays being equivalent if their images

lie at bounded Hausdor� distance.

Isometry groups of Gromov hyperbolic spaces. Let X be a hyperbolic geo-

desic metric space. An isometry � of X is loxodromic if for all x 2 X , we have

lim
n!C1

1

n
d.x; �nx/ > 0:

Given a group G acting by isometries on X , we denote by @XG the limit set of G

in @X , which is de�ned as the intersection of @X with the closure of the orbit of

any point in X under the G-action. The following theorem, due to Gromov, gives

a classi�cation of isometry groups of (possibly nonproper) Gromov hyperbolic

spaces. The interested reader will �nd a sketch of proof in [8, Proposition 3.1],

where the terminology comes from. Actions of the �rst three types are called

elementary by Gromov, while actions of the last two types are nonelementary.
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Theorem 1.1 (Gromov [16, Section 8.2]). Let X be a hyperbolic geodesic metric
space, and let G be a group acting by isometries on X . Then G is either

� bounded, i.e. all G-orbits in X are bounded; in this case @XG D ;, or

� horocyclic, i.e. G is not bounded and contains no loxodromic element;
in this case @XG is reduced to one point, or

� lineal, i.e. G contains a loxodromic element, and any two loxodromic
elements have the same �xed points in @X ; in this case @XG consists of these
two points, or

� focal, i.e. G is not lineal, contains a loxodromic element, and any two
loxodromic elements have a common �xed point in @X ; in this case @XG
is uncountable and G has a �xed point in @XG, or

� of general type, i.e. G contains two loxodromic elements with no common
endpoints; in this case @XG is uncountable and G has no �nite orbit in @X .
In addition, the group G contains two loxodromic isometries that generate a
rank two free subgroup.

In particular, we have the following result.

Theorem 1.2 (Gromov [16, Section 8.2]). Let X be a hyperbolic geodesic metric
space, and let G be a group acting by isometries on X . If @XG ¤ ;, and G has
no �nite orbit in @X , then G contains a rank two free subgroup generated by two
loxodromic isometries.

1.2. Outer space. Let N � 2. Outer space CVN is de�ned to be the space

of simplicial free, minimal, isometric actions of FN on simplicial metric trees,

up to FN -equivariant homotheties [13] (an action of FN on a tree is minimal
if there is no proper invariant subtree). We denote by cvN the unprojectivized
outer space, in which trees are considered up to equivariant isometries, instead

of homotheties. The group Out.FN / acts on CVN and on cvN on the right by

precomposing the actions (one can also consider the Out.FN /-action on the left

by setting ˆ.T; �/ D .T; � ı ��1/ for all ˆ 2 Out.FN /, where �WFN ! Isom.T /

denotes the action, and � 2 Aut.FN / is any lift of ˆ to Aut.FN /).

An R-tree is a metric space .T; dT / in which any two points x and y are joined

by a unique arc, which is isometric to a segment of length dT .x; y/. Let T be an

FN -tree, i.e. an R-tree equipped with an isometric action of FN . For g 2 FN , the

translation length of g in T is de�ned to be

jjgjjT WD inf
x2T

dT .x; gx/:

Culler and Morgan have shown in [12, Theorem 3.7] that the map

i W cvN �! R
FN ;

T 7�! .jjgjjT /g2FN
:
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is an embedding, whose image projects to a subspace of PR
FN with compact

closure CVN [12, Theorem 4.5]. Bestvina and Feighn [2], extending results by

Cohen and Lustig [10], have characterized the points of this compacti�cation as

being the minimal FN -trees with trivial or maximally cyclic arc stabilizers and

trivial tripod stabilizers.

1.3. The free factor complex. The free factor complex FFN , introduced by

Hatcher and Vogtmann in [27], is de�ned when N � 3 as the simplicial complex

whose vertices are the conjugacy classes of nontrivial proper free factors of FN ,

and higher dimensional simplices correspond to chains of inclusions of free fac-

tors. (When N D 2, one has to modify this de�nition by adding an edge between

any two complementary free factors to ensure that FF2 remains connected, and

FF2 is isomorphic to the Farey graph). Gromov hyperbolicity of FFN was proved

by Bestvina and Feighn [4] (see also [33] for an alternative proof). There is a nat-

ural, coarsely well-de�ned map  W CVN ! FFN , that maps any tree T 2 CVN

to one of the conjugacy classes of the cyclic free factors of FN generated by an

element of FN whose axis in T projects to an embedded simple loop in the quo-

tient graph T=FN . The Gromov boundary of FFN was described independently

by Bestvina and Reynolds [6] and by Hamenstädt [20]. A tree T 2 @CVN is ara-
tional if no proper free factor of FN acts with dense orbits on its minimal subtree

in T (in particular, no proper free factor of FN is elliptic in T ). We denote by AT

the subspace of @CVN consisting of arational trees. We de�ne an equivalence

relation � on AT by setting T � T 0 whenever the trees yT WD xT [ @T (where xT
denotes the metric completion of T and @T denotes its Gromov boundary) and
�T 0 are homeomorphic when equipped with the observers’ topology. This is the

topology for which the set of directions in T , i.e. subtrees of the form T X ¹pº for

some p 2 T , forms a subbasis of open sets. Equivalently, we have T � T 0 if and

only if the trees T and T 0 have the same dual lamination, see [11, Theorem I].

Theorem 1.3 (Bestvina and Reynolds [6], Hamenstädt [20]). There is a unique
homeomorphism

@ WAT= � �! @FFN ;

so that for all T 2 AT and all sequences .Tn/n2N 2 CVNN that converge to T , the
sequence . .Tn//n2N converges to @ .T /.

Recall from the introduction that an automorphism ˆ 2 Out.FN / is fully
irreducible if no nonzero power of ˆ preserves the conjugacy class of any proper

free factor of FN . Bestvina and Feighn have characterized elements of Out.FN /

which act as loxodromic isometries of FFN .

Theorem 1.4 (Bestvina and Feighn [4, Theorem 9.3]). An outer automorphism
ˆ 2 Out.FN / acts loxodromically on FFN if and only if it is fully irreducible.
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2. An alternative for trees in the boundary of outer space

Given a tree T 2 @CVN X AT and a proper free factor A of FN , we say that A

dynamically reduces T if A acts with dense orbits on its minimal subtree in T and

A does not �x any point in T . We denote by Dyn.T / the set of conjugacy classes of

minimal (with respect to inclusion) proper free factors of FN which dynamically

reduce T . The set Dyn.T / is �nite [37, Corollary 7.4 and Proposition 9.2], and

it depends Out.FN /-equivariantly on T . The following proposition essentially

follows from Reynolds’ arguments in his proof of [37, Theorem 1.1], we provide a

sketch for completeness.

Proposition 2.1. For all T 2 @CVN XAT, either Dyn.T / ¤ ;, or there is a
nontrivial point stabilizer in T which is contained in a proper free factor of FN .

In the proof of Proposition 2.1, we will make use of the following well-known

fact.

Lemma 2.2 ([37, Corollary 11.2]). Let S be a simplicial FN -tree, all of whose
edge stabilizers are (at most) cyclic. Then every edge stabilizer in S is contained
in a proper free factor of FN , and there is at most one conjugacy class of vertex
stabilizers in S that is not contained in any proper free factor of FN .

Proof of Proposition 2.1. Let T 2 @CVN XAT, and assume that Dyn.T / D ;.

Then T contains a point x whose stabilizer is nontrivial.

First assume that T contains an arc with nontrivial stabilizer. Let S be the sim-

plicial tree obtained by collapsing all vertex trees to points in the decomposition

of T as a graph of actions de�ned in [34]. Then arc stabilizers in T are also edge

stabilizers in S , and the conclusion follows from Lemma 2.2.

From now on, we assume that all arc stabilizers in T are trivial. If T does

not have dense orbits, then T contains a simplicial edge with trivial stabilizer. By

collapsing all connected components of the complement of the orbit of this edge

to points, we get a simplicial tree S whose point stabilizers are proper free factors

of FN . The stabilizer Stab.x/ is elliptic in S , so we are done.

If T is not geometric in the sense of [35], then the construction in [35, Theorem

2.6] or [14, Proposition II.1] yields a very small geometric FN -tree T 0 in which

Stab.x/ is elliptic, coming with an FN -equivariant morphism of R-trees from T 0

to T . As any FN -equivariant morphism between trees with dense orbits is an

isometry [28, Corollary 3.10], this implies that T 0 contains a simplicial edge with

trivial stabilizer. As in the above paragraph, this implies that Stab.x/ is contained

in a proper free factor of FN .

We are thus left with the case where T is geometric. Then T can be decom-

posed into minimal components that are either dual to minimal foliations on sur-

faces, or exotic components, see [3, 15]. If T contains an exotic component, then
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there exists a very small FN -tree containing a simplicial edge with trivial stabi-

lizer, in which Stab.x/ is elliptic [17, Proposition 7.2]. We now assume that all

minimal components of T are dual to foliated surfaces. Dual to the decomposi-

tion of T into its minimal components is a bipartite simplicial FN -tree S called the

skeleton of T , de�ned as follows [19, Section 1.3]. Vertices of S are of two kinds:

some correspond to minimal components Y of T , and the others correspond to

points x 2 T belonging to the intersection of two distinct minimal components.

There is an edge from the vertex associated to x to the vertex associated to Y

whenever x 2 Y . In particular, point stabilizers in S are either point stabilizers in

T , or groups acting with dense orbits on their minimal subtree in T . In a minimal

surface component, all point stabilizers are cyclic, so S is a simplicial FN -tree

with (at most) cyclic edge stabilizers. If S is nontrivial, Lemma 2.2 implies that

either a point stabilizer in T is contained in a proper free factor, or some subgroup

of FN is contained in a proper free factor F of FN and acts with dense orbits on

its minimal subtree in T . In the latter case, by decomposing the F -action on the

F -minimal subtree of T as a graph of actions with trivial arc stabilizers [34], we

get that Dyn.T / ¤ ;, which has been excluded. If S is reduced to a point, then T

is minimal and dual to a surface with at least two boundary curves (otherwise T

would be arational by [37, Theorem 1.1]). Any of these curves yields the desired

point stabilizer in T . �

3. Nonelementary subgroups of Out.FN /

A subgroup H � Out.FN / is nonelementary if it does not preserve any �nite set

of FFN [ @FFN . It will follow from our proof of Theorem 0.1 that a subgroup

of Out.FN / is nonelementary if and only if its action on FFN is nonelementary

in the sense of Gromov, which justi�es our terminology (see Remark 4.1). In this

section, we will prove Theorem 0.1 for nonelementary subgroups of Out.FN /.

Theorem 3.1. Every nonelementary subgroup of Out.FN / contains a rank two
free subgroup, generated by two fully irreducible automorphisms.

Stationary measures on @CVN . Our proof of Theorem 3.1 is based on tech-

niques that originally arose in the study of random walks on groups. All topologi-

cal spaces will be equipped with their Borel �-algebra. Let� be a probability mea-

sure on Out.FN /. A probability measure � on CVN is �-stationary if � � � D �,

i.e. for all �-measurable subsets E � CVN , we have

�.E/ D
X

ˆ2Out.FN /

�.ˆ/�.ˆ�1E/:

Our �rst goal will be to prove the following fact.
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Proposition 3.2. Let � be a probability measure on Out.FN /, whose support
generates a nonelementary subgroup of Out.FN /. Then every �-stationary prob-
ability measure on CVN is supported on AT.

We will make use of the following classical lemma, whose proof is based on a

maximum principle argument (we provide a sketch for completeness). We denote

by gr.�/ the subgroup of Out.FN / generated by the support of the measure �.

Lemma 3.3 (Ballmann [1], Woess [38, Lemma 3.4], Kaimanovich and Masur

[31, Lemma 2.2.2]). Let � be a probability measure on a countable groupG, and
let � be a�-stationary probability measure on aG-spaceX . LetD be a countable
G-set, and let ‚WX ! D be a measurable G-equivariant map. If E � X is a G-
invariant measurable subset ofX satisfying �.E/ > 0, then‚.E/ contains a �nite
gr.�/-orbit.

Proof. Let Q� be the probability measure on D de�ned by setting

Q�.Y / WD �.‚�1.Y //

for all subsets Y � D. It follows from �-stationarity of � and G-equivariance of

‚ that Q� is �-stationary. LetM � ‚.E/ denote the set consisting of all x 2 ‚.E/
such that Q�.x/ is maximal (and in particular positive). Since Q� is a probability

measure, the setM is �nite and nonempty. For all x 2 M , we have

Q�.x/ D
X

g2G

�.g/ Q�.g�1x/ � Q�.x/
X

g2G

�.g/ D Q�.x/;

which implies that for all g 2 G belonging to the support of �, we have

Q�.g�1x/ D Q�.x/:

Therefore, the setM is invariant under the semigroup generated by the support of

L� (where L�.g/ WD �.g�1/). AsM is �nite, this implies thatM is gr.�/-invariant,

so it contains a �nite gr.�/-orbit. �

We now de�ne an Out.FN /-equivariant map ‚ from CVN to the (countable)

set D of �nite collections of conjugacy classes of proper free factors of FN .

This resembles Reynolds’ notion of characteristic factors associated to any tree

T 2 @CVN XAT in [37, Section 9]. We use a slightly di�erent de�nition that will

help us proving measurability of the map ‚ below. Given a tree T 2 CVN , we

de�ne Loop.T / to be the �nite collection of conjugacy classes of elements of FN

whose axes in T project to an embedded simple loop in the quotient graph T=FN

(these may be viewed as cyclic free factors of FN ). Given T 2 CVN , the set of

conjugacy classes of point stabilizers in T is �nite [30]. Every point stabilizer is

contained in a unique minimal (possibly non proper) free factor of FN , de�ned as
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the intersection of all free factors of FN containing it (the intersection of a family

of free factors of FN is again a free factor). We let Per.T / be the (possibly empty)

�nite set of conjugacy classes of proper free factors of FN that arise in this way,

and we set

‚.T / WD

8
ˆ̂<
ˆ̂:

; if T 2 AT;

Loop.T / if T 2 CVN ;

Dyn.T / [ Per.T / if T 2 @CVN XAT:

Proposition 2.1 implies that ‚.T / D ; if and only if T 2 AT.

Lemma 3.4. The set AT is measurable, and ‚ is measurable.

We postpone the proof of Lemma 3.4 to the next paragraph and �rst explain

how to deduce Proposition 3.2.

Proof of Proposition 3.2. Nonelementarity of gr.�/ implies that the only �nite

gr.�/-orbit inD is the orbit of the empty set. Therefore, since‚.T / ¤ ; as soon

as T 2 CVN X AT (Proposition 2.1), the set ‚.CVN X AT/ contains no �nite

gr.�/-orbit. Proposition 3.2 then follows from Lemma 3.3. �

Measurability of ‚. Given a �nitely generated subgroup F of FN , we denote

by P.F / the set of trees T 2 CVN in which F is elliptic, by E.F / the set of trees

T 2 CVN in which F �xes an edge, and by D.F / the set of trees T 2 CVN whose

F -minimal subtree is a nontrivial F -tree with dense orbits.

Lemma 3.5. For all �nitely generated subgroups F � FN , the sets P.F /, E.F /
and D.F / are measurable.

Proof. Let F be a �nitely generated subgroup of FN . Let sW CVN ! cvN be a

continuous section. We have

P.F / D
\

w2F

¹T 2 CVN jjjwjjs.T / D 0º;

so P.F / is measurable. An element g 2 FN �xes an arc in a tree T 2 CVN if

and only if it is elliptic, and there exist two hyperbolic isometries h and h0 of T

whose translation axes both meet the �xed point set of g but are disjoint from each

other. These conditions can be expressed in terms of translation length functions:

they amount to requiring that jjghjjs.T / � jjhjjs.T / and jjgh0jjs.T / � jjh0jjs.T / and

jjhh0jjs.T / > jjhjjs.T / C jjh0jjs.T /, see [12, 1.5]. So E.F / is a measurable set, too.



Handel and Mosher’s alternative 717

The F -minimal subtree of a tree T 2 CVN has dense orbits if and only if for

all n 2 N, there exists a free basis ¹s1; : : : ; skº of F so that for all i; j 2 ¹1; : : : ; kº,
we have jjsi jjs.T / � 1

n
and jjsi sj jjs.T / � 1

n
. This implies that the set Dense.F /

consisting of those trees in CVN whose F -minimal subtree has dense orbits is

measurable. Therefore D.F / D Dense.F / \c
P.F / is also measurable. �

Proof of Lemma 3.4. Measurability of AT follows from Lemma 3.5. For all T 2
CVN , the set Dyn.T / consists of conjugacy classes of minimal free factors of

FN that act with dense orbits on their minimal subtree in T but are not elliptic,

so measurability of the map T 7! Dyn.T / follows from measurability of D.F /

for all �nitely generated subgroups F of FN . Point stabilizers in T are either

maximal among elliptic subgroups, or �x an arc in T . Therefore, since P.F /

and E.F / are measurable for all �nitely generated subgroups F of FN , the set

of conjugacy classes of point stabilizers in a tree T 2 CVN depends measurably

on T . Measurability of T 7! Per.T / follows from this observation. As open

simplices in CVN are also measurable, measurability of ‚ follows. �

End of the proof of Theorem 3.1

Proposition 3.6. Let H � Out.FN / be a nonelementary subgroup of Out.FN /.
Then the H -orbit of any point x0 2 CVN has a limit point in AT.

Proof. Let � be a probability measure on Out.FN / whose support generates H .

Since CVN is compact, the sequence of the Cesàro averages of the convolutions

.��n � ıx0
/n2N has a weak-� limit point �, which is a �-stationary measure on

CVN . We have �.Hx0/ D 1, where Hx0 denotes the H -orbit of x0 in CVN ,

and Proposition 3.2 implies that �.AT/ D 1. This shows that Hx0 \ AT is

nonempty. �

As a consequence of Theorem 1.3 and Proposition 3.6, we get the following

fact.

Corollary 3.7. Let H � Out.FN / be a nonelementary subgroup of Out.FN /.
Then the H -orbit of any point in FFN has a limit point in @FFN . �

Proof of Theorem 3.1. Let H be a nonelementary subgroup of Out.FN /. Corol-

lary 3.7 shows that the H -orbit of any point in FFN has a limit point in @FFN .

As H has no �nite orbit in @FFN , Theorem 1.2 shows that H contains two lox-

odromic isometries which generate a free group of rank two. Theorem 3.1 then

follows from the fact that elements of Out.FN / that act loxodromically on FFN

are fully irreducible (Theorem 1.4). �
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4. Proof of Theorem 0.1

We now complete the proof of Theorem 0.1. We start by recalling a few facts

about length measures on trees that we will use in the proof, and refer the reader

to [18, Section 5] for a more detailed account. Given a tree T 2 @CVN with dense

orbits, a length measure on T is a collection of �nite Borel measures �I for all

segments I � T such that

� for all segments J � I , we have �J D .�I /jJ , and

� for all segments I � T and all g 2 FN , we have �gI D .gjI /��I .

The setM.T / of non-atomic length measures on T is a �nite-dimensional simplex,

spanned by the set of ergodic measures on T [18, Corollary 5.4]. Any length

measure � on T determines a tree T�, which is obtained by making Hausdor� the

pseudo-metric on T given by d�.x; y/ D �.Œx; y�/. There is an FN -equivariant

alignment-preserving map from T to T�. Conversely, if T admits an alignment-

preserving map onto a tree T 0 2 @CVN , then there exists a length measure � on

T such that T 0 D T�. The map that sends a length measure � 2 M.T / to the

length function of the tree T� is a linear injection [18, Lemma 5.3], so the image

of M.T / in @CVN is a simplex †.T / of the same dimension.

Proof of Theorem 0.1. Let H be a subgroup of Out.FN /. If H is nonelementary,

then the claim follows from Theorem 3.1. We now assume that H is elementary,

and that H does not virtually �x the conjugacy class of a proper free factor of

FN . By de�nition of elementary subgroups, the group H virtually �xes a point

� 2 @FFN .

We claim that the set of trees in AT that project to � is equal to †.T / for any

T 2 AT projecting to �. We �rst show that if T 0 2 AT also projects to �, then

T 0 2 †.T /. Indeed, the trees T and T 0, equipped with the observers’ topology,

are FN -equivariantly homeomorphic. Therefore, there exists an FN -equivariant

alignment-preserving map from T to T 0, and this implies that T 0 2 †.T /.

Conversely, if T 0 2 †.T /, then there exists an alignment-preserving map from T

to T 0, so L.T / � L.T 0/. Since T is arational, it then follows from [6, Proposition

3.1] that L.T / D L.T 0/, so T 0 � T .

The group H �xes the �nite subset of extremal points of the simplex †.T /,

which consists of arational trees. Up to passing to a �nite index subgroup again,

we can assume that H �xes an arational tree T 2 @CVN . By Reynolds’ charac-

terization of arational trees [37, Theorem 1.1], either T is free, or else T is dual to

an arational measured lamination on a surface S with one boundary component.

In the �rst case, it follows from [32, Theorem 1.1] that H is virtually cyclic, vir-

tually generated by an automorphism ˆ 2 Out.FN /, and in this case ˆ is fully

irreducible, otherwise H would virtually �x the conjugacy class of a proper free

factor ofFN . In the second case, all automorphisms inH can be realized as di�eo-

morphisms of S [5, Theorem 4.1]. SoH is a subgroup of the mapping class group

of S , and the claim follows from the analogous classical statement that stabilizers

of arational measured foliations are virtually cyclic [36, Proposition 2.2]. �
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Remark 4.1. With the terminology from Theorem 1.1, it follows from the above

proof that the action of a subgroup H � Out.FN / on FFN is either bounded

(in which case it actually has a �nite orbit), lineal or of general type (the horocyclic

and focal cases do not arise in this context). In particular, a subgroup of Out.FN /

is nonelementary if and only if its action on FFN is nonelementary.

Remark 4.2. In the case of �nitely generated subgroups of Out.FN /, Handel and

Mosher’s proof of Theorem 0.1 gives a uniform bound on the �nite index subgroup

�xing a free factor depending only on N . It would be interesting to know whether

such a bound holds for all subgroups of Out.FN /. However, our argument from

Section 3 using stationary measures does not enable us to provide such a bound.
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