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Abstract. We propose the metric notion of strong hyperbolicity as a way of obtaining
hyperbolicity with sharp additional properties. Speci�cally, strongly hyperbolic spaces are
Gromov hyperbolic spaces that are metrically well-behaved at in�nity, and, under weak
geodesic assumptions, they are strongly bolic as well. We show that CAT.�1/ spaces are
strongly hyperbolic. On the way, we determine the best constant of hyperbolicity for the
standard hyperbolic plane H2. We also show that the Green metric de�ned by a random
walk on a hyperbolic group is strongly hyperbolic. A measure-theoretic consequence at
the boundary is that the harmonic measure de�ned by a random walk is a visual Hausdor�
measure.
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1. Introduction

Hyperbolicity for metric spaces, as introduced by Gromov [9], is a coarse notion
of negative curvature which yields a very satisfactory theory. For certain analytic
purposes, however, hyperbolicity by itself is not enough, and one needs certain
enhancements.

After the groundbreaking work of La�orgue [14], the resolution of the Baum -
Connes conjecture for hyperbolic groups hinged on showing the following: every
hyperbolic group � admits a geometric action on a roughly geodesic, strongly
bolic hyperbolic space. Here the enhancement is strong bolicity (see Section 4),
for which one is willing to pay the small price of weakening the usual geodesic
assumption. This is achieved by Mineyev and Yu in [17], and the desired space is
� itself endowed with a new metric.

The enhancement needed in [18] is a boundary metric structure with sharp
properties. Let us say that a hyperbolic space X is a good hyperbolic space
if the following hold: the Gromov product .�; �/o extends continuously to the
bordi�cation X [ @X for each basepoint o 2 X , and there is some � > 0 such that



952 B. Nica and J. Špakula

exp.��.�; �/o/ is a metric on the boundary @X , again for each basepoint o 2 X . For
example, CAT.�1/ spaces are good hyperbolic spaces, and one can take � D 1

(Bourdon [6]). Now the construction of [18] can be summarized as follows: from a
geometric action of a hyperbolic group � on a roughly geodesic, good hyperbolic
space X , one obtains a proper isometric action of � on an Lp-space associated to
the double boundary @X � @X . The concrete X used in [18] is � itself, equipped
with a metric constructed by Mineyev [15, 16] and which is a slightly improved
version of the metric used in [17].

In this paper we introduce a certain metric condition that we call strong
hyperbolicity. The de�nition is given in Section 4 and we will not repeat it here.
The main point about strong hyperbolicity is that there are useful consequences
�owing out and important examples �owing in.

As far as consequences are concerned, the following is a fairly easy outcome
of the de�nition.

Theorem 1.1. A strongly hyperbolic space is a good hyperbolic space. A roughly
geodesic, strongly hyperbolic space is strongly bolic.

As for examples, we show the following.

Theorem 1.2. CAT.�1/ spaces are strongly hyperbolic.

Theorem 1.3. The Green metric arising from a random walk on a hyperbolic
group is strongly hyperbolic.

Theorem 1.2 implies Bourdon’s result mentioned above, but also one of the
main results of Foertsch and Schroeder from [7]. From Theorem 1.2 and its
proof, we also deduce that the hyperbolic plane H

2 is log 2-hyperbolic, in the
sense of Gromov’s original de�nition, and this is optimal (Corollary 5.4). Quite
surprisingly, this was not known before. For comparison, we recall the well-known
fact that H2 is log.1 C

p
2/-hyperbolic for the Rips de�nition, in terms of thin

triangles, and this is optimal.
Good hyperbolicity for the Green metric on a hyperbolic group answers pos-

itively a question raised in [18, Remark 19]. As a consequence, we �nd that, on
the boundary, the harmonic measure de�ned by a random walk coincides with the
normalized Hausdor� measure de�ned by a Green visual metric (Corollary 6.4).
Strong bolicity of the Green metric was recently proved by Haïssinsky and Math-
ieu in [12] by a di�erent argument. The upshot is that the Green metric pro-
vides a more natural, and much simpler alternative to the hat metric constructed
by Mineyev and Yu in [17]. Strong hyperbolicity for the Green metric, estab-
lished herein, makes a similar point relative to Mineyev’s improved hat metric
from [15, 16].
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2. Hyperbolic spaces – An elliptical reminder

2.1. Hyperbolic spaces and their boundaries. We begin by recalling some
basic notions and facts.

De�nition 2.1 (Gromov). A metric space X is ı-hyperbolic, where ı � 0, if

.x; y/o � min¹.x; z/o; .y; z/oº � ı

for all x; y; z; o 2 X ; equivalently, the four-point condition

jx; yj C jz; t j � max¹jx; zj C jy; t j; jz; yj C jx; t jº C 2ı

holds for x; y; z; t 2 X .

We write jx; yj for the distance between two points x; y 2 X . Recall that the
Gromov product is de�ned by the formula

.x; y/o D 1
2
.jx; oj C jy; oj � jx; yj/:

Let X be a hyperbolic space, and �x a basepoint o 2 X . A sequence .xi / in
X converges to in�nity if .xi ; xj /o ! 1 as i; j ! 1. Two sequences .xi /,
.yi / converging to in�nity are declared to be equivalent if .xi ; yi/o ! 1 as
i ! 1. The (Gromov) boundary of X , denoted @X , is the set of equivalence
classes of sequences converging to in�nity. We also say that a sequence .xi /

converging to in�nity converges to its equivalence class representing a point in
@X . Since a change of basepoint modi�es the Gromov product by a uniformly
bounded amount, all these notions are actually independent of the chosen o 2 X .

When X is a CAT.�1/ space, that is, a metric space of actual negative curva-
ture, the Gromov product can be extended from X to the bordi�cation X [ @X

by setting .�; � 0/o WD lim .xi ; x0

i /o for xi ! � and x0

i ! � 0, respectively
.x; �/o WD lim .x; xi /o for xi ! �. But for a general hyperbolic space X , such a
process is not well-de�ned in general: the limit may not exist, and even if it does, it
might depend on the choice of a representing sequence. The traditional procedure
of getting around this problem runs as follows. The Gromov product on @X � @X

is de�ned by setting .�; � 0/o WD inf¹lim inf .xi ; x0

i/o W xi ! �; x0

i ! � 0º. This is a
�nite quantity, except for .�; �/o D 1. Similarly, the Gromov product on X � @X

is de�ned by .x; �/o WD inf¹lim inf .x; xi /o W xi ! �º. It turns out that the other
reasonable choices, namely taking sup instead of inf, or lim sup instead of lim inf,
are all uniformly close to each other. Although rather ad hoc, such an extension of
the Gromov product has at least the bene�t of being canonical at the topological
level: it de�nes a topology on the bordi�cation X [ @X , for which convergence at
in�nity takes on an actual meaning. If X is proper then both X [ @X and @X are
compact.
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It turns out that the topology on @X can be metrized. Namely, for small enough
� > 0 there exists a metric d� on @X , such that d� is within constant positive
multiples of exp.�� .�; �/o/. When X is a CAT.�1/ space, exp.� .�; �/o/ is already
a metric on @X , but this is not true in general [16, Lemma 7]. To summarize, the
fuzziness of the Gromov product at the boundary is resolved by a non-canonical
choice, which in turn leads to a quasi�ed metric structure on the boundary.

2.2. Roughly geodesic spaces. The classical theory of hyperbolic spaces works
under the assumption that the spaces are geodesic. But the theory is just as solid
for roughly geodesic spaces. These are de�ned as follows.

De�nition 2.2. A metric space X is roughly geodesic if there is a constant
C � 0 such that the following holds: for every x; y 2 X , there is a (not
necessarily continuous) map 
 W Œa; b� ! X such that 
.a/ D x, 
.b/ D y,
and js � s0j � C � j
.s/; 
.s0/j � js � s0j C C for all s; s0 2 Œa; b�.

The viewpoint that roughly geodesic spaces provide a natural relaxation of
the geodesic assumption for hyperbolic spaces was �rst advocated by Bonk and
Schramm in [5]. We remark that the notion of weakly geodesic space used by
La�orgue [14] and Mineyev and Yu [17], although weaker in general, is equivalent
to the notion of roughly geodesic space within the hyperbolic world.

Hyperbolicity is a quasi-isometry invariant for roughly geodesic spaces, and
the Schwarz - Milnor lemma holds in the roughly geodesic context. So we may
say that a group is hyperbolic if it admits a geometric action (that is, isometric,
proper, and cocompact) on a roughly geodesic, proper hyperbolic space.

Throughout this paper, hyperbolic groups are assumed to be non-elementary.

3. Good hyperbolic spaces

Let us recall the de�nition we made in the Introduction, this time in a quanti�ed
form.

De�nition 3.1. We say that a hyperbolic space X is �-good, where � > 0, if the
following two properties hold for each basepoint o 2 X :

� the Gromov product .�; �/o on X extends continuously to the bordi�cation
X [ @X , and

� exp.�� .�; �/o/ is a metric on the boundary @X .

Let X be a good hyperbolic space. The continuity of the Gromov product
implies that we have a well-de�ned notion of Busemann function

ˇ.y; zI �/ D 2.�; z/y � jy; zj D lim
x!�

.jx; yj � jx; zj/ .y; z 2 X; � 2 @X/:
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Incidentally, it can be checked that the Busemann boundary of X coincides
with the Gromov boundary @X when X is proper. (We owe this remark to Peter
Haïssinsky.) This topological consequence can be very useful – see, for instance,
[2] and [12] – but we will not need it here.

For the purposes of this paper, the main feature of a good hyperbolic space is
its conformal structure on the boundary - as opposed to mere quasi-conformality
for general hyperbolic spaces. This is discussed in distinct but related ways
in [16, Sections 7 and 8], [10, Section 5.1], [18, Section 4]. See also [6, Sections 2.6
and 2.7] for the CAT.�1/ case. Let g be an isometry of X . For all x; x0 2 X we
have that

�2.gx; gx0/o D jx; oj � jx; g�1oj C jx0; oj � jx0; g�1oj � 2.x; x0/o:

Letting x ! � 2 @X respectively x0 ! � 0 2 @X , and using the notation d�;o for
the visual metric exp.�� .�; �/o/ on @X , we obtain the relation

d 2
�;o.g�; g� 0/ D exp.� ˇ.o; g�1oI �// exp.� ˇ.o; g�1oI � 0// d 2

�;o.�; � 0/

for all �; � 0 2 @X . This is a strong form of metric conformality for the action of the
isometry group of X on @X . Minor additional assumptions on @X [18, Lemma 8]
then guarantee the following measure-theoretic conformality:

dg��o

d�o

.�/ D exp.�D� ˇ.o; g�1oI �//

where D� is the Hausdor� dimension of d�;o (independent of the basepoint o),
and �o is the Hausdor� measure de�ned by d�;o (independent of the visual
parameter �).

For applications, the most interesting case is when X is a proper, roughly ge-
odesic, good hyperbolic space endowed with a geometric action of a (hyperbolic)
group �. By the above discussion, � acts conformally on @X .

4. Strongly hyperbolic spaces

De�nition 4.1. We say that a metric space X is strongly hyperbolic with parameter
� > 0 if

exp.�� .x; y/o/ � exp.�� .x; z/o/ C exp.�� .z; y/o/:

for all x; y; z; o 2 X ; equivalently, the four-point condition

exp
�

1
2
� .jx; yj C jz; t j/

�

� exp
�

1
2
� .jx; zj C jy; t j/

�

C exp
�

1
2
� .jz; yj C jx; t j/

�

holds for all x; y; z; t 2 X .
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One motivation for considering this notion is that it grants the enhancements
of hyperbolicity that we have mentioned. Here is the quanti�ed version of Theo-
rem 1.1.

Theorem 4.2. Let X be a strongly hyperbolic space, with parameter �. Then X is
an �-good, .log 2/=�-hyperbolic space. Furthermore, X is strongly bolic provided
that X is roughly geodesic.

The proof is straightforward. We include the details.

Proof. From

exp.�� .x; y/o/ � 2 max¹exp.�� .x; z/o/; exp.�� .z; y/o/º
D 2 exp.�� min¹.x; z/o; .z; y/oº/

we see that X is .log 2/=�-hyperbolic.
Next we check that the Gromov product .�; �/o extends continuously to the

bordi�cation X D X [ @X ; it will then follow that exp.�� .�; �/o/ is a metric
on @X . Let z 2 X and � 2 @X . If .xi / is a sequence in X converging to �, then

j exp.�� .z; xi /o/ � exp.�� .z; xj /o/j � exp.�� .xi ; xj /o/ �! 0 as i; j ! 1

so we may put .z; �/o WD lim .z; xi /o. To see that this is well-de�ned, let .yi / be
another sequence in X converging to �; then

j exp.�� .z; xi/o/ � exp.�� .z; yi /o/j � exp.�� .xi ; yi/o/ �! 0 as i ! 1:

Thus, we have a continuous extension of .�; �/o to X � X . Similar arguments lead
to a continuous extension of .�; �/o to X � X .

For hyperbolic spaces which are roughly geodesic, strong bolicity in the sense
of La�orgue [14] amounts to the following: for every �; r > 0 there exists R > 0

such that jx; yj C jz; t j � r and jx; zj C jy; t j � R imply jx; t j C jy; zj �
jx; zj C jy; t j C �. Since

exp.1
2
� .jx; t j C jy; zj � jx; zj � jy; t j// � 1

C exp.1
2
� .jx; yj C jz; t j � jx; zj � jy; t j//

it su�ces to choose R > 0 such that 1 C exp 1
2
�.r � R/ � exp 1

2
��. �

The next two sections are devoted to interesting examples of strongly hyper-
bolic spaces.
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5. Strong hyperbolicity for CAT.�1/ spaces

It is known that CAT.�1/ spaces are strongly bolic and good hyperbolic spaces.
The next result strengthens and uni�es these two facts.

Theorem 5.1. CAT.�1/ spaces are strongly hyperbolic with parameter 1.

Let us recall the four-point characterization of the CAT.�1/ property for
a geodesic space X . Informally, every quadrilateral in X has a comparison
quadrilateral in the hyperbolic plane H2 whose diagonals are at least as long as the
diagonals of the original quadrilateral in X . Formally, for every choice of points
x1; x2; x3; x4 2 X , there are points Qx1; Qx2; Qx3; Qx4 2 H2 such that

jx1; x2j D j Qx1; Qx2j; jx2; x3j D j Qx2; Qx3j;

jx3; x4j D j Qx3; Qx4j; jx4; x1j D j Qx4; Qx1j;

while jx1; x3j � j Qx1; Qx3j and jx2; x4j � j Qx2; Qx4j.
It therefore su�ces to prove Theorem 5.1 for H2, the model for metric spaces

of curvature at most �1.

Proposition 5.2. The hyperbolic plane H2 is strongly hyperbolic with parame-
ter 1.

Proof. We use the upper half-space model ¹w 2 C W Im w > 0º, with distance
given by

cosh jw1; w2j D 1 C jw1 � w2j2
2.Im w1/.Im w2/

;

that is,

jw1; w2j D 2 log
jw1 � w2j C jw1 � w2j

2
p

Im w1

p
Im w2

:

Using the notation kw1; w2k D jw1 � w2j C jw1 � w2j, the four-point formulation
of strong hyperbolicity with parameter 1 becomes simply

kw1; w3kkw2; w4k � kw1; w2kkw3; w4k C kw1; w4kkw2; w3k:

This brings to mind Ptolemy’s inequality in the plane:

jw1 � w3j jw2 � w4j � jw1 � w2j jw3 � w4j C jw1 � w4j jw2 � w3j:

And indeed, several applications of Ptolemy’s inequality yield the desired inequal-
ity. Here is a more conceptual formulation. Let X be a metric space which
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is ptolemaic, i.e., jx1; x3j jx2; x4j � jx1; x2j jx3; x4j C jx1; x4j jx2; x3j for all
x1; x2; x3; x4 2 X , and let G be a �nite group of isometries of X . (In our case,
X is the Euclidean plane and G is the cyclic group of order 2 generated by the
re�ection in the x-axis.) Then, on the quotient X=G, the formula





Œx�; Œy�




 D 1

jGj
X

g2G

jx; gyj; for Œx� ¤ Œy�;

de�nes a ptolemaic metric. Both the triangle inequality and Ptolemy’s inequality
are established by averaging over the G-orbits of all but one of the variables. �

Remark 5.3. Let X be strongly hyperbolic with parameter �, and �x a basepoint
o 2 X . On X , let us write d�.x; y/ for exp.�� .x; y/o/. The strong hyperbolicity
assumption means that d� satis�es the triangle inequality; however, d� fails to be
an actual metric on X because d�.x; x/ > 0 for each x 2 X . Now observe that d�

ful�lls Ptolemy’s inequality

d�.x1; x3/ d�.x2; x4/ � d�.x1; x2/ d�.x3; x4/ C d�.x1; x4/ d�.x2; x3/;

for this is simply another way of writing the four-point formulation of strong
hyperbolicity with parameter 1. Consequently, at in�nity, the visual metric
d� D exp.�� .�; �/o/ on @X is ptolemaic.

Foertsch and Schroeder have shown [7, Theorems 1 and 16] that, for a CAT.�1/

space X , the visual metric d� D exp.�.�; �/o/ on the boundary @X is ptolemaic.
In light of Theorem 5.1, the Foertsch - Schroeder result is a particular case of the
fact pointed out above.

As another consequence of Proposition 5.2, we �nd the best constant of hyper-
bolicity (in the sense of De�nition 2.1) for H2. This answers a folklore question.

Corollary 5.4. H
2 is log 2-hyperbolic, and this is optimal.

Proof. That H2 is log 2-hyperbolic follows from Theorem 4.2. To see that this
is best possible, let H

2 be ı-hyperbolic for some ı � 0. Sticking to the up-
per half-space model, the hyperbolic inequality at in�nity says that .a; b/i �
min¹.a; c/i ; .c; b/iº � ı whenever a; b; c 2 R are distinct. At in�nity, the Gro-
mov product with respect to i is given by

.a; b/i D log
ja � i j jb � i j

ja � bj

for distinct a; b 2 R. For a > 0, b D �a, c D 0, we are quickly led to
ja � i j � 2 exp.�ı/. Hence exp ı � 2, by letting a tend to 0. �
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6. Strong hyperbolicity of the Green metric on a hyperbolic group

Another example of a strongly hyperbolic metric is Mineyev’s ‘hat’ metric
from [15, 16]. In fact, our notion of strong hyperbolicity is inspired by the proof of
[16, Theorem 5]. Let us recall that Mineyev’s hat metric is a (type of) metric de-
�ned on any hyperbolic group �, with the following properties: it is �-invariant,
quasi-isometric to any word-metric on �, roughly geodesic, and - in our terminol-
ogy - strongly hyperbolic. Of course, the latter property is the crucial one.

Mineyev’s hat metric is a very useful tool, but it has the conceptual downside
of being custom-made. One would like a ‘natural’ type of metric doing the same
job - that of making hyperbolic groups strongly hyperbolic. We show that this is
the case for the Green metric coming from a random walk.

Theorem 6.1. Let � be a hyperbolic group. Then the Green metric de�ned by a
symmetric and �nitely supported random walk on � is strongly hyperbolic.

We recall the essential facts on the Green metric, and we refer to [4] and [11]
for more details. A probability measure � on � de�nes a random walk on � with
transition probabilities p.x; y/ D �.x�1y/. The probability measure �, or the
corresponding random walk, is symmetric if �.x/ D �.x�1/ for every x 2 �, and
�nitely supported if the support of � is a �nite generating set for �.

Let F.x; y/ be the probability that the random walk started at x ever hits y.
The Green metric on �, �rst introduced by Blachére and Bro�erio [3], is given by

jx; yjG D � log F.x; y/:

The name has to do with the Green function G.x; y/ D
P

n�0 �n.x�1y/, where
�n denotes the n-th convolution power of �, counting the expected number of
visits of y starting from x. It turns out that F and G are proportional:

G.e; e/F.x; y/ D G.x; y/:

The Green metric is �-invariant, quasi-isometric to any word-metric on �,
and roughly geodesic. The �rst two properties are generic, in the sense that they
only use the non-amenability of �. The latter property follows from a result of
Ancona [1] saying that geodesics for the word-metric are rough geodesics for the
Green metric, and it relies on the hyperbolicity �. It follows that the Green metric
is a hyperbolic metric, but our aim is to show more.

We remark that strong bolicity for the Green metric was �rst shown by Haïssin-
sky and Mathieu in [12]. For their short proof it su�ces to know Ancona’s result
that the Martin boundary of the random walk coincides with the Gromov bound-
ary. The fact that the Green metric on a hyperbolic group is a good hyperbolic
metric answers a question raised in [18], and for the purposes of [18] it means that
the Green metric can be used in place of Mineyev’s hat metric from [15, 16].
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6.1. Proof of Theorem 6.1 . The next lemma spells out what else is needed, on
top of hyperbolicity, in order to have strong hyperbolicity.

Lemma 6.2. A hyperbolic space X is strongly hyperbolic if and only if the
following holds:

(EB) there exist L; � > 0 and R0 > 0 such that

j jx; yj C jz; t j � jx; t j � jz; yj j � L exp.��R/

whenever x; y; z; t 2 X satisfy

jx; yj C jz; t j � jx; zj � jy; t j � R � R0:

The (EB) condition may be interpreted as an exponentially strong bolicity,
since merely knowing that

jx; yj C jz; t j � jx; t j � jz; yj �! 0 as jx; yj C jz; t j � jx; zj � jy; t j ! 1

already implies strong bolicity (for hyperbolic spaces which are roughly geodesic).

Proof. For the sake of notational simplicity, let us write

A WD 1
2
.jx; yj C jz; t j � jx; zj � jy; t j/

and

B WD 1
2
.jx; yj C jz; t j � jx; t j � jz; yj/:

( H) ) The four-point condition for strong hyperbolicity with parameter �

amounts to showing that, for some � > 0, we have 1 � exp.��A/ C exp.��B/.
We may assume that A; B � 0, and A � B . We rewrite the desired inequality as
�B � � log.1�exp.��A//. As a � � log.1�a/ for a 2 Œ0; 1/, it su�ces to obtain
�B � exp.��A/. When A � R0=2, this can be achieved for � � min¹2�; 2=Lº
by using (EB). When A < R0=2, we use the assumption that X is hyperbolic:
B D min¹A; Bº � ı, a hyperbolicity constant of X . So it su�ces to have
�ı � exp.��R0=2/, and this is achieved for, say, � � min¹1=.2ı/; .2 log2/=R0º.

( (H ) Strong hyperbolicity with parameter � yields

1 C exp.��A/ � exp.��B/ � 1 � exp.��A/:

When A � 0, this means that

� log.1 C exp.��A// � �B � � log.1 � exp.��A//:

Now log.1 C a/ � 2a and � log.1 � a/ � 2a for small enough a 2 Œ0; 1/. Thus,
there is A0 > 0 such that j�Bj � 2 exp.��A/ whenever A � A0. We deduce (EB)
with L D 4=�, � D �=2, R0 D 2A0. �
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The following is the key estimate for the proof of Theorem 6.1. It is a particular
instance of Gouëzel’s strong uniform Ancona inequalities [8, De�nition 2.8, The-
orem 2.9]. It can also be deduced from an adaptation of [13, Lemma 3.2], and that
was, in fact, our original approach before becoming aware of the very recent [8].

Lemma 6.3. There exist L; � > 0 and R0 > 0 such that
ˇ

ˇ

ˇ

ˇ

G.x; y/ G.z; t /

G.x; t/ G.z; y/
� 1

ˇ

ˇ

ˇ

ˇ

� L exp.��R/

whenever the distance between geodesics Œx; z� and Œy; t � is at least R � R0.

We emphasize that, in the above lemma, geodesics are taken with respect to
the word-metric on �. Let us derive condition (EB) for the Green metric on �.
On the one hand, as j log aj is asymptotic to ja � 1j for a ! 1, the conclusion of
Lemma 6.3 can be stated as

ˇ

ˇjx; yjG C jz; t jG � jx; t jG � jz; yjG
ˇ

ˇ D
ˇ

ˇ

ˇ

ˇ

log
G.x; y/ G.z; t /

G.x; t/ G.z; y/

ˇ

ˇ

ˇ

ˇ

� L exp.��R/;

up to increasing R0 if necessary. (Compare, at this point, with [15, Theorem 32d].)
On the other hand, we claim that there is some spatial constant C > 0 such

that

C dist.Œx; z�; Œy; t �/ C C � jx; yjG C jz; t jG � jx; zjG � jy; t jG

where, once again, the left hand side is in terms of the word metric. Let p and
q be points on Œx; z�, respectively Œy; t �, with jp; qj D dist

�

Œx; z�; Œy; t �
�

. (See the
�gure below.)

x

z

t

y

p q

We have jp; qjG � C1jp; qj C C1 for some spatial constant C1 > 0, by the
quasi-isometry of the word and the Green metrics. Also, there is a spatial constant
C2 > 0 such that

jx; pjG C jp; zjG � jx; zjG C C2; jy; qjG C jq; t jG � jy; t jG C C2



962 B. Nica and J. Špakula

since geodesics for the word metric are rough geodesics for the Green metric.
It follows that

jx; yjG C jz; t jG � .jx; pjG C jp; qjG C jq; yjG/ C .jz; pjG C jp; qjG C jq; t jG/

� jx; zjG C jy; t jG C 2jp; qjG C 2C2

� jx; zjG C jy; t jG C 2C1jp; qj C .2C1 C 2C2/

and the claim is proved. This completes the veri�cation of condition (EB) for the
Green metric.

6.2. Harmonic measure. We will now explain a consequence of Theorem 6.1
which concerns the harmonic measure on the boundary. In what follows, we write
.�; �/G for the Gromov product with respect to the Green metric, and having the
identity element e 2 � as the basepoint.

The random walk .Zn/ started at e 2 � converges almost surely to a boundary
point Z1. The harmonic measure � is the probability measure on @� de�ned by
the condition that �.A/ is the probability that Z1 is in A � @�. By [4, Section
3.4], see also the proof of Proposition 3.6 in [11], one knows that � is a �-conformal
measure:

dg��

d�
.�/ D exp ˇG.e; g�1I �/ (1)

where ˇG is the Busemann function with respect to the Green metric. Recall that

ˇG.e; gI �/ D 2.g; �/G � jgjG D lim
x!�

.jx; ejG � jx; gjG/:

In [4] and [11], the existence of the above limit follows from the identi�cation of
the Gromov boundary with the Martin boundary of the random walk. Herein, we
see it as a manifestation of the good hyperbolicity of the Green metric.

On the other hand, good hyperbolicity of the Green metric means that the
boundary visual structure induced by the Green metric is conformal, as explained
in Section 3. We endow @� with a visual metric d� D exp.�� .�; �/G/ for
small enough � > 0, and we let � denote the normalized Hausdor� measure
(independently of �). Then � is �-conformal, with

dg��

d�
.�/ D exp ˇG.e; g�1I �/ (2)

since the Hausdor� dimension of d� is 1=� by [4, Theorem 1.1].
Now [4, Theorem 2.7] says that any two �-quasi-conformal measures on @�

are equivalent ergodic measures, with Radon–Nikodym derivative bounded above
and below by positive constants. Equations (1) and (2) imply that the Radon–
Nikodym derivative d�=d� is �-invariant, hence constant a.e. by ergodicity. We
conclude:
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Corollary 6.4. Let � be a hyperbolic group. Then the harmonic measure on @�

de�ned by a symmetric and �nitely supported random walk on � equals the Haus-
dor� probability measure de�ned by any Green visual metric d� D exp.�� .�; �/G/.
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