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Abstract. We show that the Novikov–Shubin invariant of an element of the integral group

ring of the lamplighter group Z2 o Z can be irrational. This disproves a conjecture of Lott

and Lück. Furthermore we show that every positive real number is equal to the Novikov–

Shubin invariant of some element of the real group ring of Z2 o Z. Finally we show that the

l2-Betti number of a matrix over the integral group ring of the group Zp o Z, where p is

a natural number greater than 1, can be irrational. As such the groups Zp o Z become the

simplest known examples which give rise to irrational l2-Betti numbers.
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Let � be a countable �nitely generated. A real number r is said to be an l2-

Betti number arising from � if there is a matrix T with entries in the integral group
ring ZŒ��, such that the von Neumann dimension of the kernel of T is equal to r .

The motivation for the name is as follows: when r is an l2-Betti number arising
from �, then there exists a normal covering M of a �nite CW-complex whose deck
transformation group is �, and such that one of the l2-Betti numbers of M is equal
to r . We refer to the very readable introduction [6] for more details.

The following problem is a �ne-grained version of a question asked by Atiyah
in [2].

Problem 1 (the Atiyah problem for �). What is the set of l2-Betti numbers arising

from �?

Let us denote this set by C.G/. For a class of groups C de�ne C.C / D
S

�2C C.�/.
So far C.�/ has been computed only in cases where C.�/ turns out to be a

subset of Q. In fact, the statement known as the Atiyah conjecture for torsion-free

groups says that C.�/ D N for any torsion-free group, and before [5] it was widely
conjectured that C.�/ � Q for every group �. However, [5] gives an example of
a group ring element T together with an heuristic argument showing why the von
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Neumann dimension of ker T is probably irrational. That example is based on [10],
where a weaker form of the Atiyah conjecture was disproved.

Only recently Austin [3] obtained a de�nite result by proving that C.Finitely
generated groups/ is uncountable. His results were extended and simpli�ed in [9]
and [17], and additional examples were found in [15].

All the groups G for which it was shown C.G/ 6� Q have one of the lamplighter
groups Zp o Z, where p is a natural number greater than 1, as a subgroup, but are
substantially more complicated than that.

Our �rst result is as follows.

Theorem 2. There is a matrix T with entries in the group ring ZŒZp oZ� such that

dimvN ker T D 1344
�4p3 C 3p2 C 2p � 1

8p3
C 1

8p3

1
X

kD1

�p � 1

p

�kC2k �

;

which is a transcendental number.

In the view of the preceding discussion, the following problem captures the
limit of the currently available methods for �nding groups � such that C.�/ 6� Q.

Problem 3. Does C.�/ 6� Q imply Zp o Z � � for some p?

As mentioned above, C.�/ has been computed only in the cases where in fact
C.�/ � Q. Since Zp o Z are the simplest groups for which we know C.�/ 6� Q, it
is natural to ask the following.

Problem 4. Is there a description of C.Z2 o Z/ substantially di�erent from the

de�nition?

To state a more concrete problem: is
p

2 2 C.Z2 o Z/?

For our second result let us recall the de�nition of another spectral invariant
associated to an element of a group ring, the Novikov–Shubin invariant. It mea-
sures the growth of the number of eigenvalues around 0. More precisely, given a
self-adjoint T 2 CŒ��, the Novikov–Shubin invariant of T is de�ned as

˛.T / WD lim inf
�!0C

log.�T ..0; ��//

log.�/
; (1)

where �T is the spectral measure of T (see [14, Chapter 2] for more details).

Remarks 5. (i) It is irrelevant whether we take �T ..0; ��/ or �T ..0; �// in (1).
However, it is important that we do not include 0, since otherwise ˛.T / would
be equal to 0 whenever the spectral measure of T has an atom at 0. It is also
irrelevant what is the base of the logarithm. It is convenient for us to take the
base-2 logarithm.
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(ii) Both the numerator and the denominator are negative when � is su�ciently
small, so ˛.T / 2 Œ0; 1�.

(iii) If for some d and all " there is a constant C > 0 such that for su�ciently
small � we have 1

C
�dC" < �T ..0; �// < C �d�" then a short computation shows

that ˛.T / D d .

Lott and Lück [12] proposed the following conjecture.

Conjecture 6. When T 2 ZŒ�� then ˛.T / > 0 and ˛.T / 2 Q.

For partial results and the motivations for Conjecture 6 see [14, Section 2.5].
For counterexamples to the positivity part see [8]. In the present paper we con-
struct T 2 ZŒZ2 o Z� such that ˛.T / … Q. In fact we show the following.

Theorem 7. There is a family T .b/ 2 RŒZ2 o Z�, b 2 .1; 1/ such that for b 2 Q

we have T .b/ 2 QŒZ2 o Z� and ˛.T .b// D 1
2 log2.b/

.

Note that the Novikov–Shubin invariant of T and kT is the same for k > 0,
and so we also obtain examples of T 2 ZŒZ2 o Z� with irrational Novikov–Shubin
invariants.

To the author’s best knowledge, the counterexamples to the rationality part of
Conjecture 6 were not known before even if ZŒ�� is replaced by RŒ��. The family
T .b/ is a modi�cation of the operator studied by Grigorchuk and Żuk [10].

As in the case of l2-Betti numbers, when r is a Novikov–Shubin invariant of
some T 2 ZŒ��, then there exists a normal covering M of a �nite CW-complex
whose deck transformation group is �, and such that one of the Novikov–Shubin
invariants of M is equal to r . Conjecture 6 could still be true in the case of a �nite
aspherical CW-complex.

Theorem 7 has an interesting consequence that the set of the Novikov–Shubin
invariants of all the elements of QŒZ2 o Z�, which is countable, is di�erent than
the set of the Novikov–Shubin invariants of all the elements of RŒZ2 o Z�. The
analogous question has been asked among the experts for l2-Betti numbers, since
there are classes of torsion-free groups for which the Atiyah conjecture is known
for QŒ�� but not for RŒ��.

Problem 8. Is it the case that for every T 2 RŒ�� there exists T 0 2 QŒ�� such that

dimvN ker T D dimvN ker T 0?

Although Theorem 7 shows that the answer is negative when we replace
dimvN ker T D dimvN ker T 0 with ˛.T / D ˛.T 0/, the author believes that at least
for � D Z2 o Z the answer to Problem 8 is positive.
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The structure of the article is as follows. In the next section we describe the
computational tool, in a generality which is just enough for the proof of Theorem 7.
A general version is presented in [9, Section 2] and we refer there for the proofs.
Various variants of it were also used for example in [4], [5], [13], [3], and [17].

In Section 2 we prove Theorem 7. Section 3 presents a slightly di�erent version
of the computational tool, which is then used in Section 4 to prove Theorem 2.

Some elementary linear algebra computations are deferred to the appendix.

Notation. The rings of integer, rational, real and complex numbers are Z, Q, R
and C. The cyclic group of order p is Zp and the in�nite cyclic group is Z. We
�x a generator of Z and denote it by t . Given an action � Õ X , the result of the
action of  2 � on x 2 X is denoted by :x. For example the translation action of
Z Õ Z is, by de�nition, given by t:k WD kC1.

Given two groups A and B the wreath product AoB is de�ned to be B Ë
L

B A,
where the action B Õ

L

B A is by shifting the coordinates from the left. However,
in the case B D Z, we write ZË

L

Z
A because it is easier to refer to the coordinates

of an element of
L

Z
A (which are simply integer numbers) than to the coordinates

of an element of
L

Z A (which are powers of t ).
The neutral element of a group is denoted by e.

Note on chronology. The �rst version of this article submitted to arXiv in 2010
contained only Theorem 2. Theorem 7 was added in 2014.
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thanks also Światosław Gal, Holger Kammeyer, Jarek Kędra, Manuel Koehler,
Thomas Schick and Andreas Thom for useful comments.
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University, by EPSRC grant EP/K012045/1 at University of Warwick, by Austrian
Science Foundation project P25510-N26 during author’s stay at T.U. Graz, and
by Fondations Sciences Mathématiques de Paris during the program Marches
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1. Computational tool in the case of a free action

Assume that .X; �/ is a compact abelian group with the normalized Haar mea-
sure which is Pontryagin-dual to a countable discrete abelian group A. Assume
furthermore that the action � Õ X is by continuous group automorphisms. The
Pontryagin duality gives us an embedding CŒA� ,! L1.X/. The preimage of
f 2 L1.X/ under this embedding, if it exists, is denoted by Of (see [7, Chapter 4]
for more on the Pontryagin duality).
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Let �1; : : : ; �n be the indicator functions of subsets X1; : : : ; Xn � X such
that all �i are in the image of the above embedding. Let a1; : : : ; an 2 C and
1; : : : ; n 2 �.

Let yT 2 CŒ� Ë A� be de�ned as yT WD
P

aii y�i , and let T 2 � Ë L1.X/ be
de�ned as T WD

P

aii�i .
We considerCŒ�ËA� as acting on l2.�ËA/ by bounded operators. The spectral

measures of the elements of CŒ� ËA� are computed with respect to this action and
the vector in l2.� Ë A/ which is the indicator function of the neutral element.

Similarly the group-measure space von Neumann algebra � Ë L1.X/ (see
e.g. [14, Chapters 1 and 2]) acts on the direct integral Hilbert space

R

˚

X
l2.�/ d�.x/,

and the spectral measure is computed with respect to the vector equal to the func-
tion which sends all x 2 X to the indicator function of the neutral element.

As explained for example in [9, Section 2], we have the following lemma.

Lemma 9. The spectral measures of yT and of T are the same. �

We will now explain how to compute the spectral measure of T under the

assumption that the action � Õ X is essentially free, i.e. there is a subset X 0 � X

of full measure which is �-invariant and such that the action of � on X 0 is free.
Consider the oriented edge-labelled graph G de�ned as follows. The set of

vertices of G is X , and there is an edge from x1 to x2 if for some i we have x1 2 Xi

and i :x1 D x2. On such an edge we set the label to be equal to
X

j Wj Di

x12Xj

aj :

Let G.x/ be the connected component of x in G. Let l2.G.x// be the Hilbert
space spanned by the vertices of G.x/. Let T .x/W l2.G.x// ! l2.G.x// be the
adjacency operator on G.x/, i.e. the entry of the matrix of T .x/ corresponding to
a pair of vertices .v1; v2/ is equal to the label on the edge from v1 to v2, if there is
such an edge, and 0 otherwise.

We say T is self-adjoint if the set of those x for which the matrix of T .x/ is
Hermitian is of measure 1. The next proposition follows from [9, Proposi-
tion 2.10].

Proposition 10. Let us assume that T is self-adjoint and that the set of those x

for which G.x/ is �nite is of measure 1. Then for a measurable subset D � R we

have

�T .D/ D
Z

X

�T .x/.D/

jG.x/j d�.x/:

We will apply this proposition in the next section. Its utility comes from the
fact that among the labelled graphs G.x/, x 2 X , there are only countably many
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di�erent ones, and they can be computed explicitly. As such the above integral will
decompose as an explicit countable sum of spectral measures of �nite-dimensional

matrices.

2. Possible values of the Novikov–Shubin invariants

We need a more quantitative version of [8, Lemma 5]. For b 2 R and n 2 N let
M.b; n/ be the n � n matrix

0

B

B

B

B

B

B

@

1 b

b b2 C 1 b

b b2 C 1

: : :

b2 C 1 b

b b2 C 1

1

C

C

C

C

C

C

A

Lemma 11. For every " and b > 1 there is N such that for n > N the matrix

M.b; n/ has an eigenvalue �1.b; n/ such that

� 1

b2
� "

�n

< �1.b; n/ <
� 1

b2
C "

�n

;

and such that all the other eigenvalues are bigger than or equal to .b � 1/2.

Proof. Let us �x " and b. Let K.b; n/ D M.b; n/ C Diag.b2; 0; 0; : : : ; 0/, i.e. we
replace the anomalous 1 on the diagonal with b2 C 1. Let �1 6 �2 6 : : : 6 �n

be the eigenvalues of K.b; n/ and let �1 6 �2 6 : : : : : : �n be the eigenvalues of
M.b; n/. Note that the norm of the matrix K.b; n/ � .b2 C 1/Im is 2b, so we have
the following claim.

Claim A. All the eigenvalues of K.b; n/ lie between b2 C 1 � 2b D .b � 1/2 and

b2 C 1 C 2b D .b C 1/2.

Let Dn D det.K.b; n// and En D det.M.b; n//. By expanding both determi-
nants along the �nal row we see that Dn and En ful�l the recurrence relations

DnC2 D .b2 C 1/DnC1 � b2Dn EnC2 D .b2 C 1/EnC1 � b2En:

Solving the recurrence in the standard way gives us En D 1 for all n and

Dn D b2

b2 � 1
b2n � 1

b2 � 1
: (2)

Note that for any constant C > 0 we have that for su�ciently large n the
following holds:

.b2 � "/n
6 CDn 6 .b2 C "/n (3)
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Note that the di�erence M.b; n/ � K.b; n/ is a rank 1 matrix, so we can use
the Weyl inequality for rank 1 perturbations (e.g. [11, Theorem 4.3.4]), which in
particular implies that for i D 2; : : : ; n we have �i > �i�1. Since �1 � : : : ��n D Dn,
it follows that �2 � : : : � �n >

Dn

�n
.

Similarly the Weyl inequality implies that for i D 2; : : : ; n � 1 we have
�i 6 �iC1, so that �2 � : : : � �n 6

�nDn

�1�2
.

Note that the norm of M.b; n/ D K.b; n/ � Diag.b2; 0; 0; : : : ; 0/ is at most
.b C 1/2 C b2, so in particular �n 6 .b C 1/2 C b2. This, together with Claim A,
shows

Dn

.b C 1/2
6 �2 � : : : � �n 6

..b C 1/2 C b2/Dn

.b � 1/4
:

Now (3) implies that for su�ciently large n we have

.b2 � "/n
6 .�2 � : : : � �n/ 6 .b2 C "/n:

Finally since �1 � : : : � �n D En D 1 we obtain

1

.b2 C "/n
6 �1 6

1

.b2 � "/n
;

which implies the statement about �1.
As for all the other eigenvalues, by Claim A we have �1 > .b � 1/2, and for

i > 2 we have �i > �2 > �1 by the Weyl inequality, which �nishes the proof. �

We introduce the following notation for the subsets of ZZ

2 . The elements of Z2

are denoted by 0 and 1. For "i 2 ¹0; 1º we denote the set

¹.mi / 2 ZZ

2 W m�a D "�a; : : : ; mb D "bº � ZZ

2 ;

by
Œ"�a"�aC1 : : : "�1"0"1 : : : "b�;

and we let
�Œ"�a"�aC1 : : : "�1"0"1 : : : "b; x� 2 L1.ZZ

2 /

be the corresponding indicator function. Elements from the set above will be
denoted with the curly brackets ./ instead of Œ�.

Recall that t is the generator of the in�nite cyclic group Z. For b 2 R let
T .b/ 2 Z Ë L1.ZZ

2 / be de�ned as

T .b/ WD �b2�Œ10� C b.t Œ0� C t�1�Œ0��/ C .b2 C 1/:

In this notation, the operator studied in [10] was t Œ0� C t�1�Œ0��. Note that the
indicator functions in the de�nition of T .b/ are in the image of the Pontryagin
duality map QŒ

L

Z
Z2� ,! L1.ZZ

2 /. So, by Lemma 9, the Novikov–Shubin in-
variant of T .b/ is the same as the Novikov–Shubin invariant of the corresponding
bT .b/ 2 RŒZ Ë

L

Z
Z2� D RŒZ2 o Z�.
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Theorem 12. For b > 1 the Novikov–Shubin invariant of T .b/ is equal to 1
2 log2.b/

.

Proof. We use Proposition 10 with X D ZZ

2 , � D Z, A D
L

Z
Z2. Let us compute

two examples of a graph G.x/.
First let x D .11/. Then x … Œ10�, x … Œ0� and x … Œ0��, so the only outgoing

arrow at x is the self-loop with label .b2 C 1/.
As for the incoming arrows at x, other than the self-loop, we see that x … t:Œ0�

and x … t�1:Œ0��, so there are no incoming arrows. Accordingly G.x/ consists
only of the vertex x with a self-loop with label b2 C 1.

Now let x D .1001/. Since x 2 Œ0� there is an outgoing arrow from x to
t:x D .1001/ with label b. Since t:x 2 Œ0�, there is an outgoing arrow from t:x

to t2:x D .1001/ with label b. Since t:x 2 Œ0��, there is also an outgoing arrow
from t:x to x with label b. Similarly t2:x 2 Œ0�� so there is an arrow from t2:x to
t:x with label b.

As for the self-loops , x 2 Œ10�, so there is a self-loop at x with label
.b2 C 1/ � b2 D 1. The vertices t:x and t2:x have self-loops with labels b2 C 1.

In analogy with these two examples we see that when x 2 Œ100k
1� then G.x/

is the graph on Figure 1 with k C 2 vertices.

� � : : : �
b b b

b b b
b2 C 1 b2 C 11

Figure 1

Let us check that, up to a set of measure 0, every point of X is in a connected
component of G.x/ for some x 2 Œ100k

1�:

�.Œ11�/ C
1

X

kD0

.k C 2/�.Œ100k
1�/ D 1

4
C

1
X

kD0

.k C 2/
1

2kC3
D 1

2

1
X

kD1

k

2k
D 1:

In particular the subset of those x for whichG.x/ is �nite is of full measure. Clearly
the adjacency operator on the graph with m vertices on Figure 1 is given by the
matrix M.b; m/. Proposition 10 now shows that

�T D 1

4
�Diag.b2C1/ C

1
X

mD2

1

2mC1
�M.b;m/:
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Let us use Lemma 11 to estimate �T ..0; z�/ for small z > 0. Let us �x a small
" in Lemma 11. Then for su�ciently small z we have

�T ..0; z�/ D
X

mW�1.b;m/6z

1

2mC1
: (4)

By Lemma 11, the smallest m such that �1.b; m/ 6 z is between

j log.z/j
ˇ

ˇ log
�

1
b2 C "

�ˇ

ˇ

and
j log.z/j

ˇ

ˇ log
�

1
b2 � "

�ˇ

ˇ

:

We estimate �T ..0; z�/ from (i) below and (ii) above by taking in the sum (4)

respectively (i) only the smallest m such that �1.b; m/ 6 z, and (ii) the smallest
such m and all the natural numbers larger than m. We obtain that �T ..0; z�/ lies
between

2

log.z/
ˇ

ˇ log
�

1

b2
�"

�ˇ

ˇ

D z

1
ˇ

ˇ log
�

1

b2
�"

�ˇ

ˇ

and

2 � 2

log.z/
ˇ

ˇ log
�

1

b2
C"

�ˇ

ˇ

D 2z

1
ˇ

ˇ log
�

1

b2
C"

�ˇ

ˇ

(in the algebraic manipulations we used that log.z/ is negative for small z).
This shows that the Novikov–Shubin invariant of T .b/ lies between 1

ˇ

ˇ log
�

1

b2
�"

�ˇ

ˇ

and 1
ˇ

ˇ log
�

1

b2
C"

�ˇ

ˇ

, for every ", and so in fact must be equal to 1
ˇ

ˇ log
�

1

b2

�ˇ

ˇ

D
1

2 log.b/
. �

3. Computational tool in the case of a non-free action

We will now repeat the discussion from Section 1, and add some extra structure in
order to deal with a non-free action. For the proofs see [9, Section 2].

Let � Õ X be as in Section 1, with the exception that it is not necessarily a
free action. Let T 2 � Ë L1.X/ be de�ned as

T WD
n

X

iD1

aii �i

(with the notation from Section 1).
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Consider the oriented graph G� whose set of vertices is X , and with edges
labelled by the elements of the set ¹1; : : : ; nº, de�ned as follows. There is an
edge with label i from x1 to x2 if x1 2 Xi and i :x1 D x2. Let G�.x/ be the
connected component of x. We sayG�.x/ is simply-connected if multiplying edge-
labels along any closed loop gives the trivial element of � (if a loop traverses an
edge in the direction opposite to the orientation of the edge, we invert the label).

Let G.x/ be the graph which arises from G�.x/ by changing the label i on the
edge between x1 and x2 as above to the sum

X

j Wj Di

x12Xj

aj :

Finally let
T .x/W l2.G.x// �! l2.G.x//

be the adjacency operator on G.x/. The next proposition follows from [9, Propo-
sition 2.10].

Proposition 13. Let us assume that the set of x such thatG�.x/ is �nite and simply-

connected is of full measure. Then dimvN ker T is equal to

Z

X

dim ker T .x/

jG.x/j d�.x/:

4. Irrational l2-Betti numbers arising from Zp o Z

For the rest of the article let X be the compact abelian group ZZ

p � Z3
2, and

� D Z � Aut.Z3
2/. The action �ÕX is the natural one, i.e. Aut.Z3

2/ acts on
Z3

2 and Z acts on ZZ

p by shifting the coordinates.
Note that � Ë A is isomorphic to .Zp o Z/ � .Aut.Z3

2/ Ë Z3
2/. We will shortly

de�ne T 2 QŒ� Ë A� such that

dimvN ker T D 4p3 C 3p2 C 2p � 1

8p3
C 1

8p2.p � 1/

1
X

kD1

�p � 1

p

�kC2k�1

;

The additional factor 1344 in Theorem 2 comes from the fact that Zp o Z is a
subgroup in � Ë A of index 1344 (see e.g. [9, Lemma 6.2] for more explanation).
Furthermore, for k ¤ 0 the kernels of T and kT are the same, so we will also
obtain a matrix over ZŒ� Ë A� whose kernel dimension is as above.

Let A, B , C , D, F , I , U1, U2 (U stands for unimportant, F for �nal and I for
initial) denote the elements of Z3

2. The only assumption on this labelling is that
the �rst 6 symbols correspond to non-zero elements of Z3

2.
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For every pair .x; y/ of di�erent elements from the set ¹A; B; C; D; F; I º we
�x an automorphism denoted by .x ! y/ 2 Aut.Z3

2/ which sends x to y, in such
a way that

.x �! y/ D .y �! x/�1 (5)

and
.C �! D/.A �! C / D .I �! D/.A �! I /: (6)

To treat the case of an arbitrary p, we change our notation in the following way.
Let 0 WD ¹0º � Zp and 1 WD ¹1; 2; 3; : : : ; p � 1º � Zp. Let

Œ"�a"�aC1 : : : "�1"0"1 : : : "b; x�;

where "i 2 ¹0; 1º, denote

¹..mi/; y/ 2 ZZ

p � Z3
2 W m�a 2 "�a; : : : ; mb 2 "b; y D xº � X;

and let
�Œ"�a"�aC1 : : : "�1"0"1 : : : "b; x� 2 L1.X/

be the corresponding indicator function.
Let S 2 QŒ� Ë A� be represented by the sum of the following terms:

.�t .I ! D/ C t�1.I ! A// � �Œ101; I �; (7a)

.�t2.A ! C / � 2t�1/ � �Œ1101; A�; (7b)

�t2.A ! C / � �Œ0101; A�; (7c)

�2t�1 � �Œ1100; A�; (7d)

0 � �Œ0100; A�; (7e)

�2t�1 � �Œ111; A�; (7f)

�.A ! B/ � �Œ011; A�; (7g)

�t � �Œ11; B�; (7h)

�.B ! A/ � �Œ10; B�; (7i)

.�t C .C ! D// � �Œ11; C �; (7j)

C.C ! D/ � �Œ10; C �; (7k)

�t � �Œ11; D�; (7l)

�.D ! F / � �Œ10; D�; (7m)

0 � �Œ10; F �; (7n)

0 � �R; (7o)

where �R is the indicator function of the set R de�ned to be “all the rest”, i.e. the
complement of the union of the sets Œ101; I �, Œ1101; A�, Œ0101; A�, Œ1100; A�,
Œ0100; A�, Œ111; A�, Œ011; A�, Œ11; B�, Œ10; B�, Œ11; C �. Œ10; C �, Œ11; D�, Œ10; D�

and Œ10; F �.
Finally de�ne

T WD S C 1 � �R � �Œ101; I � � �Œ10; F �: (8)
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Remark 14. (i) The reason we explicitly write the terms “0� : : :” is that this way
the right hand sides are indicator functions of disjoint sets whose union is X . This
is helpful when checking that the connected components G�.x/ are as claimed.
To reassure the reader, without any 0-terms it would be the same operator and the
same computations would have to be performed.

(ii) The de�nitions of S and T might seem complicated at �rst. Let us
informally describe how the author came up with them. In the process of �nding a
group ring element over Z2 o Z (or a matrix of group ring elements) whose kernel
dimension is irrational, the �rst step was a realization that any family of simple-

to-describe graphs can appear as the connected components G.x/. Examples of
simple-to-describe graphs are on Figures 3, 5, and 7; one could formalize the
notion of being simple-to-describe using regular languages. Then it was necessary
to �nd a simple-to-describe family whose kernel dimensions behave in an irregular
way. This was the most di�cult step - after trial and error the family from Figure 7
was found. The operator T above is de�ned in such a way so that that family
appears among the connected components G.x/ (two other in�nite families, those
from Figures 3 and 5 also appear, but their kernel dimensions behave in a regular
way, so they do not interfere with the irregularity of the family from Figure 7).

We will now describe the graphs G�.x/ and G.x/ for x 2 X . It is convenient
to describe them in four families, which we do in separate subsections.

We will show �gures for the graphs, but for clarity we suppress self-loops.
Note that the self-loops are given only by the terms in (8), so it is also easy to take
them into account.

In all the cases it is somewhat tedious but, using Remark 14, straightforward
to check that the graph G�.x/ is as claimed for a given x 2 X .

4.1. Case 1: x 2 R. The graph G�.x/ consists of just one vertex with no edges.
Accordingly, the adjacency operator T .x/ is the 0 operator. We clearly deduce the
following lemma.

Lemma 15. We have the following properties:

(1) dim ker T .x/ D 1;

(2) G�.x/ is simply-connected;

(3) �.R/ D 1
8

�

2 C 5 1
p

C 1
p3 C 2p�1

p3 C p�1
p

C
�

p�1
p

�2�

.

Proof. (1) and (2) are clear. As for (3), note that we can explicitly write

R D Œ0; A� t Œ0; B� t Œ0; C � t Œ0; D� t Œ�; U1� t Œ�; U2�

t Œ0; F � t Œ11; F � t Œ1; I � t Œ100; I � C tŒ001; I � t Œ000; I �:
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Since � is the product measure, it is easy to compute the measures of the
sets above. We start with �.Œ0�/ D 1

p
, �.Œ1�/ D p�1

p
, and then for example

�.Œ0
N
01; I �/ D

�

1
p

�2�p�1
p

�1
8
. �

4.2. Case 2: x 2 Œ0
N
11

k�1
00; A�. If we denote x D .0

N
11

k�1
00; A/, then the

vertices of G�.x/ are

.0
N
11

k�1
00; A/; .01

N
11

k�2
00; A/; : : : ; .01k�1

N
100; A/;

.0
N
11

k�1
00; B/; .01

N
11

k�2
00; B/; : : : ; .01k�1

N
100; B/:

G�.x/ is shown on Figure 2. Each vertex should additionally have a self-
loop with label e. To avoid clutter only some vertices are explicitly identi�ed
as elements of X .

To facilitate to the reader checking that G�.x/ is as claimed we indicate that
the corresponding terms in (7) are

Œ0
N
11; A�; Œ1

N
11; A�; : : : ; Œ1

N
11; A�; Œ1

N
100; A�;

Œ
N
11; B�; Œ

N
11; B�; : : : ; Œ

N
11; B�; Œ

N
10; B�:

The graphs G.x/ are shown on Figure 3. Each vertex should additionally have
a self-loop with label 1.

.B ! A/

t�1 t�1

t t t

t�1

.011k�1
00; B/ .01k�1

100; B/

.01k�2
1100; A/ .01k�1

100; A/.011k�1
00; A/

.0111k�2
00; B/

.A ! B/

Figure 2. G� .x/ without self-loops for x D .0
N
11

k�1
00; A/.

�2 �2 �2 �2

�1
�1

�1

�1
�1

�1 �1 �1

�1

Figure 3. G.x/ without self-loops for x D .0
N
100; A/, x D .0

N
1100; A/, and x D

.0
N
11

k�1
00; A/.
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Lemma 16. We have the following properties:

(1) dim ker T .x/ D 0;

(2) G�.x/ is simply-connected;

(3) �.Œ0
N
11

k�1
00; A�/ D 1

8
�
�

1
p

�3 �
�

p�1
p

�k
and jG.x/j D 2k.

Proof. (2) follows easily from Figure 2 and Equation (5). (3) is a direct compu-
tation as in Lemma 15. (1) follows from analysing Figure 3, but for completeness
we give a proof in the appendix. �

4.3. Case 3: x 2 Œ00
N
11

l�1
0; C �. If we denote x D .00

N
11

l�1
0; C / then the

vertices of G�.x/ are

.00
N
11

l�1
0; C /; : : : ; .001l�1

N
10; C /;

.00
N
11

l�1
0; D; / : : : ; .001l�1

N
10; D/;

.001l�1

N
10; F /:

G�.x/ is shown on Figure 4. Each vertex except the �nal one should addition-
ally have a self-loop with label e. To avoid clutter only some vertices are explicitly
identi�ed as elements of X .

To facilitate to the reader checking that G�.x/ is as claimed we indicate that
the corresponding terms in (7) are

Œ
N
11; C �; : : : ; Œ

N
11; C �; Œ

N
10; C �;

Œ
N
11; D�; : : : ; Œ

N
11; D�; Œ

N
10; D�;

Œ
N
10; F �:

The graphsG.x/ are shown on Figure 5. Each vertex except the �nal one should
additionally have a self-loop with label 1.

t

t

t

t

.001l�1
10; D/

.001l�1
10; F /

.0011l�1
0; C /

.0011l�1
0; D/

.001l�1
10; C /

.C ! D/ .C ! D/ .C ! D/ .C ! D/

.D ! F /

Figure 4. G�.x/ without self-loops for x D .00
N
11

l�1
0; C /.
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1

�1

1 1 1 1 1 1

�1

�1

�1

�1

�1

�1

�1

�1

Figure 5. G.x/ without self-loops for x D .00
N
10; C /, x D .00

N
110; C /, and x D

.00
N
11

l�1
0; C /

Lemma 17. The following properties are true:

(1) dim ker T .x/ D 1;

(2) G�.x/ is simply-connected;

(3) �.Œ00
N
11

l�1
0; C �/ D 1

8
�
�

1
p

�3 �
�

p�1
p

�l
and jG.x/j D 2l C 1.

Proof. (2) follows easily from Figure 4 and Equation (5). (3) is a direct compu-
tation as in Lemma 15. (1) follows from analysing Figure 5, but for completeness
we give a proof in the appendix. �

4.4. Case 4: x 2 Œ0
N
11

k�1
01

l
0; A�. If we denote x D .0

N
11

k�1
01

l
0; A/ then the

vertices of G�.x/ are

.0
N
11

k�1
01

l
0; A/; .01

N
11

k�2
01

l
0; A/; : : : ; .01k�1

N
101

l
0; A/;

.0
N
11

k�1
01

l
0; B/; .01

N
11

k�2
01

l
0; B/; : : : ; .01k�1

N
101

l
0; B/;

.01k

N
01

l
0; I /;

.01k
0

N
11

l�1
0; C /; : : : ; .01k

01
l�1

N
10; C /;

.01k
0

N
11

l�1
0; D/; : : : ; .01k

01
l�1

N
10; D/;

.01k
01

l�1

N
10; F /:

G�.x/ is shown on Figure 6. Each vertex except the �nal and the initial ones
should additionally have a self-loop with label e. To avoid clutter only some
vertices are explicitly identi�ed as elements of X . Because it could be unclear
which labels correspond to which vertices, the identi�ed vertices are marked
white.
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To facilitate to the reader checking that G�.x/ is as claimed we indicate that
the corresponding terms in (7) are

Œ0
N
11; A�; Œ1

N
11; A�; : : : ; Œ1

N
11; A�; Œ1

N
1101; A�;

Œ
N
11; B�; Œ

N
11; B�; : : : ; Œ

N
11; B�; Œ

N
10; B�;

Œ101; I �;

Œ
N
11; C �; : : : ; Œ

N
11; C �; Œ

N
10; C �;

Œ
N
11; D�; : : : ; Œ

N
11; D�; Œ

N
10; D�;

Œ
N
10; F �:

The graphs G.x/ are shown on Figure 7. Each vertex except the �nal and the
initial ones should additionally have a self-loop with label 1.

.01k�1
101

l
0; B/

.01k
011

l�1
0; C /

.011k�1
01

l
0; B/

.01k
01

l�1
10; C /

.A ! B/

t�1

t

t�1

t t

t�1

t

.C ! D/ .C ! D/

t

.B ! A/

t t

.C ! D/

.D ! F /

.01k
01

l
0; I /.01k�1

101
l
0; A/.011k�1

01
l
0; A/

t�1.I ! A/

t2.A ! C/

t.I ! D/

.01k
01

l�1
10; F /

.01k
01

l�1
10; D/

Figure 6. G� .x/ without self-loops for x D .0
N
11

k�1
01

l
0; A/.

�1

�2 �2 �2

�1 �1 �1

�1

�1

�1

�1

�1

�1

�1

�1

1

111

Figure 7. G.x/ without self-loops for x D .0
N
11

k�1
01

l
0; A/.
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Lemma 18. The following properties are true:

(1) dim ker T .x/ D
´

2 if l D 2k�1 � 1,

1 otherwise;

(2) G�.x/ is simply-connected;

(3) �.Œ0
N
11

k�1
01

l
0; A�/ D 1

8
�
�

1
p

�3 �
�

p�1
p

�kCl
and jG.x/j D 2k C 2l C 2.

Proof. (2) follows easily from Figure 6 and Equations (5) and (6). (3) is a
direct computation as in Lemma 15. (1) follows from analysing Figure 5, but for
completeness we give a proof in the appendix. �

4.5. Checking that we have not missed any graphs. We need to check that the
graphs G.x/ on Figures 2, 4 and 6, together with the set R cover the whole space
X . To this end we compute that the measure of the covered part is 1, by using the
formulas in Lemmas 15(3), 16(3), 17(3) and 18(3).

Let ˛ WD 1
p

, ˇ WD p�1
p

. We need to check that

1

8
.2 C 5˛ C ˛3 C 2ˇ˛2 C ˇ C ˇ2/ C

1
X

kD1

2k�1
8

�˛3�ˇk

C
1

X

lD1

.2l C 1/�1
8

�˛3�ˇl C
1

X

k;lD1

.2k C 2l C 2/�1
8

�˛3�ˇkCl D 1:

This is a tedious but elementary exercise in using the formula

1
X

nD1

.n C C /xn D x

.1 � x/2
C Cx

1 � x
;

valid for 0 6 x 6 1.

4.6. The end game. We are now in a position to use Proposition 13. The
following corollary, together with the discussion at the beginning of Section 4,
proves Theorem 2.

Corollary 19. We have

dimvN ker T D 4p3 C 3p2 C 2p � 1

8p3
C 1

8p3

1
X

kD1

�p � 1

p

�kC2k

;

which is a transcendental number.
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Proof. Let T0 be the 0 operator C ! C, let

T1.k/WC2k �! C2k

be the adjacency operator on the graph from Figure 3, let

T2.l/WC2lC1 �! C2lC1

be the adjacency operator on the graph from Figure 5, and �nally let

T3.k; l/WC2kC2lC2 �! C2kC2lC2

be the adjacency operator on the graph from Figure 7.
By Proposition 13 and the computations in the previous subsections, the left-

hand side is equal to the sum of the following terms

1

8
.2 C 5˛ C ˛3 C 2ˇ˛2 C ˇ C ˇ2/ � dim ker T0;

1
X

kD1

1

8
� ˛3 � ˇk � dim ker T1.k/;

1
X

lD1

1

8
� ˛3ˇl dim ker T2.l/;

1
X

k;lD1

1

8
� ˛3ˇkCl dim ker T3.k; l/:

Substituting the values for the kernel dimensions we get

1

8
.2 C 5˛ C ˛3 C 2ˇ˛2 C ˇ C ˇ2/ C 0

C
1

X

lD1

1

8
� ˛3ˇl C

1
X

k;lD1

1

8
� ˛3ˇkCl C

1
X

kD2

1

8
� ˛3ˇkC2k�1�1:

Noting that
1

X

k;lD1

ˇkCl D
X

k

ˇk
X

l

ˇl D
�ˇ

˛

�2

;

after a short calculation we obtain

1

8
.2 C 5˛ C ˛3 C 2ˇ˛2 C ˇ C ˇ2/ C 1

8
˛2ˇ C 1

8
˛ˇ2 C 1

8
˛3

1
X

kD1

ˇkC2k

;

which is equal to the right-hand side.

Transcendence of
P

1

kD1

�

p�1
p

�kC2k�1

follows from [1, Theorem 1]. Although
similar series have been studied already by Mahler [16], the article [1] seems to be

the �rst work which implies the transcendence of
P

1

kD1

�

p�1
p

�kC2k�1

. �
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Appendix A: Linear algebra computations

The following obvious lemma will be used many times.

Lemma 20 (“�ow lemma at a vertex v”). Let T be the adjacency operator on an

edge-labelled directed graph, let v be a vertex, let w1; : : : ; wn be all the vertices for

which there are directed edges towards v, and let the corresponding edge labels

be a1; : : : ; an 2 C. Let f 2 ker T . Then

X

aif .wi / D 0:

A.1. x 2 Œ0
N
11

k�1
00; A�. We give the vertices of G.x/ shorthand names as in

Figure 8.

Ak Ak�1 A3 A2 A1

B1 B2 Bk�2 Bk�1 Bk

�1 �1 �1

�1
�1

�2�2�2

Figure 8

Lemma 21. We have dim ker T .x/ D 0.

Proof. A direct check con�rms the claim when k D 1. For k > 1 let f 2 ker T .x/.
From the �ow lemma at A1 we see that f .A1/ D f .Bk/, and inductively we get
f .A1/ D f .B1/ D f .Ak/.

On the other hand from the �ow lemma at A2 we see f .A2/ D 2�f .A1/, and
inductively f .Ak/ D 2k�1�f .A1/. Altogether we get

f .A1/ D 2k�1�f .A1/;

which is a contradiction. �
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A.2. x 2 Œ00
N
11

l�1
0; C �. We give the vertices of G.x/ shorthand names as in

Figure 9.

Cl

Dl

F

C1 C2 Cl�1

D1 D2 Dl�1

1111

�1�1

�1 �1

�1

Figure 9

Lemma 22. We have dim ker T .x/ D 1.

Proof. The matrix of T .x/ in the basis C1; : : : ; Cl ; D1; : : : ; Dl ; F is upper-trian-
gular. The diagonal entries corresponding to Ci and Di are equal to 1, and the
diagonal entry corresponding to F is 0. This shows the lemma. �

A.3. x 2 Œ0
N
11

k�1
01

l
0; A�. We give the vertices of G.x/ shorthand names as in

Figure 10.

A1

I

F

�1 �1

�1�1�1�2�2�2

�1 �1�1

�1
�1

�1

1

1 1 11
�1

A2A3Ak�1Ak

B1 B2

C1 C2 Cl�1 Cl

D1 D2 Dl�1

Dl

Bk�2 Bk�1 Bk

Figure 10

Lemma 23. If l D 2k�1 �1 then dim ker T .x/ D 2. Otherwise dim ker T .x/ D 1.

Proof. We will focus on the case k > 1. The arguments in the case k D 1 are
very similar and are left to the reader.

First, assume l D 2k�1 � 1. The �rst generator of ker T .x/ is the indicator
function of the vertex F . The coe�cients of another generator of ker T .x/ are
depicted on Figure 11.
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12k�22k�1

2k�1 2k�1 2k�1 0

1 1 1 1

0

1

�1 �1

�1�1�1�2�2�2

�1 �1

�1
�1

�1

1

1 1 11

24

2k�1

�1

2k�1 �1 2k�1 �2 2k�1 �3

�1

2k�1

Figure 11. Coe�cients of the second generator of ker T .x/ when l D 2k�1 � 1.

To see that these two vectors generate all of ker T .x/ let us prove the following.

Lemma. Let f 2 ker T .x/ be such that f .F / D f .A1/ D 0. Then f D 0.

Proof. From the �ow lemma at A2 we see that f .A1/ D 0 implies f .A2/ D 0.
Similarly we show f .Ai / D f .Bi/ D 0 for all i . Now the �ow lemma at A1

together with f .A1/ D f .Bk/ D 0 implies f .I / D 0, and the �ow lemma
at C1 and f .A1/ D 0 imply f .C1/ D 0. The �ow lemma at D1 together with
f .I / D f .C1/ D 0 implies f .D1/ D 0.

Now note that the �ow lemma at CiC1 and f .Ci / D 0 imply f .CiC1/ D 0.
Thus we get f .Ci / D 0 for all i .

Finally the �ow lemma at DiC1 and f .Di/ D f .CiC1/ D 0 imply
f .DiC1/ D 0, and so we also get f .Di/ D 0 for all i . Since f .F / D 0 by
assumption, the claim follows. 4

Note that the indicator function of the vertex F is in ker T .x/ for arbitrary
.k; l/. Thus to �nish the proof it is enough to show that if f 2 ker T is such that
f .A1/ D 1 then l D 2k�1 � 1.

So assume f .A1/ D 1. From the �ow lemma at A2 we get f .A2/ D 2.
Similarly f .Ai / D 2i�1 for all i , and in particular f .Ak/ D 2k�1.

Now from the �ow lemma at B1 we have also f .B1/ D 2k�1 and by induction
f .Bk/ D 2k�1.

Since f .A1/ D 1 and f .Bk/ D 2k�1, the �ow lemma at A1 implies
f .I / D 2k�1. The �ow lemma at C1 together with f .A1/ D 1 implies f .C1/ D 1,
and by induction f .Ci / D 1 for all i 0s. Thus by the �ow lemma at D1 we get
f .D1/ D 2k�1 � 2 and inductively f .Di / D 2k�1 � i � 1.

This means that f .Dl/ D 0 only if 0 D 2k�1 � l � 1. Since the �ow lemma at
F implies f .Dl/ D 0, this ends the proof. �
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