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Abstract. We use algebraic techniques to study homological �lling functions of groups

and their subgroups. If G is a group admitting a �nite .n C 1/-dimensional K.G; 1/ and

H � G is of typeFnC1, then the nth homological �lling function ofH is bounded above by

that of G. This contrasts with known examples where such inequality does not hold under
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1. Introduction

The nth homological and homotopical �lling functions of a space are generalized
isoperimetric functions describing the minimal volume required to �ll an n-cycle
or n-sphere with an .n C 1/-chain or .n C 1/-ball. These functions have been
widely studied in Riemannian Geometry and Geometric Group Theory; see for
example [2, 5, 9, 11, 15, 18]. In this paper, we study the relation between the
nth homological �lling functions of a �nitely presented group and its subgroups.
Our main result provides su�cient conditions for the nth �lling function of a
subgroup to be bounded from above by the nth �lling function of the ambient
group. The hypotheses of our theorem are in terms of �niteness properties of
the ambient group and the subgroup. Our result contrasts with known examples
illustrating that this relation does not hold under weaker conditions [4, 22, 21].

1.1. Statement of main result. A K.G; 1/ for a group G is a cell complex X
with contractible universal cover zX and fundamental group isomorphic to G.
If G admits aK.G; 1/ with �nite n-skeleton, then G is said to be of type Fn. Such
�niteness properties are natural (topological) generalizations of being �nitely
generated (type F1) and �nitely presented (type F2).
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If X is a K.G; 1/ with �nite .nC 1/-skeleton, then the nth-homological �lling

function of G is an optimal function

FVnC1
G WN �! N

such that FVnC1
G .k/ bounds the minimal volume required to �ll an n-cycle 
 of zX

of volume at most k, with an .n C 1/-chain � of zX having boundary @.�/ D 
 .
See Section 3 for precise de�nitions.

It can be shown that the growth rate of FVnC1
G is independent of the choice

of X up to an equivalence relation �, hence FVnC1
G is an invariant of the group

G, see [8, 20]. The relation f � g between functions is de�ned as f � g

and g � f , where f � g means that there is C > 0 such that for all n 2 N,
f .n/ � Cg.Cn C C/ C CnC C . Our main result is a generalization of a result
of Gersten [10, Theorem C] to higher dimensions.

Theorem 1.1. Let n � 1. LetG be a group admitting a �nite .nC 1/-dimensional

K.G; 1/ and let H � G be a subgroup of type FnC1. Then

FVnC1
H � FVnC1

G :

Some examples that contrast with Theorem 1.1 are the following. In [4], Noel
Brady constructed a group G admitting a �nite 3-dimensional K.G; 1/ such that
FV2G is linear, and G contains a subgroup H � G of type F2 with FV2H at least
quadratic. Another source of examples are the generalized Heisenberg groups
H2nC1, for which Robert Young computed the homological �lling invariants
in [22, 21]. For instance, H5 admits a �nite 5-dimensional K.H5; 1/ and has
quadratic FV2

H5
. On the other hand, H3 can be embedded in H5, admits a

3-dimensionalK.H3; 1/, and has cubic FV2
H3

. Likewise, H5 has quadratic FV3
H5

and can be embedded in H7 which has FV3
H7

polynomial of degree 3=2.
Theorem 1.1 also imposes constraints on certain well known constructions.

For example, given a �nitely generated group H with decidable word problem
in nondeterministic polynomial time, Birget, Ol’shanskii, Rips and Sapir produce
an embedding of H into a �nitely presented group G with polynomial Dehn
function [3]. For this construction, Theorem 1.1 implies that if H has a �nite
2-dimensional K.H; 1/ and FV2H is not bounded by a polynomial function, then
G does not admit a �nite 2-dimensional K.G; 1/. A particular example of such
a group H is the Baumslag–Solitar group B.m; n/ with jmj ¤ jnj, for which the
embedding constraint is known [10, Theorem A].

We discuss some applications of Theorem 1.1 to hyperbolic groups and homo-
topical �lling functions below. Recall that a groupG is hyperbolic if it has a linear
Dehn function. In [13], Gersten proved the following:

Theorem 1.2 ([13, Theorem 4.6]). LetG be a hyperbolic group of cohomological

dimension 2. Then every �nitely presented subgroupH � G is hyperbolic.
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Gersten’s result does not hold in higher dimensions as Brady has exhibited a
hyperbolic group G of cohomological dimension 3 containing a non–hyperbolic
�nitely presented subgroupH � G [4]. We can however, obtain a result similar to
Theorem 1.2 by considering homotopical �lling functions of higher dimensions.
The nth-homotopical �lling function ınG of a group G is de�ned analogously to
FVnC1

G but restricts to �lling n-spheres with .n C 1/-balls inside the universal
cover of K.G; 1/ with �nite .n C 1/-skeleton. Roughly speaking, ınG.k/ bounds
the minimum volume required to �ll an n-sphere of volume at most k, with an
.nC 1/-ball. Precise de�nitions of “volume" and ınG can be found in [2, 5].

Corollary 1.3. LetG be a hyperbolic group of geometric dimension nC 1, where

n � 2. LetH � G be of type FnC1. Then ınH is linear.

Recall that the geometric dimension of a group G is the minimum dimension
among K.G; 1/’s. The Eilenberg–Ganea Theorem [6, 7] states that the cohomo-
logical and geometric dimensions of a group G are equal for dimensions greater
or equal than 3. This justi�es our use of geometric dimension in the corollary
above. In addition to Corollary 1.3, we have the following homotopical version of
Theorem 1.1 for su�ciently large n.

Corollary 1.4. Let n � 3. LetG be a group admitting a �nite .nC1/-dimensional

K.G; 1/. LetH � G be of type FnC1. Then ınH � ınG .

Corollaries 1.3 and 1.4 follow from Theorem 1.1 and the following results:

Theorem 1.5 ([1, p. 1 and references therein]). For n � 3, the nth-homotopical

and homological �lling functions ınG and FVnC1
G are equivalent. For n D 2;

ı2G � FV3G .

Theorem 1.6 ([17]). Let G be a hyperbolic group. Then FVnC1
G is linear for all

n � 1.

Proof of Corollary 1.3. A theorem of Rips imples that G admits a compact
K.G; 1/, see [14] and then the Eilenberg–Ganea Theorem implies that G admits
a compact .nC 1/-dimensional K.G; 1/, see [6]. Theorems 1.1 and 1.6 imply that
FVnC1

H is linear. It then follows from Theorem 1.5 that ınH is also linear. �

Proof of Corollary 1.4. Apply Theorems 1.5 and 1.1. �

Remark 1.7. Corollary 1.3 does not apply to Brady’s exampleH � G mentioned
above sinceH is not of typeF3. It is an open question whether or not the subgroups
H in Corollary 1.3 are in fact hyperbolic.

Remark 1.8. It is an open question whether or not the statement of Corollary 1.4
holds for n D 1 or 2. In general ı1G œ FV2G and ı2G œ FV3G , examples of such
groups are given in [1, 20].
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1.2. Outline of the paper. The rest of the paper is organized into three sec-
tions. Section 2 contains the de�nition of a �lling norm on a �nitely generated
ZG-module and lemmas required for the proof of Theorem 1.1. Section 3 contains
algebraic and topological de�nitions for FVnC1

G . Section 4 contains the proof of
Theorem 1.1.

Acknowledgments. Thanks to Noel Brady and Mark Sapir for comments on an
earlier version of the article. We especially thank the referee for a list of useful
comments and corrections. We acknowledge funding by the Natural Sciences and
Engineering Research Council of Canada, NSERC.

2. Filling norms on ZG -modules

In this section we de�ne the notion of a �lling-norm on a �nitely generated
ZG-module. Most ideas in this section are based on the work of Gersten in [13].
The section contains four lemmas on which the proof of the main result of the
paper relies on.

De�nition 2.1 (norm on abelian groups). A norm on an Abelian group A is a
function k � kWA ! R satisfying the following conditions:

� kak � 0 with equality if and only if a D 0, and

� kak C ka0k � kaC a0k.

If, in addition, the norm satis�es

� knak D jnj � kak, for n 2 Z,

then it is called a regular norm.

IfA is free Abelian with basisX , thenX induces a regular `1-norm onA given
by










X

x2X

nxx









1
D

X

x2X

jnx j;

where nx 2 Z.

De�nition 2.2 (linearly equivalent norms). Two norms k�k and k�k0 on aZ-module
M are linearly equivalent if there exists a �xed constant C > 0 such that

C�1kmk � kmk0 � Ckmk

for allm 2 M . This is an equivalence relation and the equivalence class of a norm
k � k is called the linear equivalence class of k � k.
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De�nition 2.3 (based free ZG-modules and induced `1-norms). Suppose G is
a group and F is a free ZG-module with ZG-basis ¹˛1; : : : ; ˛nº. Then the set
¹g˛i W g 2 G; 1 � i � nº is a free Z-basis for F as a (free) Z-module. This free
Z-basis induces a G-equivariant `1-norm k � k1 on F . We call a free ZG-module
based if it is understood to have a �xed basis, and we use this basis for the induced
`1-norm k � k1.

De�nition 2.4 (�lling norms on ZG-modules). Let �WF ! M be a surjective
homomorphism of ZG-modules and suppose that F is free, �nitely generated,
and based. The �lling norm on M induced by � and the free ZG-basis of F is
de�ned as

kmk� D min¹ kxk1W x 2 F; �.x/ D mº:

Observe that this norm is G-equivariant.

Remark 2.5. Gersten observed that �lling norms are not in general regular norms.
He illustrated this fact with the following example [12]. Let X be the universal
cover of the standard complex of the group presentation hx j x2; x2ki, where
k � 2. The �lling norm on the integral cellular 1-cycles Z1.X/ induced by

C2.X/
@

! Z1.X/ is not regular since k2xk@ D k2kxk@ D 1.

Remark 2.6 (induced `1-norms are �lling norms). If F is a �nitely generated
based free ZG-module, then the `1-norm induced by a free ZG-basis is a �lling
norm.

The following lemma is reminiscent of the fact that linear operators on �nite
dimensional normed spaces are bounded.

Lemma 2.7 (ZG-norphisms between free modules are bounded, [13, Proof of
Proposition 4.4]). Let 'WF ! F 0 be a homomorphism between �nitely generated,

free, based ZG-modules. Let k � k1 and k � k0
1 denote the induced `1-norms of F

and F 0. Then there exists a constant C > 0 such that for all x 2 F

k'.x/k0
1 � C � kxk1:

Proof. LetA D ¹˛1; : : : ; ˛nº be the ZG-basis of F inducing the norm k �k1. Then
' is given by a �nite n � m matrix whose entries are elements of ZG. Observe
that for any g 2 G; x 2 F , we have kxk1 D kgxk1. De�ne

C D max¹k'.˛i/k
0
1º
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and let x 2 F be arbitrary. Then

k'.x/k0
1 D k'.�1˛1 C � � � C �n˛n/k

0
1 .where �i 2 ZG/

�









�

X

g2G

�1;gg
�

'.˛1/









0

1
C � � � C










�

X

g2G

�n;gg
�

'.˛n/









0

1

.where �j D
X

g2G

�j;gg and �j;g 2 Z/

�
�

X

g2G

j�1;g j
�

k'.˛1/k
0
1 C � � � C

�

X

g2G

j�n;g j
�

k'.˛n/k
0
1

� C
�

m
X

iD1

�

X

g2G

j�i;g j
��

D Ckxk1: �

Lemma 2.8 (ZG-morphisms with projective domain are bounded). Let the

map 'WP ! Q be a homomorphism between �nitely generated ZG-modules.

Let k � kP and k � kQ denote �lling norms on P andQ respectively. If P is projec-

tive then there exists a constant C > 0 such that for all p 2 P

k'.p/kQ � C � kpkP :

Proof. Consider the commutative diagram

A
Q'

//

�

��

B

��
P

'
//

 

??
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

Q

constructed as follows. Let A and B be �nitely generated and based free
ZG-modules, and let A ! P and B ! Q be surjective morphisms inducing
the �lling norms k � kP and k � kQ. Since P is projective and B ! Q is surjective,

there is a lifting  WP ! B of '; then let Q' be the composition A
�

! P
 
! B .

Let C be the constant provided by Lemma 2.7 for Q'. Let p 2 P and let a 2 A that
maps to p. It follows that

k'.p/kQ � k .p/k1 D k Q'.a/k1 � Ckak1:

Since the above inequality holds for any a 2 A with �.a/ D p, it follows that

k'.p/kQ � C � min
�.a/Dp

¹kak1º

D C � kpkP : �
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Lemma 2.9 (equivalence of �lling norms for ZG-modules, [13, Lemma 4.1]). Any

two �lling norms on a �nitely generated ZG-module M are linearly equivalent.

Proof. Consider a pair of surjective homomorphisms of ZG-modules �WF ! M

and �0WF 0 ! M such that F and F 0 are �nitely generated, free, based modules
inducing the �lling norms k�k� and k�k�0 onM . Since �0 is surjective, the universal
property of F provides a homomorphism ' such that � D �0 ı '. Let m 2 M be
arbitrary and take x 2 F such that �.x/ D m. Since �0 ı'.x/ D m, by Lemma 2.7
there exists C > 0 such that

kmk�0 D min
�0.x0/Dm

kx0k0
1 � k'.x/k0

1 � C � kxk1:

As this inequality holds for all x 2 F satisfying �.x/ D m, we have

kmk�0 � C � min
�.x/Dm

¹kxk1º D C � kmk�:

The other inequality proceeds in a similar manner. �

Lemma 2.10 (retraction lemma). [13, Prop. 4.4] Let 0 ! M
�

! N ! P ! 0 be

a short exact sequence of ZG-modules where

1) M is �nitely generated and equipped with a �lling-norm k � kM ,

2) N is free, based, and equipped with the induced `1-norm k � k1,

3) P is projective.

Then there exists a retraction �WN ! M for the inclusion �WM ! N and a �xed

constant C > 0 such that k�.x/kM � Ckxk1 for all x 2 N .

Proof. Since P is projective there is a retraction �0 for �. Since M is �nitely
generated,N is isomorphic to a product I ˚Q of free modules where I is �nitely
generated and contains the image of M . De�ne �WN ! M by �jI D �0jI and
�jQ D 0. Then � is a retraction for � with support contained in I .

Each x 2 N has a unique decomposition x D y C q where y 2 I; q 2 Q

such that �.x/ D �.y/ and kyk1 � kxk1. Apply Lemma 2.8 to the restriction
�W I ! M to obtain C > 0 such that

k�.x/kM D k�.y/kM � Ckyk1 � Ckxk1: �

3. Homological �lling functions of groups

In this section, given a group G of type FPnC1, where n � 1, we de�ne the group
invariant FVnC1

G . In the �rst part of the section we provide an algebraic de�nition
of FVnC1

G and prove that it is well de�ned. This algebraic approach, while naturally
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inspired by the topological approach, provides a convenient algebraic framework
suitable for some of the arguments in this paper. This algebraic approach has
been also explored in [16]. In the second part, we recall the topological approach
to FVnC1

G and show that the topological and algebraic approaches are equivalent
for �nitely presented groups of type FPnC1. The �nal subsection discusses why
FVnC1

G .k/ is a �nite number.

3.1. Algebraic de�nition of FVnC1

G

De�nition 3.1 (linearly equivalent functions). Let f and g be functions from N

to N. De�ne f � g if there exists C > 0 such that for all n 2 N

f .n/ � Cg.CnC C/C CnC C:

The functions f and g are linearly equivalent, f � g, if both f � g and
g � f hold. This is an equivalence relation and the equivalence class containing
a function f is called the linear equivalence class of f .

De�nition 3.2 (FPn group). [6] A group G is of type FPn if there is a resolution
of ZG-modules

Pn
@n

�! Pn�1

@n�1

�! : : :
@2

�! P1
@1

�! P0 �! Z ! 0;

such that for each i 2 ¹0; 1 : : : ; nº the module Pi is a �nitely generated projective
ZG-module. In this case, such a resolution is called an FPn-resolution.

De�nition 3.3 (algebraic de�nition of FVnC1
G ). Let G be a group of type FPnC1.

The algebraic nth-�lling function is the (linear equivalence class of the) function

FVnC1
G WN �! N

de�ned as follows. Let

PnC1

@nC1

�! Pn
@n

�! : : :
@2

�! P1
@1

�! P0 �! Z ! 0;

be a resolution of ZG-modules for Z of type FPnC1. Choose �lling norms for Pn
and PnC1, denoted by k � kPn

and k � kPnC1
respectively. Then

FVnC1
G .k/ D max¹k
k@nC1

W 
 2 ker.@n/; k
kPn
� kº;

where
k
k@nC1

D min¹k�kPnC1
W� 2 PnC1; @nC1.�/ D 
º:
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Remark 3.4 (�niteness of FVnC1
G ). It is not immediately clear that the maximum

in De�nition 3.3 is a �nite number. In Section 3.3 we recall some results from the
literature which, under the assumption G is �nitely presented, imply that FVnC1

G

is a �nite valued function for n D 1 and n � 3. The authors are not aware of a
proof for the case n D 2.

For n D 2, all results in this paper regarding FV3G hold under the following
natural modi�cations. First, work with the standard extensions of addition, mul-
tiplication, and order, of the positive integers N to N [ ¹1º. De�nition 3.1 is
extended to functions N ! N [ ¹1º, but we emphasize that the constant C re-
mains a �nite positive integer. In De�nition 3.3 the function FV3G is de�ned as
an N ! N [ ¹1º function. We observe that no argument in this paper relies on
FVnC1

G .k/ being �nite.

Theorem 3.5 (FVnC1
G is a well-de�ned group invariant). LetG be a group of type

FPnC1. Then the algebraic nth-�lling function FVnC1
G of G is well de�ned up to

linear equivalence.

Proof. Let .F�; @�/ and .P�; ı�/ be a pair of resolutions of ZG-modules of type
FPnC1 with choices of �lling-norms for their nth and .n C 1/th modules denoted
by k � kFn

and k � kFnC1
, and k � kPn

and k � kPnC1
respectively. Let FVnC1

F�
and

FVnC1
P�

be the induced functions according to De�nition 3.3. By symmetry, it is

enough to show that FVnC1
F�

� FVnC1
P�

.
It is well known that any two projective resolutions of a ZG-module are chain

homotopy equivalent, see for example [6, p. 24, Theorem 7.5], and hence the
resolutions F� andP� are chain homotopy equivalent. Therefore there exists chain
maps fi WFi ! Pi ; gi WPi ! Fi , and a map hi WFi ! FiC1 such that

@iC1 ı hi C hi�1 ı @i D gi ı fi � id:

Let C denote the maximum of the constants for the maps gnC1, hn, and fn and
the chosen �lling-norms provided by Lemma 2.8. We claim that for every k 2 N,

FVnC1
F�

.k/ � C � FVnC1
P�

.Ck C C/C Ck C C:

Fix k. Let ˛ 2 ker.@n/ be such that k˛kFn
� k. Choose ˇ 2 PnC1 such that

ınC1.ˇ/ D fn.˛/ and kfn.˛/kınC1
D kˇkPnC1

. By commutativity of the chain
maps and the chain homotopy equivalence,

@nC1 ı hn.˛/C hn�1 ı @n.˛/ D gn ı fn.˛/ � ˛

D gn ı ınC1.ˇ/ � ˛

D @nC1 ı gnC1.ˇ/ � ˛:

Since ˛ 2 ker.@n/, we have that hn�1 ı@.˛/ D 0. Rearranging the above equation,
we obtain

˛ D @nC1 ı gnC1.ˇ/ � @nC1 ı hn.˛/ D @nC1.gnC1.ˇ/� hn.˛//:
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Hence gnC1.ˇ/ � hn.˛/ has boundary ˛. Observe that

k˛k@nC1
� kgnC1.ˇ/ � hn.˛/kFnC1

(@nC1.gnC1.ˇ/ � hn.˛// D ˛)

� kgnC1.ˇ/kFnC1
C khn.˛/kFnC1

(by the triangle inequality)

� C � kˇkPnC1
C C � k˛kFn

(by Lemma 2.8)

D C � kfn.˛/kınC1
C C � k˛kFn

(by de�nition of ˇ)

� C � FVnC1
P�

.kfn.˛/kPn
/C Ck˛kFn

(by de�nition of FVnC1
P�

)

� C � FVnC1
P�

.Ck˛kFn
/C Ck˛kFn

(by Lemma 2.8)

� C � FVnC1
P�

.Ck C C/C Ck C C (since k˛kFn
� k).

Since ˛ was arbitrary, FVnC1
F�

.k/ � C � FVnC1
P�

.CkCC/CCkCC for all k 2 N.

This shows that FVnC1
F�

� FVnC1
F 0

�
completing the proof. �

3.2. Topological de�nition of FVnC1

G
. For a cell complex X , the cellular chain

group Ci .X/ is a free Abelian group with basis the collection of all i-cells of X .
This natural basis induces an `1-norm on Ci .X/ that we denote by k � k1. Recall
that a complex X is n-connected if its �rst n-homotopy groups are trivial.

De�nition 3.6 (Fn group). A groupG is of type Fn if there is aK.G; 1/-complex
with a �nite n-skeleton, i.e., with only �nitely many cells in dimensions � n.

De�nition 3.7 (topological de�nition of FVnC1
G ). [8, 20] Let G be a group acting

properly, cocompactly, by cellular automorphisms on an n-connected cell complex
X . The topological nth-�lling function ofG is the (linear equivalence class of the)
function FVnC1

G WN ! N de�ned as

FVnC1
G .k/ D max¹k
k@W 
 2 Zn.X/; k
k1 � kº;

where
k
k@ D min¹k�k1W� 2 CnC1.X/; @.�/ D 
º:

J. Fletcher and R. Young have independently provided geometric proofs that
the topological nth-�lling function FVnC1

G is well de�ned as an invariant of the
group, see [8, Theorem 2.1] and [20, Lemma 1] respectively. In the work of
Fletcher, the topological de�nition of FVnC1

G requires X to be the universal cover
of aK.G; 1/, while Young’s proof is in the more general context introduced above.

Theorem 3.8 ([20]). Let G be a group admitting a proper and cocompact action

by cellular automorphisms on an n-connected cell complex. Then the topological

nth-�lling invariant FVnC1
G of G is well de�ned up to linear equivalence.
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Even in the topological de�nition, it is not trivial that FVnC1
G is a �nite valued

function and Remark 3.4 also applies in this case. For the rest of the section,
we show that the topological and algebraic approaches to FVnC1

G are equivalent
for �nitely presented groups of type FPnC1.

Proposition 3.9. Let n � 1 and let G be a group of type FnC1. Then G is of type

FPnC1 and the algebraic and topological nth-�lling functions of G are linearly

equivalent.

Proof. Let X be a K.G; 1/ with �nite .n C 1/-skeleton. The G-action on the
universal cover zX of X induces the structure of a ZG-module to the group of
cellular chains Ci . zX/ and each boundary map @i is a morphism of ZG-modules.
Since the G-action on zX is cellular and free, each Ci . zX/ is a free ZG-module
with basis any collection of representatives of the G-orbits of i-cells. Since the
action is cocompact on the .n C 1/-skeleton, each Ci . zX/ is a �nitely generated
free ZG-module for i 2 ¹0; 1; : : : ; nC 1º. Since zX is a contractible space, all its
homology groups are trivial and therefore we have a resolution of ZG-modules

� � � �! CnC1.X/
@nC1

�! Cn.X/
@n

�! : : :
@2

�! C1.X/
@1

�! C0.X/ �! Z ! 0;

of type FPnC1. Under our assumptions, the induced topological nth-�lling func-
tion of G is a particular instance of an algebraic nth-�lling function of G.
The conclusion then follows from Theorems 3.5 and 3.8. �

Proposition 3.10 ([6, p. 205, proof of Theorem 7.1]). Let G be �nitely presented

and of type FPn where n � 2. Then G is of type Fn.

Propositions 3.9 and 3.10 imply the following statement.

Corollary 3.11. Let G be a �nitely presented group of type FPnC1. Then the

topological and algebraic de�nitions of FVnC1
G are equivalent.

3.3. Finiteness of FVnC1

G
.k/. LetG be a �nitely presented group of type FPnC1,

or equivalently assume thatG is of typeFnC1; see Proposition 3.10. We will sketch
why FVnC1

G is a �nite valued function for n D 1 and n � 3.

3.3.1. Case n D 1. Finiteness of FV2G follows from that of the Dehn function
ıG . We summarize the argument from Gersten’s article [11, Prop 2:4]. Let X be
a K.G; 1/ with �nite 2-skeleton and let z 2 Z1. zX/ be a 1-cycle with k
k1 � k.
Then z D z1 C : : : zm for some m � k where each zi is the 1-cycle induced by a
simple edge circuit 
i in zX and

m
X

iD1

`.
i / D kzk1:
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Then

kzk@2
�

m
X

iD1

Area.
i / �

m
X

iD1

ıG.`.
i // � k � ıG.k/ < 1:

3.3.2. Case n � 3. A group G of type FnC1 has a well de�ned invariant called
the nth homotopical �lling function ınG WN ! N. There are multiple approaches
to de�ne ınG , we sketch the approach found in [1, 5]. Roughly speaking, if X
is a K.G; 1/ with �nite .n C 1/-skeleton, then ınG.k/ measures the number of
.n C 1/-balls required to �ll a sphere Sn ! zX comprised of at most k n-balls.
Here the maps f WSn ! zX and �llings Qf WDnC1 ! zX are required to be in a
particular class of maps called admissible maps. This allows one to de�ne the
volumes, vol.f / and vol. Qf /, as the number of n-balls and .nC 1/-balls of Sn and
DnC1 respectively, mapping homeomorphically to open cells of zX . The �lling

volume of f is given by

FVol.f / D sup¹vol. Qf / j Qf WDnC1 �! zX; Qf j@DnC1 D f º

and ınG by

ınG.k/ D max¹FVol.f / j f WSn �! zX; vol.f / � kº:

Alonso et al. use higher homotopy groups as �1.X/-modules to provide a more
algebraic approach to ınG , in particular they show that ınG is a �nite valued func-
tion [2, Corollary 1]. It is observed in [5, Remark 2:4.2/] that Alonso’s approach
and the approach described above are equivalent.

The �niteness of FVnC1
G then follows from the inequality

FVnC1
G � ınG

which holds for all n � 3. We outline the argument for this inequality described
in the introduction of [1]. Let X be a K.G; 1/ with �nite .n C 1/-skeleton and
let 
 2 Zn. zX/ with k
k1 � k. Using the Hurewicz Theorem, one can show
(see [15, 19]) that 
 is the image of the fundamental class of an n-sphere for a map
f WSn ! zX such that vol.f / D k
k1. If Qf WDnC1 ! zX is an extension of f
to the .nC 1/-ball DnC1, then the image of the fundamental class of DnC1 is an
.nC 1/-chain � with @.�/ D 
 and vol. Qf / � k�k1. Therefore the �lling volume

FVol.f / D sup¹vol. Qf / j Qf WDnC1 �! zX; Qf j@DnC1 D f º

is greater than or equal to k
k@nC1
. It follows that FVnC1

G .k/ � ınG.k/.
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4. Main result

As we will be working with cell complexes, all relevant computations in this
section are understood to occur within cellular chain complexes.

De�nition 4.1 (stably free). A ZG-module P is stably free if there exists �nitely
generated free ZG module F such that P ˚ F is free.

Lemma 4.2 (the Eilenberg trick, [6, p. 207]). Let G D �1.X; x0/, where X is

a cell complex. Then X is a subcomplex of a complex Y such that the inclusion

X ,! Y is a homotopy equivalence, and the cellular n-cycles of the universal

covers zY and zX satisfy Zn. zY / ' Zn. zX/˚ ZG as ZG-modules.

Proof. Let x0 be a 0-cell of X , and glue an n-cell Dn to .X; x0/ by mapping
its boundary to x0. The resulting space is the wedge sum of X and an n-sphere
Sn. To obtain Y , attach an .nC 1/-cell DnC1 by the attaching map that identi�es
@DnC1 with the n-sphere Sn. ThenZn. zY / ' Zn. zX/˚ZG where the ZG factor is
generated by a lifting of the n-cellDn to zY . It is clear that X ,! Y is a homotopy
equivalence. �

Lemma 4.3 (Schanuel’s lemma). [6, p. 193, Lemma 4.4] Let

0 �! Pn �! Pn�1 �! : : : �! P0 �! M �! 0

and

0 �! P 0
n �! P 0

n�1 �! : : : �! P 0
0 �! M �! 0

be exact sequences of R-modules with Pi and P 0
i projective for i � n � 1. Then

P0 ˚ P 0
1 ˚ P2 ˚ P 0

3 ˚ : : : ' P 0
0 ˚ P1 ˚ P 0

2 ˚ P3 ˚ : : : :

We are now ready to prove our main result which is a generalization of [10,
Theorem C]. The proof is based on Gersten’s proof of [13, Theorem 4.6] and is
adjusted for higher dimensions:

Theorem 4.4. Let G be a group admitting a �nite .n C 1/-dimensional K.G; 1/

and let H � G be a subgroup of type FnC1. Then FVnC1
H � FVnC1

G :

Proof. Let W be a �nite .n C 1/-dimensional K.G; 1/. Let X be the .n C 1/-
skeleton of a K.H; 1/. SinceH is of type FnC1, we may assume that X is a �nite
cell complex. Then, after subdivisions, there exists a cellular map f WX ! W

inducing the inclusionH ,! G at the level of fundamental groups. LetMf be the
mapping cylinder of f and consider the exact sequences of ZG-modules

0 �! Zn. zMf / �! Cn. zMf / �! � � � �! C0. zMf / �! Z �! 0 (4.1)



880 R. G. Hanlon and E. Martínez-Pedroza

and

0 �! CnC1. zW / �! Cn. zW / �! � � � �! C0. zW / �! Z �! 0; (4.2)

where zW and zMf denote the universal covers of W and Mf respectively.
Applying Schanuel’s lemma to the above sequences shows that theZG-module

Zn. zMf / is �nitely generated and stably free. Let Y be the space obtained by
attaching a �nite number of .n C 1/-balls to the base point of Mf as in Lemma
4.2 such that Zn. zY / is �nitely generated and free as a ZG-module.

From here on, we are only concerned with the inclusion mapX ! Y realizing
the inclusion H ! G at the level of fundamental groups with the property
that Zn. zY / is �nitely generated and free as a ZG-module. Since the inclusion
X ! Y is injective at the level of fundamental groups, any lifting zX ! zY

is an embedding. Moreover, we can choose the lifting to be equivariant with
respect to the inclusion H ! G. Without loss of generality, assume that zX is
an H -equivariant subcomplex of zY .

Since the ring ZG is free as a ZH -module, it follows that Ci . zY / is a free
ZH -module. Since zX is an H -equivariant subcomplex of zY , the ZH -module
Ci . zX/ is a free factor ofCi . zY /. Hence the quotientCi. zY .n/; zX .n//D Ci . zY /=Ci . zX/

is a free ZH -module.
Restricting our attention to n-skeleta, the following short exact sequence of

chain complexes of ZH -modules arises

0 �! C�. zX .n// �! C�. zY .n// �! C�. zY .n/ ; zX .n// �! 0: (4.3)

Consider the induced long exact homology sequence

0 �! zHn. zX .n// �! zHn. zY .n// �! zHn. zY .n/; zX .n// �! zHn�1. zX .n// �! � � � :

(4.4)

SinceX is the .nC1/-skeleton of anK.H; 1/, the homology group zHn�1. zX .n// is
trivial. Now the exact sequence (4.4) can be truncated, obtaining the short exact
sequence

0 �! Zn. zX/
�

�! Zn. zY / �! Zn. zY ; zX/ �! 0; (4.5)

where � is induced by the inclusion zX � zY . We claim that the short exact
sequence (4.5) satis�es the three hypothesis of Lemma 2.10.

First, since X is a �nite cell complex, CnC1. zX/ is �nitely generated as a
ZH -module. Therefore Zn. zX/ is also �nitely generated as a ZH -module.

Second, the construction of Y guarantees that Zn. zY / is a free ZG-module,
hence Zn. zY / is a free ZH -module.
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Third, we need to verify that Zn. zY; zX/ is a projective ZH -module; in fact we
show that it is stably free. Indeed, sinceX .n/ and Y .n/ are the .nC1/-skeletons of
aK.H; 1/ and aK.G; 1/ respectively, the reduced homology groups zHk. zX .n// and
zHk. zY .n// are trivial for 1 � k < n. Then, considering the exact sequence (4.4),

we have that

0 �! Zn. zY .n/; zX .n// �! Cn. zY .n/; zX .n// �! � � � �! C0. zY .n/; zX .n// �! 0

(4.6)

is also exact. Since all the ZH -modules Ci . zY .n/; zX .n// are free, and application
of Schanuel’s Lemma to (4.6) and a trivial resolution ofC0. zY .n/; zX .n// shows that
Zn. zY .n/; zX .n// is a stably free ZH -module.

Thus we have shown that the short exact sequence (4.5) satis�es the three
hypothesis of Lemma 2.10. Before invoking this lemma and concluding the proof,
we set up notation for the norms required to specify representatives of FVnC1

G and
FVnC1

H .
Let k � k1 denote the `1-norm on Ci . zY / induced by the basis consisting on

all i-cells of zY . Let k � kZn. zY / denote the `1-norm on Zn. zY / induced by a free

ZG-basis; by de�nition this is also �lling norm on Zn. zY /. Then (a representative
of) FVnC1

G is given by

FVnC1
G .k/ D max¹k
kZn. zY /W 
 2 Z1. zY /; k
k1 � kº: (4.7)

Since CnC1. zX/ � CnC1. zY / is a free factor, the `1-norm on CnC1. zX/ induced by
the .n C 1/-cells of zX equals the restriction of k � k1 to CnC1. zX/. Let k � k

Zn. zX/

denote the �lling-norm on Zn. zX/ as a ZH -module induced by the boundary map

CnC1. zX/
@nC1

����! Zn. zX/. Then

FVnC1
H .k/ D max¹k
kZn. zX/W 
 2 Z1. zX/; k
k1 � kº: (4.8)

By Lemma 2.10 applied to the short exact sequence (4.5), there exists a constant
C1 > 0 and a morphism of ZH -modules �WZn. zY / ! Zn. zX/ such that

k�.˛/kZn. zX/ � C1 � k˛kZn. zY /; (4.9)

for every ˛ 2 Zn. zY /, and � ı { is the identity on Zn. zX/.
Let k 2 N and let 
 2 Zn. zX/ such that k
k1 � k. Then (4.9) implies that

k
kZn. zX/ D k� ı �.
/kZn. zX/ � C � k�.
/kZn. zY / � C � FVnC1
G .k/: (4.10)

Since 
 was arbitrary, we have FVnC1
H .k/ � C � FVnC1

G .k/. �

Remark 4.5. The proof of Theorem 4.4 does not apply to obtain that
FVmC1

H � FVmC1
G for m < n. As mentioned in the introduction, that statement is

false. The argument breaks down since Zm. zMf / is not projective if m < n.
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