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1. Introduction

Measure equivalence (ME) is an equivalence relation on �nitely generated groups
introduced by Gromov in [9], as a measure-theoretic analogue of quasi-isometry
(QI). The �rst detailled study of ME was performed in the work of Furman [7]
in the context of ME-rigidity of lattices in higher rank simple Lie groups. Lp-

measure equivalence (Lp-ME) is de�ned by imposing Lp-condition on the cocy-

cle maps arising from a measure equivalence relation. Such integrability con-
dition is implicit in Margulis’s proof of the normal subgroup theorem for ir-
reducible lattices [14]. It plays a prominent role in the work of Shalom [19],
where the L2-integrability condition on the cocycle maps is used for inducing
1-cocycles associated to certain non-uniform lattices to 1-cocycles of their am-
bient groups. Shalom also introduces the concept of uniform measure equiv-

alence (UME) or L1-ME in [20] where he makes the crucial observation that
UME and QI coincide for amenable groups (see also [13], [18]). The most signif-
icant achievement in the context of Lp-ME has been recently obtained by Bader,
Furman, Sauer in [5]. These authors prove an integrable measure equivalence
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or L1-ME-rigidity result for lattices in Isom(Hn), where n � 2. On the side
of amenable groups, Austin has shown that virtually nilpotent groups which are
L1-ME have bi-Lipschitz equivalent asymptotic cones [1]. In an appendix of that
paper, Bowen proves that for general �nitely generated groups, the growth func-
tion is invariant under L1-ME.

It clearly appears from this already impressive list of results that Lp-measure
equivalence is becoming a central notion, lying at the intersection of measured

and geometric group theories.
We prove in the present paper that the canonical central extension of the surface

group �g of genus g � 2 and its direct product with Z are not L1-measure equiv-
alent, although they are known to be measure equivalent and quasi-isometric.
Before stating more precise results, let us recall some background.

1.1. Central extension of surface groups. Let g � 2, and �g be the funda-
mental group of the compact orientable surface of genus g. Recall its classical
presentation

hx1; : : : xg ; y1; : : : ; yg I Œx1; y1� : : : Œxg ; yg �i:

Denote by R D Œx1; y1� : : : Œxg ; yg �. Let z�g be the central extension of �g given
by the presentation

hz; x1; : : : xg ; y1; : : : ; yg IRz�1; z is centrali:

Clearly, this central extension is such that its center, generated by z, is contained in
the derived subgroup of z�g . Another way to describe this extension is as follows.
Given an inclusion of �g ,! SL.2;R/ as a cocompact lattice, by a well-known
result of Milnor [15], z�g is isomorphic to the pre-image of �g in the universal
cover zSL.2;R/ of SL.2;R/.

1.2. Quasi-isometry versus measure equivalence. It is well known that
fSL.2;R/ and SL.2;R/ � Z are quasi-isometric, from where it follows that z�g

and �g � Z are themselves quasi-isometric. Let us brie�y recall the simple ar-
gument. Let T be the subgroup of upper triangular matrices in SL.2;R/. It is a
closed cocompact subgroup, therefore quasi-isometric to SL.2;R/. On the other
hand being simply connected, its pre-image zT in fSL.2;R/ is a direct product
with Z. But being a closed cocompact subgroup, zT is quasi-isometric to fSL.2;R/.
In conclusion, we have that both fSL.2;R/ and SL.2;R/ � Z are quasi-isometric
to T � Z.

Besides, z�g and �g � Z are measure equivalent. Indeed, this follows from

the fact that fSL.2;R/ has a lattice zF obtained by pulling back a free lattice F in
SL.2;R/ (observe that a central extension of a free group always splits). Indeed,
we have that z�g and zF ' F � Z are ME, and since F is ME to �g , we conclude
that z�g and �g � Z are ME.
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By contrast, we shall see that quasi-isometry and measure equivalence cannot
be achieved “in a compatible way.”

1.3. Integrable measure equivalence. Given countable discrete groups �

and ƒ, a measure equivalence (ME) coupling between them is a nonzero �-�nite
measure space .X; �/, which admits commuting free �-preserving actions of �
andƒ which both have �nite-measure fundamental domains, respectivelyX� and
Xƒ. Let ˛W� � Xƒ ! ƒ (resp. ˇWƒ � X� ! �) be the corresponding cocy-
cle de�ned by the rule: for all x 2 Xƒ, and all 
 2 �, ˛.
; x/
x 2 Xƒ (and
symmetrically for ˇ). If, for any � 2 ƒ and 
 2 �, the integrals

Z

Xƒ

j˛.
; x/jpd�.x/ and
Z

X�

jˇ.�; x0/jpd�.x0/

are �nite, then the coupling is calledLp-ME and the groups are calledLp-measure
equivalent. The strongest form is when p D 1, in which case the coupling
is called uniform, and the groups uniformly measure equivalent (UME), as it
generalizes the case of two uniform lattices in a same locally compact group. For
p D 1, the coupling is called integrable, and the groups are said to be integrable

measure equivalent (IME).

1.4. Main results. The main goal of this paper is to prove the following theorem.

Theorem 1.1. The groups z�g and �g � Z are not IME (therefore not Lp-measure

equivalent for 1 � p � 1).

An important special case of L1-ME groups are pairs .ƒ; �/ of uniform
lattices in a same locally compact group G. Equip G with a Haar measure �
(note that since it admits lattices, G is unimodular). There, the coupling is given
by ƒ (resp. �/ acting by left (resp. right) translations on .G; �/. We therefore
deduce the following

Corollary 1.2. The groups z�g and �g � Z are not uniform lattices in a same

locally compact group.

As already mentioned, z�g and �g � Z are ME. This can be strengthened as
follows, showing that Theorem 1.1 is optimal in a strong sense:

Theorem 1.3. The groups z�g and �g � Z admit an ME coupling which is in Lp

for all p < 1.

The last result was suggested to us by Shalom. Its proof, which is given in
§5 relies on the fact, proved in [19], that the standard ME-coupling between �g

and a free lattice in SL.2;R/ is in Lp for all p < 1 (this extends to their preim-
ages in fSL.2;R/, see Proposition 5.1). To apply this to our situation it remains to
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establish transitivity of the relation “having an ME coupling which is in Lp for all
p < 1.” This is obtained by slightly modifying the proof of [5] that Lp-measure
equivalence is transitive when p � 1.

We now proceed with a description of some intermediate steps in the proof of
Theorem 1.1 which we believe to be of independent interest.

1.5. An ergodic theorem for integrable cocycles. In order to prove Theorem 1.1,
one needs to be able to distinguish non-trivial central extensions from trivial ones
from the “ergodic point of view.” This is done through the following result.

Proposition 1.4. Let

1 �! C �! zG �! G �! 1

be a central extension such that C is isomorphic to Z and contained in the derived

subgroup of zG. We assume zG �nitely generated and equipped with a word metric

j � j zG . Let .�; �/ be a standard probability space on which zG acts by measure-

preserving automorphisms. Then, for every 1 � p < 1, every 1-cocycle with

values in Lp.�; �/ is sublinear in restriction to the central subgroup C :

kb.c/k

jcj zG

�! 0

as c 2 C and jcj zG ! 1, for all b 2 Z1. zG; �/, where � is the norm-preserving

representation of zG on Lp.�; �/:

This proposition is proved in Section §3.1. The idea behind this statement goes
back to Shalom’s proof that Property HT is stable under central extension [21]
(see also [20]), and culminates in a recent paper of Bader, Rosendal and Sauer [6],
where very general results are obtained under optimal assumptions (see §6.1 for
more details). In [2], a short proof of Proposition 1.4 is given for the particular case
of the Heisenberg group. In the present paper, we essentially reproduce this proof
which is based on the Mean Ergodic Theorem. Applying the same ideas, one also
obtains a proof of Serre’s stability of Property FH under central extensions which
extends to super-re�exive Banach spaces (see §6.2).

1.6. Monod–Shalom’s ME-rigidity. A crucial technical step for the proof of
Theorem 1.1 is the following statement.

Theorem 1.5. [16] Suppose that .X; �/ is an ME-coupling for � WD z�g and

ƒ WD �g � Z. Then for any fundamental domain Xƒ of ƒ, there exists a

measurable function f WXƒ ! �g , de�ning another fundamental domain

X 0
ƒ D ¹f .x/x; x 2 Xƒº so that the associated cocycle ˛0.�; x/ sends the cen-

ter of � to the center of ƒ for almost all x 2 Xƒ.
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In [16], the above result is hidden in the proof of their (much more general)
Theorem 1.17.

For the convenience of the reader, we sketch its proof in §4, following the
arguments given in [16].

1.7. Organization. Section 2 is dedicated to the proof of Theorem 1.5. The proof
of Proposition 1.4 is given in §3. Theorem 1.1 is proved in §4. In §5, we establish
Theorem 1.3. Finally, §6 deals with further results in the spirit of Proposition 1.4.

Acknowledgements. We thank Yehuda Shalom for signaling a point that we had
overlooked in an earlier version of this paper and for suggesting Theorem 1.3.
We are grateful to Bachir Bekka for helping us with the bibliography. We also
thank the anonymous referee for valuable suggestions to improve the presentation.

2. Measure equivalence and bounded cohomology

In preparation for the proof of Theorem 1.1 and Theorem 1.5, we �rst recall
some terminology and de�ne some notation regarding ME-coupling and bounded
cohomology. We refer to [9], [16], [21] for details.

Following the notation used in the introduction, let � and ƒ be two countable
discrete groups which are ME, and let .X; �/ be a coupling space. We let Xƒ be a
fundamental domain forƒ and ˛W��Xƒ ! ƒ be the corresponding cocycle map
de�ned by the rule that ˛.
; x/
x 2 Xƒ. We shall denote the element ˛.
; x/
x
by 
 � x.

Given 1 � p � 1 and some isometric representation � of ƒ on a Banach
space B , we de�ne the induced representation Indp;�

ƒ � to � on

Lp.Xƒ; B/ WD

²
 WXƒ �! B

ˇ̌
ˇ̌

Z

Xƒ

j jpd� < 1

³

in the following way:


 .x/ D �.˛.
�1; x/�1/ .
�1� x/:

Observe that this is a “linear induction,” and no integrability assumption on the
coupling is required.

Let us now recall the concept of bounded cohomology of a discrete group with
coe�cients in a representation on some separable Banach space (see [16] for de-
tails). Suppose .�; E/-is a �-module such that E is the dual of some separable
Banach space and � action is de�ned by the adjoint actions. .�; E/ is called a

coe�cient �-module. The bounded cohomology of � with coe�cients in .�; E/,
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denoted by H�
b.�; �/, is de�ned as the cohomology of the complex

0 �! l1.�; E/� �! l1.�2; E/� �! l1.�3; E/� �! � � � ;

where the �-action is de�ned on l1.�n; E/ in the following way:

.
 � f /.
0; : : : ; 
n/ D �.
/.f .
�1
0; : : : ; 

�1
n//:

2.1. Proof of Theorem 1.5. Recall that with our notation, ƒ D �g � Z, while �
is the non-trivial central extension z�g .

We know that �g embeds as a cocompact lattice insideG D SL2.R/. Consider
the quasi-regular representation �g Õ� L

2.G=�g / which splits as 1˚H0, where
H0 denotes the orthogonal complement of the constant functions. We denote
the representation of �g on H0 by �0. It follows from a theorem of Howe and
Moore [11] that �0 is c0 (i.e. its coe�cients vanish at in�nity).

It follows from the proof of [16, Proposition 7.12] that H2
b.�g ; �0/ ¤ 0.

We extend �0 to a representation (still denoted by �0) of ƒ D �g � Z by let-
ting Z act trivially. By Corollary 3.6 of [16], the in�ation map sends H2

b.�g ; �0/

injectively inside H2
b.ƒ; �0/. Now, we induce this representation to �. By The-

orem 4.4 of [16], the induction map from H2
b.ƒ; �0/ to H2

b.�; Ind2;�
ƒ �0/ is injec-

tive. These two facts together imply that H2
b.�; Ind2;�

ƒ �0/ is nonzero. By Proposi-

tion 3.8 in [16], the in�ation map from H2
b.�=Z; .Ind2;�

ƒ �0/
Z/ to H2

b.�; Ind2;�
ƒ �0/

is an isomorphism (which is due to the fact that Z is a normal amenable subgroup
of �). Since H2

b.�; Ind2;�
ƒ �0/ is nonzero, we obtain that there exists a nonzero

Z-invariant vector in Ind�
ƒ�0. This means that there exists a nonzero measurable

function  WXƒ ! H0 such that

 .
 � x/ D �0.˛.
; x// .x/

for all 
 in Z and for almost all x in Xƒ. Consider the orbit space �0.ƒ/nH0 D

�0.�g /nH0. Being c0, the action of �g on H0 is tame, so we can get a measurable
section s from �gnH0 to H0, and a measurable map f WXƒ ! �g satisfying

�0.f .x// .x/ D s.Œ .x/�/;

for almost all x 2 Xƒ, where Œ�� denotes the image of � 2 H0 in the quotient space
ƒnH0. By the de�nition of f , f .
 � x/˛.
; x/f .x/�1 �xes s.Œ .x/�/ for almost
all x 2 Xƒ. But, the stabilizer of each nonzero vector in H0 is Z. Therefore,
modifying f on ¹xj .x/ D 0º, if needed, we get f .
 � x/˛.
; x/f .x/�1 2 Z for
all 
 2 Z and for almost all x 2 Xƒ. We de�ne the new fundamental domain to
be X 0

ƒ D ¹f .x/xW x 2 Xƒº. Now, we have


f .x/x D f .x/
x

D f .x/˛.
; x/�1
 � x

D .f .
 � x/˛.
; x/f .x/�1/�1.f .
 � x/
 � x/
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for all 
 2 Z and for all x 2 Xƒ. It follows that the cocycle ˛0 de�ned by the
formula

˛0.
; f .x/x/ D f .
 � x/˛.
; x/f .x/�1;

sends the center of � inside the center of ƒ. �

3. Reduced cohomology and central extension

3.1. Proof of Proposition 1.4. We start with the following simple observation.

Lemma 3.1. Let G be a locally compact, compactly generated group acting by

isometries on a metric space X , and let j � j be the word metric on G associated

to some compact generating subset S . Assume that this action has almost-�xed

points, ı.e, for all " > 0, there exists x 2 X such that sups2S d.sx; x/ � ". Then

its orbits are sublinear, in the sense that

d.gx; x/

jgj
�! 0

for every x 2 X , as jgj ! 1.

Proof. Let � D lim supjgj!1
d.gx;x/

jgj
. Clearly, � does not depend on x. Applying

it to x such that sups2S d.sx; x/ � ", we see that it is less than " for any " > 0,
hence equal to 0. Indeed, write g as a product of jgj elements in S , g D s1s2 : : :

and use triangular inequality to write

d.gx; x/ � d.s1x; x/C d.s1s2x; s1x/C : : :

D d.s1x; x/C d.s2x; x/C : : :

� "jgj: �

The following theorem is originally due to Alaoglu and Birkho� for super-
re�exive Banach spaces. In [6], the authors introduce the following terminology:
a (strongly) continuous representation of a locally compact group is weakly almost
periodic (wap) if its orbits �.G/v are weakly relatively compact.

Theorem 3.2. [3, 4, 6] Let .G; �/ be a wap representation of a group G on

a Banach space B . Then the space of �.G/-invariant vectors has a canonical

complement.

In the case of a single transformation (i.e. G D Z), the theorem is a conse-
quence of the Mean Ergodic Theorem which was proved for wap representations
already in 1938 [22] (see also [12]).
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Example 3.3. An important class of wap representations is the class of norm-
preserving representations on a re�exive Banach space. In this paper, we shall
consider a di�erent class of wap representations: assume that a group G acts
by measure-preserving automorphisms on a probability space .X; �/. Then the
corresponding norm-preserving action of G on L1.X; �/ is wap (see [6, Example
10]).

Proposition 3.4. Let

1 �! C �! zG �! G �! 1

be a central extension of locally compact groups such thatC ' Z and let . zG; �/ be

a continuous representation of zG on a Banach space B without �.C /-invariant

vectors. Suppose, in addition, that �.C / satis�es the Mean Ergodic Theorem.

Then xH 1. zG; �/ D 0.

This proposition is a special case of [6, Theorem 2] when the representation
is wap. Their conclusion is stronger as they also obtain vanishing of the reduced
cohomology groups of higher degree. Their assumptions on zG and C are also
more general, but we shall see below that our proof can be easily extended to this
situation.

Proof. Let b be a cocycle, and let � be the a�ne action associated to b. Let c be
a generator of C and let

vn D
1

n

nX

kD1

b.ck/:

For every g 2 zG, one has

�.g/vn � vn D
1

n

nX

kD1

.b.gck/ � b.ck//

D
1

n

nX

kD1

.b.ckg/ � b.ck//

D
1

n

nX

kD1

�.c/kb.g/

which tends to zero when n ! 1 by the Mean Ergodic Theorem. �

Proposition 1.4 is a corollary of the following more general statement:
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Proposition 3.5. Let

1 �! C �! zG �! G �! 1

be a central extension such that C is isomorphic to Z and contained in the derived

subgroup of zG. We assume zG �nitely generated and equipped with a word metric

j�j zG . Let .B; �/ be a wap representation of zG. Then, every 1-cocycle b 2 Z1. zG; �/

is sublinear in restriction to the central subgroup C :

kb.c/k

jcj zG

�! 0

as c 2 C and jcj zG ! 1.

Proof. We �rst apply Theorem 3.2 to reduce to the case where �. zG/ has no
nonzero invariant vectors. Indeed, otherwise b decomposes accordingly as b0Cb00,
where b0 is a morphism and therefore factors through zG=C since C belongs to
Œ zG; zG�. By Theorem 3.2, B decomposes canonically as a direct sum B1 ˚ B2,
where B1 is the space of �.C /-invariant vectors. This decomposition of B is
�. zG/-invariant as C is central in G. Any 1-cocycle b 2 Z1. zG; �/ decomposes
accordingly as a direct sum b1 C b2. Observe that for all c 2 C , b1.c/ is �. zG/-
invariant: indeed, for all g 2 zG, the cocycle relation and the fact that C is central
imply that

�.g/b1.c/C b1.g/ D �.c/b1.g/C b1.c/ D b1.g/C b1.c/;

from which we deduce that �.g/b1.c/ D b1.c/: Hence b1 is trivial in restriction
to C . Now, by Proposition 3.4, the a�ne action associated to b2 has almost �xed
points. We conclude with Lemma 3.1. �

4. Proof of Theorem 1.1

From now on, we let X be an L1-coupling between the groups � WD z�g and
ƒ WD �g � Z, and X� and Xƒ be fundamental domains of � and ƒ respectively
such that the resulting cocycles ˛ and ˇ are integrable. By Theorem 1.5, there
exists a fundamental domain X 0

ƒ so that the resulting cocycle ˛0.�; x/ sends the
center of � to the center of ƒ for almost all x 2 X 0

ƒ. Moreover, we have that
X 0

ƒ D ¹f .x/x; x 2 Xƒº for some measurable function f WXƒ ! �g , while
˛0W� �X 0

ƒ ! ƒ is de�ned as

˛0.
; f .x/x/ D f .
 � x/˛.
; x/f .x/�1; (4.1)

for all x 2 Xƒ:Observe thatƒ has an obvious morphism to R, mapping its second
factor to Z � R. This morphism can be interpreted as a 1-cocycle b 2 Z1.ƒ; 1/
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associated to the trivial representation. Obviously, this cocycle grows linearly in
the direction of Z. More precisely, denoting by� D .g; n/ elements ofƒ D �g�Z,
we have that for all n 2 Z,

kb..1; n//k D jnj: (4.2)

A crucial observation is the fact (see Example 3.3) that the induced represen-
tation Ind1;�

ƒ 1 is wap. We induce the cocycle b 2 Z1.ƒ; 1/ to a 1-cocycle Qb of the

induced representation Ind1;�
ƒ 1 by the following expression:

Qb.
/.x/ WD b.˛.
; x//:

This formula makes sense even if X is simply an ME coupling. However, its
L1-integrability, and therefore the fact that Qb 2 Z1.�; Ind1;�

ƒ 1/ follows from the
condition that the coupling is integrable. Now, the fact that b factors through Z

together with (4.1) implies that for all x 2 Xƒ and 
 2 �,

Qb.
/.x/ D Qb0.
/.y/ WD b.˛0.
; y//; (4.3)

where y D f .x/x 2 X 0
ƒ. It follows that Qb0 2 Z1.�; Ind1;�

ƒ 1/ and satis�es
k Qb0.
/k D k Qb.
/k for all 
 2 �. We shall prove that Qb0 does not grow sublinearly
in the direction of the central subgroup C < z�g , contradicting Proposition 1.4
(since once again Ind1;�

ƒ 1 is wap). We denote the set of integers between a and b
in the center of � by the symbol Œa; b�� . Similarly, we de�ne Œa; b�ƒ.

Without loss of generality, we can assume that �.X 0
ƒ \ X�/ > 0. For every

positive integers k and n, we have

�.Œ�kn; kn��X
0
ƒ/ � �.X 0

ƒ \ X�/.2knC 1/;

which implies that

�.Œ�kn; kn��X
0
ƒnŒ�n; n�ƒX

0
ƒ/ � �.X 0

ƒ \X�/.2knC 1/ � �.X 0
ƒ/.2nC 1/:

So, there exists k such that for all n � 1,

�.Œ�kn; kn��X
0
ƒnŒ�n; n�ƒX

0
ƒ/ � n: (4.4)

In the rest of the proof, 
 and � denote elements in the center of � and ƒ,
respectively. We also identify the centers of ƒ and � with Z. In particular, j�j

denotes the absolute value of �, seen as an integer. Combining (4.2) and (4.3), we
obtain that for a.e. x 2 X 0

ƒ,

k Qb0.
/.x/k D j˛0.
; x/j:

from which we deduce

1

n

knX


D�kn

k Qb0.
/k D
1

n

knX


D�kn

Z

X 0

ƒ

j˛0.
; x/jd�.x/: (4.5)
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On the other hand,

¹x 2 X 0
ƒW ˛0.
; x/ D �º D ¹x 2 X 0

ƒW�
x 2 X 0
ƒº

D ��1.
�1X 0
ƒ \ �X 0

ƒ/

Hence,

�.¹x 2 X 0
ƒW ˛0.
; x/ D �º/ D �.
�1X 0

ƒ \ �X 0
ƒ/:

Therefore,

Z

X 0

ƒ

j˛0.
; x/jd�.x/ D

1X

�D�1

j�j�.
�1X 0
ƒ \ �X 0

ƒ/ (4.6)

Combining (4.5) and (4.6), we obtain

1

n

knX


D�kn

k Qb0.
/k D
1

n

knX


D�kn

1X

�D�1

j�j�.
�1X 0
ƒ \ �X 0

ƒ/

�
1

n

knX


D�kn

X

j�j>n

j�j�.
�1X 0
ƒ \ �X 0

ƒ/

�

knX


D�kn

X

j�j>n

�.
�1X 0
ƒ \ �X 0

ƒ/

� �
� kn[


D�kn

[

j�j>n


�1X 0
ƒ \ �X 0

ƒ

�
:

Now using that X 0
ƒ is a fundamental domain for the action of ƒ, we have that

kn[


D�kn


�1X 0
ƒ �

[

h2ƒ

hX 0
ƒ:

Moreover, the fact that for all x 2 X 0
ƒ, ˛0.�; x/ maps the center of � to the center

of ƒ implies that

kn[


D�kn


�1X 0
ƒ �

1[

�D�1

�X 0
ƒ:



976 K. Das and R. Tessera

Hence we obtain that

Œ�kn; kn��X
0
ƒnŒ�n; n�ƒX

0
ƒ D

� kn[


D�kn


�1X 0
ƒ

�
\

� 1[

�D�1

�X 0
ƒn

n[

�D�n

�X 0
ƒ

�

D
� kn[


D�kn


�1X 0
ƒ

�
\

� 1[

j�j>n

�X 0
ƒ

�

D

kn[


D�kn

[

j�j>n

.
�1X 0
ƒ \ �X 0

ƒ/;

from which we deduce that

1

n

knX


D�kn

k Qb0.
/k � �.Œ�kn; kn��X
0
ƒnŒ�n; n�ƒX

0
ƒ/:

Therefore, by using (4.4), we get 1
n

Pkn

D�kn k Qb0.
/k � n, contradicting the fact

that b has sublinear growth. This �nishes the proof of the theorem.

5. Lp-measure equivalence for p < 1

This section is dedicated to the proof of Theorem 1.3. Let G be a locally com-
pact group equipped with a Haar measure �, and let ƒ and � be two lattices in G
(in particular, this implies thatG is unimodular). Consider the measure-preserving
action of ƒ

(resp. �) by left (resp. right) translation on .G; �/, and let Xƒ (resp. X� ) be a
fundamental domain. This de�nes an ME coupling between these groups.

Proposition 5.1. Two lattices ƒ and � in SL.2;R/ admit fundamental domains

such that the corresponding cocycles are in Lp for all p < 1. The same holds for

the pull back zƒ and z� in fSL.2;R/.

Proof. The �rst statement follows from the proof of [19, Theorem 3.8]. The second
statement relies on the fact that the central extension fSL.2;R/ of SL.2;R/ can be
represented by a bounded 2-cocycle: one can consult for instance [8], but for the
convenience of the reader, let us brie�y sketch its proof.

Recall that the action of SL.2;R/ on the boundary of the hyperbolic plane
induces an embedding from SL.2;R/ to HomeoC.S

1/. The restriction of this
embedding to S0.2;R/ being a homotopy equivalence [8, Proposition 4.2], we
deduce that the fundamental group of HomeoC.S

1/ is isomorphic to Z, so that
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we have the following central extension

1 �! Z �! BHomeoC.S
1/ �! HomeoC.S

1/ �! 1;

where BHomeoC.S
1/ is naturally identi�ed with a subgroup of HomeoC.R/,

and Z as the subgroup of integral translations. Denote by � the projection
BHomeoC.S

1/ ! HomeoC.S
1/, and consider a section

� W HomeoC.S
1/ �! BHomeoC.S

1/

de�ned as follows: given f 2 HomeoC.S
1/, �.f / is the unique preimage of

f under � such that �.f /.0/ 2 Œ0; 1/. One easily checks that the 2-cocycle
c.f; f 0/ D �.f /�.f 0/�.ff 0/�1 2 Z is bounded, and more precisely that it takes
values in ¹0; 1º (see for instance [8, Lemma 6.3]). By restriction, � de�nes a
section for the exact sequence

1 �! Z �! fSL.2;R/ �! SL.2;R/ �! 1:

Now let Sƒ be a �nite symmetric generating subset of ƒ. Note that the set
�.Sƒ/[ ¹"º, where " is a generator of the center, generates zƒ. We shall denote by
j � jƒ and j � jzƒ the corresponding word lengths.

Lemma 5.2. For all � 2 ƒ, one has j�.�/jzƒ
� 2j�jƒ.

Proof. Let n D j�jƒ, so that 
 D s1 : : : sn, where for every i , si lies in Sƒ.
The fact that the cocycle c takes values in ¹0; 1º implies that �.s1 : : : sn/ di�ers
from �.s1/ : : : ; �.sn/ by an element of the center of absolute value at most n.
Hence the lemma follows. 4

The second statement of Proposition 5.1 now results from the following lemma.
�

Lemma 5.3. We keep the notation of Proposition 5.1. Let Xƒ be a fundamental

domain for the action ofƒ on SL.2;R/, and let ˛W� �Xƒ ! ƒ be the associated

cocycle. Then �.Xƒ/ � fSL.2;R/ is a fundamental domain for the action of zƒ

and the corresponding cocycle Q̨ W z� � �.Xƒ/ ! zƒ satis�es that for all 
 2 z�,

there exists a constant C D C.
/ such that for all x 2 Xƒ,

j Q̨ .
; �.x//jzƒ
� 2j˛.�.
/; x/jƒ C C:

Proof. We let 
 2 z�, and let z� 2 Z be such that 
�1 D .� ı p.
//�1z�. Let
x 2 Xƒ: by de�nition, Q̨ .
; �.x// is the unique � 2 zƒ such that ��.x/
�1 D �.y/

for some y 2 Xƒ. Now, projecting to SL.2;R/, we obtain that

�.�/x�.
/�1 D y; (5.1)
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from which we deduce that

˛.�.
/; x/ D �.�/: (5.2)

Applying � to (5.1), we get

�.�.�/x�.
/�1/ D �.y/:

We deduce from the fact that the cocycle c takes values in ¹0; 1º that

� ı �.�/�.x/.� ı �.
//�1 D �.y/z;

where jzj � 3. Therefore, we have that

� D � ı �.�/z�1z�1

 ;

which, combined with (5.2) and Lemma 5.2, yields the conclusion of the lemma
with C D jz
 j C 3. �

Remark 5.4. Observe that Lemma 5.3 is actually valid under the following gen-
eral hypotheses: ƒ and � being two lattices in a locally compact group G and zƒ

and z� being their pull-back in zG, where zG is a central extension of G associated
to a bounded 2-cocycle.

Corollary 5.5. Two lattices ƒ and � in SL.2;R/ admit an ME coupling whose

cocycles are in Lp for all p < 1. The same holds for the pull back zƒ and z� in
fSL.2;R/.

Let F be a free lattice in SL.2;R/. For the proof of Theorem 1.3, we proceed
as follows: by the previous corollary, z�g and F �Z (resp. � �Z and F �Z) admit
an ME-coupling whose cocycles are in Lp for all p < 1. In order to conclude we
need to establish transitivity of this relation, which is the object of the following
proposition.

Proposition 5.6. The relation “admitting an ME-coupling whose cocycle is inLp

for all p < 1” is transitive and therefore de�nes an equivalence relation among

compactly generated locally compact unimodular groups.

Proof. Recall that this statement was proved for cocycles in Lp for p � 1

in [5, Appendix 1]. The only part of that proof that needs to be adapted
is [5, Lemma A.1]. This is done below. �
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Lemma 5.7. Let G, H and L be compactly generated groups, G Õ .X; �/ and

H Õ .Y; �/ be �nite measure-preserving actions and ˛WG � X ! H and let

ˇWH � Y ! L be Lp-integrable cocycles for all p < 1. Consider Z D X � Y

and the action of G Õ Z de�ned by gW .x; y/ ! .g � x; ˛.g; x/ � y/: Then the

cocycle 
 WG �Z ! L given by


.g; .x; y// D ˇ.˛.g; x/; y/

is in Lp for all p < 1.

Proof. Let p < p0 < 1 and let us prove that 
 is in Lp. Fix word length on G, H
and L. We know that jˇjL is a subadditive cocycle, meaning that

jˇ.hh0; y/jL � jˇ.h; h0y/jL C jˇ.h0; y/jL;

and since p0 < 1, we also have

jˇ.hh0; y/j
p0

L � jˇ.h; h0y/j
p0

L C jˇ.h0; y/j
p0

L ;

for a.e. y 2 Y and all h; h0 2 H . Therefore

Lp0 .h/ D

Z
jˇ.h; y/j

p0

L d�.y/

is a pseudo-length on H , and hence is � C jhjH for some constant C .
Now, applying Jensen’s inequality to the function x 7! xq , with q D p0=p > 1,

we have, for a.e. x 2 X , and all g 2 G,

Z
jˇ.˛.g; x/; y/j

p
Ld�.y/ �

�Z
jˇ.˛.g; x/; y/j

p0

L d�.y/

�p=p0

� .C j˛.g; x/jH /
p=p0

:

Since p=p0 < 1, it follows from the assumption on ˛ that
Z

j˛.g; x/j
p=p0

H d�.x/ < 1:

Hence we are done. �

6. Further results

6.1. Generalization of Proposition 3.4. It turns out that the proof of Proposi-
tion 3.4 can easily be adapted to the more general setting of [6, Theorem 2], lead-
ing to what is essentially a geometric reformulation of their proof (i.e. in terms of
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almost �xed points). Looking back at the proof of Proposition 3.4, we observe that
the construction of the sequence .vn/ of almost �xed points relied on the existence
of a net of formal �nite convex combinations of elements ofC , say

� P
c2C �

.i/
c c

�
i
,

such that the corresponding net of operators
� P

c2C �
.i/
c �.c/

�
i

converges in the
strong operator topology to 0. In the setting of Proposition 3.4, a natural choice
was to take a Cesàro sum in order to apply the Mean Ergodic Theorem.

Proposition 6.1 ([6, Theorem 2]). Let N and C be closed subgroups of a locally

compact group G, with C lying in the centralisizer of N . Assume � is a normed

preserving representation on a Banach space such that �.C / is wap and has no

nonzero invariant vectors. Let � be an a�ne isometric action of G whose linear

part is � . Then �.N/ has almost �xed points.

Proof. Let us assume for simplicity that G is discrete. If C was isomorphic to Z,
we could apply verbatim the proof of Proposition 3.4. In replacement for the
Mean Ergodic Theorem we shall use the Ryll-Nardzewski �xed point theorem [17].
Indeed, for every v 2 B , the closed convex hull of the �.C /-orbit of v is weakly
compact, and therefore contains some �.C /-invariant vector. Since C does not
have nonzero invariant vectors, this implies that there is a sequence of such convex
combinations converging to 0. A diagonal argument implies that there exists a net
ı.i/ D

P
c2C �

.i/
c �.c/ of such convex combinations such that kı.i/vk ! 0 for all

v 2 B . Now, replace �.c/v by b.c/ in each convex combination ı.i/: this de�nes
a net vi 2 B . This sequence is then shown to be almost �.N/-�xed using that for
all c 2 C and n 2 N , b.nc/ � b.c/ D b.cn/ � b.c/ D �.c/b.n/. Indeed, for all
n 2 N , we get that

�.n/vi � vi D
X

c2C

�.i/
c .b.nc/ � b.c// D

X

c2C

�.i/
c �.c/b.n/ D ı.i/b.n/;

which tends to zero in norm as i ! 1. �

6.2. Fixed-point properties and central extensions. Let us end this section
with a Banachic version of Serre’s theorem as announced in the introduction.

De�nition 6.2. Let C be a class of super-re�exive Banach spaces stable under
ultralimits (such asLp-spaces for a �xed 1 < p < 1, or uniformly convex Banach
spaces with modulus of convexity bounded from below). A locally compact group
has Property FC if every continuous a�ne isometric action on some element of
C has a �xed point.

Theorem 6.3. Let

1 �! C �! zG �! G �! 1

be a central extension of locally compact groups such that C � Œ zG; zG�. If G has

Property FC, then so does zG.
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Proof. Let � a norm-preserving representation of zG on some Banach space in C,
and let b 2 Z1. zG; �/. By Theorem 3.2, only two cases need to be considered: the
case where �. zG/ D ¹idº, and the case where it does not have nonzero invariant
vectors. In the �rst case, b is a morphism, and in particular factors through G: it
is therefore trivial.

We can therefore assume that �. zG/ does not have nonzero invariant vectors.
Again we can split the problem into two cases: either �.C / D ¹idº, or �.C / does
not have nonzero invariant vectors. In the �rst case, � induces a representation x�

of the quotient G. Observe that b.c/ is �. zG/-invariant for all c 2 C : indeed, for
all g 2 G, the cocycle relation and the fact that C is central imply that

�.g/b.c/C b.g/ D �.c/b.g/C b.c/;

from which we deduce, since �.C / D ¹idº, that

�.g/b.c/ D b.c/:

It now results from our hypothesis that b is identically zero in restriction to C .
It therefore factors through a cocycle in Z1.G; x�/, which is a coboundary by our
assumption on G. It follows that b itself is a coboundary.

In the second case, we deduce from [6, Theorem 2] (see Proposition 6.1) that
every continuous norm-preserving representation of zG has trivial �rst reduced
cohomology. We conclude (thanks to the following theorem of Gromov [10]):
if a group admits an a�ne isometric action on a Banach space without �xed points,
then it admits an a�ne isometric action on some ultralimit of this Banach space
without almost invariant points. �
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