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1. Introduction

One can often obtain algebraic information about a group by considering it as a

geometric object. For example, if G is a group and S � G is a �nite, symmetric

set then one can construct the Cayley graph .G; S/ of G with respect to S by

declaring the elements of G to be vertices and saying that x and y are joined by

an edge if and only if there is some non-identity element s 2 S such that xs D y.

One way of studying the geometry of a Cayley graph, or indeed any graph,

is to consider the behaviour of probabilistic processes on it. In this paper we are

particularly concerned with linking the algebra and geometry of groups and graphs

to spaces of harmonic functions on them.

Before we de�ne these, let us establish some notation. A weighted graph� is a

graph in which to each edge xy we associate a real number !xy D !yx > 0 called

a weight; the degree of a vertex x is then given by degx D
P

y�x !xy . We de�ne

the Laplacian� D �� on � by setting �f .x/ D f .x/� 1
degx

P

y�x !xyf .y/ for

every function f W� ! R.

If G is a group then a probability measure � on G is said to be a gener-

ating probability measure if the semigroup generated by its support, supp�,

is G; it is said to be symmetric if �.g/ D �.g�1/ for every g 2 G. For a

group G with a �nitely supported generating probability measure � we write

� D �� for the Laplacian on G with respect to �, de�ned by setting �f .x/ D

f .x/�
P

s2supp� �.s/f .xs/ for every function f WG ! R. Note that if � is sym-

metric and � is the Cayley graph of G with respect to supp�, weighted such that

!xy D �.x�1y/, then �� D �� . We denote this weighted Cayley graph by

.G; �/.

A harmonic function on a weighted graph � or group G with generating

probability measure � is de�ned to be a function belonging to the kernel of the

corresponding Laplacian. We write H.G;�/ for the space of harmonic functions

on G with respect to �.

Perhaps the most famous example of a result linking the algebraic structure of

a group to the geometry of a Cayley graph is M. Gromov’s celebrated theorem on

groups of polynomial growth, which states that a certain geometric condition on

a Cayley graph .G; S/ (polynomial volume growth) is characteristic of a certain

algebraic condition on the subgroup ofG generated by S (virtual nilpotency) [13].

A recent proof of Gromov’s theorem due to B. Kleiner [17] provides an example of

how harmonic functions are related to the algebra and geometry of groups, since

a key step in Kleiner’s proof is to show that if a group has polynomial growth then

the vector space of harmonic functions on .G; S/ that grow at most linearly in the

Cayley-graph distance from the identity is �nite dimensional.



Algebraic properties and harmonic functions 1009

While Kleiner’s proof of Gromov’s theorem essentially uses the space of lin-

early growing harmonic functions as a tool to characterise an algebraic condition

on a group in terms of a geometric condition, in principle it should be possi-

ble to characterise certain algebraic or geometric conditions purely in terms of

spaces of harmonic functions. Indeed, in a very recent preprint, T. Meyerovitch

and A. Yadin [19] have shown that in the case of a �nitely generated group that is

linear or virtually soluble, being virtually nilpotent is equivalent to having a �nite-

dimensional space of linearly growing harmonic functions. This equivalence is,

moreover, conjectured to hold for all �nitely generated groups [19].

The �rst result of the present paper shows that �nite-dimensionality of the

space of all harmonic functions on a group is also equivalent to a simple algebraic

condition.

Theorem 1.1. Let G be an in�nite group, and let � be a symmetric, �nitely

supported generating probability measure on G. Then the space of harmonic

functions on .G; �/ is �nite dimensional if and only if G contains a �nite-index

subgroup isomorphic to .Z;C/.

One can also consider, as Kleiner did in his proof of Gromov’s theorem,

subspaces of H.G;�/ consisting of functions of polynomial growth. Given a

group G with a �nitely supported generating probability measure �, denote by

jgj D jgj� the word distance of g from the identity with respect to the generating

set supp�. The spaceH k.G; �/ of harmonic functions onG of polynomial growth

of degree at most k is then de�ned by H k.G; �/ D ¹h 2 H.G;�/W jh.x/j �h

jxjk as x ! 1º. The set
S1
kD1H

k.G; �/ of all harmonic functions of polynomial

growth on G is of course also a subspace of H.G;�/. Emmanuel Breuillard has

pointed out a result of Osin [21] that combines with the proof of Theorem 1.1 and

the result of Meyerovitch and Yadin [19] to give the following stronger statement,

valid for all groups except perhaps those that are amenable but not elementary

amenable.

Corollary 1.2. Let G be an in�nite group that is either elementary amenable or

non-amenable, and let� be a symmetric, �nitely supported generating probability

measure on G. Then the space of all harmonic functions of polynomial growth

on .G; �/ is �nite dimensional if and only if G contains a �nite-index subgroup

isomorphic to .Z;C/.

Conjecture 1.3. Corollary 1.2 holds for all �nitely generated groups.

A fairly immediate consequence of Theorem 1.1 (at least in the presence of

other, standard, results) is that the space of harmonic functions on a group with

a symmetric, �nitely supported generating probability measure is 1-dimensional

if and only if the group is �nite. In fact, this was already well known, and there
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exist far simpler proofs than via Theorem 1.1. Indeed, V. Tro�mov [24] shows

that this characterisation holds, more generally, for vertex-transitive graphs. The

second result of this paper is a new proof of Tro�mov’s result, valid in the even

more general setting of vertex-transitive weighted graphs (Tro�mov’s proof could

conceivably also work in this more general setting).

Proposition 1.4. Let � be an in�nite, locally �nite, vertex-transitive weighted

graph. Then � admits a non-constant harmonic function.

In Section 6 we prove Proposition 1.4 in the case that the random walk on � is

transient; for the recurrent case we refer the reader to [24] (where the two cases

are also treated separately). See Section 2 for de�nitions of transient, recurrent

and random walk.

Remarks 1.5. Tro�mov’s result is in fact stronger than Proposition 1.4, as it

proves the existence of a function whose growth rate is bounded in terms of

the rate of volume growth of metric balls in �. Nonetheless, it seems to be of

interest to have an alternative proof of the qualitative statement, and in any case

we deduce Proposition 1.4 fairly immediately from a slightly more general result

(Proposition 6.1, below) that is an important ingredient in our proof of Theorem 1.1.

Proposition 1.4 does not necessarily hold if � is not vertex transitive, as can be

seen by considering the graph in Figure 1. This example was presented explicitly

in a talk of Coornaert1, having been observed by Tro�mov [24, Remark 2].

Figure 1. An in�nite regular graph with no non-constant harmonic functions [24, Remark 2].

The results we have stated so far characterise algebraic conditions on a group in

terms of the kernel of the Laplacian. Our next result characterises a structural

condition on a graph in terms of the image of the Laplacian.

A simple rank-nullity argument shows that the Laplacian on a �nite graph is

not surjective, since its kernel contains the constant functions. T. Ceccherini-

Silberstein, M. Coornaert, and J. Dodziuk [9, Theorem 1.1] show that the converse

is also true for connected graphs. In Section 4 we give a new proof of this result,

valid in weighted graphs (Ceccherini-Silberstein, Coornaert and Dodziuk’s proof

could conceivably also work in this more general setting).

1 Available at http://www-irma.u-strasbg.fr/~coornaer/�orence-laplacian-2012.pdf.

http://www-irma.u-strasbg.fr/~coornaer/florence-laplacian-2012.pdf
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Proposition 1.6. The Laplacian on an in�nite, connected, locally �nite weighted

graph � is surjective onto R
� . Thus, the Laplacian on a locally �nite weighted

graph � is surjective onto R
� if and only if every connected component of � is

in�nite.

Our proof of Proposition 1.6 is inspired by an earlier, less general, result

of Ceccherini-Silberstein and Coornaert, which states that the Laplacian on an

in�nite Cayley graph is surjective [6, Theorem 1.1]. We also show that this holds

for more general Laplacians on groups.

Proposition 1.7. Let G be an in�nite group, and let � be a (not necessarily

symmetric) �nitely supported generating probability measure on G. Then �� is

surjective.

It is quite likely that the argument of Ceccherini-Silberstein and Coornaert [6]

could also give a proof of Proposition 1.7. However, our proof of Proposition 1.7

is simpler than the argument of [6] (see Remarks 4.3, below), and since Propo-

sition 1.7 cannot be concluded directly from either Proposition 1.6 or [6, Theo-

rem 1.1], it seems, in any case, worth recording a proof here.

An important tool in this paper is the so-called Garden of Eden theorem for linear

cellular automata, originally due to Ceccherini-Silberstein and Coornaert [5].

Given its importance to our arguments, we introduce it brie�y here.

If G is a group and A is a set, called the alphabet, then G acts on the set AG

of maps f WG ! A via g � f .x/ D f .g�1x/. If f WG ! A and M � G then

we denote by f jM the restriction of f to M . A cellular automaton over G on the

alphabet A is a map � WAG ! AG with the property that there is some �nite set

M � G and a map �WAM ! A such that �.f /.g/ D �..g � f /jM /. The set M is

called a memory set for � , and � is called a local de�ning map.

Given an initial state f0 2 AG , one can consider � as de�ning a dynamical

process on AG by setting fiC1 D �.fi / to obtain a sequence f0; f1; f2; : : : of

con�gurations in AG . A con�guration f 2 AG is then said to be a Garden of

Eden con�guration if it is not in the image of � , and hence can appear only as an

initial con�guration in this dynamical process.

The term Garden of Eden theorem for a class of cellular automata is often used

to describe a result giving a necessary and su�cient condition for the existence of

Garden of Eden con�gurations, or, to put it another way, a necessary and su�cient

condition for a cellular automaton in the class to be surjective. There are various

results depending on the alphabet and the group; we refer the reader to [5] and [8]

for more detailed background to this area.

The class of interest to us is the class of linear cellular automata, in which A

is a �nite-dimensional vector space V D K
r over a �eld K and a linear cellular

automaton is a cellular automaton that is also a linear map V G ! V G .
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Theorem 1.8 (Garden of Eden theorem for linear cellular automata; Ceccherini-

Silberstein and Coornaert [8, Theorem 8.9.6]). Let V be a �nite-dimensional

vector space and let G be an amenable group. Then a linear cellular automaton

� WV G ! V G is surjective if and only if it is pre-injective.

Here, and throughout this paper, a linear map on V G is said to be pre-injective

if its restriction to the subspace V G0 of �nitely supported functions in V G is

injective.

The Laplacian on a group with a �nitely supported generating probability

measure is an example of a linear cellular automaton, and so Theorem 1.8 can

readily be applied to such a Laplacian, provided that the group is amenable.

However, in this paper we are concerned with Laplacians on arbitrary groups, and

even graphs, and so we seek a version of Theorem 1.8 that holds in this greater

generality.

Given a locally �nite graph� and an alphabetA, we say that a map � WA� ! A�

is locally speci�able if �.f /.x/ depends only on f .x/ and f .y/ for y � x. Note,

in particular, that if � is a cellular automaton on a groupG with memory setM then

� is a locally speci�able map on the Cayley graph .G;M [M�1/. The Laplacian

on a locally �nite graph is also locally speci�able.

The result underpinning much of this paper is the following.

Theorem 1.9. Let V be a �nite-dimensional vector space and let � be a locally

�nite graph. Then a locally speci�able linear map � WV � ! V � is surjective if

and only if its transpose � 0 is pre-injective.

Here the transpose of � is de�ned in terms of the natural (possibly in�nite)

matrix representation of � , which we de�ne precisely in Section 2. The transpose

of � is then simply the locally speci�able linear map whose corresponding matrix

is the transpose of the matrix corresponding to � .

Let us emphasise here that Theorem 1.9 applies, in particular, to linear cellular

automata over non-amenable groups, and is, in that sense, considerably more

general than Theorem 1.8.

Corollary 1.10 (Garden of Eden theorem for symmetric linear cellular automata

over non-amenable groups). Let V be a �nite-dimensional vector space and let

G be a (not necessarily amenable) group. Then a symmetric linear cellular

automaton � WV G ! V G is surjective if and only if it is pre-injective.

Remarks 1.11. The reader may refer to [5, §5] or [8, §8.10-8.11] for examples of

(asymmetric) linear cellular automata on non-amenable groups for which Theo-

rem 1.8 fails; thus, generalisations to non-amenable groups in the spirit of Corol-

lary 1.10 must necessarily have some additional hypothesis on the map � .

With a bit more work, one can adapt some of the techniques from [5] to recover

Theorem 1.8 in full from Theorem 1.9; see Appendix A.
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Outline of the paper. In Section 2 we give detailed de�nitions and present

some necessary background material. In Section 3 we prove Theorem 1.9, before

applying it in Section 4 to prove Propositions 1.6 and 1.7. In Section 5 we use all of

these results to develop a tool for proving the existence of harmonic functions on

a graph or group, and then in Section 6 we use this tool to prove a slight technical

generalisation of Proposition 1.4. In Section 7 we prove the easier ‘direct’ direction

of Theorem 1.1, and in Section 8 we prove the ‘inverse’ direction in the case of a

non-virtually nilpotent linear group. In Sections 9–11 we reduce Theorem 1.1 to

the linear case and complete the proof, as well as proving Corollary 1.2.

In the appendix we present two additional applications of Theorem 1.9. In the

�rst, we recover Theorem 1.8; in the second, we reformulate a conjecture of

I. Kaplansky, the so-called ‘stable-�niteness’ conjecture.

Acknowledgements. The author is grateful to Emmanuel Breuillard, Sara Brof-

ferio, Michel Coornaert, Ben Green and Gady Kozma for helpful conversations.

Thanks are also due to one anonymous referee for noticing an error in an earlier

claimed proof of Theorem 1.1, and another anonymous referee for helpful com-

ments on an earlier version of this paper. Some of this work was carried out at the

Institut Henri Poincaré, Paris, during its excellent trimester ‘Random walks and

asymptotic geometry of groups’, 2014.

2. Background and notation

In this section we set much of our notation and present general background

material from the literature. Much of this is standard; see, for example, [22].

Throughout this paper, by a graph � we mean an undirected weighted graph

with no loops and no multiple edges. We denote by e some distinguished vertex;

this vertex is always the identity in the case that � is a weighted Cayley graph. We

write x � y to indicate that x and y are neighbours. An isomorphism of weighted

graphs is an isomorphism of graphs that preserves weights. A weighted graph is

called regular if degx D
P

y�x !xy is independent of the vertex x.

Denote by d D d� the graph metric on a graph �; thus, for vertices x ¤ y 2 �

the quantity d.x; y/ is equal to length of a path of minimum length joining x to

y. If G is a group with a �nitely supported generating probability measure � then

we denote by d D d� the graph distance on .G; �/ (thus d� is the word metric

with respect to the generating set supp�).

If � is a graph or group and V D K
n is a vector space then for each vertex or

element x 2 � and each i D 1; : : : ; n we denote by ıixW� ! V the map de�ned

by ıix.x/ D ei , and ıix.y/ D 0 for every y ¤ x. In the event that n D 1 we drop

the superscript and de�ne ıx W� ! K by ıx.x/ D 1 and ıx.y/ D 0 for everyy ¤ x.
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The ıix form a basis for the space V �0 of �nitely supported V -valued functions

on � (and, for the purposes of this paper, should ‘morally’ be thought of as a basis

for V � ).

This spaceV �0 is invariant under any locally speci�able linear map � WV � !V �,

and so we may consider the (possibly in�nite) matrix of the restriction � jV �
0

with

respect to this basis. In fact, � is entirely determined by its restriction to V �0 , and so

the matrix of � jV �
0

with respect to this basis completely determines � . Moreover,

the composition of such matrices respects the composition of the corresponding

linear maps. Throughout this paper, when we refer to the matrix of a locally speci-

�able linear map � WV � ! V � we mean the matrix of its restriction � jV �
0

with

respect to the basis ¹ıixº.

Given a �nite set Y and a function f WY ! R, we generally denote by

Ey2Y the average Ey2Y f .y/ D 1
jY j

P

y2Y f .y/. However, in the speci�c case

that � is a generating probability measure on a group G, and S is the sup-

port of �, given a function f WS ! R the notation Es2S means the average

Es2Sf .s/ D
P

s2S �.s/f .s/. Note that these de�nitions agree only if � is the

uniform probability measure on S .

IfG1; G2 are groups and �WG1 ! G2 is a surjective homomorphism then given

a �nitely supported generating probability measure � on G1 we de�ne a �nitely

supported generating probability measure �.�/ on G2 by setting �.�/.g/ D
P

Ng2��1.g/ �. Ng/. Note that if � is symmetric then so is �.�/.

Lemma 2.1. Let G1 be a group with a �nitely supported generating probability

measure �. Suppose that �WG1 ! G2 is a surjective homomorphism, and that

f WG2 ! R. Then f ı� is harmonic with respect to � if and only if f is harmonic

with respect to �.�/.

Proof. Given an arbitrary g2 2 G2, the surjectivity of � implies that there exists

g1 2 G1 such that �.g1/ D g2. On the other hand, given an arbitrary g1 2 G1,

we may simply de�ne g2 2 G2 by g2 D �.g1/. In either case, f .g2/ D f ı �.g1/

and Es2�.S/f .g2s/ D Es2Sf .g2�.s// D Es2Sf ı�.g1s/, from which the lemma

follows easily. �

Given a subset A of a graph �, or of a group G with a �nitely supported

generating probability measure �, we de�ne the neighbourhood AC of A to be

the set AC D ¹x 2 �W d.x; A/ � 1º, the interior Aı of A to be the set Aı D ¹x 2

AW ¹xºC � Aº, the inner boundary @�A of A to be the set @�A D AnAı, and the

outer boundary @CA of A to be the set @CA D ACnA.

Let � be a locally �nite weighted graph, or a group with a �nitely supported

generating probability measure �. Let A be a subset of �, and let D be a subset

of � containing AC. Then we say that a function hWD ! R is harmonic on A if

we have �h.x/ D 0 for each x 2 A.

The following is an immediate consequence of the de�nition of harmonicity.
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Lemma 2.2 (maximum principle). Let � be a locally �nite graph, or a group with

a �nitely supported generating probability measure �, and let A be a connected

subset of �. Suppose that f WAC ! R is harmonic on A and achieves a maximum

on A. Then f is constant.

Harmonic functions on graphs and groups are intimately connected to random

walks. Given a graph � and a vertex x 2 �, the random walk starting at x is

a sequence of �-valued random variables X0; X1; X2; : : :, with X0 D x with

probability 1 and each subsequent Xn chosen from among the neighbours of

Xn�1 such that Xn D y with probability !Xn�1y= degXn�1. Given a group G

with a �nitely supported generating probability measure �, the random walk on

the pair .G; �/ starting at x 2 G is a sequence of G-valued random variables

X0; X1; X2; : : :, with X0 D x with probability 1 and each subsequent Xn taking

the value Xn�1s with probability �.s/. We say that the random walk on .G; �/ is

symmetric if � is symmetric.

Given an event B , we denote by PxŒB� the conditional probability

PŒB jX0 D x�. Given another event C , we denote by PxŒB jC � the conditional

probability PŒB jC and ¹X0 D xº�. We use the conditional expectation notation

Ex similarly.

If A is a subset of �, we write TA WD inf¹t WXt 2 Aº, with TA D 1 if Xt … A

for all t . The random variable TA is often called a stopping time for the random

walk. If A is the singleton ¹xº then we abbreviate Tx WD T¹xº.

The next few results are standard; see, for example, [22].

Lemma 2.3 (harmonic functions are determined by their boundary values). Let �

be a graph, or a group with a �nitely supported generating probability measure,

and let A be a �nite subset of � with non-empty outer boundary. Let f0W @
CA!R.

Then the function f WAC ! R de�ned by f .x/ D ExŒf0.XT
@CA

/� is harmonic on

A and agrees with f0 on @CA, and is unique with respect to these two properties.

Corollary 2.4. Let G be a group and let A be a �nite subset of G. Suppose that

f1; f2WA
C ! R are harmonic on A, and that f1 � f2 on @CA. Then f1 � f2 on

the whole of AC.

Lemma 2.5. Let x; y be vertices in a vertex-transitive weighted graph �. Then

Px ŒX2n D y� � PeŒX2n D e�.

Remark 2.6. Lemma 2.5 does not necessarily hold if 2n is replaced by n. For

example, if n is odd then in the Cayley graph .Z;˙1/ we have P0ŒXn D 0� D 0.

Proposition 2.7. Let � be a locally �nite vertex-transitive weighted graph, and

let x; y 2 �. Then for each n we have PxŒTy D n� D PyŒTx D n�.
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Remark 2.8. Proposition 2.7 is trivial for a Cayley graph. It does not necessarily

hold in a regular graph that is not vertex transitive; see Figure 2.

x y

Figure 2. A regular graph in which PxŒTy < 1� > Py ŒTx < 1�.

Proposition 2.7 seems to be well known – see, for example, [1, Proposition 2]

for a proof in the case of a �nite graph – but the author was unable to �nd in the

literature a proof of it as stated, so we present one here. A key step is the following

lemma.

Lemma 2.9. Let � be a locally �nite vertex-transitive weighted graph, and let

n 2 N. Then for every x; y 2 � we have

Px ŒXn D x and Xi ¤ y for all i D 1; : : : ; n� 1�

D PyŒXn D y and Xi ¤ x for all i D 1; : : : ; n� 1�:

Proof. If n D 0 then the lemma is trivial, so by induction we may �x n > 0 and

assume that

PxŒXr D x and Xi ¤ y for all i D 1; : : : ; r � 1�

D PyŒXr D y and Xi ¤ x for all i D 1; : : : ; r � 1�

D ur ;

say, for every r < n. Moreover, since � is regular, if z0; : : : ; zr is a path from x

to y then PxŒX0 D z0; : : : ; Xr D zr � D PyŒX0 D zr ; : : : ; Xr D z0�. This means,

in particular, that if vr .x; y/ is the probability of moving from x to y in r steps,

without visiting either x or y in between, then

vr .x; y/ D vr.y; x/ D vr ; (2.1)

say, for every r .
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It is immediate from the vertex transitivity of � that we have

PxŒXn D x� D PyŒXn D y�; (2.2)

and so it su�ces to show that we have

Px ŒXn D x and Xi D y for some i D 1; : : : ; n� 1�

D PyŒXn D y; and Xi D x for some i D 1; : : : ; n� 1�:
(2.3)

Given k � 1 and a sequence 0 � a1 < b1 � a2 < b2 � : : : � ak < bk � n

of integers, de�ne the event Lx;y.nI kI a1; : : : ; akI b1; : : : ; bk/ to be the event that

X0 D Xn D x and, if 0 D t1 < : : : < tl D n are all the times t at which

Xt 2 ¹x; yº and we set A D ¹ti WXti ¤ XtiC1
º and B D ¹tiC1WXti ¤ XtiC1

º, then

we have A D ¹a1; : : : ; akº and B D ¹b1; : : : ; bkº. Setting akC1 D n and b0 D 0

for notational convenience, we have

PxŒLx;y.nI kI a1; : : : ; ak I b1; : : : ; bk/� D

k
Y

iD0

uaiC1�bi

k
Y

jD1

vbj �aj

D PyŒLy;x.nI kI a1; : : : ; akI b1; : : : ; bk/�:

(2.4)

However, the event ¹X0 D Xn D x; and Xi D y for some i D 1; : : : ; n � 1 º

is precisely the disjoint union of all events Lx;y.nI kI a1; : : : ; akI b1; : : : ; bk/ with

k � 1, and so (2.3) follows immediately from (2.4). The lemma is then immediate

from (2.2) and (2.3). �

Proof of Proposition 2.7. We prove the more precise statement that

PxŒTy D n and max¹t < nWXt D xº D r�

D PyŒTx D n and max¹t < nWXt D xº D r�

for every r � 0. Indeed, this follows readily from Lemma 2.9 and (2.1), and the

observation that

PxŒTy D n and max¹t < nWXt D xº D r�

D vn�r.x; y/PxŒXr D x and Xi ¤ y for all i D 1; : : : ; r � 1�: �

Remark 2.10. The only properties of � that we used in the proof of Proposi-

tion 2.7 were its regularity and (2.2). These properties are satis�ed, more gen-

erally, by walk-regular (unweighted) graphs (see [11, 12] for de�nitions and back-

ground). Proposition 2.7 therefore also holds in walk-regular unweighted graphs.



1018 M. C. H. Tointon

A vertex x of a graph, or a group with a �nitely supported generating prob-

ability measure, is called recurrent for the random walk on the graph or group

if PxŒTx < 1� D 1, and transient for the random walk otherwise. In the case

of a connected graph or a group this is independent of the choice of vertex,

and so it makes sense to de�ne the random walk on a connected graph, or on

a group with a �nitely supported generating probability measure, to be recurrent

if PeŒTe < 1� D 1, and transient otherwise.

WriteRx for the number of times the random walk visits the vertex x. Note that

in the case of a transient random walk the variableRe has a geometric distribution

under the probability measure Pe, from which the following well-known fact

easily follows.

Lemma 2.11. The random walk on a connected graph, or on a group with a �nitely

supported generating probability measure, is transient if and only if EeŒRe� < 1.

In the case of a group, if we require probability measures to be symmetric then

recurrence or transience of the random walk is even independent of the choice

of �nitely supported generating probability measure [26, Proposition 4.2]. It

therefore makes sense simply to de�ne a �nitely generated group to be recurrent

if some symmetric random walk on it is recurrent, and transient otherwise.

N. Varopoulos has characterised those groups that are recurrent.

Proposition 2.12 (Varopoulos [25] and [26]). LetG be a group with a symmetric,

�nitely supported generating probability measure �. Then the random walk

on .G; �/ is recurrent if and only if G is �nite or has a �nite-index subgroup

isomorphic to Z or Z2.

We close this section by recording the following standard but repeatedly useful

reduction.

Lemma 2.13. Let G be a group and let H be a �nite-index subgroup of G. Then

there exists a �nite-index subgroupH 0 < H that is normal in G.

Proof. It is easy to verify that the subgroup H 0 D
T

gH2G=H gHg
�1 is well

de�ned, normal and of �nite index in G. �

3. A Garden of Eden theorem

In this section we prove Theorem 1.9. Throughout this section, we write e for

an arbitrary distinguished vertex of the graph � under consideration, and write

B.n/ D Be.n/ for the ball of radius n about e.
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Lemma 3.1 (Ceccherini-Silberstein and Coornaert). Let� be a connected, locally

�nite graph and let � WV � ! V � be a locally speci�able linear map. Suppose that

f W� ! V is such that for every n there is a function vnW� ! V such that �.vn/

and f agree on the ball B.n/. Then there is a function wW� ! V such that

f D �.w/.

Proof [5, Lemma 3.1]. For n � 2, denote by �n the linear map V B.n/!V B.n�1/

induced by � , and de�ne Ln to be the a�ne subspace of V B.n/ given by Ln D

��1
n .f jB.n�1//. Note in particular that vn�1jB.n/ 2 Ln, so that Ln is non-empty.

For n � m, the restriction map V B.m/ ! V B.n/ induces an a�ne map

�n;mWLm ! Ln, and so we may de�ne an a�ne subspace Kn;m � Ln by

Kn;m D �n;m.Lm/. Since

�n1;n3
D �n1;n2

ı �n2;n3
(3.1)

whenever n1 � n2 � n3, for any �xed nwe haveKn;n � Kn;nC1 � Kn;nC2 � � � � ,

and so the sequence Kn;n; Kn;nC1; Kn;nC2; : : : is a decreasing sequence of non-

empty �nite-dimensional a�ne subspaces. This sequence therefore stabilises at

some non-empty a�ne subspace Jn of Ln. The identity (3.1) also implies that

whenever n � n0 � m we have �n;n0.Kn0;m/ � Kn;m, and so by taking m

su�ciently large we see in particular that �n;n0.Jn0/ � Jn. We claim that in fact

�n;n0.Jn0/ D Jn: (3.2)

Indeed, given u 2 Jn, let m be su�ciently large that Jn D Kn;m and Jn0 D Kn0;m.

By de�nition of Kn;m, there is some v 2 Lm such that u D �n;m.v/, and then yet

another application of (3.1) then shows that

u D �n;n0.�n0;m.v//: (3.3)

However, �n0;m.v/ 2 Kn0;m D Jn0 by de�nition ofKn0;m, and so (3.3) implies that

u 2 �n;n0.Jn0/. Since, u 2 Jn was arbitrary, this proves (3.2), as claimed.

We now construct recursively a sequence of functions wn 2 Jn, n 2 N, as

follows. Initially, choose an arbitrary function w1 2 J1. Then, given wn 2 Jn,

choose wnC1 arbitrarily from the set ��1
n;nC1.wn/ � JnC1, which is non-empty

by (3.2). Since wnC1 and wn agree on B.n/, there exists w 2 V � such that

wjB.n/ D wn for every n. However, �.w/jB.n�1/ D �n.wn/ D f jB.n�1/ for every

n by construction, and so �.w/ D f . �

Proof of Theorem 1.9. A locally speci�able map is pre-injective on � if and only

if it is pre-injective on every connected component of �, and surjective on � if

and only if it is surjective on every connected component of �, and so we may

assume that � is connected. This is essentially the same as a reduction to the

countable case made by Ceccherini-Silberstein and Coornaert in their original

proof of Theorem 1.8, see [7].
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We �rst prove that surjectivity of � implies pre-injectivity of � 0. Given v; w 2

V D K
r , write v � w D

Pr
iD1 viwi , and given f1 2 V �0 and f2 2 V � write

f1 � f2 D
P

x2�.f1.x/ � f2.x//. Then if � is surjective and ' 2 V �0 , we have

� 0.'/ D 0 H) � 0.'/ � f D 0 for every f 2 V �

H) ' � �.f / D 0 for every f 2 V �

H) ' D 0

by surjectivity of � , and so � 0 is pre-injective.

We now prove the harder direction, namely that pre-injectivity of � 0 implies

surjectivity of � . Lemma 3.1 means that in order to prove that � is surjective

it su�ces to show that the linear map �nWV
B.n/ ! V B.n�1/ induced by � is

surjective. Since �n is a map between �nite-dimensional spaces, it therefore

su�ces to show that its dual ��
n WV B.n�1/ ! V B.n/ is injective. However, the

matrix of ��
n is precisely � 0 restricted to V B.n�1/ in domain and V B.n/ in range,

and so pre-injectectivity of � 0 implies injectivity of ��
n , which in turn implies

surjectivity of �n, as required. �

4. Transpose-harmonic functions and surjectivity of Laplacians

In this section we prove Propositions 1.6 and 1.7. The proofs essentially consist of

a fairly direct applications of Theorem 1.9.

De�nition 4.1 (transpose-harmonic function). Given a Laplacian� on a graph or

a group �, we denote by �0 the transpose of �, and say that a function hW� ! R

is transpose harmonic if �0h D 0.

If � D �� is the Laplacian on a group de�ned by a �nitely supported gener-

ating probability measure � then, writing �0 for the �nitely supported generating

probability measure de�ned by �0.g/ D �.g�1/ we have

.��/
0 D ��0: (4.1)

In the case of the Laplacian on a weighted graph, on the other hand, we have the

following.
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Lemma 4.2. Let� be the Laplacian on a locally �nite weighted graph �, and let

f W� ! R be a function. Then for each x 2 � we have

�0f .x/ D f .x/ �
X

y�x

!xyf .y/

degy
:

In particular, f is transpose harmonic at x if and only if the function Of W� ! R

de�ned by

Of .y/ D
f .y/

degy

is harmonic at x.

Proof. The matrix of � is not hard to describe. In the row corresponding to the

point x, the matrix has 1 in the column corresponding to x; it has �!xy= degx in

each column corresponding to a neighbour y of x; and every other entry is zero.

The x row in the matrix of �0 therefore has 1 in the column corresponding to x;

for each neighbour y of x it has �!xy= degy in the column corresponding to y;

and every other entry is zero. The desired result follows immediately. �

Proof of Propositions 1.6 and 1.7. In each case, Theorem 1.9 shows that it is su�-

cient to prove that a �nitely supported transpose-harmonic function is identically

zero.

In the case of the Laplacian on an in�nite, connected, locally �nite weighted

graph (as in Proposition 1.6), Lemma 4.2 implies that the required statement is

equivalent to showing that a �nitely supported harmonic function is identically

zero, since Of .x/ D 0 if and only if f .x/ D 0.

In the case of the Laplacian de�ned by a �nitely supported generating proba-

bility measure � (as in Proposition 1.7), (4.1) implies that the required statement is

equivalent to showing that a �nitely supported �0-harmonic function is identically

zero.

In each case, the required statement follows from the maximum principle

(Lemma 2.2), and so the propositions are both proved. �

Remarks 4.3. The proof just presented is modelled on the amenable case of

the proof of [6, Theorem 1.1], which is Proposition 1.7 in the special case that

� is uniform on a �nite symmetric generating set. The proof of [6, Theorem 1.1]

in the amenable case uses Theorem 1.8 in place of Theorem 1.9. The fact that

Theorem 1.8 does not necessarily hold in non-amenable groups forces the authors

to use a di�erent argument in that case, in particular relying on a spectral criterion

for amenability of �nitely generated groups due to Kesten and Day. Our use of

Theorem 1.9 allows us to avoid this complication.

Our arguments would also prove Proposition 1.6 for an asymetrically weighted

graph, which is to say if we were to drop the assumption that !xy D !yx, provided

it satis�ed
P

y�x !xy D
P

y�x !yx for every x.
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5. A duality result for harmonic functions

The aim of this section is to prove the following result.

Proposition 5.1 (Duality result for harmonic functions). Let � be an in�nite,

connected, locally �nite weighted graph, and let X be a �nite subset of �. Then

the following statements are equivalent.

(1) Every function f WX ! R extends to a harmonic function on all of �.

(2) There is no non-zero �nitely supported function on � that is harmonic on

�nX .

Remark 5.2. Proposition 5.1 fails in a �nite graph, or a graph with a �nite

connected component, since statement (2) never holds in a �nite graph, but

statement (1) holds in an arbitrary graph when X is a singleton. See Remark 5.5

for details on where the proof breaks down.

Given a subset Y of �, we denote by R
�
Y the subspace of R

� consisting of

those functions supported on Y . Proposition 5.1 then follows from combining the

following two lemmas with Proposition 1.6, which implies that �.R�/ D R
� .

Lemma 5.3. Let � be a locally �nite weighted graph, and let X � � be a �nite

set. Then the following statements are equivalent.

(1) We have �.R�
�nX

/ D R
� .

(2) There is no non-zero �nitely supported function on � that is harmonic on

�nX .

Lemma 5.4. Let � be a locally �nite weighted graph, and let X � � be a �nite

set. Then the following statements are equivalent.

(1) We have �.R�
�nX

/ D �.R�/.

(2) Every function f WX ! R extends to a harmonic function on all of �.

Proof of Lemma 5.3. First note that by Lemma 4.2 and the fact that for every

function f W� ! R we have Of .x/ D 0 if and only if f .x/ D 0, statement (2)

of Lemma 5.3 is equivalent to the following statement.

(20) There is no non-zero �nitely supported function on � that is transpose har-

monic on �nX .

Abusing notation slightly, we identify the operator � with its (possibly in�nite)

matrix. Statement (1) of the lemma is then equivalent to saying that the matrix

��nX obtained by replacing the columns of � corresponding to the elements of

X with columns of zeros is surjective.
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Statement (20), on the other hand, means that if f 2 R
�
0 is non-zero then�0.f /

cannot be zero on �nX . Put another way, this says that even if we replace the rows

of �0 corresponding to the elements of X with columns of zeros then �0 will be

pre-injective.

However, �0 with the rows corresponding to X replaced by zeros is equal to

the transpose of ��nX . Replacing some entries of � by zeros does not change

the fact that it is a locally speci�able map, and so the equivalence of (1) and (20)

therefore follows from Theorem 1.9. �

Proof of Lemma 5.4. We �rst prove that (1) implies (2). Let f WX ! R be

arbitrary, and de�ne Nf to be the function on � that agrees with f on X and takes

the value 0 elsewhere. By (1) we can �nd a function h supported on �nX such

that �.h/ D �.� Nf /. The function hC Nf is then a harmonic extension of f , and

so (2) is proved.

Conversely, note that in order to prove (1) it su�ces to prove that for every

x 2 X the function �.ıx/ lies in the space �.R�
�nX

/. However, if we assume (2),

then in particular we have a harmonic extension h of the function f WX ! R

taking the value 1 at x and 0 on Xn¹xº, and it immediately follows that �.ıx/ D

�.�hj�nX /. �

Remark 5.5. In the case that � has a �nite connected component, Proposition 1.6

no longer holds, and so Lemmas 5.3 and 5.4 no longer combine to prove Proposi-

tion 5.1.

6. Existence of non-constant harmonic functions on graphs

In this section we use Proposition 5.1 to prove the following result, which gener-

alises Proposition 1.4 in the transient case.

Proposition 6.1. Let � be a locally �nite vertex-transitive weighted graph, and

suppose that the random walk on � is transient. Suppose that K is �nitely

generated subgroup of Aut� such that the orbitKe is in�nite. Then there exists a

harmonic function on � that is not constant on Ke.

Remarks 6.2. Proposition 6.1 applies in particular to groups with symmetric,

�nitely supported generating probability measures, since they can be realised as

vertex-transitive weighted graphs by considering their weighted Cayley graphs.

Proposition 6.1 does not necessarily hold if K has �nite orbits. For example,

if G D Z
3 ˚ Z=2Z and S D ¹.˙e1; 0/; .˙e1; 1/; .˙e2; 0/; .˙e2; 1/; .˙e3; 0/;

.˙e3; 1/; .0; 1/º and � is the Cayley graph .G; S/, then every harmonic function

on G is constant on the orbits of Z=2Z.
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Let us note how Proposition 6.1 implies the transient case of Proposition 1.4.

Proposition 1.4 is trivial when � is not connected; when � is connected and

transient it follows immediately from Proposition 6.1 and the following lemma.

Lemma 6.3. Let� be a connected, locally �nite, vertex-transitive weighted graph.

Then there is a �nitely generated subgroup G < Aut� that is transitive.

Proof. Let e 2 �. By the transitivity of Aut�, for each neighbour y of e there is

an automorphism gy of � such that gye D y. We claim that G WD hgy W y � e i is

transitive; since � is locally �nite, this is su�cient to prove the lemma.

Since � is connected, it su�ces to show that if z 2 Ge and x � z then x 2 Ge.

To see this, note that for z 2 Ge there exists h 2 G such that e D hz. However,

this means that we have hx � e, and so x D h�1ghxe 2 Ge, as desired, and the

lemma is proved. �

We also recover from Proposition 6.1 the following well-known fact.

Corollary 6.4. Let G be an in�nite group with a symmetric, �nitely supported

generating probability measure �. Then .G; �/ admits a non-constant harmonic

function.

Proof. If the random walk on .G; �/ is transient then the corollary follows im-

mediately from Proposition 6.1 if we let G act on its own Cayley graph by left

multiplication and take K D G. If the random walk is recurrent then Proposi-

tion 2.12 implies that G has either Z or Z2 as a �nite-index subgroup, in which

case the corollary follows from [23] or from Lemma 7.2, below. �

For the remainder of this section we are concerned with proving Proposition 6.1.

Throughout, � is a locally �nite vertex-transitive weighted graph with distin-

guished vertex e.

By Proposition 5.1, in order to prove Proposition 6.1 in the connected case it

su�ces to �nd two points x; y 2 Ke with the property that there is no non-zero

�nitely supported function on � that is harmonic except at x; y. The following

result gives a necessary condition for the existence of such a function.

Lemma 6.5. Let x; y 2 � and suppose that there exists a �nitely-supported non-

zero function f W� ! R that is harmonic except at x and y. Then there exists some

N > 0 such that the conditional probability Pg ŒTx < Ty j min¹Tx; Tyº < 1� is

independent of g for d.e; g/ � N .

Proof. Since f is �nitely supported, there is some N > d.e; x/; d.e; y/ such that

f .g/ D 0 whenever d.e; g/ � N . We prove that the lemma holds with this N .
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For M 2 N we denote by B.M/ D Be.M/ the ball of radius M about the

vertex e, and by �M the quantity �M D min¹t WXt 2 .GnB.M// [ ¹x; yºº, where

X0; X1; : : : is, as usual, the random walk on �. By countable additivity of P, for

g 2 B.M/ we have

Pg ŒX�M D x jX�M 2 ¹x; yº� �! Pg ŒTx < Ty j min¹Tx; Tyº < 1� (6.1)

and

Pg ŒX�M D y jX�M 2 ¹x; yº� �! Pg ŒTy < Tx j min¹Tx; Tyº < 1� (6.2)

as M ! 1.

Let M � N . By Lemma 2.3, there is a unique function fM WB.M C 1/ ! R

that is harmonic on B.M/n¹x; yº and satis�es the following conditions:

fM .x/ D f .x/; (6.3)

fM .y/ D f .y/; (6.4)

fM .z/ D 0 for z … B.M/I (6.5)

indeed, Lemma 2.3 implies that

fM .g/ D f .x/ � Pg ŒX�M D x�C f .y/ � Pg ŒX�M D y� (6.6)

for g 2 B.M/.

The restriction f jB.MC1/ is of course harmonic on B.M/n¹x; yº, and trivially

satis�es (6.3) and (6.4); by the de�nitions of N and M it also satis�es condi-

tion (6.5), and so by the uniqueness of fM it follows that

fM D f jB.MC1/: (6.7)

By the maximum principle (Lemma 2.2), and since f is not identically zero,

f must be non-zero at at least one of x and y; without loss of generality we may

therefore assume that f .x/ ¤ 0. If N � jgj � M then (6.7) and the de�nition of

N together imply that fM .g/ D 0, and so (6.6) implies that

Pg ŒX�M D x�

Pg ŒX�M D y�
D �

f .y/

f .x/
;

and hence that
Pg ŒX�M D x jX�M 2 ¹x; yº�

Pg ŒX�M D y jX�M 2 ¹x; yº�
D �

f .y/

f .x/
:

Letting M ! 1, we therefore see from (6.1) and (6.2) that

Pg ŒTx < Ty j min¹Tx; Tyº < 1�

Pg ŒTy < Tx j min¹Tx; Tyº < 1�
D �

f .y/

f .x/
: (6.8)

Since the numerator and denominator of the left-hand side of (6.8) always sum to

1, this determines Pg ŒTx < Ty j min¹Tx; Tyº < 1� uniquely and independently of

g, and so the lemma is proved. �
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The following lemma proves the intuitively reasonable result that if the random

walk is more likely to hit x than y eventually, then it is also more likely to hit x

�rst.

Lemma 6.6. If x; y 2 � satisfy

PeŒTx < 1� > PeŒTy < 1� (6.9)

then they also satisfy

PeŒTx < Ty j min¹Tx; Tyº < 1� >
1

2
: (6.10)

If the random walk on � is transient then (6.9) and (6.10) are equivalent.

Remark 6.7. The conditions (6.9) and (6.10) are not necessarily equivalent in a

vertex-transitive graph with a recurrent random walk, as can be seen by setting

e D 0, x D 1 and y D 2 in the Cayley graph .Z; ¹˙1º/.

Proof of Lemma 6.6. Write

p.x; y/ D PxŒTy < 1�;

the probability that the random walk starting at x hits y eventually. If

PeŒTx < 1� > PeŒTy < 1�;

then this implies in particular that PeŒTz < 1� is not constant in z, which implies

that the random walk is transient. We may therefore assume that the random walk

is transient and prove that (6.9) and (6.10) are equivalent.

Write

p.x/ D PeŒTx < 1 j min¹Tx; Tyº < 1�;

p.y/ D PeŒTy < 1 j min¹Tx; Tyº < 1�;

and note that condition (6.9) is equivalent to p.x/ > p.y/. Write

f .x/ D PeŒTx < Ty j min¹Tx; Tyº < 1�;

f .y/ D PeŒTy < Tx j min¹Tx; Tyº < 1�:

Condition (6.10) is that f .x/ > 1=2, or equivalently that f .x/ > f .y/, since

f .x/ C f .y/ D 1. However, we have p.y/ D f .y/ C f .x/p.x; y/, and

by Proposition 2.7 we have p.x; y/ D p.y; x/, and hence p.x/ D f .x/ C

f .y/p.x; y/. The equivalene of (6.9) and (6.10) therefore follows, since transience

of the random walk and symmetry of p together imply that p.x; y/ < 1. �
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Proposition 6.8. If the random walk on � is transient then PxŒTy < 1� ! 0 as

d.x; y/ ! 1.

Proof. It is clear that Px ŒTy < 1� �
P1
nD0 PxŒXn D y�. However, since

Px ŒXn D y� D 0 for n < d.x; y/, we in fact have the stronger bound

PxŒTy < 1� �

1
X

nDd.x;y/

PxŒXn D y�:

If n is even then we have

PxŒXn D y� � PeŒXn D e�

by Lemma 2.5. If n is odd, on the other hand, then we have

PxŒXn D y� D Es2SPxs ŒXn�1 D y� � PeŒXn�1 D e�;

again by Lemma 2.5. Combining these last three inequalities shows that

PxŒTy < 1� � 2
X

n�d.x;y/�1

n even

PeŒXn D e� (6.11)

Recall that Re is the number of times the random walks hits the vertex e.

In particular,

Re D

1
X

nD0

1¹XnDeº;

and so by linearity of expectation we have EeŒRe� D
P1
nD0 PeŒXn D e�.

Lemma 2.11 therefore implies that
P1
nD0 PeŒXn D e� < 1, which, combined

with (6.11), shows that PxŒTy < 1� ! 0 as d.x; y/ ! 1, as desired. �

Proof of Proposition 6.1. If the orbit Ke has non-trivial intersection with two

connected components of � then the result follows by taking a function that takes

the value 1 on one of these components and 0 elsewhere on �. We may therefore

assume that � is connected, and so by Proposition 5.1 it su�ces to �nd two points

x; y 2 Ke with the property that there is no non-zero �nitely supported function

on � that is harmonic except at x; y.

We consider the following two cases.

(1) The subgroup K contains an element v such that the vertices vne are all

distinct for n 2 N.

(2) For every element u of the subgroup K there is some m such that ume D e.
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In case (1), Proposition 6.8 implies that

PeŒTvne < 1� �! 0 and PeŒTv�ne < 1� �! 0

as n ! 1. This implies that there are in�nite increasing sequences nC
1 ; n

C
2 ; n

C
3 ; : : :

and n�
1 ; n

�
2 ; n

�
3 ; : : : such that

PeŒT
v

n
C
i e
< 1� > PeŒT

v
n

C
i ve

< 1�

and

PeŒTv�n�
i e
< 1� < PeŒTv�n�

i ve
< 1�;

which by Lemma 6.6 means that

P
v

�n
C
i e
ŒTe > Tve j min¹Te; Tveº < 1� >

1

2
;

and

P
v

n�
i e
ŒTe > Tve j min¹Te; Tveº < 1� <

1

2
:

Since v�n
C
i e ! 1 and vn

�
i e ! 1, Lemma 6.5 therefore implies that there exists

no �nitely supported non-zero function on � that is harmonic except at e; ve, and

so the proposition is proved in case (1).

In case (2), let R be a �nite symmetric generating set for K. We claim that

there are elements x1; x2; : : : 2 K with d.e; xne/ ! 1 such that, for each n,

there is some rn 2 R such that PeŒTxne < 1� < PeŒTxnrne < 1�. Indeed, for

each n D 1; 2; : : :, let xn be a point of minimal distance from the identity in the

Cayley graph .K;R/ such that PeŒTxne < 1� < 1=n. Such a point always exists

by Proposition 6.8 and the assumption that the orbit Ke is in�nite, and by the

regularity and local �niteness of � we have

d.e; xne/ �! 1 (6.12)

as n ! 1. By de�nition of xn, and using (6.12), for su�ciently large n there is

some rn 2 R such that PeŒTxnrne < 1� � 1=n > PeŒTxne < 1�, as caimed.

By the �niteness of R, upon passing to a subsequence if necessary we may in

fact assume that there is some u 2 R such that for each n we have

PeŒTxne < 1� < PeŒTxnue < 1�: (6.13)

We claim that there is no non-zero �nitely supported function on � that is har-

monic except at e; ue.
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As in case (1), condition (6.13) and Lemma 6.6 imply that

Px�1
n eŒTe > Tue j min¹Te; Tueº < 1� <

1

2
I

indeed, applying the automorphism um, we see that

Pumx�1
n eŒTume > TumC1e j min¹Tume; TumC1eº < 1� <

1

2
(6.14)

for every m 2 N. Moreover, (6.12) implies that for each m 2 N we have

d.u�me; x�1
n e/ ! 1 as n ! 1, and so d.e; umx�1

n e/ ! 1 as n ! 1.

If the claim is false, and there does exist some non-zero �nitely supported function

on � that is harmonic except at e; ue, then translating this function by um we

see that there is also a function on � that is harmonic except at ume; umC1e.

Combining (6.12) and (6.14) with Lemma 6.5 therefore implies that for each m

there is some Nm > 0 such that

Px ŒTume > TumC1e j min¹Tume; TumC1eº < 1� <
1

2

for every x 2 � such that d.e; x/ � Nm; since the orbit of e under u is �nite

we may assume that the Nm are all equal to some N > 0. Fixing some x with

d.e; x/ � N and applying Lemma 6.6 once more, this means that

PxŒTume < 1� < PxŒTumC1e < 1�

for every m 2 N, which implies by induction that

Px ŒTe < 1� < PxŒTume < 1�

for every m 2 N. This is impossible, however, since there is some m 2 N such

that ume D e, and so it must have been the case that there was no non-zero �nitely

supported function on � harmonic except at e; ue. This proves the claim, and

hence the proposition in case (2). �

7. Harmonic functions on virtually abelian groups

In this section we investigate spaces of harmonic functions on virtually abelian

groups. The �rst purpose is to prove the easier direction of Theorem 1.1, as follows.

Proposition 7.1 (direct statement of Theorem 1.1). Let G be a group with a �nite-

index subgroup isomorphic to .Z;C/, and let � be a symmetric, �nitely supported

generating probability measure on G. Then dimH.G;�/ < 1.
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The second is to note a characterisation of the space H 1.G; �/ of harmonic

functions of linear growth on a virtually abelian groupG (see Lemma 7.2, below).

Let G be a group with a �nite-index normal subgroup isomorphic to Z
d , and

let � be a symmetric, �nitely supported generating probability measure on G.

Abbreviate S WD supp�. Fix a right-transversal T of Zd containing the identity,

which is to say a �nite set T such that each g 2 G can be expressed uniquely as

g D �.g/�.g/with �.g/ 2 Z
d and �.g/ 2 T . We write �i .g/ for the i th coordinate

of �.g/ with respect to the standard basis for Zd .

Lemma 7.2 ([2, 23]). For each i D 1; : : : ; d there is a function 'i WG ! R

that factors through G=Zd such that the function fi WG ! R given by fi .g/ D

�i .g/ C 'i .�.g// is harmonic on .G; �/. Moreover, H 1.G; �/ is spanned by the

set ¹1; f1; : : : ; fdº.

Proof. The existence of the harmonic functions fi follows directly from [23,

Theorem 3.6]. The fact that ¹1; f1; : : : ; fdº spans H 1.G; �/ is then precisely

the linear-growth case of [2, Theorem 1.12]; see also [20] for a more elementary

proof. �

Lemma 7.3. Let d
Zd be the Cayley-graph distance on Z

d with respect to the

standard generating set. Then there exists M 2 N such that for every g 2 G and

every s 2 S we have d
Zd .�.gs/; �.g// � M .

Proof. Given g 2 G and s 2 S , write t D �.g/, so that gs D �.g/ts D

�.g/�.ts/�.ts/. This implies, in particular, that �.gs/ D �.g/�.ts/, and so we

may takeM to be the maximum over the (�nite) set ¹j�.ts/j
Zd W s 2 S; t 2 T º. �

Proof of Proposition 7.1. Lemma 7.3 implies that for each n 2 Z we have

Œ�n; n�TS � Œ�n�M;nCM�T . It follows that .Œ�n; n�T /C � Œ�n�M;nCM�T ,

and so @C.Œ�n; n�T / has cardinality at most 2M jT j. Lemma 2.3 therefore implies

that the space of functions on @C.Œ�n; n�T / that are harmonic on Œ�n; n�T is of

dimension at most 2M jT j. However, G D
S1
nD1Œ�n; n�T , and so the space of

harmonic functions on G is also of dimension at most 2M jT j. �

Remark 7.4. Taking G D Z and setting � to be the uniform probability measure

on Œ�M;M� shows that the bound 2M jT j on the dimension of the space of

harmonic functions in the proof of Proposition 7.1 can be tight. In particular, the

precise dimension depends on the measure � as well as on the group G.

8. Positive harmonic functions on linear groups

If G is a group and � is a �nitely supported generating probability measure then a

positive harmonic function on .G; �/ is a harmonic function hWG ! R that takes
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only positive values. G. Margulis [18] showed that a nilpotent group admits no

non-constant positive harmonic functions. More generally, we have the following

result of W. Hebish and L. Salo� Coste.

Proposition 8.1 (Hebish and Salo� Coste [15]). Let G be a virtually nilpotent

group with a symmetric, �nitely supported generating probability measure �.

Then .G; �/ admits no non-constant positive harmonic functions.

P. Bougerol and L. Elie show that for linear groups the converse is also true.

Proposition 8.2 (Bougerol and Elie [4]). Let G be a subgroup of GLd .R/ that

is not virtually nilpotent, and let � be a symmetric, �nitely supported generating

probability measure on G. Then .G; �/ admits a non-constant positive harmonic

function.

The purpose of this section is to show that, in that case, there are in fact many

positive harmonic functions.

Proposition 8.3. LetG be a group with a symmetric, �nitely supported generating

probability measure �, and suppose that .G; �/ admits at least one non-constant

positive harmonic function. Then the set of positive harmonic functions on .G; �/

spans an in�nite-dimensional space.

The following is then immediate.

Corollary 8.4. Let G be a subgroup of GLd .R/ that is not virtually nilpotent,

and let � be a symmetric, �nitely supported generating probability measure on

G. Then the positive harmonic functions on .G; �/ span an in�nite-dimensional

space.

Question 8.5. Does an arbitrary non-virtually nilpotent group with a symmetric,

�nitely supported generating probability measure admit a non-constant positive

harmonic function?

In proving Proposition 8.3 we make use of the minimal Martin boundary of

.G; �/.

De�nition 8.6 (Minimal harmonic function). Given a group G with a �nitely

supported generating probability measure �, a minimal harmonic function on

.G; �/ is a positive harmonic function f WG ! R with the property that every

other positive harmonic function f 0WG ! R satisfying f 0 � f is a constant

multiple of f . A normed minimal harmonic function f WG ! R is a minimal

harmonic function satisfying f .e/ D 1.
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De�nition 8.7 (minimal Martin boundary). The minimal Martin boundary

�.G;�/ of the pair .G; �/ is the compact closure, in the topology of pointwise

convergence, of the set of normed minimal harmonic functions on .G; �/.

Each positive harmonic function f WG ! R has a unique representing measure

�f on the minimal Martin boundary, which is to say a measure �f such that

f .x/ D

Z

�

h.x/d�f .h/ (8.1)

for every x 2 G (see [16, §0.3] or [26, §7, p. 32]).

Lemma 8.8. The set of normed minimal harmonic functions on a group G with

respect to a �nitely supported generating probability measure � is linearly inde-

pendent.

Proof. Suppose that h1; : : : ; hr are distinct minimal harmonic functions and let

˛1; : : : ; ˛r be such that
Pm
iD1 ˛ihi D 0. Without loss of generality we may

assume that ˛i � 0 for i � k, and that ˛i � 0 for i > k, and so in fact we

have
Pk
iD1.�˛i/hi D

Pm
iDkC1 ˛ihi . However, both the left-hand side and the

right-hand side of this expression are non-negative harmonic functions, and so it

follows from the uniquness of the representation (8.1) that the ˛i are all zero. �

Proof of Proposition 8.3. We prove the contrapositive. Suppose that the set of

positive harmonic functions on G does not span an in�nite-dimensional space.

By Lemma 8.8 this implies in particular that the set of normed minimal harmonic

functions is �nite, so we may enumerate them as h1; : : : ; hm.

The group G acts on the space of all harmonic functions via g � f .x/ D

f .g�1x/. The image of a minimal harmonic function under this action is another

minimal harmonic function, and so in particular for each i D 1; : : : ; m and each

g 2 G we have some ˛g;i 2 R and some g � i 2 Œm� such that g � hi D ˛g;ihg �i .

As the notation g � i implicitly suggests, this de�nes an action of G on the set Œm�.

By the orbit-stabiliser theorem, for each i the stabiliserHi of i is of �nite index

in G; by Lemma 2.13, we may setH to be a normal subgroup of G that has �nite

index in
Tm
iD1Hi , and hence in G. For every g 2 H we have g � hi D ˛g;ihi ,

which is to say that hi .g
�1x/ D ˛g;ihi .x/ for every x 2 G and every i . Taking

x D e, and noting that hi .e/ D 1, we see that ˛g;i D hi .g
�1/, and so this implies

that hi .g
�1x/ D hi .g

�1/hi .x/ for every g 2 H and every x 2 G.

This implies that the restriction of hi to H is a homomorphism into R
�, and

moreover that hi .cx/ D hi .x/ for every c 2 ŒH;H� and every x 2 G. We conclude

that each hi factors through G=ŒH;H� (noting that ŒH;H� is characteristic in H ,

and hence normal in G).
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Let pWG ! R be a positive harmonic function. Sincep can be expressed in the

form (8.1), pmust also factor throughG=ŒH;H�, and so writing �WG ! G=ŒH;H�

we have p D Op ı �, with OpWG=ŒH;H� ! R harmonic by Lemma 2.1. However,

the abelian groupH=ŒH;H� is of �nite index in G=ŒH;H�, and so Proposition 8.1

therefore implies that Op, and hence p, is constant. �

9. Random walks on virtually cyclic groups

In this section we consider an in�nite group G with a �nite-index normal cyclic

subgroup Z and a symmetric, �nitely supported generating probability measure

�. In a similar fashion to Section 7, we consider a �nite set T such that each g 2 G

can be expressed uniquely as g D �.g/�.g/ with �.g/ 2 Z and �.g/ 2 T .

In general we continue to denote the identity of G by e, the inverse of an ele-

ment g by g�1, and the composition of two group elements g; h by gh. However,

when composing elements of Z with one another we often switch to additive nota-

tion to emphasise the integer structure. Thus, for example, we sometimes denote

the identity by 0, the inverse ofm by �m and the composition ofm and n bymCn,

provided m; n 2 Z. This should not cause confusion since, whilst the notation for

a given group element is not unique, neither is it ambiguous (in particular, we

never multiply together two elements of Z). For the avoidance of doubt, the no-

tation 1 always represents a generating element of the subgroup Z, and never the

identity element of G.

For each n 2 N write TC
n D min¹t � 0W �.Xt / � nº and T �

n D min¹t �

0W �.Xt / � nº, noting that these quantities are almost surely �nite. The purpose

of this section is then to prove the following result.

Lemma 9.1. Let m 2 Z, and suppose that g 2 G with m < �.g/ < m C R. Let

M be as in Lemma 7.3. Then

Pg ŒT
C
mCR < T

�
m � D

�.g/ �m

RCM
CO

� 1

R

�

:

Proof. By Lemma 7.2 there exists a function 'WT ! R such that the function

f WG ! R given by f .nt/ D n C '.t/ is harmonic on G. Let tmin 2 T be the

point at which ' takes its minimum value, and tmax 2 T the point at which ' takes

its maximum value, and de�ne two further harmonic functions f C; f �WG ! R

by

f C D
1

RCM
.f � f ..m �M/tmin//;

f � D
1

RCM
.f � f ..mCRCM/tmax//C 1:
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Note the following properties of f C; f �.

(i) We have f �.nt/ � 0 � f C.nt/ whenever n 2 Œm �M;m�.

(ii) We have f �.nt/ � 1 � f C.nt/ whenever n 2 ŒmCR;mC RCM�.

Moreover, f C � f � is constant and given by

f C � f � D
'.tmax/ � '.tmin/CM

RCM
; (9.1)

and we have

f C..nC 1/t/ � f C.nt/ D f �..nC 1/t/ � f �.nt/ D
1

RCM
(9.2)

for every n 2 Z and every t 2 T .

Now de�ne hW Œm �M;mCRCM�T ! R by setting

h.nt/ D

´

0 when n 2 Œm �M;m�;

1 when n 2 ŒmCR;mCR CM�;

and requiring that h be harmonic elsewhere. Lemma 2.3 and the de�nition of M

imply that h is well de�ned by these stipulations, and moreover that

h.g/ D Pg ŒT
C
mCR < T

�
m �: (9.3)

Now Corollary 2.4, properties (i) and (ii) of f C; f � and the de�nition of h imply

that f � � h � f C, and hence (i), (ii), (9.1) and (9.2) imply that

h.g/ D
�.g/ �m

RCM
CO

� 1

R

�

:

The desired result then follows from (9.3). �

10. Harmonic functions on groups with virtually cyclic quotients

In this section we consider groups with virtually cyclic quotients. A well-known

example of a group with a genuinely cyclic quotient is the lamplighter group. If L

is the Z=2Z-vector space of �nitely supported functions Z ! Z=2Z, viewed as an

additive group, then the lamplighter groupG is the semidirect productG D ZËL

de�ned by the action of m 2 Z on L given by m � f .x/ D f .x � m/. Explicitly,

the group operation is de�ned by .m; f / � .m0; f 0/ D .mCm0; f Cm � f 0/.

I. Benjamini, G. Kozma, and A. Yadin [3] give an explicit construction of a

positive harmonic function on the lamplighter group.
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Proposition 10.1 (Benjamini, Kozma, and Yadin, unpublished). Let G be the

lamplighter group, and let � be a symmetric, �nitely supported generating prob-

ability measure on G. Denote the random walk on the lamplighter group by

.M0; F0/, .M1; F1/, .M2; F2/; : : :. Let �r D min¹t � 0W jMt j � rº, and de�ne

hr WG ! R by hr.g/ D Pg ŒF�r .n/ D 0 for all n < 0�. Then rhr converges point-

wise to a positive harmonic function on G.

In order to prove Theorem 1.1, we need a slightly more general result. The

purpose of this section is to show that the construction of Benjamini, Kozma and

Yadin can be adapted fairly easily to obtain harmonic functions on a more general

family of �nitely generated groups with virtually cyclic quotients.

Proposition 10.2. Let G be a group with a symmetric, �nitely supported gener-

ating probability measure �, and suppose that there is a homomorphism  from

G onto an in�nite virtually cyclic group such that K D ker is not �nitely gen-

erated. Then .G; �/ admits a positive harmonic function of at most linear growth

that does not factor through G=K.

Remark 10.3. The function we construct in proving Proposition 10.2 is positive,

and so Proposition 8.3 implies that G has an in�nite-dimensional space spanned

by positive harmonic functions, although we do not need this to prove Theorem 1.1.

It also implies that H 1.G; �/ is in�nite dimensional, since if dimH 1.G; �/ < 1

then every linearly growing harmonic function restricts to a homomorphism on

some �nite-index subgroup of G [20].

Remark 10.4. Meyerovitch and Yadin [19] generalise Proposition 10.1 in another

direction in proving their result that �nite dimensionality of H 1.G; �/ for G

soluble implies that G is virtually nilpotent.

We start our proof of Proposition 10.2 by expressingG in a particularly convenient

form.

Lemma 10.5. The group G posseses an in�nite cyclic subgroup Z such that KZ

is normal in G, and a �nite set T containing the identity such that each g 2 G can

be expressed uniquely as

g D �.g/�.g/�.g/ (10.1)

with �.g/ 2 K, �.g/ 2 Z and �.g/ 2 T . Moreover,  is an isomorphism on Z

and injective on T , and each Ng 2  .G/ can be expressed uniquely as

Ng D N�. Ng/ N�. Ng/ (10.2)

with N�. Ng/ 2  .Z/ and N�. Ng/ 2  .T /.
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Proof. The image  .G/ possesses an in�nite cyclic subgroup hzi of �nite index,

and by Lemma 2.13 we may assume that hzi is normal in  .G/. Let Nz 2  �1.z/.

The element Nz is of in�nite order, and we denote by Z the in�nite cyclic subgroup

that it generates. Note that  is injective on Z, and hence an isomorphism on Z,

as required.

Since  .Z/ D hzi is of �nite index in  .G/, we may choose a �nite set xT

containing e such that each Ng 2  .G/ can be expressed uniquely in the form (10.2),

with N�. Ng/ 2 xT . For each Nt 2 xT pick an arbitrary t 2  �1. xT /, and de�ne

T D ¹t W Nt 2 xT º. It immediately follows that the element N�. Ng/ in (10.2) belongs

to  .T /, and that  is injective on T , as required. The injectivity of  on Z

additionally implies that each g 2 G can be expressed uniquely in the form (10.1).

The fact that KZ is normal in G follows immediately from the fact that

 .Z/ D hzi is normal in  .G/. �

From now on in this section  and K are as in Proposition 10.2, and Z and T

are �xed as in Lemma 10.5. Note that we have N�. .g// D  .�.g//, and that if we

abuse notation slightly and identify Z with its isomorphic image  .Z/ we have
N�. .g// D �.g/.

As in Section 9, when composing elements of Z or  .Z/ with one another we

often switch to additive notation to emphasise the integer structure.

Since K is normal, the group Z acts on K by conjugation. We may therefore

de�ne an automorphism 'WK ! K by '.k/ D 1k1�1. More generally, this means

that 'n.k/ D nkn�1. As in Section 7, we denote S WD supp�.

If g D knt is a group element with k 2 K, n 2 Z and t 2 T , then the elements

adjacent to g in the Cayley graph .G; S/ are the elements gs D knts with s 2 S .

Lemma 10.6. Let k 2 K, n 2 Z, t 2 T and s 2 G. Then

�.knts/ D k'n.�.ts//; �.knts/ D nC �.ts/; �.knts/ D �.ts/:

Proof. Expressing t s in the form (10.1), we have knts D kn�.ts/�.ts/�.ts/, and

hence knts D k'n.�.ts//n�.ts/�.ts/, as claimed. �

For each set A � Z de�ne a subgroup UA of K by

UA D h'n.�.ts//W s 2 S; t 2 T; n 2 A i;

and for each n 2 Z abbreviate by Un the subgroup Un D UŒn;1/. Lemma 10.6

implies that

K D UZ: (10.3)
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Lemma 10.7. If K is not �nitely generated then, possibly after relabelling each

n 2 Z as �n, we have

� � � © U�2 © U�1 © U0 © U1 © U2 © � � � : (10.4)

Proof. The containments of (10.4) are immediate by de�nition, so we just need

to prove that they are strict. We start by showing that either U¹0º 6� UN or

U¹0º 6� U�N. Indeed, suppose that U¹0º � UN and U¹0º � U�N, which, since

U¹0º is �nitely generated, implies in particular that there is someM 2 N such that

U¹0º � UŒM�I (10.5)

U¹0º � U�ŒM�: (10.6)

Since ' is an automorphism, (10.5) also implies that U¹�1º � U¹0º[ŒM�1�, and

hence by (10.5) that U¹�1º � UŒM�. Repeating this argument, we conclude that

U¹�nº � UŒM� for every n 2 N. Similarly, (10.6) implies that U¹nº � U�ŒM� for

every n 2 N, and so in fact we have UZ D UŒ�M;M�. By (10.3), this contradicts

the assumption that K is not �nitely generated, and so either U¹0º 6� UN or

U¹0º 6� U�N, as claimed. Upon relabelling each n 2 Z by �n if necessary, we

may assume the former, which implies in particular that U0 6� U1. Repeatedly

using the fact that ' is an automorphism then yields the lemma. �

We assume from now on that Z is labelled in such a way that (10.4) holds.

As usual, we denote by X0; X1; X2; : : : the random walk on G de�ned by �.

In this section, we additionally denote by xX0; xX1; xX2; : : : the random walk on

 .G/ de�ned by  .�/. Note that the projected walk . .Xt // is isomorphic to

the random walk . xXt /.

For each n 2 N, write

TC
n D min¹t � 0W �.Xt / � nº; T �

n D min¹t � 0W �.Xt / � nº;

xTC
n D min¹t � 0W N�. xXt / � nº; xT �

n D min¹t � 0W N�. xXt / � nº;

noting that each of these quantities is almost surely �nite. Note, incidentally, that

if we identify xXt D  .Xt / then T˙
n D xT˙

n .

De�ne BR D min¹t � 0W �.Xu/ � 0 for all u 2 Œt; TC
R �º. More generally, for

each n < R set BnR D min¹t � 0W �.Xu/ � n for all u 2 Œt; TC
R �º.

Lemma 10.8. There exist some l > max �.TS/ and some ˛ 2 .0; 1/ such that if

R > l , and if g is such that �l � �.g/ � 0, then either

Pg Œ�.Xt / � �l for all t � TC
R � D 0

or

Pg Œ�.XBR
/ 2 U0 j �.Xt / � �l for all t � TC

R � � ˛:
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Proof. Fix an element u 2 KnU0, and for each t 2 T and each j satisfying

0 � j < max �.TS/ �x a path

x
j;t
0 D e; x

j;t
1 ; x

j;t
2 ; : : : ; x

j;t
rj;t

D t�1'�j .u/t

from e to t�1'�j .u/t in the Cayley graph .G; S/, chosen so that

�.tx
j;t
i / < � max �.TS/ (10.7)

for at least one i .

Let l D .1 C maxj;t rj;t /max �.TS/. Write  D mins2S �.s/, and set

ˇ D maxj;t rj;t . Note that for each j; t there is a probability of at least ˇ that

the random walk starting at e has x
j;t
0 ; x

j;t
1 ; : : : ; x

j;t
rj;t

as an initial segment.

Write A for the set of (�nite) paths p from g whose images �.p/ in Z �nish

at R or above, but stay in the range Œ�l; R � 1� until then. If A D ¿ then

Pg Œ�.Xt / � �l for all t � TC
R � D 0 and the lemma holds, and so we may assume

thatA ¤ ¿. For eachp 2 A, write Nkp Nmp Ntp for the �nal position of p, with Nkp 2 K,

Nmp 2 Z and Ntp 2 T ; thus Nmp � R, but all earlier positions of �.p/ are below R.

Also, let �p be the largest �nal segment of p whose image in Z lies entirely in the

non-negative integers, and let kpmptp be the �rst position of this �nal segment,

with kp 2 K, mp 2 Z and tp 2 T . Note that

0 � mp < max �.TS/: (10.8)

Lemma 10.6 implies that ¹p 2 AW kp 2 U0º D ¹p 2 AW Nkp 2 U0º, and so we may

de�ne A2 D ¹p 2 AW kp 2 U0º D ¹p 2 AW Nkp 2 U0º and A… D AnA2. We claim

that

Pg.A…/ � Pg.A2/: (10.9)

This is su�cient to prove the lemma, since the conditional probability we are

aiming to bound is equal to

Pg.A2/

Pg.A…/C Pg.A2/
:

We de�ne a map c from A2 to the set of �nite paths starting at g as follows. Given

p 2 A2, let c.p/ be the path that agrees with p up until kpmptp, then has positions

kpmptpx
mp ;tp
1 ; : : : ; kpmptpx

mp ;tp
rmp;tp

, and then continues with the same increments

as the original path p had after position kpmptp. This is well de�ned by (10.8).

We claim that c.p/ 2 A… for every p 2 A2. To see that c.p/ 2 A, note that

kpmptpx
mp ;tp
rmp;tp

D kpumptp: (10.10)

This implies in particular that

 .kpmptpx
mp ;tp
rmp;tp

/ D mp .tp/ D  .kpmptp/: (10.11)
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By de�nition of l , at no point between kpmptp and kpmptpx
mp ;tp
rmp;tp

does �.p/

drop below �l , and so it follows that c.p/ 2 A. To see, more speci�cally, that

c.p/ 2 A…, note that the de�nition of kpmptp combines with (10.11) to imply that

�.c.p// doesn’t drop below zero after kpmptpx
mp;tp
rmp;tp

. Lemma 10.6 and (10.10)

therefore imply that Nkc.p/ is in the same left coset of U0 as kpu. In particular,

since kp 2 U0 and u … U0 we have Nkc.p/ … U0, and so c.p/ 2 A…, as claimed.

The fact that c.A2/ � A… of course implies that

Pg.A…/ � Pg.c.A2//: (10.12)

We claim, moreover, that c is O.1/-to-one. Write a.p/ for the segment that was

added to c to obtain c.p/, and note that one can, in principle at least, recover

p from c.p/ simply by deleting the segment a.p/. Note that (10.7) and (10.8)

combine with Lemma 10.6 and the fact (noted in the preceding paragraph) that

�.c.p// doesn’t drop below zero after kpmptpx
mp ;tp
rmp;tp

to imply that �.p/ drops

below zero for the last time at some point during a.p/. This means that knowledge

of c.p/ only is su�cient to identify, to within maxj;t rj;t positions, where in c.p/

the segment a.p/ begins. Furthermore, the increments of a.p/ coincide with

those of one of the �nitely many paths .x
j;t
i /. There are therefore at most O.1/

possibilities for a.p/, given c.p/, and so c is O.1/-to-one, as claimed.

This implies, in particular, that

Pg.c.A2// �
X

p2A2

Pg.c.p//: (10.13)

However, it follows from the de�nition of ˇ that for every p 2 A2 we have

Pg.c.p// � ˇPg.p/. In combination with (10.12) and (10.13), this implies that

Pg.A…/ � Pg.c.A2// �
X

p2A2

Pg.c.p// � ˇ
X

p2A2

Pg.p/ D ˇPg.A2/;

and so (10.9) holds as claimed and the lemma is proved. �

Lemma 10.9. Let l and ˛ be as given by Lemma 10.8. Let n � 0. Then if R > l ,

and if g is such that n � l � �.g/ � n, then either

Pg Œ�.Xt / � n � l for all t � TC
R � D 0

or

Pg Œ�.XBn
R
/ 2 Un j �.Xt / � n� l for all t � TC

R � � ˛:

Proof. This follows immediately from applying Lemma 10.8 with the weighted

Cayley graph .G; �/ left-translated by n. �
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Lemma 10.10. Let l and ˛ be as given by Lemma 10.8. Let m 2 N, and suppose

that k � �ml and R > l . Then whenever g 2 G is such that k � �.g/ < k C l

we have either

Pg Œ�.Xt / � k for all t � TC
R � D 0

or

Pg Œ�.XTC
R

/ 2 U0 j �.Xt / � k for all t � TC
R � � ˛m:

Proof. Everthing in this lemma is conditional on the event ¹ �.Xt/ � k for all

t � TC
R º, so to make the notation less cumbersome we denote by Cq the event

Cq D ¹ �.Xt/ � q for all t � TC
R º:

Applying Lemma 10.7, we see that �.X
T

C
R

/ 2 U0 precisely when �.XBn
R
/ 2 Un

for each n < 0. This implies in particular that

¹�.X
T

C
R

/ 2 U0º � ¹�.XBn
R
/ 2 Un for each n D k C l; k C 2l; : : : ; k Cmlº;

and hence that it is su�cient to show that

Pg Œ�.XBn
R
/ 2 Un for each n D k C l; k C 2l; : : : ; k Cml jCk� � ˛m (10.14)

whenever Pg ŒCk� ¤ 0. We show this by induction on m.

If Pg ŒCk ^ ¹ �.X
B

kCl
R

/ 2 UkCl º� D 0 then either Pg ŒCk � D 0 or the left-

hand side of (10.14) is 0; in either case the lemma holds, so we may assume that

Pg ŒCk ^ ¹ �.X
B

kCl
R

/ 2 UkCl º� ¤ 0. This implies that the left-hand side of (10.14)

is at most

P
.1/
g P

.2/
g ;

where

P
.1/
g WD Pg Œ�.XBkCl

R

/2 UkCl jCk �

P
.2/
g WD Pg Œ�.XBn

R
/2 Un for n D k C 2l; : : : ; k Cml jCk ^ ¹�.X

B
kCl
R

/ 2 UkClº�:

However, it follows immediately from Lemma 10.9 that

Pg Œ�.XBkCl
R

/ 2 UkCl jCk � � ˛;

and so in fact the left-hand side of (10.14) is at most

˛ � Pg Œ�.XBn
R
/ 2 Un for n D k C 2l; : : : ; k Cml jCk ^ ¹�.X

B
kCl
R

/ 2 UkClº�:
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Conditioning on the position of the random walk on G immediately after the

projected walk on Z has left the set Œk; kC l � 1� for the last time before reaching

R, this is at most

˛
Z

N
; (10.15)

where

Z WD
X

yW�.y/2UkCl

PyŒ�.XBn
R
/ 2 Un for n D k C 2l; : : : ; k Cml jCkCl �

Pg ŒXBkCl
R

D y jCk�;

N WD Pg Œ�.XBkCl
R

/ 2 UkCl jCk�:

Note that if PyŒCkCl � D 0 then Pg ŒXBkCl
R

D y� D 0, so elements y for which

PyŒ�.XBn
R
/ 2 Un for n D k C 2l; : : : ; k Cml jCkCl � is not de�ned do not appear

in the sum in the numerator of (10.15), and so that sum is well de�ned. This means,

moreover, that given X0 D g, for every possible value y of X
B

kCl
R

the �rst factor

of the summand of (10.15) is at most ˛m�1 by induction, and so (10.15), and hence

the left-hand side of (10.14), is at most ˛m, as required. �

De�ne MR D min¹�.Xt /W t � TC
R º, so that MR is the minimum point hit by

�.Xt / before it �rst exceeds R.

Lemma 10.11. Let n 2 N; let l and ˛ be as given by Lemma 10.8; let m be such

that �.mC 1/l < �n � �ml ; and let R > l . Then either Pg ŒMR D �n� D 0 or

Pg Œ�.XTC
R

/ 2 U0 jMR D �n� � ˛m.

Proof. We may assume that Pg ŒMR D �n� ¤ 0, and hence in particular that

Pg ŒC�n� ¤ 0, and so Pg Œ�.XTC
R

/ 2 U0 jMR D �n� is well de�ned and equal to

X

y2G

Pg Œ¹ T¹b2GW�.b/D�nº < T
C
R and XT¹b2GW�.b/D�nº

D y º jC�n�

PyŒ�.XTC
R

/ 2 U0 jC�n�;

which is at most

X

y2GW�.y/D�n

Pg ŒXT¹b2GW�.b/D�nº
D y j¹ T¹b2GW�.b/D�nº < T

C
R and C�nº�

PyŒ�.XTC
R

/ 2 U0 jC�n�:

(10.16)
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If PyŒC�n� D 0 then

Pg ŒXT¹b2GW�.b/D�nº
D y j ¹ T¹b2GW�.b/D�nº < T

C
R and C�nº� D 0;

and so elements y for which

PyŒ�.XTC
R

/ 2 U0 jC�n� (10.17)

is not de�ned do not appear in the sum (10.16) and that sum is well de�ned. The

sum (10.16) is, moreover, the expectation of the quantity (10.17) with respect to

some probability measure on the set ¹y 2 GW �.y/ D �nº. However, for each y in

that set for which the quantity (10.17) is de�ned, the quantity (10.17) is at most ˛m

by Lemma 10.10, and so (10.16) is at most ˛m and the lemma is proved. �

De�ne a real-valued function hR on the subset KŒ�R;R�T of G by hR.g/ D

Pg ŒT
C
R < T �

�R and �.X
T

C
R

/ 2 U0�.

Lemma 10.12. The function hR satis�es the following properties.

(i) The function hR is positive and harmonic on the interior of KŒ�R;R�T .

(ii) For every g 2 .KŒ�R;R�T /ı we have hR.g/ � j�.g/j=R.

(iii) If �.g/ � 0 and �.g/ … U0 then hR.g/ � 1=R.

(iv) If �.g/ � 0 and �.g/ 2 U0 then hR.g/ � �.g/=R.

Proof. The positivity and harmonicity of hR are clear, so we prove properties (ii),

(iii), and (iv). We may rewrite hR.g/ by conditioning on MR as follows:

hR.g/ D
�

R
X

nD0

Pg ŒMR D �n� � Pg Œ�.XTC
R

/ 2 U0 jMR D �n�
�

C Pg ŒMR > 0� � Pg Œ�.XTC
R

/ 2 U0 jMR > 0�:

(10.18)

Let us examine these probabilities in turn, starting with Pg ŒMR D �n�. This

corresponds to the event that �.Xt / hits �n before reaching or exceeding R, but

then reaches or exceeds R before dropping below �n. In particular,

Pg ŒMR D �n� � P .g/Œ xT
�
�n <

xTC
R � � max

t2T
P.�n/ .t/Œ xT

C
R < xT �

�.nC1/�: (10.19)

Applying Lemma 9.1, for each n � 0 we have

P .g/Œ xT
�
�n <

xTC
R � D

R � �.g/

RC nCO.1/
CO

� 1

R

�

(10.20)

and

max
t2T

P.�n/ .t/Œ xT
C
R < xT �

�.nC1/� D
1

RC nCO.1/
CO

� 1

R

�

: (10.21)
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If �.g/ � 0 then of course Pg ŒMR > 0� D 0; another application of Lemma 9.1

implies that more generally we have

Pg ŒMR > 0� D

8

ˆ

<

ˆ

:

�.g/

RCO.1/
CO

� 1

R

�

if �.g/ > 0;

0 if �.g/ � 0:

(10.22)

We now consider

Pg Œ�.XTC
R

/ 2 U0 jMR D �n�

when n 2 N and

Pg ŒMR D �n� ¤ 0:

Let l and ˛ be as given by Lemma 10.8, noting in particular that ˛ < 1, and let m

be such that �.mC 1/l < �n � �ml . Lemma 10.11 then implies that

Pg Œ�.XTC
R

/ 2 U0 jMR D �n� � ˛m: (10.23)

Finally, the condition that MR > 0 implies that �.Xt / does not drop below zero

until after time TC
R , which by Lemma 10.6 means that �.Xt / is in the same left

coset of U0 as �.g/ for every t � TC
R . We therefore have

Pg Œ�.XTC
R

/ 2 U0 jMR > 0� D

´

1 if �.g/ 2 U0;

0 otherwise:
(10.24)

Properties (ii), (iii) and (iv) then follow from (10.18), (10.19), (10.20), (10.21),

(10.22), (10.23) and (10.24) and the fact that ˛ < 1. �

Proof of Proposition 10.2. Property (ii) of Lemma 10.12 implies that R � hR.g/ D

O.j�.g/j/, so for each g there is a convergent subsequence ofR �hR.g/ asR ! 1.

Since G is countable, a simple diagonal argument therefore gives a subsequence

of R � hR that converges pointwise to a function hWG ! R, which grows at

most linearly in jgj by the bound from Lemma 10.12 (ii). The limit function h

is harmonic by property (i) of Lemma 10.12, and does not factor through G=K by

properties (iii) and (iv). �

11. Groups with �nite-dimensional spaces of harmonic functions

In this section we prove Theorem 1.1. The group G in Theorem 1.1 acts on the

spaceH of harmonic functions on .G; �/ via the linear transformations g �f .x/ D

f .g�1x/. This action de�nes a homomorphism G ! GL.H/, which we denote

by  WG ! GL.H/ throughout this section.
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Lemma 11.1. A function hWG ! R is harmonic with respect to � if, and only if,

there is some function NhW .G/ ! R, harmonic with respect to  .�/, such that

h D Nh ı  . Moreover, h 2 H k.G; �/ if and only if Nh 2 H k. .G/;  .�//.

Proof. If hWG ! R is harmonic and k 2 ker then h.kg/ D h.g/ for every g,

so there exists NhW .G/ ! R such that h D Nh ı  . It is easy to see that Nh exhibits

polynomial growth of degree at most k if and only if h does, so the desired result

then follows from Lemma 2.1. �

Proof of Theorem 1.1. Suppose �rst that G has a �nite-index in�nite nilpotent

subgroup N of rank d 2 N (the rank is de�ned in [20], for example, and

is equal to 1 if and only if N is virtually cyclic). It follows from [20] that

dimH k.G; �/ �d k
d�1, which implies one direction of the theorem, the other

direction being Proposition 7.1.

Now suppose that G is not virtually nilpotent. If the space of harmonic

functions is �nite dimensional then may be viewed as a homomorphism WG !

GLn.R/. By Lemma 11.1, the space of harmonic functions on . .G/;  .�// is

�nite dimensional, and so, by Corollary 8.4,  .G/ is virtually nilpotent. It is

therefore virtually cyclic by the virtually nilpotent case of the theorem.

If .G/ is �nite then, by the maximum principle (Lemma 2.2) and Lemma 11.1,

every harmonic function on .G; �/ is constant, contradicting Corollary 6.4. Thus

 .G/ is in�nite. If ker is not �nitely generated, Proposition 10.2 therefore gives

a harmonic function on .G; �/ that does not factor throughG= ker . On the other

hand, since Proposition 2.12 implies that the random walk on .G; �/ is transient,

if ker is �nitely generated and in�nite then Proposition 6.1 gives a harmonic

function that is not constant on ker . In either case this contradicts Lemma 11.1,

and so ker must in fact be �nite. Since  .G/ is virtually cyclic, it follows that

G is itself virtually cyclic, and the theorem holds. �

Proof of Corollary 1.2. If G is not amenable then the space of bounded harmonic

functions is in�nite dimensional [16]. If G is virtually nilpotent then the result

follows from the same argument as for Theorem 1.1. Osin [21, Proposition 3.1]

has shown that if G is elementary amenable and not virtually nilpotent then it

has a normal subgroup H such that G=H is virtually polycyclic, and virtually

nilpotent only ifH is not �nitely generated. If G=H is not virtually nilpotent then

the quotient has an in�nite dimensional space of harmonic functions of linear

growth [19], and so the corollary follows from Lemma 11.1. If G=H is virtually

nilpotent and not virtually cyclic then the corollary follows from Lemma 11.1 and

the virtually nilpotent case. Finally, if G=H is virtually cyclic then the corollary

follows from Proposition 10.2 (see Remark 10.3). �

Remarks 11.2. Meyerovitch and Yadin’s result [19] could also be used in place of

Corollary 8.4 in the proof of Theorem 1.1.
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It is conjectured that if G is any non-virtually nilpotent group with a symmet-

ric, �nitely supported generating probability measure � then dimH 1.G; �/D1,

see [19]. A veri�cation of this conjecture would immediately reduce both The-

orem 1.1 and Conjecture 1.3 to the virtually nilpotent case, which, in each case,

follows from the results of [20] as described above.

Apprendix A. Further applications of our Garden of Eden theorem

In this appendix we use Theorem 1.9 to recover Theorem 1.8 and to reformulate a

conjecture of I. Kaplansky.

The Ceccherini-Silberstein–Coornaert Garden of Eden theorem. Theorem 1.8

follows immediately from Theorem 1.9 and the following result.

Proposition A.1. Let V be a �nite-dimensional vector space and let � WV G ! V G

be a linear cellular automaton with memory set M over an amenable group G.

Then � is pre-injective if and only if � 0 is pre-injective.

Remark A.2. As we noted at the start of the proof of Theorem 1.9, a locally

speci�able map on a locally �nite graph is pre-injective if and only if it is pre-

injective on every connected component; in proving Proposition A.1 we may

therefore assume that G is generated by M , and hence that G is countable.

From now on in this appendix, G is a �xed countable amenable group and V

is a �xed �nite-dimensional vector space.

In proving Theorem 1.8, Ceccherini-Silberstein and Coornaert make use of the

notion of mean dimension, the use of which in connection to Theorem 1.8 appears

to have been �rst suggested by Gromov [14, §8.J].

Let X be a subspace of V G . Given a subset� of G and an element f of V G ,

denote by f� the function that agrees with f on the subset� and takes the value 0

elsewhere, and denote by X� the subspace of V G de�ned by X� D ¹f�W f 2 Xº.

Since G is countable and amenable, it admits a Følner sequence, which is to say a

sequence .�n/n2N of subsets ofG with the property that for every g 2 G we have
j�n 4�ngj

j�nj
! 0 as n ! 1 [10]. This implies in particular that

j@C�nj

j�nj
�! 0: (A.1)

The mean dimension of X with respect to .�n/n2N is then denoted mdim X , and

de�ned by mdim X D lim infn!1
dimX�n

j�nj
.
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For the remainder of this appendix, .�n/n2N is a �xed Følner sequence in

G, and the mean dimension of a subspace X of V G is always computed with

respect to .�n/n2N. We de�ne the neighbourhood �C of a subset � � G to be

its neighbourhood in the Cayley graph .G;M/.

Ceccherini-Silberstein and Coornaert [5] originally obtained Theorem 1.8 in

the case of a countable amenable group as an immediate consequence of the

following more precise statement.

Proposition A.3 (Ceccherini-Silberstein and Coornaert [5, Theorem 4.10]). Let

� WV G ! V G be a linear cellular automaton. Then the following statements are

equivalent:

(1) � is surjective;

(2) � is pre-injective;

(3) mdim �.V G/ D dimV .

The key observation that allows us to prove Proposition A.1 is that the mean

dimension of � is equal to that of its transpose � 0.

Proposition A.4. Let � WV G ! V G be a locally speci�able linear map, with local

speci�ability de�ned in terms of the Cayley graph .G;M/. Then mdim � 0.V G/ D

mdim �.V G/.

In proving Proposition A.4, we make use of the following straightforward

lemma.

Lemma A.5. Let X be a subspace of V G . Then dimX
�

C
n

D dimX�n
C o.j�nj/.

Proof. We have X
�

C
n

� X�n
˚ V G

@C�n
, and so

dimX
�

C
n

� dimX�n C dimV G
@C�n

D dimX�n C j@C�nj dimV;

and the desired result follows from (A.1). �

Given a locally speci�able linear map � WV G ! V G and �nite subsets

A;B � G, we denote by �AB the jBj � jAj matrix formed by taking the rows of �

corresponding to elements of B and the columns of � corresponding to elements

of A.

Proof of Proposition A.4. Note that dim �.V G/�n
D dim �.V G

�
C
n

/�n
and

dim � 0.V G/�n D dim � 0.V G
�

C
n

/�n ;
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which, by Lemma A.5, implies that

dim �.V G/�n � dim � 0.V G/�n D dim �.V G
�

C
n

/
�

C
n

� dim � 0.V G
�

C
n

/
�

C
n

C o.j�nj/:

(A.2)

However, �.V G
�

C
n

/
�

C
n

is isomorphic to the image of �
�

C
n

�
C
n

, and � 0.V G
�

C
n

/
�

C
n

is iso-

morphic to the image of .� 0/
�

C
n

�
C
n

. Since �
�

C
n

�
C
n

and .� 0/
�

C
n

�
C
n

are �nite and transposes

of one another, this implies that dim �.V G
�

C
n

/
�

C
n

D dim � 0.V G
�

C
n

/
�

C
n

, and so (A.2)

implies that dim �.V G/�n � dim � 0.V G/�n D o.j�nj/. The desired result then

follows immediately from the de�nition of mean dimension. �

Proof of Proposition A.1. By Remark A.2 we may assume that G is generated by

M and, in particular, that G is countable. Proposition A.1 then follows directly

from Lemma A.4 and the equivalence (2) , (3) of Proposition A.3. The equiva-

lence (2) , (3) of Proposition A.3 follows from [5, Lemmas 4.8 & 4.9]. �

Remark A.6. It would be stretching reality somewhat to claim that this repre-

sented a new proof of Theorem 1.8, since there is considerable overlap between

our proof of Proposition A.1 and Ceccherini-Silberstein and Coornaert’s original

proof of Theorem 1.8. However, arranging the proof in this way probably shortens

the proof slightly, and perhaps makes clearer the role of amenability; note, in par-

ticular, that it is only in using the mean-dimension to convert a statement about � 0

to a statement about � that we use the amenability of G.

Kaplansky’s stable-�niteness conjecture. A group G is called linear sur-

junctive if every injective linear cellular automaton is surjective. Since injec-

tivity is stronger than pre-injectivity, Theorem 1.8 immediately implies that an

amenable group is linear surjunctive. Ceccherini-Silberstein and Coornaert [8,

Theorem 8.14.4] have shown, more generally, that every so�c group is linear sur-

junctive. They also note that linear surjunctivity of a group G is related to a cer-

tain condition on group algebras, called stable �niteness, as follows. We refer the

reader to [8, §8] for a de�nition of stable �niteness, and for further background.

Proposition A.7 ([8, Corollary 8.15.6]). Let G be a group and let K be a �eld.

Then the following conditions are equivalent.

(1) For every �nite-dimensional vector space V over K, every injective linear

cellular automaton � WV G ! V G is surjective.

(2) The group algebra KŒG� is stably �nite.

In particular, if G is a so�c group and K is a �eld then the group algebra KŒG�

is stably �nite. It is natural to ask whether this holds for more general groups;

Ceccherini-Silberstein and Coornaert [8, p. 418, (OP-15)] attribute this question to

Kaplansky.
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Question A.8 (Kaplansky). Do either, and hence both, of the following equivalent

statements hold?

(1) For any group G and �eld K the group algebra KŒG� is stably �nite.

(2) Every group is linear surjunctive.

By Theorem 1.9 this question can be reformulated as follows.

Corollary A.9. Statements (1) and (2) of Question A.8 are equivalent to the

following statement.

(3) If � is an injective linear cellular automaton over an arbitrary group then its

transpose � 0 is pre-injective.
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