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1. Introduction

The scale function on a totally disconnected, locally compact group, G, was

introduced in [16] as a tool for use in the proof of a conjecture made in [10]. The

scale, s.x/, of an element x in G is a positive integer that by [17, Theorem 3.1] is

equal to

s.x/ WD min
®

ŒxVx�1 W xVx�1 \ V � WV 6 G; V compact and open
¯

: (1)

The scale is attained in (1) because it is the minimum of a set of positive

integers, which may be seen as follows. Compact open subgroups exist be-

cause G has a base of neighborhoods of the identity comprising such subgroups

(see [8], [13, Theorem II.2.3] or [9, Theorem II.7.7]). Then, for V compact and

open, xVx�1 \ V is an open subgroup of xVx�1, which is compact, whence

ŒxVx�1 W xVx�1 \ V � is a positive integer.

1 Supported by ARC Discovery Project DP0984342.
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Since the scale function takes positive integer values, it cannot be multiplica-

tive on G, or on subgroups of G, unless s.x/ D 1 for every x. This rarely occurs

because s.x/ D 1 D s.x�1/ only if x normalizes some compact, open subgroup

of G. There is no obstruction to the scale being multiplicative on a semigroup,

however, and it indeed is multiplicative on singly generated semigroups since

s.xn/ D s.x/n for every n 2 ZC and x in G by [16, Corollary 3]. A semigroup

on which the scale function is multiplicative will be called scale-multiplicative or

s-multiplicative.

This paper investigates the maximal s-multiplicative semigroups in totally

disconnected, locally compact groups. Our long-term goal in doing so is the

creation of a combinatorial structure for each group that has s-multiplicative

semigroups as its elements and relations between these elements derived from

how the semigroups intersect. The proposed structure will encode information

about the given group, and there will be a natural action of the group on it.

Two steps are taken towards this goal here. One step is a study of groups hav-

ing only �nitely many maximal s-multiplicative semigroups: those having only

one or two are characterised and examples of groups having a �nite even number

of such semigroups are described. In these �nite examples the maximal s-multi-

plicative semigroups are seen to form a combinatorial geometry, see Remark 3.4.

The other step is that the maximal s-multiplicative semigroups in certain automor-

phism groups of regular trees are determined and related to the geometry of the

tree. These examples are prototypes for the proposed construction, although that

construction will need to produce combinatorial geometries considerably more

general than the kind seen in the examples if they are to cover groups such as that

in [3].

Our goal is inspired by work of J. Tits in which combinatorial geometries and

group actions are constructed for various totally disconnected, locally compact

groups. In particular, he shows in [15] that a tree may be recovered from its auto-

morphism group by identifying maximal compact, open subgroups with the ver-

tices and edges of the tree and de�ning the incidence relation in terms of how they

intersect. It is seen below that these subgroups are maximal s-multiplicative semi-

groups, but additional (non-uniscalar) semigroups are found and are identi�ed

with ends of the tree and open sets of ends. Broadening attention from compact,

open subgroups to s-multiplicative semigroups thus brings more geometry into

view. This added information is not exclusive to s-multiplicative semigroups be-

cause the ends of a regular tree may also be identi�ed with non-compact maximal

elliptic subgroups of its automorphism group. However, s-multiplicative semi-

groups carry extra dynamical information, through the scale function and transla-

tion direction, that the static picture presented by subgroups does not and which

is likely to be useful for building a structure space. Moreover, there are maxi-

mal s-multiplicative semigroups that do not correspond to any maximal elliptic

subgroups and which may be identi�ed with sets of ends forming a base for the

topology on the space of ends, see Remark 4.12(4).
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Future work will go beyond relating maximal s-multiplicative semigroups to

Tits’ ideas on automorphisms of trees. One part of this work will be to integrate

the current attempt with other approaches that seek a geometric representation

for general totally disconnected, locally compact groups such as: the space of

directions (which also comes with a topology, see [5]); the (discrete) metric

space of compact, open subgroups; contraction subgroups; the Chabauty space

of closed subgroups; and, indeed, the set of maximal elliptic subgroups. Another

part of the work will be describing the maximal s-multiplicative semigroups in

automorphism groups of buildings, semisimple Lie groups over local �elds (where

an algebraic rather than geometric description of the semigroups is sought) and

other groups such as Neretin’s group and the group studied in [3], thus providing

examples to guide the proposed construction.

We thank the referee for numerous comments and suggestions that have sub-

stantially improved this paper.

The following notational convention will be used: the set of positive integers

will be denoted by ZC, and the set of natural numbers (including 0) by N. The

identity of a group, G, will be denoted eG .

2. Multiplicative semigroups

This section de�nes what it means for a semigroup to be multiplicative over a

compact, open subgroup V and to be scale-multiplicative. Semigroups satisfy-

ing either of these two conditions will be called multiplicative. We show that

semigroups multiplicative over V are scale-multiplicative and open, from which

it will follow that there exist open, maximal scale-multiplicative semigroups.

If the scale function is not identically 1, there also exist such semigroups which

are non-compact as well. That the group inverse produces an involution on the set

of multiplicative semigroups is also shown.

The notion of a semigroup being multiplicative over a compact, open subgroup

will be de�ned �rst.

De�nition 2.1. Suppose that V is a compact, open subgroup of a totally discon-

nected, locally compact group G. A semigroup S � G is multiplicative over V

if V � S and the map sV W S ! ZC given by sV .x/ WD ŒxVx�1W xVx�1 \ V �

satis�es sV .xy/ D sV .x/sV .y/ for all x; y 2 S.

Since the set of semigroups multiplicative over V is closed under increasing

unions, each semigroup multiplicative over V is contained in a maximal such

semigroup. This maximal semigroup is not unique in general.

Our �rst result relates multiplicativity over V to the notion of scale-multiplica-

tivity to be de�ned later on. For the statement, recall that any compact, open

subgroup V at which the minimum in (1) is attained is said to be minimizing for x.
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Proposition 2.2. Let the semigroup S be multiplicative over V . Then V is

minimizing for every x 2 S and s.x/ D sV .x/.

Proof. Let x 2 S. Then, by the “spectral radius formula” for the scale, see [12,

Theorem 7.7],

s.x/ D lim
n!1

ŒxnVx�n W xnVx�n \ V �1=n D lim
n!1

sV .xn/1=n:

Since S is multiplicative over V , the last is equal to sV .x/ and it follows that V is

minimizing for x. �

If x and x�1 both belong to a semigroup multiplicative over V , then

sV .x/sV .x�1/ D sV .xx�1/ D sV .eG/ D 1:

Hence sV .x/ D sV .x�1/ D 1 and xVx�1 D V . The ‘only if’ direction of the

following corollary is thus established. The ‘if’ direction is straightforward.

Corollary 2.3. The subgroup H 6 G is multiplicative over the compact, open

subgroup V if and only if H normalizes V .

It is shown next that each subgroup V that is minimizing for x gives rise

to a semigroup multiplicative over V and containing x. An essential part of

the proof is the fact that a compact, open subgroup V that is minimizing for x

has a decomposition V D VCV� D V�VC where V˙ are closed subgroups of

V with xVCx�1 > VC and xV�x�1 6 V�. This follows from the fact that

every minimizing subgroup is also tidy for x, see [16, De�nition p.343] and [17,

Theorem 3.1].

Lemma 2.4. Suppose that V is a compact, open subgroup of G that is minimizing

for x 2 G and let n 2 ZC. Then .VxV /n D V�xnVC and s.y/ D s.x/n for every

y 2 .VxV /n.

Proof. We have

.VxV /n D .VxV / : : : .VxV /
„ ƒ‚ …

n

D V.xVx�1/ : : : .xn�1Vx1�n/xnV:

The comment preceding the statement of the lemma shows that

V.xVx�1/ D V�VC.xVCx�1/.xV�x�1/ D V�.xVCx�1/.xV�x�1/;

where the last is equal to V�.xV�x�1/.xVCx�1/, and which is in turn equal to

V�.xVCx�1/ because xV�x�1 6 V�. Iterating this argument yields

V.xVx�1/ : : : .xn�1Vx1�n/xnV D V�.xn�1VCx1�n/xnV:
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Next, since .xn�1VCx1�n/xn D xn.x�1VCx/ 6 xnVC, it follows that

V.xVx�1/ : : : .xn�1Vx1�n/xnV D V�xnV:

Finally, using again that V D V�VC and that xnV�x�n 6 V�, we obtain

.VxV /n D V.xVx�1/ : : : .xn�1Vx1�n/xnV D V�xnVC ; (2)

our �rst claim. Hence y 2 VxnV and, by [16, Theorem 3], V is tidy and therefore

minimizing for y, and s.y/ D s.xn/. Since s.xn/ D s.x/n for every n 2 ZC

by [16, Corollary 3], it follows that s.y/ D s.x/n as required. �

Lemma 2.4 and continuity of the scale function [16, Corollary 4] imply:

Proposition 2.5. Let x 2 G and suppose that V is a compact, open subgroup

of G that is minimizing for x. Then the semigroup generated by x and V is

multiplicative over V . If s.x/ ¤ 1, then this semigroup is not compact.

Proof. To establish the �rst claim, note that the semigroup generated by x and V

is S D V [
S

n2ZC.VxV /n. Given y and z in S, consider two cases.

In the �rst case, assume that y 2 .VxV /m and z 2 .VxV /n. Then yz belongs

to .VxV /mCn and the claim follows because s.y/ D s.x/m, s.z/ D s.x/n and

s.yz/ D s.x/mCn by Lemma 2.4.

In the second case, at least one of the elements y and z belongs to V and it

may be supposed without loss that y 2 V . Then s.yz/ D s.z/ by [16, Theorem 3]

and, since s.V / D ¹1º, it follows that s.yz/ D s.y/s.z/.

For the second claim note that, if s.x/ ¤ 1, then ¹xnW n 2 Nº is not contained

in any compact subset of G by continuity of the scale function. �

The previous discussion shows that there are open subsemigroups of G satis-

fying the next de�nition.

De�nition 2.6. Let G be a totally disconnected locally compact group. A semi-

group, S � G is scale-multiplicative, or s-multiplicative, if

s.xy/ D s.x/ s.y/ for every x; y 2 S:

As remarked in the introduction, every s-multiplicative semigroup is contained

in a maximal one. Since the scale function is continuous the following is imme-

diate.

Proposition 2.7. Every s-multiplicative subsemigroup of G is contained in a

maximal such semigroup. All maximal s-multiplicative semigroups are closed.
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In view of Proposition 2.5 and Theorem 4.11 below, maximal open s-multi-

plicative semigroups are of particular interest. Should S contain an open sub-

group V , then S D SV is open. Any semigroup containing a semigroup mul-

tiplicative over V is therefore open. In particular, any maximal s-multiplicative

semigroup containing a semigroup as in Proposition 2.5 is open. So far as we

know, this is the only circumstance in which open s-multiplicative semigroups

occur.

Question 2.8. Let S be a maximal s-multiplicative semigroup that contains an

open semigroup. Does S contain an open subgroup of G?

Note that, even when an s-multiplicative semigroup S contains an open sub-

group, that subgroup need not be minimizing for all elements of S. In particular,

the semigroups in Theorem 4.11 contain a largest open subgroup but that subgroup

is not minimizing for any element that does not belong to it.

The next result implies that there is a natural involution on the set of maximal

s-multiplicative semigroups.

Proposition 2.9. The semigroup S is s-multiplicative if and only if S�1 is s-multi-

plicative. Moreover, S is maximal s-multiplicative if and only if S�1 is maximal

s-multiplicative.

Proof. Suppose that S�1 is s-multiplicative and consider x; y 2 S. Denoting the

modular function on G by � W G ! .RC;�/, [16, Corollary 1] implies that

s.xy/ D �.xy/s..xy/�1/ D �.x/�.y/s.y�1/s.x�1/;

because � is a homomorphism and S
�1 is s-multiplicative. Since s.x/ D

�.x/s.x�1/ and similarly for s.y/, it follows that s.xy/ D s.x/s.y/ and that S

is a s-multiplicative semigroup.

For the maximality statement, note that the inverse map is an involution pre-

serving proper containment. �

For any s-multiplicative semigroup S, the map s W S! .ZC;�/ is a homomor-

phism whose range is a subsemigroup of .ZC;�/. This semigroup is not equal to

all of ZC if G is compactly generated, because the scale has only �nitely many

prime divisors in that case, see [18].

To prepare a characterization of groups with a unique s-multiplicative semi-

group, we need the following lemma. A subset will be called uniscalar if and only

if the set of values of the scale function on it is ¹1º.

Lemma 2.10. Let G be a totally disconnected, locally compact group and let x 2

G satisfy s.x/ ¤ 1. Then no s-multiplicative semigroup of G contains both x

and x�1. In particular, a s-multiplicative semigroup of G that is invariant under

inversion is a uniscalar subgroup.
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Proof. Aiming to prove the contrapositive, suppose that S is a s-multiplicative

semigroup of G that contains x and x�1. Then 1 D s.eG/ D s.xx�1/ D

s.x/s.x�1/ and we must have s.x/ D s.x�1/ D 1 in contradiction to the as-

sumption s.x/ ¤ 1. This proves the �rst statement.

The �rst statement implies that the scale of every element of a s-multiplicative

semigroup which is invariant under inversion is 1. Since a semigroup invariant

under inversion is a group, the second statement follows as well. �

Corollary 2.11. Let G be a totally disconnected, locally compact group. Then

G is uniscalar if and only if it has a unique maximal s-multiplicative semigroup,

which then necessarily is the whole of G.

Proof. If G is uniscalar, then G is a scale-multiplicative semigroup which is

necessarily maximal and unique with this property. If G is not uniscalar, it

contains an element x such that s.x/ ¤ 1. By Lemma 2.10, x and x�1 can not be

contained in a common s-multiplicative semigroup. Hence there must be at least

two di�erent maximal s-multiplicative semigroups. �

3. Groups with �nitely many maximal s-multiplicative semigroups

We begin this section by constructing totally disconnected, locally compact groups

with exactly two s-multiplicative semigroups. Thereafter we analyse the structure

of such groups in general. We conclude the section with an example illustrating

possible patterns of �nite collections of s-multiplicative semigroups that can

occur.

Let H Ì˛ Z be a totally disconnected, locally compact group, where ˛ is

an automorphism of H . By identifying the internal and external semi-direct

products, we write s.˛/ D s.eH ; 1/. Suppose that there is a compact, open

subgroup V 6 H with

˛.V / > V and
[

n2Z

˛n.V / D H: (3)

Then s.˛/ D Œ˛.V / W V � and s.˛�1/ D Œ˛�1.V / W ˛�1.V / \ V � D 1. Thus V is

minimizing for ˛�1 and hence, by [17, Corollary 3.11] or [12, Corollary 5.3], for ˛.

Such semidirect products are of particular interest because every group G that

is not uniscalar has subgroups of this form. If s.x/ > 1 and V is tidy for x, then

VCC WD
S

n2Z xnVCx�n is a closed subgroup of G that is normalized by x, and

hx; VCCi D VCC Ì hxi, see [16, Proposition 2]. Denote the inner automorphism

y 7! xyx�1 of G by ˛x, so that VCC Ì hxi D VCC Ì˛x
hxi. Multiplicative

semigroups contained in VCC Ì˛x
hxi will extend to maximal s-multiplicative

semigroups in G. By way of illustration of Proposition 2.5, observe that the
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semigroup in H generated by V and x, respectively x�1, is the disjoint union

G

n2N

˛n
x.V /xn; respectively

G

n2N

Vx�n:

These semigroups are multiplicative over V but are not maximal.

Proposition 3.1. Let G D H Ì˛ Z with V 6 H as in (3). Then

SC D ¹.h; n/ 2 H Ì˛ ZW n � 0º and S� D ¹.h; n/ 2 H Ì˛ ZW n � 0º

are the only maximal s-multiplicative semigroups in G. These semigroups are

multiplicative over V if and only if V GH .

Proof. Put q WD Œ˛.V / W V � > 1. We derive a formula for the scale of .h; n/ in

H Ì˛ Z in terms of q. For this, choose m such that h 2 ˛m.V /. Then

.h; n/˛m�n.V /.h; n/�1 D .h; 0/˛m.V /.h; 0/�1 D ˛m.V /:

Hence, if n � 0, then .h; n/˛m�n.V /.h; n/�1 > ˛m�n.V / and it follows that

˛m�n.V / is minimizing for .h; n/ and

s.h; n/ D Œ˛m.V / W ˛m�n.V /� D qn:

If n � 0, then .h; n/˛m�n.V /.h; n/�1 6 ˛m�n.V / and s.h; n/ D 1. Therefore

s.h; n/ D

´

qn if n � 0;

1 if n < 0:

Since the product of .g; m/ and .h; n/ in G is .g; m/.h; n/ D .g˛m.h/; mC n/,

and q > 1, it follows that

s..g; m/.h; n// < s.g; m/s.h; n/ if m and n have opposite signs (4)

and

s..g; m/.h; n// D s.g; m/s.h; n/ if m and n have the same sign. (5)

By (5), SC and S� are s-multiplicative semigroups. Since G D SC [ S�, (4)

implies that every s-multiplicative semigroup is contained in one of SC or S�.

It follows that both SC and S� are maximal s-multiplicative semigroups, and that

G contains no others.

We now prove that SC and S� are multiplicative over V if and only if V GH .

Assume that SC is multiplicative over V . Then, in particular, the subgroup H

is multiplicative over V and H normalizes V , by Corollary 2.3. That V G H if
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S� is multiplicative over V follows similarly. On the other hand, if V G H , then

.h; n/V .h; n/�1 D ˛n.V / for every .h; n/ 2 G and it follows that

sV .h; n/ D Œ.h; n/V .h; n/�1 W .h; n/V .h; n/�1 \ V � D Œ˛n.V / W ˛n.V / \ V �

D s.h; n/
(6)

for every .h; n/ 2 H Ì˛ Z. Then sV is multiplicative on SC and S� because s is,

and SC and S� are multiplicative over V . �

As previously remarked, every group G that is not uniscalar has closed sub-

groups isomorphic to some H Ì˛ Z. Multiplicative semigroups in each of these

subgroups extend to maximal s-multiplicative semigroups in G. We recall in the

next section a canonical action of H Ì˛ Z on a homogenous tree. The structure

space of maximal s-multiplicative semigroups will consequently be related to this

tree. It will be seen also that this relationship is not straightforward even when G

itself acts on a tree.

We conclude this section with a few examples and preliminary results in the

case when the number of s-multiplicative semigroups is �nite. These will illus-

trate the way in which intersection relations between s-multiplicative semigroups

correspond to incidence relations in a geometry in the higher rank case and in

which structural information about a group might be recovered from knowledge

of its s-multiplicative semigroups.

Corollary 2.11 characterizes groups having a unique maximal s-multiplicative

semigroup. Extending an argument provided by the referee, we here treat the

special case of groups with exactly two maximal s-multiplicative semigroups.

Proposition 3.2. Let G be a totally disconnected, locally compact group with

exactly two maximal s-multiplicative semigroups. Then these semigroups are

inverses, their union is G, their intersection H equals ¹x 2 GW s.x/ D 1 D s.x�1/º

and is an open, normal subgroup of G. The quotient G=H is isomorphic to the

in�nite cyclic group .Z;C/.

Proof. In any totally disconnected, locally compact group, every element of G is

contained in some maximal s-multiplicative semigroup. Therefore, the union of

these semigroups always equals G.

We verify next that the two maximal s-multiplicative semigroups are inverses

of each other. By Corollary 2.11, the group G is not uniscalar. Choose m in G

with non-trivial scale, and, for further use below, with minimal scale having this

property. Let S be a maximal s-multiplicative semigroup of G containing m. By

Proposition 2.9, S�1 is another maximal s-multiplicative semigroup, which di�ers

from S by Lemma 2.10. By assumption, there are exactly two maximal s-multi-

plicative semigroups of G. We therefore conclude that these are S and S
�1 and

that they are exchanged by the inverse map.
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In order to verify that S and S
�1 are open, choose a compact, open subgroup,

V , of G. Then V is a s-multiplicative semigroup, hence contained in one of S,

S
�1, and, being invariant under inversion, in both of them.

Hence S \ S
�1 is open. Being invariant under inversion, S \ S

�1 is also a

subgroup of G, and it is normal, since conjugation by elements of G permutes the

maximal s-multiplicative semigroups.

We show next that S \ S
�1 D H WD ¹x 2 GW s.x/ D 1 D s.x�1/º.

The left hand side is a s-multiplicative semigroup, that is invariant under inversion,

hence is a uniscalar subgroup by Lemma 2.10. This implies S \ S
�1 � H by the

de�nition of H . Since the group generated by any element, x say, of H is s-multi-

plicative and invariant under inversion, we conclude x 2 S \ S
�1. Since x 2 H

was arbitrary, we obtain S \ S
�1 D H as claimed.

Finally, we prove that G=H is in�nite cyclic. We will show that G D hmiH ,

where m was chosen in the second paragraph of this proof. Our claim then follows,

because by multiplicativity of the scale and the choice of m, no positive power

of m has scale 1, thus, in particular, such a power is not in H . Hence we will have

G D hmi Ë H . Observe that m 2 S XH D S X S
�1.

The proof of G D hmiH requires two tools.

First, no element of S X H has scale 1. To see this, let x 2 S have s.x/ D 1.

We will show s.x�1/ D 1, which implies x 2 H , as required. The element mx�n

belongs to S for every n > 0, otherwise .mx�n/�1 D xnm�1 2 S, leading to

1 D s.xn/ D s.xnm�1/s.m/, which contradicts s.m/ > 1. Hence both x�1 and

xnm�1 belong to S
�1 for all n > 0 and it follows that s.m�1/ D s.x�1/ns.xnm�1/

for every n > 0. The last equation can only be satis�ed if s.x�1/ D 1, so that

x�1 2 H and hence x 2 H .

Our second tool is the following. For every y 2 S X H with m�1y 2 S
�1

we have s.y/ D s.m/ and s.y�1m/ D 1. To see this, observe that y�1m D

.m�1y/�1 2 S and

s.m/ D s.y/s.y�1m/: (7)

By our �rst tool, s.y/ ¤ 1. Using the minimality of s.m/, equation (7) implies

s.y/ D s.m/ and s.y�1m/ D 1 as claimed.

With our tools in place, we are now ready to show that S � hmiH . To that end,

pick x 2 S. We will show x 2 hmiH . This claim is obvious for x 2 H , so we may

suppose x 2 S XH . The set of non-negative integers n such that m�nx 2 S XH

contains 0 and cannot be unbounded because for any such integer n

s.x/ D s.mn �m�nx/ D s.m/ns.m�nx/

and s.m/ > 1. Therefore, we can de�ne n.x/ as the smallest non-negative integer

such that

m�n.x/x 2 S XH and m�1m�n.x/x 2 S
�1: (8)

Using our second tool with y WD m�n.x/x we see that

s.m�n.x/x/ D s.m/ (9)
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and

s.x�1mn.x/C1/ D s.x�1mn.x/ �m/ D s.y�1m/ D 1: (10)

An aside: it follows from (9) that s.x/ D s.m/n.x/C1.

Equation (9) implies that m�n.x/x is an element of y 2 S XH with minimum

scale and so we may take m to be m�n.x/x in (7) and y to be m and conclude that

s.m�n.x/�1x/ D 1. Together with equation (10) and the characterization of H in

terms of scales, we deduce that m�n.x/�1x 2 H and therefore x 2 hmiH . Since x

is a general element of S, it follows that S � hmiH and then, since H is normal,

that S�1 � hmiH as well. Therefore G D hmiH as claimed. �

The number of maximal s-multiplicative semigroups can be �nite and bigger

than 2 and they have a variety of possible intersection patterns, as illustrated by

the following examples.

Example 3.3. Let W be Qn
p and let H consist of groups of diagonal matrices

over Qp of the form diag.p�1; : : : ; p�n/ with �i in Z for all i . After discussing

general properties, we will impose conditions on the exponents �i below.

The group H acts on W by matrix multiplication. Put G WD H Ë W .

(1) Let h WD diag.p�1; : : : ; p�n/ be in H and v in W . Then conjugation by hv

acts by multiplication with p�i on

Wi WD ¹.wj /1�j �n 2 W Wwj D 0 if j ¤ iº:

(2) The subgroup Zn
p of W is tidy for all g in G.

(3) With h and v as in .1/, the value of the scale function at hv is p
P

�i �0 �i .

(4) Let h WD diag.p�1; : : : ; p�n/ and k WD diag.p�1; : : : ; p�n/ be in H and v; w

be in W . Then hv and kw are in a common s-multiplicative semigroup if

and only if for all indices i we have �i�i � 0.

(5) There is a maximal s-multiplicative semigroup of G for every � D .�1; : : : ; �n/

in ¹�1; 1º¹1;:::;nº given by

S� D
[

�i �i �0 for 1�i�n

diag.p�1; : : : ; p�n/W:

Subgroups of G obtained by imposing restrictions on the vectors in H illustrate

diverse intersection patterns for maximal s-multiplicative semigroups.

(1) With no restrictions, there are 2n maximal s-multiplicative semigroups in G,

one for each � 2 ¹�1; 1º¹1;:::;nº. The intersection of maximal s-multiplicative

semigroups S�1
and S�2

comprises all diag.p�1; : : : ; p�n/W � G such that

�i D 0 if �1.i/�2.i/ D �1 and �i�1.i/ D �i�2.i/ � 0 otherwise. There

is thus one such semigroup for each closed orthant in Rn and two maximal

semigroups intersect in a semigroup containing non-uniscalar elements if and

only if the intersection of their corresponding orthants is larger than a point.
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(2) Suppose instead that the �i depend Z-linearly on integral parameters x1 and

x2, that is, �i D ki1x1C ki2x2 for some �xed .ki1; ki2/ 2 Zn �Zn. Then the

criterion in (4) above shows that the maximal s-multiplicative semigroups

correspond to the closed sectors in the .x1; x2/-plane formed by the lines

ki1x1 C ki2x2 D 0; 1 � i � n:

The number of maximal semigroups is therefore 2n. The intersection of

two maximal semigroups contains non-uniscalar elements if and only if their

corresponding sectors are adjacent, that is, meet in a ray.

Remark 3.4. A graph, �H , may be de�ned for each H in Example 3.3 in which

V.�H / is the set of maximal s-multiplicative semigroups in H Ë W and two

semigroups S1 and S2 are adjacent if S1 \ S2 is maximal in both S1 and S2. In (1)

this graph is an n-dimensional hypercube and in (2) it is a .2n/-gon.

It is clear that groups with �nitely many maximal s-multiplicative semigroups

have a restricted structure but it is less clear whether Proposition 3.2 can be

extended to show that they all have similar structure to that seen in Example 3.3.

For instance, if the number of maximal s-multiplicative semigroups is odd, then

at least one of them must be equal to its own inverse and therefore be a uniscalar

subgroup of G. No groups with three maximal s-multiplicative semigroups are

known however. It will be informative to investigate this class of groups.

4. Highly transitive automorphism groups of locally �nite trees

In this section we determine the maximal s-multiplicative semigroups for groups

of automorphisms of a tree, T , that act 2-transitively on the boundary @T . Such

groups are discussed by F. Choucroun in [7]. The standing assumption in this

section is that the group G has this property, and it will be seen in Theorem 4.11

that the maximal s-multiplicative semigroups are closely identi�ed with features

of T .

Automorphisms of a tree are classi�ed into elliptic and hyperbolic types,

see [15]. Terminology and results relating to this classi�cation to be used below

will be brie�y reviewed before proceeding. The vertices of T will be denoted

by V.T / and its edges by E.T /. We adopt the convention that the edge between

vertices v and w comprises the ordered pairs .v; w/ and .w; v/. Then .v; w/ is the

oriented edge from v to w and v is the initial vertex of the edge while w is the the

terminal vertex. If e is an oriented edge, then o.e/ and t .e/ denote its initial and

terminal vertices respectively, and Ne is the oppositely oriented edge with initial

vertex t .e/ and terminal vertex o.e/.
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Every automorphism of a tree either �xes a vertex, inverts an edge or induces

a nontrivial translation along an in�nite geodesic in the tree. The �rst two types

are called elliptic and have at least one �xed point in the tree.1 The last type is

hyperbolic, in which case the geodesic of translation is unique and called the axis.

De�ne the length, `.g/, of an automorphism g of the tree to be the minimum

distance, in the usual graph metric, by which it moves points in the tree. The

length of g is 0 for g elliptic, and is the length of translation along the axis for g

hyperbolic.

De�ne the minimal set for g to be

min.g/ WD ¹p 2 T W d.p; g:p/ D `.g/º:

Thus min.g/ is the set of �xed points of g if g is elliptic and the axis of g if g is

hyperbolic.

Two oriented edges in a tree are coherent if the distance between their respec-

tive initial vertices equals the distance between their terminal vertices and inco-

herent otherwise. A hyperbolic automorphism, h say, is said to translate along

.o.e/; t .e// if and only if the oriented edges .o.e/; t .e// and .h:o.e/; h:t .e// are

coherent and d.o.e/; h:t .e//D d.t.e/; h:o.e//C 2.

A semi-in�nite geodesic in a tree is a ray. Two rays in a tree are said to belong to

the same end, if and only if their intersection is a ray. This de�nes an equivalence

relation on the set of rays in the tree, whose equivalence classes are called the set of

ends of the tree. The automorphism group of the tree acts on its set of ends. Given

a hyperbolic automorphism, h say, each ray r � min.h/ satis�es either h:r � r or

h:r � r and these conditions distingish two distinct ends of the axis of h. The �rst

is called the attracting end of h and denoted by �C.h/, while the second is called

the repelling end of h and denoted by ��.h/

We introduce some notation for segments. Given two vertices v and w, by the

segment �v; w� we mean the set of vertices on the path from v to w not including v.

By Lemma 31 from [5], the scale of a hyperbolic element h is the product

Y

v2�w;h:w�

q.v/; (11)

where q.v/ is the valency of the vertex v minus 1 in the minimal invariant subtree

of G�C.h/, and w is any vertex on the axis of h.

Having recalled basic results for groups acting on trees we now brie�y return

to the groups H Ì˛ Z considered in the last section, whose basic importance for

s-multiplicative semigroups was explained there.

1 Note that, in contrast with some parts of the literature, we consider tree automorphisms
that invert edges, so-called inversions, to be elliptic.
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The group H Ì˛ Z is an HNN-extension and consequently acts on a homoge-

neous tree TqC1 with valency qC 1 and �xes an end !, see [4, Section 4]. Denote

the corresponding representation by �WH Ì˛ Z! Aut.TqC1/. The kernel of � is

the largest compact, normal subgroup of H Ì˛ Z, the group �.H/ is contained

in the set of elliptic automorphisms of the tree, and �.˛/ is a hyperbolic element

that has ! as its attracting end. Then the maximal s-multiplicative semigroups in

H Ì˛ Z have the following characterization.

SC D ¹x 2 H Ì˛ ZW �.x/ is elliptic or �.x/ has ! as its attracting endº

and

S� D ¹x 2 H Ì˛ ZW �.x/ is elliptic or �.x/ has ! as its repelling endº :

Denote the axis of �.˛/ by l. Then �.V / is the �xator of a ray, Œv0; !/ say, on l.

Label the other vertices on l as vn D �.˛n/:v0. Then the subset

.˛n�1.V /; n/ WD
®

.x; n/W x 2 ˛n�1.V /
¯

� H Ì˛ Z

of the semigroup generated by V and ˛ translates vj to vj Cn for every j � �1,

and the subset .V;�n/ of the semigroup generated by V and ˛�1 translates vj to

vj �n for every j � n.

This explains how maximal s-multiplicative semigroups are represented geo-

metrically for these examples. We next return to groups with a 2-transitive action

on the set of ends of a tree.

The following lemma will be used on numerous occasions in this section. It

appears in [11, Lemma 1.2] and [2, Lemma 6.8], and implicitly in [15, Lemme 3.1].

Lemma 4.1. Suppose that an oriented edge, e, and its image under an automor-

phism g di�er and are coherent. Then g is hyperbolic and the edges e and g:e lie

on the axis of g.

Proposition 3.4 in [15] states that every group of elliptic automorphisms of a

tree �xes either a vertex, inverts an edge, or �xes an end of the tree. The arguments

to follow require a version of this result for semigroups. One way to establish this

is to work through the proof in [2, Proposition 7.2], which uses [1], and observe

that it also applies to semigroups. We take the alternative approach of deducing it

from the corresponding statement for groups.

Lemma 4.2. Every semigroup of elliptic automorphisms of a tree �xes either a

vertex, inverts an edge, or �xes an end of the tree.

Proof. The set of hyperbolic automorphisms of the tree is open because, given

a hyperbolic automorphism x, any automorphism that agrees with x on two

adjacent vertices on its axis is also hyperbolic, by Lemma 4.1. Hence the set of
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elliptic automorphisms of the tree is closed and it may be assumed that the given

semigroup is closed. Since the closed semigroup generated by a single elliptic

automorphism is compact, it is a group. Hence the given closed semigroup is in

fact a group and Proposition 3.4 in [15] applies. �

The above proof in fact shows more than is asserted in the lemma.

Corollary 4.3. Every closed semigroup of elliptic automorphisms of a tree is in

fact a group. If this group does not �x an end of the tree, then it is compact.

Elliptic elements normalize the stabilizer of a point of the tree, which is a

compact, open subgroup. Hence the scale function of a closed subgroup, G, of

the automorphism group of a locally �nite tree takes the value 1 at each elliptic

element. Although hyperbolic elements in G can also have scale 1, this does not

occur under the hypothesis that G acts 2-transitively on @T , as the next result

shows.

Proposition 4.4. Let T be a tree that has no leaves and for which there is an

edge ¹e; Neº such that each component of T X¹e; Neº has at least two ends. Let G be

a group of automorphisms of T acting 2-transitively on @T . Then:

(1) for every distinct pair !1; !2 2 @T the geodesic �!1; !2Œ in T is the axis of

some hyperbolic element in G and, moreover, a suitable conjugate of any

hyperbolic element will have axis �!1; !2Œ;

(2) if v is a vertex with valency greater than 2, then Gv acts transitively on the

sphere with centre v and radius r for every r � 1;

(3) the group G has at most two orbits, say O and E, on the set of vertices of T

that have valency greater than 2; denoting by k the minimal distance between

distinct elements of O [E, every vertex in T is within k of O and E;

(4) the vertices of every geodesic �!1; !2ŒD .: : : ; vj ; vj C1; : : : / in T satisfy that

vj 2 E for some j 2 Z and that: vj Cnk 2 E for all even n; vj Cnk 2 O for

all odd n; and vi has valency 2 otherwise;

(5) every hyperbolic element h 2 G translates ���.h/; �C.h/Œ through a dis-

tance nk for some n 2 Z and, if G is closed in Aut.T /, the scale function of

G is given by

s.g/ D .qOqE /`.g/=2k (12)

where qEC1 and qOC1 are the valencies of vertices in E and O respectively;

(6) for each end ! 2 @T the group G! does not preserve any non-empty proper

subtree.
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Proof. (1) By [2, Proposition 7.2], if G does not contain any hyperbolic element,

then it �xes a vertex, inverts a a unique edge or �xes an end of T . The last is ruled

out by the 2-transitivity of G on @T . It may be seen that G cannot �x a vertex

either. For this, assume that v is �xed by G and let ¹f; Nf º be the edge adjacent

to v that is closest to the edge ¹e; Neº in the statement of the proposition. Then the

component of T X ¹f; Nf º containing v has at least one end, !, because T has no

leaves, and the component of T X ¹f; Nf º to which v does not belong contains a

component of T X ¹e; Neº and has at least two ends, !1 and !2. Then no element

of G can �x !1 and move ! to !2, which contradicts the 2-transitivity of G on

@T . Similarly, assuming that ¹f; Nf º is the unique edge inverted by G, at least one

component of T X¹f; Nf º has two or more ends !1 and !2 and the other has at least

one end !. No element of G can �x !1 and send ! to !2, which again contradicts

the 2-transitivity of G. Assuming that G contains only elliptic elements thus leads

to a contradiction. Hence G contains a hyperbolic element, h say.

Since G is 2-transitive on @T , there is g 2 G that sends �C.h/ to !1 and ��.h/

to !2. Then ghg�1 is hyperbolic and �!1; !2Œ is its axis.

(2) Let w1 and w2 be two vertices on the sphere with centre v and radius r .

Then the ‘hyperbolic triangle’ with vertices v, w1 and w2 contains at most two

edges incident on v and so there is an edge, ¹e; Neº say, incident on v and not in

this triangle. Choose rays r, r1 and r2 originating at v and passing through e, w1

and w2 respectively, and let !, !1 and !2 be the corresponding ends. Since G

acts 2-transitively on @T , there is g 2 G such that g:! D ! and g:!1 D !2. Then

g 2 Gv and g:w1 D w2. Hence Gv acts transitively on the sphere as claimed.

(3) Let w0 ¤ v0 be two vertices with valency greater than 2. That there is at

least one such vertex, v0 say, follows because T has at least three ends, and that

there is a second follows because every vertex in G:v0 3 h:v0 has this property.

Because of .2/, every vertex on the sphere with centre v0 and radius d.v0; w0/

belongs to the orbit Gv0
:w0 and every vertex on the sphere with centre w0 and

radius d.v0; w0/ belongs to the orbit Gw0
:v0. It follows that all spheres with centre

v0 and radius 2nd.v0; w0/, n � 1, are contained in the orbit G:v0. Therefore every

vertex is within distance d.v0; w0/ of G:v0.

Choose v0 and w0 above so that d.v0; w0/ is minimized and let k be this

minimum value. Let E be the set of vertices at distance nk from v0 with n even

and O be the set of vertices at distance nk with n odd. Then, as seen above, every

vertex is within distance k of E and O , and E � G:v0 and O � G:w0.

(4) It will be shown �rst that there is j 2 Z such that vj belongs to E. Given

a vertex u in �!1; !2Œ, there is w0 2 O within distance k from u. Hence u is on or

inside the sphere with centre w0 and radius k. This sphere is contained in E and

�!1; !2Œ must pass through it in order to escape to !1. Therefore there is a vertex

of �!1; !2Œ that belongs to E. All other claims follow immediately.
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(5) The claim about translation length follows from the description of geodesics

in (4). Since each of E and O is contained in a single G-orbit, all vertices in these

sets have the same valency, which is denoted qE C 1 and qO C 1 as stated. If h

translates through nk with n odd, then E and O are both contained in the same

G-orbit and qE D qO D q. In this case each segment �w; h:w�, with w on the axis

of h, contains exactly n vertices with valency qC1 > 2 and (11) yields the claimed

value of s.h/. If h translates through nk with n even, then qE and qO may di�er

but each segment �w; h:w�, with w on the axis of h, contains exactly n=2 vertices

with each valency qE C 1 and qO C 1 and (11) applies again.

(6) Every edge ¹e; Neº lies on a geodesic �!; !0Œ for some !0 2 @T . Hence,

by (1), ¹e; Neº lies on the axis of a hyperbolic element in G! . Every such axis is

contained any tree invariant under G! . �

Remark 4.5. It has in fact been seen in the proof of Proposition 4.4 that the

existence of a group of automorphisms of T acting 2-transitively on @T implies,

under a weak hypothesis on T otherwise, that T may be obtained from a semi-

homogeneous tree by subdividing each edge into k edges. This conclusion is

similar to that of [7, Théorème 1.6.1].

Therefore for the remainder of this section the tree T may be assumed, with-

out any loss of generality on the hypotheses of Proposition 4.4, to be semi-

homogeneous with all vertices having valency at least 3.

It follows immediately from Proposition 4.4(4) that hyperbolic elements g

and h satisfy s.gh/ D s.g/s.h/ if and only if their translation lengths add, that

is, `.gh/ D `.g/ C `.h/, and similarly if the scale of the product is less than

(or greater than) the product of the scales. The next few results, which apply to

all trees, describe the circumstances in which translation lengths of hyperbolic

elements add.

Lemma 4.6. Let t1 and t2 be hyperbolic automorphisms of a tree whose axes do

not have any edge in common. Let d the unique shortest path connecting the axes

of t1 and t2, and let d be the number of edges of d. Then the following are true.

(1) The product t2t1 is hyperbolic and `.t2t1/ D `.t2/C `.t1/C 2d .

(2) The axis of t2t1 contains the union of: t�1
1 .d/; the last `.t1/ edges preceding d

on the axis of t1; d; the �rst `.t2/ edges succeeding d on the axis of t2;

and t2.d/.

(3) The direction of translation of t2t1 agrees with those of t1 and t2 on the

common segments of their axes, and is in the direction from the axis of t1
to that of t2 on d.
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Proof. Let a be the vertex common to both d and the axis of t1, and b the vertex

common to d and the axis of t2. The automorphism t2t1 maps t�1
1 :d to t2:d. Since

t�1
1 :a lies on the axis of t1 and t2:b lies on the axis of t2, the subtree spanned by

t�1
1 :d and t2:d is the path from t�1

1 :b to t2:a of length `.t1/C `.t2/C 3d , as shown

in Figure 1.

Since each edge e 2 t�1
1 :d is coherent with .t2t1/:e 2 t2:d, statements (1)–(3)

follow by applying Lemma 4.1 and computing the distance from t�1
1 :b to t2:b. �

t2:d

d
t�1
1

:dt2:a

 t1

a
t�1
1

:a

t2:b

b

 t2

t�1
1

:b

Figure 1. The axes of t1 and t2 do not intersect in an edge.

Lemma 4.7. Let t1 and t2 be hyperbolic automorphisms of a tree whose axes

intersect in a nontrivial path c along which t1 and t2 translate in the same direction.

Then

(1) the product t2t1 is hyperbolic and the direction of translation of t2t1 agrees

with those of t1 and t2 on the common segments of their axes.

(2) the axis of t2t1 contains the union of: the edges in c, the last `.t1/ edges

preceding c on the axis of t1 and the �rst `.t2/ edges succeeding c on the axis

of t2.

(3) `.t2t1/ D `.t2/C `.t1/.

Proof. If e is any edge on c, then t�1
1 :e, e and t2:e are all coherent because t1 and

t2 translate in the same direction and the coherence relation on edges is transitive.

Parts (1) –(3) then follow by applying Lemma 4.1. �
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Lemma 4.8. Let t1 and t2 be hyperbolic automorphisms of a tree whose axes in-

tersect in a nontrivial path c along which t1 and t2 translate in opposite directions.

Then the product t2t1 may be hyperbolic or elliptic and `.t2t1/ < `.t2/C `.t1/.

Proof. Let e D .v; w/ be an edge on c and suppose that t1 translates along .v; w/

and t2 along .w; v/. Then t2t1 maps the vertex t�1
1 :w to t2:w, and the path from

t�1
1 :w to w and then to t2:w includes the reversal from v to w and back to v. Hence

`.t2t1/ is at most d.t�1
1 :w; v/C d.v; t2:w/ D `.t1/C `.t2/ � 2. �

Lemmas proved up to this point allow the pairs of elements belonging to a

semigroup on which translation distances add to be characterized in terms of their

minimizing sets.

Lemma 4.9. If two automorphisms of a locally �nite tree are contained in a

semigroup on which the translation length is an additive function, then their

minimal sets intersect non-trivially.

Proof. If both automorphisms are elliptic the claim follows from Lemma 4.2.

When both both automorphisms are hyperbolic, it follows from Lemma 4.6.

If one of the automorphisms, h say, is hyperbolic while the other, r say, is

elliptic, we give a contrapositive argument as follows.

By additivity, both h and rh are hyperbolic and of the same translation length.

Suppose the minimal sets of r and h have trivial intersection. Then r does not

�x any point of the axis of h. Thus the axes of h and rh do not intersect.

By Lemma 4.6(4) we conclude that `.rh/ > `.r/ C `.h/, hence that r and h

do not lie in a common additive semigroup and the claim is veri�ed. �

Certain s-multiplicative semigroups in G (acting 2-transitively on @T ) are de-

scribed next in preparation for showing, in Theorem 4.11, that every such semi-

group is contained in one of these. Additional notation is required for the charac-

terization of the s-multiplicative semigroups. For each v 2 V.T /, set

E.v/ D ¹e 2 E.T /W t .e/ D vº

to be the set of edges incident on and directed to v. For each proper non-empty

subset, I � E.v/, put

I � D ¹NeW e 2 E.v/ X I º ;

a set of edges incident on and directed away from v. We shall also write

G.v/ D ¹g 2 GW v 2 min.g/º ;

the set of elements of G that �x v if they are elliptic or such that their axis passes

through v if they are hyperbolic. If g is in G.v/ and is hyperbolic, and if there are

e1 2 I and e2 2 I � on the axis of g and such that g translates in the direction of e1

and e2, we shall say that g translates in through I and out through I �.
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Proposition 4.10. Let T be a semi-homogeneous tree in which each vertex has

valency at least three. Let G be a group of automorphisms of the tree T that acts

2-transitively on @T . For v a vertex in T and I a proper, non-empty subset of E.v/

put

G.v;I/ WD ¹g 2 G.v/W g:I D I if g is elliptic, and

g translates in through I and out through I � if g is hyperbolicº

For an end ! of the tree put

G!C WD ¹g 2 G! W g is elliptic, or g is hyperbolic and ! D �C.g/º

and

G!� WD ¹g 2 G! W g is elliptic, or g is hyperbolic and ! D ��.g/º :

Then G.v;I/, G!C, and G!� are s-multiplicative subsemigroups of G.

Moreover G.v;I/ � G.w;J / implies G.v;I/ D G.w;J / and either .v; I / D .w; J / or

v and w are the two endpoints of the same edge ¹e; eº and I
�
D ¹eº D J .

Proof. As was seen in Proposition 4.4, elements g; h 2 G satisfy s.gh/ D

s.g/s.h/ if and only if `.gh/ D `.g/C `.h/, and the proof below refers to lemmas

about additivity of translation length for statements about multiplicativity of the

scale.

We begin by showing that G.v;I/ is s-multiplicative and closed under multi-

plication. Consider g; h 2 G.v;I/. If both g and h are elliptic and stabilise I ,

then the product will again be elliptic and stabilise I , and hence back in G.v;I/.

If both g and h are hyperbolic, translating in through I and out through I �, then

we are either in the case of Lemma 4.6 with d D 0 or Lemma 4.7. Either way,

s.gh/ D s.g/s.h/ as required. Hence it remains only to prove that a product of an

elliptic element and a hyperbolic element in G.v;I/ is again back in G.v;I/. Sup-

pose g is elliptic stabilizing I and h is hyperbolic translating in through e1 2 I and

out through e2 2 I �. Consider �rst hg. Then g�1:e1 2 I and hg:.g�1:e1/ D h:e1

is coherent with and di�erent from g�1:e1 because h is hyperbolic. Hence, by

Lemma 4.1, hg is hyperbolic and the edges g�1:e1 and h:e1 lie on the axis of hg.

The path between these two edges contains v and e2 2 I �. Hence hg 2 G.v;I/.

Moreover, `.hg/ D `.h/ and hence s.hg/ D s.h/ D s.h/s.g/. Finally, con-

sider gh. A similar argument shows that e1 and gh:e1 are coherent and di�er-

ent, proving that gh is hyperbolic by Lemma 4.1. Since g:e2 2 I � is on the

axis of gh, we conclude that gh 2 G.v;I/. Moreover, `.gh/ D `.h/ and hence

s.gh/ D s.h/ D s.g/s.h/. Hence G.v;I/ is an s-multiplicative subsemigroup of

G. The supplementary statement on the semigroups G.v;I/ will we shown at the

end to this proof.
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Consider now G!C. Given two hyperbolic elements in G!C, their axes in-

tersect in a ray in the equivalence class !. Hence they satisfy the hypotheses of

Lemma 4.7 and their product is again a hyperbolic element in G!C and the scale

of the product is the product of their scales. All elements in G!C �x !. Hence,

given an elliptic element g and a hyperbolic element h in G!C, there is some ray

r in ! that is �xed by g and translated towards ! by h. Hence r is translated by

both gh and hg, and `.gh/ D `.h/ D `.hg/ as required.

Since G!�=.G!C/�1, the result for G!� follows from the result for G!C and

Proposition 2.9.

Towards proving the supplementary statement on the semigroups G.v;I/, we

now show the auxiliary result that for any pair of coherently oriented edges e1

and e2 of T , there is a hyperbolic element in G that translates in the direction of

both e1 and e2. Choose a vertex m on the geodesic containing e1 and e2. There

are ends !� and !C of T such that e1 lies on the ray �!1; m� and e2 lies on the

ray Œm; !2Œ. By Proposition 4.4(1), there is a hyperbolic element h 2 G with axis

�!1; !2Œ. It may be supposed that h translates in the direction of e1 and thus also

in the direction of e2, showing our auxiliary result.

Assume now G.v;I/ � G.w;J /. Inverting G.v;I/ and G.w;J / if necessary, we

may suppose that the �rst oriented edge on Œv; w�, e D .v; v1/ say, is in I
�
.

We claim that d.v; w/ is at most 1. Choose an oriented edge e1 with terminal

vertex v and an oriented edge e2 with initial vertex v1 and terminal vertex not

on the geodesic Œv; w�. Since the edges e1 and e2 are coherently oriented, by

our auxiliary result, there is a hyperbolic element, h say, that translates in the

direction of both e1 and e2. Evidently the element h is in G.v;I/ but not in G.w;J /

if d.v; w/ > 1. We conclude that indeed d.v; w/ � 1.

Hence we either have v D w or e D .v; w/ is an oriented edge.

In the �rst case, apply our auxiliary result to pairs of oriented edges e1 2 I

and e2 2 I � to deduce I � J and I � � J � from our assumption G.v;I/ � G.w;J /,

obtaining the sought-after supplementary statement on the semigroups G.v;I/.

In the second case, e D .v; v1/ D .v; w/, which is in I
�
. If there were another

oriented edge, say f , in I
�
, we could use our auxiliary result above with an

arbitrary e1 2 I and e2 WD f to obtain a hyperbolic element in G.v;I/ that does

not belong to G.w;J /, a contradiction. Since e 2 I
�

and G.v;I/ � G.w;J /, we

have e 2 J as well. It remains to show that e is the only edge in J also, since the

equality G.v;I/ D G.w;J / is a consequence.

The assumption that there be another oriented edge, l say, di�erent from e

in J implies, applying our auxiliary result to the coherently oriented edges e

and l , that there is a hyperbolic element h 2 G translating in the direction of e

and l . This element h belongs to G.v;I/ because e is the only edge in I
�
. But that

would mean that it belongs to G.w;J / � G.v;I/ as well, in contradiction to our

assumption l 2 J . The proof is complete. �
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We �nally come to the description of the maximal s-multiplicative semigroups

in G.

Theorem 4.11. Let T be a semi-homogeneous tree in which each vertex has

valency at least three. Suppose that G is a closed subgroup of the automorphism

group of T that acts 2-transitively on @T . Then every s-multiplicative semigroup

in G is contained in one of the following types, which are hence maximal.

(1) The �xator of the midpoint of an edge that is inverted by G.

(2) The �xator of a vertex.

(3) A set of the form G.v;I/ as de�ned in Proposition 4.10, with I � E.v/ proper

and not empty.

(4) A set of the form G!C or G!� for an end ! as de�ned in Proposition 4.10.

Proof. Let S be a s-multiplicative semigroup in G. We will show that S is

contained in one of the s-multiplicative semigroups listed. For each subset,F, of S

put min.F/ D
T

g2F min.g/. Then, since min.g/ is a subtree and the intersection

of subtrees is a subtree, Lemma 4.9 and [14, Lemma 10 in section 6.5] show that

min.F/ ¤ ; for every �nite F.

Suppose �rst that min.S/ D ;. Then for each edge e, there is a �nite subsetF �

S such that min.F/ is contained in one of the semitrees obtained by deleting ¹e; Neº.

Otherwise, e would be in min.F/ for every F and therefore in min.S/. Hence

there is a unique end, !, of the tree such that every subtree min.F/ contains a

ray belonging to !. It follows that each element of S is either elliptic and �xes

a ray in ! or is hyperbolic and translates a ray in !. By Lemma 4.8, no two

hyperbolic elements can translate in opposite directions and so we are in case (4).

Note that there do exist hyperbolic elements in G! , by Proposition 4.4(1), and so

G!C and G!� are distinct semigroups, and the 2-transitivity of G on @T ensures,

by Proposition 4.4 (1), that min.S/ is indeed empty.

Suppose next that S contains an edge inversion g. Then min.g/ is a singleton,

namely, the midpoint, p, of the edge. Since, by Lemma 4.9, min.h/ intersects ¹pº

for every h 2 S, it follows that ¹pº D min.S/ and we are in case (1).

It remains to treat the case when min.S/ is not empty and, since S does not

invert any edge, contains a vertex v. If S contains only elliptic elements, then v is

�xed by all elements of S and we are in case (2). Note that min.S/ cannot be larger

than ¹vº in this case by Proposition 4.4 (2). If S contains hyperbolic elements, then

the axis of each one passes through v. Put

I D ¹.w; v/W there is h 2 S that translates along .w; v/º :

Then I ¤ ; and, since any hyperbolic h 2 S translates out along some edge f

and Nf then cannot belong to I by Lemma 4.8, we also have that I is a proper subset

of E.v/. Hence we are in case (3). Note that, in this case, 2-transitivity of the
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action of G on @T ensures, by Proposition 4.4 (1), that for every e1 2 I and e2 2 I �

there is a hyperbolic h 2 S that translates along e1 and e2. Hence min.S/ D ¹vº

unless I or I � consists of a single edge e, in which case min.S/ D ¹e; Neº.

To show that each of the sets listed is indeed a maximal s-multiplicative

semigroup it su�ces to show that none is contained in any of the others.

Case (1) . The semigroup Gp �xing the midpoint, p, of an edge cannot be

contained in any semigroup Gv , G.v;I/, G!C or G!� because Gp contains an

inversion and the other semigroups do not. Hence Gp is maximal. (This case

only occurs if G contains an inversion.)

Case (2). The semigroup Gv cannot be contained in Gp, G!C or G!� because,

if it were, Gv would �x a midpoint of an edge or an end in addition to v, which

it does not. Similarly, if Gv were contained in G.w;I/ for some w and I , then w

would have to equal v but Gv is transitive on E.v/ while G.v;I/ is not. Hence Gv

is not contained in any other semigroup and is maximal.

Case (3). The semigroup G.v;I/ contains hyperbolic automorphisms of T and

so is not contained in Gp or Gv for any midpoint p or vertex v. It is not contained

in G!C or G!� for any ! 2 @T because it does not �x !. Hence G.v;I/ is maximal.

Case (4): The semigroups G!C and G!� cannot be contained in any of the

others because min.G!C/ and min.G!�/ are empty while the minimizing sets of

the other semigroups are not. Hence G!C and G!� are maximal. �

Remark 4.12.

(1) The maximal s-multiplicative semigroups of type (1)–(3) in Theorem 4.11

are open because they contain an open subgroup of G, while the maximal

s-multiplicative semigroups of type (4) are not.

(2) The semigroups of type (3), despite being open, do not contain subgroups

tidy for their hyperbolic elements unless either jI j D 1 or jI �j D 1.

(3) The inverse map on maximal s-multiplicative semigroups, see Proposi-

tion 2.9, satis�es G�1
!C D G!� for every ! 2 @T and G�1

.v;I/
D G.v;J /,

where J D NI �, for every v 2 V.T / and I � E.v/.

(4) The semigroup G.v;I/ \ G!C is not uniscalar if and only if the initial edge

in the path from v to ! belongs to I �. The maximal s-multiplicative multi-

plicative semigroups of type (3) thus identify sets of ends that form a basis

for the ends topology.

Remark 4.13. The condition that G act 2-transitively on @T is required at two

places in the characterisation of the maximal s-multiplicative semigroups in G.

The �rst is to derive the formula (12) for the scale found in Proposition 4.4,

and the second is to guarantee that distinct sets I; J � E.v/ determine distinct

semigroups G.v;I/ and G.v;J /.
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Formula (12) relates the scale of h to translation distance but a formally

weaker and more complicated condition su�ces for this. It is enough to know,

for each vertex v, that for every hyperbolic h with v 2 min.h/, the valency of v

in the minimal invariant subtree of G�C.h/ does not depend on h. (This holds,

for example, if for every hyperbolic h this invariant subtree is the whole tree.)

However, it is possible that these weaker conditions, together with the hypothesis

that G does not �x an end, already imply that G acts 2-transitively on @T .

Remark 4.14. Theorem 4.11 indicates a limitation on the information about G

provided by its maximal s-multiplicative semigroups. The hypotheses are satis�ed

by both Aut.TpC1/ and PGL.2;Qp/ acting on TpC1, which is its Bruhat-Tits tree

(see [14, chapter II]), and the map S 7! S \ PGL.2;Qp/ is a bijection from

the maximal s-multiplicative semigroups in Aut.TpC1/ to those in PGL.2;Qp/.

Therefore any invariant constructed from maximal s-multiplicative semigroups

will not distinguish between PGL.2;Qp/ and Aut.TpC1/.

The groups PGL.2;Qp/ and Aut.TpC1/ are distinguished however by the lo-

cal structure theory studied in [6]. The information carried by s-multiplicative

semigroups is global and complements this local theory.
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