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the group G is virtually compact special (in the sense of Haglund and Wise) or when G is

isomorphic to the fundamental group of some compact 3-manifold.
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an acylindrically hyperbolic group G, we show that any commensurating endomorphism

of G is inner modulo a small perturbation. This generalizes a theorem of Minasyan and
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1. Introduction

A group G is said to be residually �nite if for any distinct x; y 2 G there is a
�nite group Q and a homomorphism  WG ! Q such that  .x/ ¤  .y/ in Q.
Informally speaking this means thatG can be approximated by its �nite quotients,
in which case these quotients can be used to study the group G. For example, two
classical theorems of Mal’cev state that �nitely presented residually �nite groups
have solvable word problem [32], and �nitely generated residually �nite groups
are Hop�an [33]. Thus residual �niteness is a very basic property, so given any
in�nite group G, one of the �rst questions we could ask about G is whether it is
residually �nite.

The goal of this work is to prove residual �niteness of the outer automorphism
group Out.G/ D Aut.G/= Inn.G/, where G belongs to one of the following large
classes of groups:

� the class of virtually compact special groups (in the sense of F. Haglund and
D. Wise [23]),

� the class of fundamental groups of compact 3-manifolds.

Before formulating the main results, let us recall some background of the prob-
lem. A well-known theorem of G. Baumslag [8] asserts that for a �nitely gener-
ated residually �nite group G its group of automorphisms, Aut.G/, is also resid-
ually �nite. In [40] the second author and Osin showed that in the case when
G has in�nitely many ends, the same assumptions on G (�nite generation and
residual �niteness) also imply that the group of outer automorphisms Out.G/ is
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residually �nite. However, this ‘outer’ version of Baumslag’s result may not hold if
G is 1-ended. Indeed, Bumagin and Wise [12] proved that for any �nitely presented
group S there is a �nitely generated residually �nite (1-ended) group G such that
Out.G/ Š S .

A classical criterion for establishing residual �niteness of outer automorphism
groups was discovered by Grossman [21]. This criterion imposes stronger assump-
tions on the group: G must be conjugacy separable and any pointwise inner au-
tomorphism of G must be inner. Recall that a group is conjugacy separable if for
any pair of non-conjugate elements x; y 2 G there exists a �nite quotientQ, ofG,
in which the images of x; y are non-conjugate. An automorphism ˛ 2 Aut.G/ is
said to be pointwise inner if ˛.g/ is conjugate to g for each g 2 G. The set of all
pointwise inner automorphism, Autpi.G/, forms a normal subgroup of Aut.G/.

In [21] Grossman proved the following theorem: if G is a �nitely generated
conjugacy separable group such that Autpi.G/ D Inn.G/ then Out.G/ is residually
�nite. Unfortunately, it is usually hard to show that a given group is conjugacy
separable, as it is a much more delicate condition than residual �niteness (for
example conjugacy separability may not pass to subgroups or overgroups of �nite
index – see [35, 20]).

One class of groups for which conjugacy separability is known is the class
VR consisting of virtual retracts of �nitely generated right angled Artin groups
– see [38]. Let AVR denote the class of groups which contain a �nite index
subgroup from the class VR. The signi�cance of the class AVR can be seen from
the work of Haglund and Wise [23], who proved that every virtually compact
special group belongs to this class (recall that a group G is said to be virtually

compact special if G contains a �nite index subgroup which is the fundamental
group of a compact special cube complex in the sense of [23]). The list of virtually
compact special groups is quite large and includes most Coxeter groups, 1-relator
groups with torsion and �nitely generated fully residually free (limit) groups – see
[24, 51]. Therefore the following theorem covers a wide range of groups:

Theorem 1.1. For any group G 2 AVR the group Out.G/ is residually �nite.

As discussed above, Theorem 1.1 together with results from [23] yields

Corollary 1.2. If G is virtually compact special then Out.G/ is residually �nite.

It is worth mentioning that residual �niteness of Out.G/, when G is itself a
�nitely generated right angled Artin group, was proved by the second author in
[38] and, independently, by Charney and Vogtmann in [16]. On the other hand,
there exist �nitely generated groupsH such thatH is a subgroup of some �nitely
generated right angled Artin group and Out.H/ is not residually �nite. Such
examples can be easily found using the modi�cation of the Rips’s construction
proposed by Haglund and Wise in [23].
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It is easy to produce examples of groups from AVR which possess pointwise
inner automorphisms that are not inner (one can simply take the direct product of
the free group of rank 2 with a �nite group M for which Autpi.M/ ¤ Inn.M/;
see [13] for a construction of such �nite groups). Also, it is unknown whether all
groups from AVR are conjugacy separable, thus to prove Theorem 1.1 one cannot
simply apply Grossman’s criterion, and a more elaborate approach is required.

The original application of Grossman’s criterion was the proof that Out.�1.†//

is residually �nite for any compact orientable surface † (see [21]). Our second
theorem extends this result to Out.�1.M//, where M is a compact 3-manifold:

Theorem 1.3. LetG be a group containing a �nite index subgroup that is isomor-

phic to the fundamental group of some compact 3-manifold M. Then Out.G/ is

residually �nite.

For fundamental groups of Seifert �bered 3-manifolds (with two exceptions),
the residual �niteness of outer automorphism groups was proved by Allenby,
Kim and Tang [2, 3]. Evidently, Theorem 1.3 cannot be further generalized to
4-dimensional manifolds, as it is well-known that for any �nitely presented group
G there is a closed 4-manifold M such that G Š �1.M/.

It is well-known that, for a manifold M, the group Out.�1.M// is closely
related to the mapping class group (i.e., the group of isotopy classes of self-
homeomorphisms) H.M/ of M. For example, Waldhausen [49] proved that if
M is an irreducible orientable Haken 3-manifold with incompressible boundary
such that M is not a line bundle, then H.M/ embeds into Out.�1.M//. A sim-
ilar statement when M is non-orientable (but still Haken and P

2-irreducible)
was proved in [27]. If M is not irreducible then the natural homomorphism
H.M/ ! Out.�1.M// will not, in general, be injective – see [36].

Thus Theorem 1.3 yields

Corollary 1.4. Suppose that M is a compact irreducible orientable Haken 3-man-

ifold with incompressible boundary that is not a line bundle. Then the mapping

class group H.M/ is residually �nite.

Thanks to a recent result of Hamilton, Wilton and Zalesskii [26], stating
that the fundamental group of any orientable compact 3-manifold is conjugacy
separable, we can prove Theorem 1.3 using an approach which is similar to the
one employed in Theorem 1.1. Namely, in both theorems we use the techniques
from geometric group theory, of groups acting on hyperbolic spaces, to prove a
strong version of the fact that pointwise inner automorphisms are inner, which
constitutes the second ingredient of Grossman’s criterion.

1.1. Details of the proof. Let us now discuss how the two theorems above are
proved in more detail.
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A group G is called acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic metric space – see Subsection 2.5. This de�-
nition was originally proposed by D. Osin in [42], where he proved that the class
of such groups coincides with other large classes, previously studied by Bestv-
ina and Fujiwara [9], Dahmani, Guirardel and Osin [17], Hamenstädt [25] and the
third author [47]. The class of acylindrically hyperbolic groups is rather extensive:
it includes all non-elementary relatively hyperbolic groups, non-(virtually cyclic)
groups acting properly on proper CAT(0)-spaces with at least one rank 1-element
(see [42]), mapping class groups of compact surfaces of genus at least 1, outer au-
tomorphism groups of free groups of rank at least 2 (see [17]), many groups acting
on simplicial trees (see [39]), etc. In [39] the second author and Osin proved that
for any compact irreducible 3-manifold M, �1.M/ is either acylindrically hyper-
bolic or virtually polycyclic, or M is Seifert �bered.

Two elements g; h of a group G are said to be commensurable if there are
z 2 G and n;m 2 Z n ¹0º such that gn D zhmz�1 in G. In this we case we will

write g
G
� h. Otherwise, if g and h are non-commensurable, we will write g

G

6� h.
Note that commensurability is an equivalence relation on the set of elements of
G. Given a subgroup H of a group G and a homomorphism 'WH ! G, we will

say that ' is commensurating if h
G
� '.h/ for all h 2 H .

Commensurating homomorphisms were introduced and studied by the second
author and Osin in the context of relatively hyperbolic groups in [40]. To prove
Theorems 1.1 and 1.3 we study such homomorphisms for an acylindrically hyper-
bolic group G. Our main technical result (Theorem 7.1 in Section 7), generalizing
the work from [40], states that if H is a su�ciently large subgroup of G, then
every commensurating homomorphism H ! G is induced by an inner automor-
phism of G modulo a small perturbation (which disappears when one restricts to
some �nite index subgroup ofH ). In Theorem 7.5 we apply this result to the case
when H D G to obtain a characterization of commensurating endomorphisms of
an acylindrically hyperbolic group. In particular, we get the following

Corollary 1.5. For any acylindrically hyperbolic groupG, Inn.G/ has �nite index

in Autpi.G/. Moreover, if G has no non-trivial �nite normal subgroups then

Autpi.G/ D Inn.G/.

Sections 3–6 of the paper develop the theory of acylindrically hyperbolic
groups, which is necessary to prove the main technical theorem. In particular, in
Section 3 we investigate the necessary and su�cient conditions for adding a sub-
group to an existing family of hyperbolically embedded subgroups, generalizing
Osin’s work from [43] (this has also been independently done by M. Hull [29]).
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The proof of Theorem 1.1 uses the following quite general statement:

Theorem 1.6. Let H be a non-abelian subgroup of a �nitely generated right

angled Artin group. Then every commensurating endomorphism 'WH ! H is

an inner automorphism of H .

While Theorem 1.6 employs the characterization of commensurating endomor-
phisms of acylindrically hyperbolic groups from Theorem 7.5, it is not a straight-
forward consequence of it, as not all subgroups of right angled Artin groups are
acylindrically hyperbolic. The proof of Theorem 1.6 occupies Section 9.

The �nal ingredient in the proofs of Theorems 1.1 and 1.3 is a new criterion
for residual �niteness of outer automorphism groups – see Proposition 10.6 in
Section 10. This criterion could be of independent interest: for example, it
gives a short proof of the fact that Out.�1.M// is residually �nite for any Seifert
�bered space M, which was conjectured by Allenby, Kim and Tang in [3] – see
Lemma 12.1.

The last application of Theorem 7.5 that we discuss here concerns normal
endomorphisms. We will say that an endomorphism 'WG ! G is normal if
'.N/ � N for every normal subgroup N C G. Normal automorphisms (with
a slightly more restrictive de�nition requiring that '.N/ D N for all N C G)
have been studied by several authors before. For instance, Lubotzky [31] showed
that all normal automorphisms of free groups are inner. A similar statement was
proved for non-trivial free products [41] and non-elementary relatively hyperbolic
groups with trivial �nite radical [40]; see [40] for more results and references.

It is known that every acylindrically hyperbolic group G contains a unique
maximal �nite normal subgroup (see [17, Theorem 2.24] or Lemma 5.6 below).
This subgroup, sometimes called the �nite radical ofG, will be denoted byEG.G/

(K.G/ is the notation used in [17]), in line with Lemma 5.6 below. Combining The-
orem 7.5 with the theory of Dehn �llings for hyperbolically embedded subgroups,
developed by Dahmani, Guirardel and Osin in [17] we show that almost all normal
endomorphisms of acylindrically hyperbolic groups are commensurating, and so
their structure is described by Theorem 7.5.

Theorem 1.7. Let G be an acylindrically hyperbolic group and let 'WG ! G be

a normal endomorphism. Then either '.G/ � EG.G/ or ' is commensurating.

In particular, if EG.G/ D ¹1º and '.G/ ¤ ¹1º then ' is an inner automorphism

of G.

Acknowledgements. The authors would like to thank Denis Osin for helpful
discussions. We are also grateful to Henry Wilton for suggesting and discussing
the applications of the main result to 3-manifold groups.
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2. Preliminaries

2.1. Notation. In this subsection we �x the notation and recall some basic con-
cepts that will be used throughout the paper.

Let .S; d/ be a metric space. Given a subset A � S and " > 0, we denote by
N".A/ the closed "-neighborhood of A, i.e.,

N".A/ D ¹x 2 S j d.x; A/ � "º:

Similarly, we denote by B.x; "/ D ¹s 2 S j d.x; s/ � "º, the closed ball of center
x 2 S and radius ".

Recall that for A;B � S, the Hausdor� distance is given by

dHau.A; B/ :D max

²

sup
a2A

inf
b2B

d.a; b/; sup
b2B

inf
a2A

d.a; b/

³

:

An isometric action of a group G on .S; d/ is metrically proper if for any
bounded subset B � S, the set ¹g 2 G j B \ g ı B ¤ ;º is �nite.

Recall that a path in S is a continuous function pW Œ0; 1� ! S, and the length

of p is

`.p/ D sup
0Dt0�t1�����tnD1

n�1
X

iD0

d.p.ti/; p.tiC1//:

The path p is recti�able if `.p/ is �nite. We denote by p� and pC the initial and
the �nal points of p.

The metric d is a length metric if for every x; y 2 S,

d.x; y/ D inf¹`.p/ j p a recti�able path from x to yº:

If the metric d is a length metric, .S; d/ is called a length space. If the in�num
above is always realized (i.e., for any x; y 2 S there is a recti�able path p with
`.p/ D d.x; y/), then .S; d/ is said to be a geodesic metric space.

Let G be a group. Suppose that X is a set equipped with a map � WX ! G.
We will say that G generated by X if G D h�.X/i. The set X will be called
symmetric if �.X/ D �.X/�1 in G. In this case one can de�ne the Cayley graph

�.G;X; �/, ofG with respect to X and � , as the graph with vertex setG and edge
set G � X , where the initial vertex of .g; x/ is g and the �nal vertex is g�.x/.
Note that this de�nition allows the Cayley graph to have multiple edges joining
two vertices. When the map � is clear we will abuse the notation and simply
write �.G;X/ instead of �.G;X; �/. Given a word U over X , kU k will denote
the length of U . For any other word V overX , we will write U � V to denote the
graphical (letter-by-letter) equality between words U and V .
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IfX generatesG and g 2 G then jgjX will denote the length of a shortest word
over X representing g in G. We will denote by dX the graph metric on �.G;X/,
that is dX is the metric of the geometric realization of the graph where all the edges
are isometric to the unit interval. Thus if g; h 2 G then dX.g; h/ D jg�1hjX .

In the context of graphs, we will consider combinatorial paths. A combina-

torial path in �.G;X/ is a formal sequence p D e1; : : : ; en where e1; : : : ; en are
edges and the initial vertex of ei is the terminal vertex of ei�1, i D 2; : : : ; n.
In this case, the length `.p/ of p is n; p�1 will be the path, inverse to p

(i.e., p�1 D e�1
n ; : : : ; e�1

1 , where e�1
j is the the edge inverse to ej ). Furthermore,

p� and pC will denote the initial and the terminal vertices of p respectively. If p
is a combinatorial path in a labelled directed graph (e.g., a Cayley graph), we will
use Lab.p/ to denote its label.

Given a subgroupH of a group G and a subset E � G,

CH .E/ WD ¹h 2 H j he D eh; for all e 2 Eº

will denote the centralizer of E in H , and

NG.H/ WD ¹g 2 G j gHg�1 D H º

will denote the normalizer of H in G. We will also use hhEiiG
C G to denote the

normal closure of E in G.

2.2. Hyperbolic spaces. A geodesic metric space .S; d/ is called ı-hyperbolic if
for any geodesic triangle, every side of the triangle is contained in the ı-neighbor-
hood of the union of the other two sides. A metric space is said to be hyperbolic

if it is geodesic and ı-hyperbolic for some ı � 0.
A subset A of S is �-quasi-convex, for some � � 0, if for every geodesic path

p in S with p�; pC 2 A, one has p � N� .A/. A set is quasi-convex if it is
�-quasi-convex for some � � 0.

The following observation is an easy exercise on the de�nitions:

Remark 2.1. Suppose that Q is a subgroup of a group G acting by isometries
on some ı-hyperbolic space .S; d/. If the orbit Q ı s is �-quasi-convex for some
s 2 S and � � 0 then for any s0 2 S the orbit Q ı s0 is � 0-quasi-convex, where
� 0 WD 2ı C 2d.s; s0/C � .

If .T; e/ is another metric space, then a map f WT ! S is a quasi-isometric

embedding if there exist � � 1 and c � 0 such that

1

�
e.x; y/ � c � d.f .x/; f .y// � �e.x; y/C c for all x; y 2 T:

If the quasi-isometric embedding f is quasi-surjective, i.e., S D N".f .T// for
some " � 0, then f is said to be a quasi-isometry. The spaces .T; e/ and .S; d/ are
quasi-isometric if there exists a quasi-isometry f WT ! S.



Commensurating endomorphisms of acylindrically hyperbolic groups 1157

We will say that a path p in .S; d/ is a .�; c/-quasi-geodesic for some � � 1,
c � 0 if for any subpath q of p we have

`.q/ � �d.q�; qC/C c;

where `.q/ is the length of q and q�, qC are the initial and terminal points of q
respectively.

We now collect a series of well known facts about quasi-geodesic paths in
hyperbolic spaces.

Lemma 2.2 ([11, III.H.1.7]). For any ı � 0, � � 1, c � 0, there exists

a constant ~ D ~.ı; �; c/ � 0 such that in a ı-hyperbolic space any two

.�; c/-quasi-geodesics with the same endpoints belong to the closed ~-neighbor-

hoods of each other.

Two paths p; q in a metric space .S; d/ are called k-connected, if

max¹d.p�; q�/; d.pC; qC/º � k:

The paths p and q are k-close for some k > 0 if p is k-connected with either q
or q�1.

The next lemma is a simpli�cation of Lemma 25 from [45]. Basically it says
that if some sides of a geodesic polygon are much longer than the rest, then there
is a pair of the long sides having su�ciently long subsegments which travel close
to each other.

Lemma 2.3. Let P be a geodesic n-gon in a ı-hyperbolic space whose sides

p1; : : : ; pn are divided into two subsets S , T . Denote the total length of all sides

from S by � and the total length of all sides from T by �, and assume that

� � max¹103an; 103�º for some a � 30ı. Then there are two distinct sides

pi ; pj 2 S , and 13ı-close subsegments u and v of pi and pj , respectively, such

that min¹`.u/; `.v/º > a.

For our purposes we need the following version of the Švarc-Milnor Lemma.

Lemma 2.4 (The Švarc-Milnor Lemma). Let .S; d/ be a length space. Suppose

that a group G acts by isometries on S and the action is cobounded. Then there

exists a symmetric generating setX ofG such that for any s 2 S, the map g 7! gıs

is a quasi-isometry from .G; dX/ to .S; d/.
Moreover if the action is metrically proper then X can be chosen to be �nite.

Proof. This is proved in [11, I.8.19] with the assumption that the action is metrically
proper, which is only used to conclude that X is �nite. �
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Lemma 2.5. If G acts by isometries on a hyperbolic space .S; d/, s 2 S and

Q 6 G then the following are equivalent:

(1) the orbitQı s is quasi-convex and the induced action ofQ on S is metrically

proper;

(2) Q is generated by a �nite set of elements Y and there exist � � 1; c � 0 s.t.

jgjY � �d.s; g ı s/C c for all g 2 Q:

Proof. Assume (1). Let s 2 S be such that Q ı s is �-quasi-convex for some
� � 0. Let dQ be the induced length metric on N� .Q ı s/, i.e., dQ.x; y/ is the
in�mum of the lengths of all the paths from x to y contained in N� .Q ı s/. Since
Q ı s is �-quasi-convex in S, the inclusion map .N� .Q ı s/; dQ/ ! .S; d/ is a
quasi-isometric embedding.

Note that the action of Q on N� .Q ı s/ is metrically proper, by isometries
and cobounded. Hence Švarc-Milnor lemma (Lemma 2.4) implies the existence
of some �nite generating set Y of Q such that .N�.Q ı s/; dQ/ and .Q; dY / are
quasi-isometric. Since the natural inclusion of .Q ı s; dQ/ into .S; d/ is a quasi-
isometric embedding, there exist� � 1 and c � 0 such that jgjY � �d.s; gıs/Cc
for all g 2 Q, implying that (2) holds.

Now, assume (2). For every R > 0 we have j.Q ı s/ \ B.s; R/j < 1, so that
the induced action of Q on S is metrically proper.

To prove that the orbit Q ı s is �-quasi-convex, for some � � 0, take any
geodesic path p in S with endpoints in Q ı s. We are going to show that
p � N� .Q ı s/, where � will be determined later. Since Q is a group acting
by isometries on S, without loss of generality we can assume that p� D s.

De�ne m WD max¹d.s; y ı s/ j y 2 Y º and choose g 2 Q with g ı s D pC.
Suppose that y1y2 : : : yn is a shortest word in Y ˙1 representing g. Let q be the path
obtained by concatenating the geodesic segments Œ.y1 � � �yi / ı s; .y1 � � �yiC1/ ı s�
of length at mostm, for i D 0; : : : ; n�1. Then q� D s D p� and qC D gıs D pC.

We are now going to show that q is a quasi-geodesic.
Consider an arbitrary subpath r of q. By the construction of q, there is

a subpath r 0 of q such that r 0
� D .y1 � � �yi / ı s, r 0

C.y1 � � �yj / ı s, for some
0 � i � j � n, dS.r�; r

0
�/ � m=2, dS.rC; r

0
C/ � m=2 and `.r/ � `.r 0/ C m.

Then we have

`.r/ � `.r 0/Cm � m.j � i/Cm D mjyiC1 � � �yj jY Cm:

On the other hand, recalling (2) we get

jyiC1 � � �yj jY � �dS.s; .yiC1 � � �yj / ı s/C c

D �dS..y1 � � �yi / ı s; .y1 � � �yj / ı s/C c

D �dS.r
0
�; r

0
C/C c:
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Combining the two inequalities above with the fact that

dS.r
0
�; r

0
C/ � dS.r�; rC/Cm;

we obtain

`.r/ � m�dS.r
0
�; r

0
C/Cm.c C 1/ � m�dS.r�; rC/Cm.m�C c C 1/:

Thus the path q is .m�;m.m�C c C 1//-quasi-geodesic in S. Let

~ D ~.ı; m�;m.m�C c C 1//

be the constant provided by Lemma 2.2, so that p is lies in the ~-neighborhood of
q. Since q � Nm=2.Q ı s/, we see that p � N� .Q ı s/, where � WD ~Cm=2. �

2.3. Loxodromic WPD elements. Let .S; d/ be a hyperbolic metric space and
let G be a group acting on S by isometries.

De�nition 2.6. An element h 2 G will be called loxodromic (with respect to the
action on S), if for some s 2 S; the map Z ! S, n 7! hn ı s is a quasi-isometric
embedding. By Lemma 2.5, this is equivalent to the requirements that the orbit
hhi ı s is quasi-convex and the induced action of hgi on S is metrically proper.

An element h 2 G enjoys the weak proper discontinuity condition (or h is a
WPD element) if for every " > 0 and any x 2 S, there exists N D N."; x/ such
that

j¹g 2 G j d.x; g ı x/ < "; d.hN ı x; ghN ı x/ < "ºj < 1:

� " � "

ghN ı x

hN ı xx

g ı x

Figure 1. The WPD property requires the existence of �nitely many g’s as in the picture.

WPD elements originally were introduced by Bestvina and Fujiwara in [9].
Further in the text we will use LWPD.G; S/ to denote the set of all elements g 2 G

that are loxodromic WPD with respect to the action of G on S.

Remark 2.7. An element h 2 LWPD.G; S/ if and only if hn 2 LWPD.G; S/ for any
n 2 N.
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To see this, �x some n 2 N. Since dHau.hh
niıy; hhiıy/ is �nite for all y 2 S,

h is loxodromic if and only if hn is loxodromic. On the other hand, assuming that
the element h is loxodromic, [17, Lemma 6.4] shows that h is WPD if and only if
hn is WPD.

It is an easy exercise to prove the following result:

Remark 2.8. Suppose that g; h are conjugate elements of G. If g is loxodromic
WPD then so is h.

Remark 2.7 and 2.8 together imply that if g 2 LWPD.G; S/ and h
G
� g then

h 2 LWPD.G; S/.
Recall that a group is said to be elementary if it contains a cyclic subgroup of

�nite index.

Lemma 2.9. [17, Lemma 6.5, Corollary 6.6] Suppose that S is a hyperbolic space,

G is a group acting on S by isometries and h 2 G a loxodromic WPD element.

Then there is a unique maximal elementary subgroup EG.h/ 6 G that contains

h. Moreover, for every x 2 G the following are equivalent:

(a) x 2 EG.h/;

(b) xhnx�1 D h˙n for some n 2 N;

(c) xhkx�1 D hl for some k; l 2 Z n ¹0º.

Furthermore, set

EC
G .h/ :D ¹x 2 G j there exist k; l 2 N such that xhkx�1 D hlº:

Then EC
G .h/ is a subgroup of index at most 2 in EG.h/, and there exists n 2 N

such that EC
G .h/ D CG.h

n/.

Remark 2.10. If G is an arbitrary group and h 2 G is any element, it is easy to
check that the subset EG.h/ � G, de�ned by

EG.h/ :D ¹x 2 G j xhkx�1 D hl for some k; l 2 Z n ¹0ºº;

is a subgroup of G containing the centralizer CG.h/. Lemma 2.9 above describes
the structure of this subgroup in the case whenG acts on a hyperbolic space S and
h is a loxodromic WPD element.

Remark 2.11. Suppose that g; h 2 G are loxodromic WPD elements for an action
of G on some hyperbolic space S.

� If jEG.g/ \EG.h/j D 1 then gm D hn for some m; n 2 Z n ¹0º.

� If gm D hn for some m; n 2 Z n ¹0º, then EG.g/ D EG.h/.

Indeed, the �rst claim immediately follows from Lemma 2.9, stating that
jEG.g/ W hgi j < 1 and jEG.h/ W hhi j < 1. The second claim can be quickly
derived from part (b) of that lemma.
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2.4. Hyperbolically embedded subgroups. In this subsection we recall some
basic concepts which were originally introduced by Dahmani, Guirardel and Osin
in [17].

Let G be a group and let ¹H�º�2ƒ be a family of subgroups of G.
Suppose that X is a relative generating set of G with respect to ¹H�º�2ƒ

(i.e., G D
˝

X [
S

�2ƒH�

˛

). Note that X could be in�nite; we also assume that it
is symmetric, i.e., X D X�1 in G. Denote

H D
G

�2ƒ

.H� n ¹1º/: (1)

As discussed in Subsection 2.1, the disjoint union X tH can be considered as
a ‘generating alphabet’ forG, even though some letters fromXtH may represent
the same element in G. Let �.G;X t H/ be the corresponding Cayley graph of
G. We also let �� denote the Cayley graphs �.H�; H� n ¹1º/, which we think of
as complete subgraphs of �.G;X tH/. ByE�� we denote the set of edges of ��.

De�nition 2.12 ([17, De�nition 4.2]). For every � 2 ƒ, the relative metric
Od�WH� �H� ! Œ0;1/ t ¹1º is de�ned as follows. For any g; h 2 H�, Od�.g; h/

is the length of a shortest path in �.G;X t H/ nE�� that joins g to h. If there is
no such path, one sets Od�.g; h/ :D 1.

It is easy to see that Od� is an extended metric on H�.

De�nition 2.13 ([17, De�nition 4.25]). The family ¹H�º�2ƒ is hyperbolically

embedded in G with respect to X (notation: ¹H�º�2ƒ ,!h .G;X/), if the Cayley
graph �.G;X t H/ is hyperbolic and the metric space .H�; Od�/ is locally �nite
for every � 2 ƒ.

We will say that ¹H�º�2ƒ is hyperbolically embedded in G (notation:
¹H�º�2ƒ ,!h G) if there exists a (possibly in�nite) relative generating set X ,
of G with respect to ¹H�º�2ƒ, such that ¹H�º�2ƒ ,!h .G;X/.

The concept of hyperbolically embedded subgroups has been introduced by
Dahmani, Guirardel and Osin in [17], where they also give an equivalent de�nition
in terms of relative isoperimetric functions [17, Theorem 4.24] (see also [48,
Theorem 6.4] or Theorem 3.9 below for more equivalent conditions).

De�nition 2.13 immediately implies the following observation (cf. [17, Re-
mark 4.26]):

Remark 2.14. Consider any subset ƒ1 � ƒ and set

ƒ2 WD ƒ nƒ1:

If ¹H�º�2ƒ ,!h .G;X/ then

¹H�º�2ƒ1
,�!h .G;X1/;

where X1 WD X [
S

�2ƒ2
H�.
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The following lemma will be useful:

Lemma 2.15 ([17, Corollary 4.27]). Suppose that G is a group, ¹H�º�2ƒ is a

family of subgroups of G and X1; X2 � G are relative generating sets of G, with

respect to ¹H�º�2ƒ, such that jX1 4X2j < 1. Then ¹H�º�2ƒ ,!h .G;X1/ if and

only if ¹H�º�2ƒ ,!h .G;X2/:

De�nition 2.16 ([17, De�nition 4.5]). Let q be a path in the Cayley graph
�.G;X t H/ and let � 2 ƒ. A non-trivial subpath p of q is called an
H�-component, if all the edges of p are labelled by letters fromH� n¹1º and p is a
maximal subpath ofQ with this property. A component of q is anH�-component
for some � 2 ƒ.

Two H�-components p1, p2 of paths q1, q2, respectively, in �.G;X t H/ are
said to be connected if all vertices of p1 and p2 lie in the same left coset ofH� in
G (this is equivalent to the existence of an edge e between any two distinct vertices
of p1 and p2 with Lab.e/ 2 H� n ¹1º). A component p of a path q is isolated if
it is not connected to any other component of q.

A path q in �.G;X t H/ is said to be without backtracking if all of its
components are isolated.

Below we formulate one of the main technical tools for working with hyper-
bolically embedded subgroups. This statement is proved in [17] and is analogous
to the relatively hyperbolic case (cf. [44, Lemma 2.7]).

Lemma 2.17 ([17, Lemma 4.11 and Theorem 4.24]). Suppose that ¹H�º�2ƒ is

hyperbolically embedded in .G;X/. Then for each � 2 ƒ there exists a �nite

subset �� � H� and a constant K 2 N such that the following holds. Let q be a

cycle in �.G;X t H/, let pi be isolated H�i
-components of q for i D 1; : : : ; k,

and let h1; : : : ; hk be the elements of G represented by Lab.p1/; : : : ;Lab.pk/

respectively. Then hi belongs to the subgroup h��i
i � G for every i D 1; : : : ; k,

and the word lengths of hi ’s with respect to ��i
satisfy

k
X

iD1

jhi j��i
� K`.q/:

2.5. Acylindrically hyperbolic groups. Suppose that a group G acts by isome-
tries on a metric space .S; d/. Following Bowditch [10] we will say that this action
is acylindrical if for every " > 0 there exist R;N > 0 such that for any pair of
points x; y 2 S with d.x; y/ � R one has

j¹g 2 G j d.x; g ı x/ � " and d.y; g ı y/ � "ºj � N:
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Comparing this with the de�nition of a loxodromic WPD element above,
we immediately obtain

Remark 2.18. If a groupG acts acylindrically on a hyperbolic space S then every
loxodromic element of G satis�es the WPD condition.

The action of G on S is non-elementary if for some (equivalently, for any)
s 2 S, the set of limit points ƒ.G ı s/ of the orbit G ı s in the Gromov boundary
@S has at least 3 points.

In [42] Osin proved the following theorem:

Theorem 2.19 ([42, Theorem 1.2]). For any groupG the following are equivalent:

(i) G admits a non-elementary acylindrical action on some hyperbolic space;

(ii) there is a symmetric generating subset X of G such that the Cayley graph

�.G;X/ is hyperbolic, the natural action of G on �.G;X/ is acylindrical

and the Gromov boundary @�.G;X/ has more than two points;

(iii) G is non-elementary and there exists a hyperbolic space S such that G acts

on S coboundedly and by isometries and LWPD.G; S/ ¤ ;;

(iv) G contains a proper in�nite hyperbolically embedded subgroup.

Remark that in [42, Theorem 1.2] the statement (iii) of Theorem 2.19 is formu-
lated in a weaker form, without the requirement for the action to be cobounded.
However, (ii) clearly implies (iii) with this additional condition: assuming (ii), one
can simply take S to be the Cayley graph �.G;X/ on which G acts acylindrically
(the hypothesis that @�.G;X/ ¤ ; implies that the unique G-orbit of vertices in
S D �.G;X/ is unbounded, hence LWPD.G; S/ ¤ ; by Remark 2.18 and the clas-
si�cation of acylindrical actions of groups on hyperbolic spaces obtained by Osin
in [42, Theorem 1.1]).

Theorem 2.19 allows one to say that a group G is acylindrically hyperbolic if
it satis�es one of the equivalent conditions (i)–(iv) from its claim.

3. Adding subgroups to a family of hyperbolically embedded subgroups

In this section we give necessary and su�cient conditions that allow to add a �nite
family of subgroups to the existing family of hyperbolically embedded subgroups.
This is analogous to Osin’s theorem [43], where a similar criterion was developed
for relatively hyperbolic groups.
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3.1. Necessary conditions. In this subsection we suppose that G is a group, X1

is a generating set of G and Q1; : : : ; Qn is a collection of subgroups of G such
that ¹Qiº

n
iD1 ,!h .G;X1/.

Lemma 3.1. For each i 2 ¹1; : : : ; nº there exists a �nite generating set Yi of Qi

and constants �i � 1, ci � 0 such that

jhjYi
� �i jhjX1

C ci

for all h 2 Qi .

Proof. Obviously, it is enough to prove the statement for i D 1. Let

X2 WD X1 [

n
[

j D2

Qj :

Then X2 generates G and Q1 ,!h .G;X2/ by Remark 2.14. Let �1 � Q1 and
K > 0 be the �nite subset and the constant provided by Lemma 2.17.

Consider any element h 2 Q1 n ¹1º. Since X2 generates G, we can let W
to be a shortest word over X2 such that h D W in G. Therefore, in the Cayley
graph �.G;X2 t Q1 n ¹1º/, there is a cycle q with Lab.q/ � W h�1. Evidently,
q has exactly one Q1-component labelled by h�1, hence it must be isolated in it.
Consequently, by Lemma 2.17, h 2 h�1i and

jhj�1
� K`.q/ D KkW k CK D KjhjX2

CK � KjhjX1
CK:

ThusQ1 is generated by the �nite set�1 and the required inequality for the word
lengths is satis�ed. �

Lemma 3.2. Let i; j 2 ¹1; : : : ; nº and g 2 G. For every " > 0, there exists

R D R."/ > 0 such that diameter diamX1
.Qi \ N".gQj // < R whenever i ¤ j

or i D j and g … Qi (here N".gQj / WD ¹z 2 G j dX1
.z; gQj / � "º).

Proof. This is a straightforward consequence of De�nition 2.13. Indeed, this
de�nition implies that for any " > 0 the set Il WD ¹h 2 Qi j Odl .1; h/ � 1 C 2"º

is �nite, where Odl is the relative metric on Ql induced from the Cayley graph
�.G;X1 t Q/ with Q WD

Fn
kD1 Qk. Hence we can let R WD max¹jhjX1

j h 2
Il ; l 2 ¹1; : : : ; nºº C 1.

Now, for any distinct h1; h2 2 Qi \ N".gQj / there are f1; f2 2 G such that
jfk jX1

� " and hk 2 gQjfk for k D 1; 2. Therefore h�1
1 h2 D Qi \ f �1

1 tf2

for some t 2 Qj . For k D 1; 2, let Uk be a word over X1 of length at most "
representing fk in G, and let T 2 H be the letter representing t . Consider the
path p in �.G;X1 t Q/ starting at 1 and labelled by the word U�1

1 T U2. If i ¤ j

or g … Qi then the path p has no edges from E�i (indeed, if i D j but g … Qi

then f �1
1 … Qi ) and pC D h�1

1 h2. Since `.p/ � 2"C 1 we see that h�1
1 h2 2 Ii ,

which implies that dX1
.h1; h2/ D jh�1

1 h2jX1
< R as required. �
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3.2. Su�ciency

Notation 3.3. Throughout this section G is a group, X1 is a generating set of G
such that � D �.G;X1/ is ı-hyperbolic, for some ı � 0, and Q1; : : : ; Qn is a
�nite collection of subgroups of G. We use d to denote the graph metric on �.

We will consider the following properties for the family Q1; : : : ; Qn.

(Q1) (¹Qi ; º
n
iD1 is geometrically separated) For every " > 0 there existsR D R."/

such that for g 2 G if

diam.Qi \ N".gQj // � R

then i D j and g 2 Qi (here the distances are measured with respect to the
graph metric d on �).

(Q2) (Finite generation) For each i , there exists a �nite subset Yi � G generating
Qi .

(Q3) (Quasi-isometrically embedded) There exist � � 1 and c � 0 such that for
any i 2 ¹1; : : : ; nº and all h 2 Qi one has jhjYi

� �jhjX1
C c.

Remark 3.4. Under the previous notation, suppose that ¹Q1; : : : ; Qnº is hyper-
bolically embedded in .G;X1/, then by Lemma 3.2 the family ¹Q1; : : : ; Qnº
satis�es (Q1), and by Lemma 3.1 ¹Q1; : : : ; Qnº satis�es (Q2) and (Q3) with
� WD max¹�i j i D 1; : : : ; nº and c WD max¹ci j i D 1; : : : ; nº.

The goal of this section is prove the converse result. Namely, if Q1; : : : ; Qn

satisfy (Q1)–(Q3) then ¹Q1; : : : ; Qnº ,!h .G;X1/.
The next lemma says that if a pair of geodesics, labelled by elements of some

Qi ’s, have su�ciently long k-connected subpaths, then the endpoints of these
geodesics belong to the same coset of Qi .

Lemma 3.5. In the Notation 3.3, suppose that Q1; : : : ; Qn satisfy (Q1)–(Q3).
For every k > 0 there exists A D A.k/ > 0 such that the following holds.

Suppose that p, q are geodesic paths in � such that Lab.p/ (resp. Lab.q/)

represents an element ofQi (resp. Qj ), and that there exist two k-close subpaths

u and v of p and q. If max¹`.u/; `.v/º � A, then i D j and the label of an

arbitrary path connecting any endpoint of p with any endpoint of q represents an

element of Qi .

Proof. By Lemma 2.5 and Remark 2.1, there exists � � 0 such that Qi and Qj

(considered as subsets of �) are �-quasi-convex. Let " :D k C 2� and R D R."/

be given by (Q1); set A WD RC 2� .
Without loss of generality we can assume that u and v are k-connected, p� D 1

and `.u/ � A. Denote g :D q�. Then there are vertices a�; aC 2 Qi and b�; bC 2

gQj such that d.a�; u�/ � � , d.aC; uC/ � � , d.b�; v�/ � � and d.bC; vC/ � � .
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Consequently, d.a�; b�/; d.aC; bC/ � kC2� , thus a�; aC 2 Qi \N".gQj /. One
can also note that

d.a�; aC/ � `.u/ � d.u�; a�/ � d.uC; aC/ � A � 2� � R;

hence i D j and g 2 Qi by the assumption (Q1), �nishing the proof of the
lemma. �

Notation 3.6. In the Notation 3.3, suppose thatQ1; : : : ; Qn satisfy (Q1)–(Q3) and
Sn

iD1 Yi � X1. Let Q D
Sn

iD1.Qi n ¹1º/ and � 0 D �.G;X1 t Q/. We will denote
by d0 the graph metric on � 0.

For every i D 1; : : : ; n and every h 2 Qi , �x a shortest word V.h/ over Y ˙1
i

representing h. Since � and � 0 have the same vertex set G, we can de�ne a map

'W ¹paths in � 0º �! ¹paths in �º

just by replacing each edge e, labelled by some h 2 Qi in � 0, with the (unique)
path '.e/, labelled by V.h/ and having the same initial and terminal vertices as e
in �. In particular, '.p/� D p� and '.p/C D pC for any path p in � 0.

Our goal now is to show that if p is a geodesic in � 0 then '.p/ is a quasi-
geodesic in �. In order to do so we will use the following lemma that deals with
the situation when for some path p the path '.p/ is “far” from being a geodesic.
The conclusion is that in this case p backtracks, i.e., it goes through a coset of
some Qi twice.

Lemma 3.7. In the Notation 3.6, there exists D � 1 such that for all r � 1,

k � 0 and every path p in � 0 satisfying `.p/ � r and d.p�; pC/ � k,

if `.'.p// � D.r C k/ then there exist l 2 ¹1; : : : ; nº and two distinct edges

e1 and e2 of p that are labelled by letters from Ql n ¹1º, so that all the endpoints

of e1 and e2 belong to the same left coset of Ql in G.

Proof. Let A D A.13ı/ be the constant provided by Lemma 3.5, where ı is the
hyperbolicity constant of �, and set a WD AC 30ı.

We now �x r � 0, k � 0 and a path p in � 0 such that `.p/ � r and
d.p�; pC/ � k.

Suppose that Lab.p/ � W0h1W1h2 : : :Wm�1hmWm where each hi 2 Q and
each Wi is a (possibly empty) word in X1, in particular m � r . We have that

Lab.'.p// � W0V.h1/W1V.h2/ : : :Wm�1V.hm/Wm:

Let Ui be a shortest word over X1 representing the same element of G as Wi ,
i D 0; : : : ; m, and let Vj be the shortest word overX1 representing the element hj ,
j D 1; : : : ; m. Consider the path q in � with the same endpoints as '.p/ and with
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Lab.q/ � U0V1U1V2 : : : Um�1VmUm. Recall that
Pm

iD0 kWik � `.p/ � r , hence,
in view of (Q3), we have

m
X

j D1

kVj k �
1

�

m
X

j D1

kV.hj /k �mc �
1

�
`.'.p// � .c C 1/r: (2)

Observe that q can be written as the concatenation of geodesic paths t0; s1; : : : ;
tm�1; sm; tm in �, where Lab.ti / � Ui and Lab.sj / � Vj . Let tmC1 be a geodesic
path in � from qC to q�; then `.tmC1/ D d.q�; qC/ D d.p�; pC/ � k. The
polygon P WD t0s1 : : : smtmtmC1 is a geodesic .2mC 2/-gon in � and we partition
its sides into two subsets S WD ¹s1; : : : ; smº and T WD ¹t0; : : : ; tmC1º.

By the assumptions we have that

� WD

mC1
X

iD0

`.ti/ � `.p/C d.p�; pC/ � r C k;

and

� WD

m
X

j D1

`.sj / D

m
X

j D1

kVj k �
1

�
`.'.p// � .c C 1/r

by (2). Choose a constantD � 1 (independent of r and k) so that

D

�
.r C k/ � .c C 1/r � max¹103a.2r C 2/; 103.r C k/º;

and suppose that `.'.p// � D.rCk/. Since 2mC2 � 2rC2, all the conditions of
Lemma 2.3 will then be satis�ed, hence there will be i; j 2 ¹1; : : : ; mº, i ¤ j , and
two 13ı-close subsegments u of si and v of sj such that min¹`.u/; `.v/º > a � A.
It remains to apply Lemma 3.5, claiming that there is l 2 ¹1; : : : ; nº such that
hi ; hj 2 Ql and all the endpoints of the corresponding edges of � 0 belong to the
same left coset of Ql . �

We are now ready to show that '.p/ is a geodesic when p is a geodesic. The
key observation, which allows us to use the previous lemma, is that a geodesic
does not backtrack. (We also apply this to subpaths of p.)

Lemma 3.8. In the Notation 3.6, let D � 1 be the constant provided by

Lemma 3.7. Then for any geodesic path p in � 0, the path '.p/ is .2D; 5D/-quasi-

geodesic in �.

Proof. As before, suppose that Lab.p/ � W0h1W1h2 : : :Wm�1hmWm where each
hi 2 Q and each Wi is a (possibly empty) word in X1. Consider any (com-
binatorial) subpath p0 of '.p/ in �. Let us assume that Lab.p0/ starts with
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a su�x V 0.h˛/ of V.h˛/ and ends with a pre�x W 0
ˇ

of Wˇ for some ˛; ˇ 2

¹1; : : : ; mº, ˛ � ˇ, as the other cases can be treated similarly. Thus Lab.p0/ �

V 0.h˛/W˛V.h˛C1/ : : : V .hˇ /W
0

ˇ
. Since V 0.h˛/ is a geodesic word over Y ˙1

i for
some i 2 ¹1; : : : ; nº, it represents an element h0 2 Qi and kV 0.h˛/k D kV.h0/k.
Let q be the path in � 0 with q� D p0

� and Lab.q/ � h0W˛h˛C1 : : : hˇW
0

ˇ
. Then

Lab.'.q// � V.h0/W˛V.h˛C1/ : : : V .hˇ /W
0

ˇ
, which implies that qC D '.q/C D

p0
C and `.'.q// D `.p0/.

Let s be the subpath of q with Lab.s/ � W˛h˛C1 : : : hˇW
0

ˇ
. Then s is geodesic

in � 0, as it is also a subpath of p, `.s/ � `.q/ � 2, and the endpoints of s lie at
distance at most 1 from the corresponding endpoints of q in � 0.

Set r WD `.q/C 1 and k WD d.q�; qC/. Then r � k C 5 because

k D d.q�; qC/ � d0.q�; qC/ � d0.s�; sC/ � 2 D `.s/ � 2 � `.q/ � 4 D r � 5:

Since p is geodesic in � 0, all Q-components of p consist of single edges and
no two components of p are connected. The latter also holds for q since any
component of q is connected to a component of p. Therefore Lemma 3.7 implies
that `.'.q// < D.r C k/. Consequently,

`.p0/ D `.'.q// < D.2k C 5/ D 2Dd.q�; qC/C 5D D 2Dd.p0
�; p

0
C/C 5D;

which shows that '.p/ is .2D; 5D/-quasi-geodesic in �. �

The following is the main result of this section. It generalizes [43, Theo-
rem 1.5].

Theorem 3.9. Suppose that G is a group, ¹H�º�2ƒ is a collection of subgroups

of G and X is a relative generating set of G with respect to ¹H�º�2ƒ, such that

¹H�º�2ƒ ,!h .G;X/. Set X1 WD X t H.

A family ¹Qiº
n
iD1 of subgroups ofG satis�es (Q1)–(Q3) if and only if the family

¹H�º�2ƒ t ¹Qiº
n
iD1 is hyperbolically embedded in .G;X/.

Proof. The necessity is given by Remark 3.4, so we only have to show that if
¹Qiº

n
iD1 satis�es (Q1)–(Q3) then ¹H�º�2ƒ [ ¹Qiº

n
iD1 ,!h .G;X/.

Since the set
Sn

iD1 Yi is �nite, without loss of generality we can suppose that
Sn

iD1 Yi � X � X1 (see Lemma 2.15). Using Notation 3.6, let D � 1 be the
constant provided by Lemma 3.7.

Take any i 2 ¹1; : : : ; nº and � 2 ƒ. We will denote by �i the Cayley graph
�.Qi ; Qi n ¹1º/ and by �� the Cayley graph �.H�; H� n ¹1º/. The set of edges of
�i and �� will be denoted E�i and E�� respectively. By Od� and yd0

� we denote
the metrics onH� induced by graph metric on � nE�� and � 0 nE��, respectively.
The metric yd0

i on Qi is de�ned similarly.
We now break the proof in three claims.
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Claim 1. For every i D 1; : : : ; n the metric space .Qi ; yd0
i / is locally �nite.

Let a 2 Qi n¹1º and letp1 be a shortest path from 1 to a in� 0nE�i . Let e be the
edge of �i from .p1/� D 1 to .p1/C D a. De�ne p to be the cycle in � 0 obtained
by concatenating p1 with e. Suppose that `.'.p// � D`.p/ D D.`.p1/ C 1/.
Then, by Lemma 3.7, there are l 2 ¹1; : : : ; nº and two distinct edges e1 and e2 of
p, labelled by some letters from Ql n ¹1º, such that all endpoints of these edges
belong to the same left coset gQl .

Note that if l D i then g … Qi , as otherwise both e1 and e2 would have
belonged to E�i , but the only edge of p from E�i is e. In particular, e1 ¤ e and
e2 ¤ e. It follows that the subsegment of p1 starting with e1 and ending with
e2 can be substituted by a single edge e0, labelled by a letter from Ql , so that the
resulting path p0

1 still lies in � 0 nE�i , connects 1with a and `.p0
1/ < `.p1/, which

contradicts the choice of p1. Therefore

d.1; a/ � `.'.p1// � `.'.p// < D`.p/ D D.`.p1/C 1/ D D yd0
i .1; a/CD:

By (Q2) and (Q3), for each R there are only �nitely many elements in Qi of
X1-length at most DRCD. This completes the proof of Claim 1.

Claim 2. For each � 2 ƒ the metric space .H�; yd0
�/ is locally �nite.

Recall that by hypothesis .H�; Od�/ is locally �nite. Arguing by contradiction,
suppose that for some r � 1, there exist in�nitely many h 2 H� such that
yd0

�.1; h/ � r .
Since .H�; Od�/ is locally �nite, there exists h0 2 H� such that yd0

�.1; h0/ � r

and Od�.1; h0/ > D.r C 1/. Let p be a shortest path in � 0 n E�� from 1 to h0,
with `.p/ � r . Notice that, by construction, '.p/ is a path in � n E��. Since
d.1; h0/ D d.p�; pC/ D 1, the inequality Od�.1; h0/ > D.r C 1/ implies that
`.'.p// > D.r C d.p�; pC//. Hence, we can use Lemma 3.7 to argue as above
that the path p can be shortened, yielding the required contradiction.

Claim 3. The graph � 0 is ı0-hyperbolic.

Consider any geodesic triangle � D p1p2p3 in � 0 and vertex v 2 p1.
By Lemma 3.8, the triangle '.�/ WD '.p1/'.p2/'.p3/ is .2D; 5D/-quasi-
geodesic in �. Let ~ D ~.ı; 2D; 5D/ be the constant from Lemma 2.2.

Note that v is also a vertex of '.p1/, and any vertex u 2 '.pi /, regarded as
an element of G (and thus as a vertex of � 0), lies within d0-distance 1 of a vertex
of pi in � 0, i D 1; 2; 3. Now, since the graph � is ı-hyperbolic, there is a vertex
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u 2 '.p2/[ '.p3/ such that d.v; u/ � ı C 2~. Observe that d0.v; u/ � d.v; u/ by
de�nition, hence there is a vertex w 2 p2 [ p3 such that

d0.v; w/ � d0.v; u/C 1 � ı C 2~ C 1:

Thus the graph � 0 is ı0-hyperbolic, for ı0 WD ı C 2~ C 1.
Claims 1–3 imply that the family of subgroups ¹H�º�2ƒ t ¹Qiº

n
iD1 is hyper-

bolically embedded in G, and so the theorem is proved. �

The following corollary gives and alternative proof of [17, Theorem 4.42]
when the action of G on S is cobounded. During the work on this paper the
authors learned that this corollary was independently proved by Hull in [29,
Theorem 3.16]. See also [48, Theorem 6.4] for other equivalent conditions.

Corollary 3.10. Let G be a group acting by isometries on a hyperbolic space

.S; d/. Suppose that this action is cobounded and ¹Qiº
n
iD1 is a �nite family of

subgroups of G. Fix any s 2 S. Then the following are equivalent.

(a) The family ¹Qiº
n
iD1 satis�es the conditions:

(i) Qi ı s is quasi-convex and the induced action of Qi on S is metrically

proper, i D 1; : : : ; n;

(ii) for every " > 0 there exists R such that for g 2 G if

diam.Qi ı s \ N".gQj ı s// > R;

then i D j and g 2 Qi .

(b) The family ¹Qiº
n
iD1 is hyperbolically embedded in .G;X1/, where X1 is a

generating set of G provided by Lemma 2.4.

Proof. By the Švarc–Milnor lemma (Lemma 2.4), the map g 7! g ıs is aG-equi-
variant quasi-isometry between G, endowed with the metric from �.G;X1/,
and .S; d/. In particular, �.G;X1/ is hyperbolic and ; ,!h .G;X1/.

If we show that (i)–(ii) are equivalent to (Q1)–(Q3), the result will follow from
Theorem 3.9. Indeed, by Lemma 2.5 and as �.G;X1/ is quasi-isometric to .S; d/,
the family ¹Qiº

n
iD1 satis�es (i) if and only if it satis�es (Q2) and (Q3). On the

other hand, (ii) is a restatement of (Q1). �

As a corollary we obtain the following statement (cf. [29, Corollary 4.14]):

Corollary 3.11. Let G be a group acting coboundedly on a hyperbolic space

.S; d / and let X1 be a generating set of G given by Lemma 2.4. If h1; : : : ; hk

is a collection of pairwise non-commensurable loxodromic WPD elements with

respect to the action of G on S then ¹EG.h1/; : : : ; EG.hk/º ,!h .G;X1/.
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Proof. Fix i 2 ¹1; : : : nº. Since hi is loxodromic, there is s 2 S such that the orbit
hhi i ı s is quasi-convex and the action of hhii on S is metrically proper. Thus the
condition (a).(i) from Corollary 3.10 is satis�ed.

The geometric separability condition (a).(ii) from Corollary 3.10 for the family
¹E.hi /º

n
iD1 is proved in [17, Theorem 6.8]. Hence, ¹E.hi /º

n
iD1 ,!h .G;X1/ by

Corollary 3.10. �

One can note that Corollary 3.11 resembles [17, Theorem 6.8]. The main
di�erence is that we require the action to be cobounded, but because of this we are
able to specify that the relative generating set X1 comes naturally from the action
of G on S (this will be important for the rest of the paper).

Similarly, Theorem 3.9 can also be used to obtain the following strengthening
of Corollary 3.11:

Corollary 3.12. Let G be a group with a family of subgroups ¹H�º�2ƒ and a

relative generating set X (with respect to ¹H�º�2ƒ), such that

¹H�º�2ƒ ,�!h .G;X/:

Set

H WD
G

�2ƒ

.H� n ¹1º/:

If h1; : : : ; hk is a collection of pairwise non-commensurable loxodromic WPD

elements with respect to the action ofG on �.G;XtH/ then the family ¹H�º�2ƒt
¹EG.hi/º

k
iD1 is hyperbolically embedded in .G;X/.

4. Combinatorics of paths

This section provides some technical geometric tools which will later be used
to develop the theory of acylindrically hyperbolic groups similarly to the theory
of relatively hyperbolic groups. Let G be a group, let ¹H�º�2ƒ be a family of
subgroups ofG and letX be a symmetric relative generating set ofG with respect
to ¹H�º�2ƒ. As usual, we set H WD t�2ƒ.H� n ¹1º/.

De�nition 4.1. Suppose that m 2 N and O D ¹��º�2ƒ is a collection of �nite
subsets ofG. De�ne W.O; m;X;H/ to be the set of all wordsW over the alphabet
X [ H that have the following form:

W � x0h1x1h2 : : : xl�1hlxl ;

where l 2 Z, l � �1 (if l D �1 thenW is the empty word; if l D 0 thenW � x0),
hi and xi are considered as single letters and
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(1) for every i D 0; 1; : : : ; l either xi 2 X or xi is the empty word, and for each
i D 1; 2; : : : ; l , there exists �.i/ 2 ƒ such that hi 2 H�.i/;

(2) if �.i/ D �.i C 1/ then xiC1 … H�.i/ for each i D 1; : : : ; l � 1;

(3) hi … ¹h 2 h��.i/i j jhj��.i/
� mº, i D 1; : : : ; l .

Finally, let W0.O; m;X;H/ be de�ned as the subset of all words

W � h1x1h2 : : : xl�1hlxl 2 W.O; m;X;H/

such that l � 1 and if �.l/ D �.1/ then xl … H�.1/. Thus W0.O; m;X;H/ can be
thought of as the set of cyclically reduced words from W.O; m;X;H/.

For the remainder of this section assume that ¹H�º�2ƒ is hyperbolically em-
bedded in .G;X/. Choose the collection of �nite subsets O D ¹��º�2ƒ of G
(so that �� � H� for all � 2 ƒ) and the constant K > 0 according to the claim
of Lemma 2.17.

The following lemmas are taken from [37, Section 6], where they were es-
tablished in the case when G is hyperbolic relative to the family ¹H�º�2ƒ.
Their proofs only use the combinatorial properties of the paths with labels from
W.O; m;X;H/, together with the claim of [37, Lemma 6.1]. Using Lemma 2.17
instead of the latter, the proofs transfer verbatim to the more general settings of
the present paper.

Lemma 4.2. Let q be a path in the Cayley graph �.G;X t H/ with Lab.q/ 2
W.O; m;X;H/ and m � 5K. Then q is without backtracking.

Proof. See the proof of [37, Lemma 6.2]. �

Lemma 4.3. Let o D rqr 0q0 be a cycle in the Cayley graph �.G;X t H/,

such that Lab.q/;Lab.q0/ 2 W.O; m;X;H/. Suppose that m � 7K and denote

C D max¹`.r/; `.r 0/º. Then

(a) if C � 1 then no component of q or q0 is isolated in o;

(b) if C � 2 then each of q and q0 can have at most 4C isolated components;

(c) if l is the number of components of q, then at least .l � 6C / of components

of q are connected to components of q0 and are not connected to components

of r or r 0; two distinct components of q cannot be connected to the same

component of q0. Similarly for q0.

Proof. See the proof of [37, Lemma 6.3]. �
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Lemma 4.4. In the notations of Lemma 4.3, letm � 7K andC D max¹`.r/; `.r 0/º.

For any positive integer d there exists a constant L D L.C; d/ 2 N such

that if `.q/ � L then there are d consecutive components ps ; : : : ; psCd�1 of

q and p0
s0 ; : : : ; p

0
s0Cd�1

of q0�1, so that psCi is connected to p0
s0Ci for each

i D 0; : : : ; d � 1.

Proof. See the proof of [37, Lemma 6.5]. �

Corollary 4.5. If m � 12K then every path p in �.G;X t H/, with Lab.p/ 2

W.O; m;X;H/, is .4; 1/-quasi-geodesic.

Proof. Let p be a path in �.G;X t H/ such that Lab.p/ 2 W.O; m;X;H/.
Then p D r0p1r1 � � �plrl where p1; : : : ; pl are the edges labelled by elements of
H, and r0; : : : ; rl are either trivial paths or edges labelled by elements of X . Let
�.1/; : : : ; �.l/ 2 ƒ be such that hi D Lab.pi / 2 H�.i/ for i D 1; : : : ; l . Since any
combinatorial subpath p0 of p still satis�es Lab.p0/ 2 W.O; m;X;H/, to prove
the lemma it is enough to show that `.p/ � 4`.q/C 1, where q is a geodesic path
from pC to p� in �.G;X t H/. Note that `.q/ � `.p/ � 2l C 1.

If `.p/ � 1 the claim is obvious, so we assume that `.p/ � 2, hence l � 1.
Note that by the de�nition of p, each pi is a component of p. Let I � ¹1; : : : ; lº
be the set of all indices i such that pi is not connected to a component of q in
�.G;X t H/. Lemma 4.2 implies that for each i 2 I such pi is an isolated
component of the cycle pq. Therefore, by Lemma 2.17, we have hi 2 h��.i/i and

X

i2I

jhi j��.i/
� K`.pq/ � K.4l C 2/:

However, since for i 2 I , jhi j��.i/
> 12K, we achieve jI j � K.4l C 2/=.12K/ �

6Kl=.12K/ D l=2.
Let I c WD ¹1; : : : ; lº n I . Then jI c j � l=2, and for every i 2 I c the component

pi of p is connected to a component of q, and no two such components of p
can be connected to the same component of q (as p is without backtracking by
Lemma 4.2). Therefore, q has at least jI c j distinct components and hence

`.q/ � jI c j � l=2 �
1

2
.`.p/=2� 1=2/ D

`.p/ � 1

4
: �

The main result of this section is the following.

Theorem 4.6. Suppose that ¹H�º�2ƒ ,!h .G;X/. Take O D ¹��º�2ƒ and

K > 0 according to the claim of Lemma 2.17. Let W be any word from

W0.O; 12K;X;H/ and let g 2 G be the element represented by the word W .

Then g is loxodromic WPD with respect to the action of G on �.G;X t H/.
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Proof. Suppose that W � h1x1h2 : : : xl�1hlxl , where xi 2 X (or xi is the
empty word) and hi 2 H�.i/ for some �.i/ 2 ƒ, i D 1; : : : ; l . Observe
that according to the de�nition of W0.O; 12K;X;H/, for any n 2 Z, W n 2

W.O; 12K;X;H/, hence any path labelled byW n in �.G;X tH/ is .4; 1/-quasi-
geodesic by Corollary 4.5. It follows that the map n 7! gn is a quasi-isometric
embedding from Z to �.G;X t H/. Hence g is loxodromic with respect to the
action of G on �.G;X t H/.

Let us prove the WPD property. Fix any " > 0 and x 2 G, and choose N 2 N

so that lN > 6"1 C 1, where "1 WD 2jxjX[H C ". Suppose that f 2 G satis�es

dX[H.x; f x/ < " and dX[H.g
Nx; fgNx/ < ": (3)

Then

jf jX[H � dX[H.1; x/C dX[H.x; f x/C dX[H.f x; f / < 2jxjX[H C " D "1:

Similarly, jg�Nf �1gN jX[H < "1.
Choose words R and R0 over X [ H representing the elements f and

g�Nf �1gN inG with kRk; kR0k < "1. Let o D rqr 0q0 be the cycle in�.G;XtH/

starting at 1 such that Lab.r/ � R, Lab.q/ � W N , Lab.r 0/ � R0 and
Lab.q0/ � W �N .

Let p1; : : : ; pN l and p0
1; : : : ; p

0
N l

be the lists of components of q and q0�1 in
the order of their occurrence. By Lemma 4.3.(c) there exists k 2 N, k � 6"1 C 1,
such that pk is connected to a component of p0

k0 of q0�1 and pk is not connected to
any component of r . Thus there is a path s from .pk/� to .p0

k0/� in �.G;X tH/,
such that s is labelled either by the empty word (if .pk/� D .p0

k0/�) or by a letter
from H�.j /, for some j 2 ¹1; : : : ; lº (see Figure 2). Then `.s/ � 1 and one can
consider the cycle o1 D rq1sq

0
1 in �.G;X t H/, where q1 is the initial segment

of q from q� D f to .pk/� and q0
1 is the terminal segment of q0 from .p0

k0/� to
q0

C D 1.

s r 0
r

f

q0

1

q1

q0
1

p0
k0

qpk

gN

fgN

Figure 2.



Commensurating endomorphisms of acylindrically hyperbolic groups 1175

Then p0
1; : : : ; p

0
k0�1

is the list of components of q�1
1 and if k0 � 1 > 6"1 C 1,

one can apply Lemma 4.3.(c) again to the cycle o1 to �nd k0
1 � 6"1 C 1 such that

p0
k0

1

is connected to a component pk1
of q1 and is not connected to a component

of r . In this case we replace k with k1 and k0 with k0
1. Thus, without loss of

generality, we can further assume that max¹k; k0º � 6"1 C 2. It follows that
`.q1/ � 2.k � 1/C 1 � 12"1 C 3; similarly, `.q0

1/ � 12"1 C 3.
Let y; z and h be the elements of G represented by the words Lab.q�1

1 /,
Lab.q0�1

1 / and Lab.s�1/ respectively. Then f D zhy in G, where h 2 H�.j /

for some j 2 ¹1; : : : ; lº.
By construction, y; z belong to the subgroup of G generated by the �nite set

of elements A WD ¹x1; : : : ; xl ; h1; : : : ; hlº and jyjA; jzjA � 12"1 C 3. On the other
hand, note that if h ¤ 1 in G then s must be an isolated H�.j /-component of the
cycle o1 (because q and q0 are without backtracking by Lemma 4.2 and pk is not
connected to a component of r). Hence we can use Lemma 2.17 to conclude that
h 2 h��.j /i and jhj��.j /

� K`.o1/ � K.25"1 C 7/.
Let B � G be the �nite subset de�ned by B D ¹z 2 hAi j jzjA � 12"1 C 3º.

We have shown that any element f satisfying (3) belongs to the subset

l
[

iD1

.B � ¹h 2
˝

��.i/

˛

j jhj��.i/
� K.25"1 C 7/º � B/;

which is �nite as a �nite union of products of �nite subsets. Thus we have shown
that the element g is WPD. �

5. Special elements in acylindrically hyperbolic groups

In this section we �x a group G and a hyperbolic space .S; d/ where G acts by
isometries and coboundedly. By Lemma 2.4, there is a generating set X of G
such that .G; dX/ is equivariantly quasi-isometric to S. It follows that g 2 G is
a loxodromic WPD element with respect to the action of G on S if and only if g
is a loxodromic WPD element with respect to the action of G on �.G;X/. Thus,
without loss of generality, we can work with either S or �.G;X/.

The following observation will be useful.

Lemma 5.1. Suppose that X1 is a subset of G containing X . If g is a loxodromic

WPD element with respect to the action of G on �.G;X1/ then g 2 LWPD.G; S/.

Proof. It is enough to show that g is loxodromic WPD with respect to theG-action
on �.G;X/. Since the action of g is loxodromic on �.G;X1/ there exist � � 1

and c � 0 such that jnj � �jgnjX1
C c for all n 2 Z. Since jhjX1

� jhjX for
all h 2 G, we get jnj � �jgnjX C c for all n 2 Z, which shows that g acts as a
loxodromic element on �.G;X/.
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Similarly, since dX.x; y/ � dX1
.x; y/ for any x; y 2 G, it easily follows that

any WPD element with respect to the action of G on �.G;X1/ is also a WPD
element with respect to the G-action on �.G;X/. �

5.1. Creating new loxodromic WPD elements. The purpose of this section is
to develop basic tools for working with loxodromic WPD elements and producing
new loxodromic WPD elements from a number of old ones.

Lemma 5.2. Let ¹H�º�2ƒ be a family of subgroups of G that is hyperbolically

embedded in .G;X/. Set H D t�2ƒ.H� n ¹1º/ and take an arbitrary �nite subset

¹�1; : : : ; �lº � ƒ, l � 1. Consider any subset F of G such that jF nX j < 1 and

if l D 1 then F \H�1
D ;. Then there exists a �nite subset ˆ � G such that for

any fi 2 F and gi 2 H�i
n ˆ; i D 1; : : : ; l , the element g WD g1f1g2f2 : : : glfl

has the following properties:

(a) g is a loxodromic WPD element with respect to the action on �.G;X t H/;

in particular, g 2 LWPD.G; S/;

(b) g is not commensurable with any element h 2
S

�2ƒH� in G.

Proof. By Lemmas 2.15 and 5.1, we can replace X with X [ F to assume that
F � X . Let O D ¹��º�2ƒ and K 2 N be the collection of �nite subsets and
the constant from the claim of Lemma 2.17. We can then de�ne the �nite subset
ˆ � G by setting ˆ :D

Sl
j D1¹h 2

˝

��j

˛

j jhj��j
� 12Kº. Now part (a) follows

from the assumptions together with the claims of Theorem 4.6 and Lemma 5.1.
To prove part (b) notice that for every h 2

S

�2ƒH�, the cyclic subgroup hhi
acts with bounded orbits on the Cayley graph �.G;X t H/. On the other hand,
all the orbits of hgi are unbounded because g is loxodromic by part (a). Thus a
non-zero power of g cannot be conjugate to a power of h in G, i.e., (b) holds. �

Applying Lemma 5.2 in the special case when l D 1 we obtain the following
statement, generalizing [17, Corollary 6.12]:

Corollary 5.3. Suppose that ¹H�º�2ƒ ,!h .G;X/. Then for any � 2 ƒ and

f 2 G nH�, there exists a �nite subset ˆ � G such that for all g 2 H� n ˆ the

element gf is loxodromic WPD with respect to the action of G on �.G;X t H/;

in particular, gf 2 LWPD.G; S/.

Recall that by Lemma 2.9, every g 2 LWPD.G; S/ belongs to the virtually
cyclic subgroup

EC
G .g/ D ¹f 2 G j fgnf �1 D gn for some n 2 Nº 6 EG.g/;

and jEG.g/ W EC
G .g/j � 2. This lemma also implies that EG.g/ D EC

G .g/ if and
only if EG.g/ has in�nite center.
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Lemma 5.4. Let ¹g1; : : : ; glº be a non-empty family of pairwise non-commensu-

rable loxodromic WPD elements with respect to the action of G on S. Consider

any subset F � G such that jF n X j < 1 and if l D 1 then F \EG.g1/ D ;.

Then there existsN1 D N1.F / 2 N such that for arbitrary fi 2 F andmi 2 N

with jmi j � N1, i D 1; : : : ; l , the element g WD g
m1

1 f1g
m2

2 f2 : : : g
ml

l
fl belongs to

LWPD.G; S/ and is not commensurable with any gi , i D 1; : : : ; l . Moreover,

(i) if l D 1 then for every y 2 EG.g/ there exist �; � 2 Z such that g�yg� 2
EG.g/ \EG.g1/;

(ii) if l � 3 and fl D 1 then EG.g/ D EC
G .g/ and for every y 2 EG.g/ there

exist �; � 2 Z satisfying g�yg� 2 EG.gl / \EG.g1/.

Proof. Recall that by Corollary 3.11 the family ¹EG.gi /º
l
iD1 is hyperbolically

embedded in .G;X/. As before, in view of Lemmas 2.15 and 5.1, we can assume
that F � X . Set H WD tl

iD1.EG.gi /n¹1º/, and let the �nite subsets�i � EG.gi /,
i D 1; : : : ; l , and K 2 N be chosen according to Lemma 2.17. Take N1 2 N so
that gm

i … ˆ :D
Sl

j D1¹h 2
˝

�j

˛

j jhj�j
� 12Kº for any i D 1; : : : ; l , whenever

jmj � N1. Consider any g D g
m1

1 f1g
m2

2 f2 : : : g
ml

l
fl with fi 2 F and jmi j � N1,

i D 1; : : : ; l . By Lemma 5.2, g 2 LWPD.G; S/ and it is not commensurable with
with any gi , i D 1; : : : ; l . So, it remains to prove claims (i) and (ii).

Consider any y 2 EG.g/. By Lemma 2.9, there exist m 2 N and � 2 ¹�1; 1º
such that

ygmy�1 D g�m: (4)

Let L D L.C; 2l/ be the constant provided by Lemma 4.4, where C WD
dXtH.1; y/. Evidently we can take m in (4) to be large enough so that ml � L.

Let U be a word over X t H representing y, with kU k D C , and let W �
h1f1h2f2 : : : hlfl be the word fromW.O; 12K;X;H/ representing g, where hi WD

g
mi

i 2 EG.gi / n ¹1º and O D ¹�j ºl
j D1. Consider a cycle o D rqr 0q0 in

�.G;X t H/, where Lab.r/ � U , Lab.q/ � W m, Lab.r 0/ � U�1 and
Lab.q0/ � W ��m. Then `.q/ � ml � L, hence by Lemma 4.4 there are 2l
consecutive components of q connected to 2l consecutive components of q0�1.

Suppose, �rst, that l D 1. Then there is an EG.g1/-component p of q
connected to p0, an EG.g1/-component of q0�1. That is, there is a path s in
�.G;X t H/ with s� D p�, sC D p0

� such that Lab.s/ represents an element
z 2 EG.g1/. Note that Lab.p/ � h1 and Lab.p0/ � h�

1.
Let q1 be the subpath of q starting at rC D q� and ending at p� D s�; let q0

1

be the subpath of q0 starting at sC D p0
� and ending at q0

C D r�. Consider the
cycle o1 D rq1sq

0
1 in �.G;X tH/. If � D 1 we see that Lab.q0

1/ � W � for some
integer � � 0 and Lab.q1/ � W � for an integer � � 0. Therefore g�yg� D z�1 in
G. Recall that z�1 2 EG.g1/ and the left hand side of the latter equality belongs
to EG.g/, hence g�yg� 2 EG.g/ \ EG.g1/. Similarly, in the case when � D �1
we see that g�yg� D g

m1

1 z�1 2 EG.g/\EG.g1/ for some �; � 2 Z. Thus part (i)
is proved.
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To prove part (ii), assume that l � 3. Then three consecutive components p1,
p2, p3 of q, with Lab.pi / � hi , i D 1; 2; 3, are connected to three consecutive
componentsp0

1, p0
2, p0

3, of q0�1. Since anEG.gi /-component cannot be connected
to an EG.gj /-component if i ¤ j , we see that p0

i must be labelled by h�
i ,

i D 1; 2; 3. However, if � D �1, any triple of consecutive components of q0�1

would be labelled by a cyclic permutation of the sequence h�1
3 , h�1

2 , h�1
1 , which

cannot give the sequence h�1
1 , h�1

2 , h�1
3 . Thus � D 1, implying that y 2 EC

G .g/.
Since the latter is true for any y 2 EG.g/ we can conclude that EG.g/ D EC

G .g/.

For the last claim of part (ii), suppose that fl D 1 and choose consecutive
components pl and p1 of q that are connected to consecutive components p0

l
and

p0
1 of q0�1, so that pi and p0

i are EG.gi /-components of the corresponding paths
for i D 1; l . It follows that for any path s in �.G;X t H/ joining .pl /C D .p1/�
with .p0

l
/C D .p0

1/�, Lab.s/ represents an element z 2 EG.gl / \ EG.g1/. Since
fl D 1 and � D 1 the label of the subpath of q0 from .p0

l
/C D sC to q0

C D r�
represents a negative power of g, and the label of the subpath of q from rC D q�

to .pl /C D s� represents a positive power of g. Thus there are integers � < 0 and
� > 0 such that g�yg� D z�1 2 EG.gl / \ EG.g1/. This completes the proof of
the lemma. �

Lemma 5.5. Let g 2 LWPD.G; S/ and f 2 G nEG.g/. For any �nite subset Y of

G, there exists N2 2 N such that gnf 2 LWPD.G; S/ and is not commensurable

with any y 2 Y whenever jnj � N2.

Proof. By Corollary 3.11 EG.g/ ,!h .G;X/. Let Y1 � Y be a maximal subset
of pairwise non-commensurable elements such that each y 2 Y1 is loxodromic
WPD with respect to the action of G on S and is not commensurable with g. By
Corollary 3.11, ¹EG.g/º t ¹EG.y/ j y 2 Y1º ,!h .G;X/, hence we can apply
Lemma 5.2 to �nd N2 2 N such that the element gnf belongs to LWPD.G; S/

and is not commensurable with any element from the subset ¹gº [ Y1 whenever
jnj � N2.

Suppose that there is an integer n such that jnj � N2 and gnf is commen-
surable with some z 2 Y . Then z 2 Y n Y1, z is not commensurable with any
element of ¹gº [ Y1 and z 2 LWPD.G; S/ by Remarks 2.7 and 2.8. This contra-
dicts the maximality of Y1. Thus the lemma is proved. �

5.2. Special elements. LetH be a subgroup ofG. In this subsection we develop
the theory of H -special elements. Many ideas and statements in this subsection
are similar to those of [40, Section 3] (see also [17, Subsection 6.2] for the case
H D G).
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Lemma 5.6. LetH be a non-elementary subgroup of G such that

H \ LWPD.G; S/ ¤ ;:

Then the subgroup

EG.H/ WD
\

h2H\LWPD.G;S/

EG.h/

is the unique maximal �nite subgroup of G normalized by H .

Proof. If a �nite subgroup F 6 G is normalized by H , then jH W CH .F /j < 1,
where CH .F / denotes the centralizer of F in H . Therefore for every h 2 H and
f 2 F , there is n 2 N such that f hnf �1 D hn. Hence, by Lemma 2.9(b),
F 6 EG.h/ for all h 2 H \ LWPD.G; S/, thus F 6 EG.H/.

Let g 2 H \ LWPD.G; S/. Since H is non-elementary, there exists a 2

H n EG.g/. Then aga�1 2 H \ LWPD.G; S/ by Remark 2.8. If the intersection
EG.g/\EG.aga

�1/ is in�nite then, according to Remark 2.11, there existm; n 2

Zn¹0º such that agna�1 D gm, which implies that a 2 EG.g/ (by Lemma 2.9.(c)).
This contradiction shows that EG.H/ 6 EG.aga

�1/ \ EG.g/ is �nite. The
fact that EG.H/ is normalized by H follows from its de�nition together with
Remark 2.8 and Lemma 2.9: the latter two statements imply that for any h 2
H \LWPD.G; S/ and any f 2 H , f hf �1 2 H \LWPD.G; S/ and fEG.h/f

�1 D

EG.f hf
�1/. �

Remark 5.7. In the case when H D G, the statement of Lemma 5.6 is proved in
[17, Lemma 6.15], whereK.G/ is used to denote the largest �nite normal subgroup
of G, which is EG.G/ in our notation.

Set LC
WPD.G; S/ WD ¹g 2 LWPD.G; S/ j EG.g/ D EC

G .g/º.

Lemma 5.8. LetH 6 G be a non-elementary subgroup such thatH\LWPD.G; S/ ¤
;. For every �nite subset Y � G there exists h 2 H \L

C
WPD.G; S/ that is not com-

mensurable in G with any element of Y . In particular,H \ L
C
WPD.G; S/ contains

in�nitely many pairwise non-commensurable (in G) elements.

Proof. Let Y1 D ¹g1; : : : ; glº � Y be a maximal subset consisting of pairwise
non-commensurable loxodromic WPD elements (thus any element from Y \

LWPD.G; S/ is commensurable to some element from Y1). If l D 0 we understand
that Y1 is empty.

Take any element g 2 H \ LWPD.G; S/. Since H is non-elementary, there
exists f 2 H n EG.g/ and we can apply Lemma 5.5, to �nd n 2 N such
that glC1 WD gnf 2 H \ LWPD.G; S/ and glC1 is not commensurable with
any element of Y1. Applying this lemma two more times, we get elements
glC2; glC3 2 H \LWPD.G; S/ such that gi is not commensurable to gj whenever
1 � i < j � l C 3.
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Now, by Lemma 5.4, there is m 2 N such that the element

h WD gm
1 g

m
2 : : : g

m
lC3 2 H

belongs to L
C
WPD.G; S/ and is not commensurable with any element from ¹g1; : : : ;

glC3º. Finally, if h was commensurable to some z 2 Y then z 2 LWPD.G; S/

(by Remarks 2.7 and 2.8) and z would be non-commensurable with any y 2 Y1,
contradicting the choice of Y1. Thus the lemma is proved. �

Lemma 5.9. Given two non-commensurable elements g1; g2 2 L
C
WPD.G; S/, there

exists h 2 hg1; g2i \L
C
WPD.G; S/ with the properties that h is not commensurable

with gi , i D 1; 2, EG.h/ D hhi � .EG.g1/ \EG.g2// and h 2 CG.EG.h//, that is

EG.h/ Š hhi � .EG.g1/ \EG.g2//.

Proof. By Lemma 2.9, Remarks 2.7 and 2.11, we can replace gi with its power
to assume that gi is central in EG.gi /, i D 1; 2. The subgroup hg1; g2i 6 G is
non-elementary because g1 and g2 are non-commensurable, hence, according to
Lemma 5.8, there is g3 2 hg1; g2i \ L

C
WPD.G; S/ that is not commensurable with

g1 and g2.
Now, by Lemma 5.4, we can choosem 2 N so that the element

h WD gm
1 g

m
3 g

m
2

belongs to hg1; g2i \ L
C
WPD.G; S/, is not commensurable with g1 and g2, and

satis�es
EG.h/ � hhi .EG.g1/ \EG.g2// hhi :

Thus
EG.h/ 6 hh; EG.g1/ \EG.g2/i :

But each of g1 and g2 commutes with EG.g1/\EG.g2/, hence so does h, and so
Lemma 2.9 yields that

EG.g1/ \ EG.g2/ 6 EG.h/:

Thus
EG.h/ D hh; EG.g1/ \EG.g2/i :

Finally, note that h has in�nite order and

jEG.g1/ \ EG.g2/j < 1

by Remark 2.11, which implies that

hhi \EG.g1/ \EG.g2/ D ¹1º:

Therefore
EG.h/ Š hhi � .EG.g1/ \EG.g2//;

as claimed. �
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Lemma 5.10. LetH 6 G be a non-elementary subgroup such that

H \ LWPD.G; S/ ¤ ;:

Then

EG.H/ D
\

g2H\L
C

WPD.G;S/

EG.g/:

Proof. By Lemma 5.8, there exist two non-commensurable elements g1; g2 2

H \ L
C
WPD.G; S/. Then EG.g1/ \ EG.g2/ is �nite (Remark 2.11), and therefore

T

g2H\L
C

WPD.G;S/
EG.g/ is �nite. Notice that the set H \ L

C
WPD.G; S/ is closed

underH -conjugation andEG.hgh
�1/ D hEG.g/h

�1 for any g 2 LWPD.G; S/ and
any h 2 H . Hence H normalizes the �nite subgroup

T

g2L
C

WPD.H;S/
EG.g/ 6 G.

Clearly EG.H/ D
T

g2H\LWPD.G;S/ EG.g/ 6
T

g2H\L
C

WPD.G;S/
EG.g/. To

obtain the desired equality, it remains to recall that EG.H/ is the unique maximal
�nite subgroup of G normalized by H by Lemma 5.6. �

De�nition 5.11. Let H be a non-elementary subgroup of G. An element g 2 H
will be called H -special if g 2 LWPD.G; S/, EG.g/ D hgi � EG.H/ and g 2

CG.EG.H// (i.e., EG.g/ Š hgi � EG.H/). The set of all H -special elements
will be denoted by SG.H; S/.

The next statement is an analogue of [5, Lemma 3.8.(ii)].

Lemma 5.12. Let H 6 G be a non-elementary subgroup such that H \
LWPD.G; S/ ¤ ;. Then SG.H; S/ is non-empty.

Proof. Let B be the set of all elements h 2 H \ L
C
WPD.G; S/ such that EG.h/

is the direct product of hhi with some �nite subgroup Kh of G. By Lemma 5.8
there exists two non-commensurable elements in H \ L

C
WPD.G; S/, and so, by

Lemma 5.9 and Remark 2.11, the set B is non-empty. Let h 2 B be such that jKhj

is minimal. We will show that Kh D EG.H/ and thus h 2 SG.H; S/.
Notice that EG.H/ 6 Kh, as EG.H/ 6 EG.h/ and Kh is the unique max-

imal �nite subgroup of EG.h/ by de�nition. Arguing by contradiction, assume
that there exists a �nite order element x 2 Kh n EG.H/. Then, according to
Lemma 5.10, there is g 2 H \ L

C
WPD.G; S/ such that x … EG.g/. If g and h are

non-commensurable, using Lemma 5.9 we can �nd f 2 H \ L
C
WPD.G; S/ such

that EG.f / D hf i � .EG.h/ \ EG.g// and f 2 CG.EG.h/ \ EG.g//. Moreover,
Remark 2.11 shows thatEG.h/\EG.g/ is �nite, and so it is contained inKh. Thus
f 2 B and, as x … EG.h/\EG.g/, we have that jKf j D jEG.h/\EG.g/j < jKhj,
contradicting the minimality of jKhj.
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It remains to consider the case when g is commensurable with h. By Lemma 5.8,
there exists g0 2 H \ L

C
WPD.G; S/ non-commensurable with g. Then, by

Lemma 5.9, we can �nd f 2 H \ L
C
WPD.G; S/ such that

EG.f / D hf i � .EG.g
0/ \ EG.g//; f 2 CG.EG.g

0/ \EG.g//;

and f is not commensurable with g, and hence f
G

6� h. Moreover, since x …

EG.g/, we have that x … EG.f / as the torsion ofEG.f / is exactlyEG.k/\EG.g/.
Then f has the same properties as g in the previous paragraph, which leads to
a contradiction with the minimality of jKhj. Therefore Kh D EG.H/ and so
h 2 SG.H; S/ ¤ ;. �

The following lemma is similar to [40, Lemma 3.6]:

Lemma 5.13. Suppose thatH 6 G, g 2 SG.H; S/ and x 2 CH .EG.H//nEG.g/.

Then there exists N3 2 N such that gnx 2 SG.H; S/ for any n 2 Z with jnj � N3.

Proof. By Lemma 5.4 there exists N3 2 N such that for all n 2 Z with jnj � N3,
h WD gnx 2 H \LWPD.G; S/ and this element is not commensurable with g. Part
(i) of this lemma also shows that EG.h/ � hhi .EG.g/ \ EG.h// hhi. Since g is
H -special and the subgroupEG.g/\EG.h/ is �nite (by Remark 2.11), we see that
EG.g/ \EG.h/ 6 EG.H/. Recalling Lemma 5.6, we obtain

EG.h/ 6 hh; EG.H/i D hhiEG.H/ 6 EG.h/;

thus EG.h/ D hhiEG.H/. It remains to observe that h 2 CH .EG.H// because
both g and x belong to this centralizer by the assumptions. Hence h 2 SG.H; S/,
as claimed. �

Proposition 5.14. LetH be a non-elementary subgroup ofGwithH\LWPD.G; S/ ¤
;. Then CH .EG.H// is generated by the set SG.H; S/. In particular hSG.H; S/i
has �nite index in H .

Proof. The proof is omitted, as it is identical to the proof of [40, Proposition 3.3],
modulo Lemmas 5.12 and 5.13. �

6. Technical lemmas

The goal of this section is to prove several auxiliary statements that will help
in establishing the claim of the main Theorem 7.1. All of these statements are
analogous to the ones from [40, Section 4]. Throughout this sectionG will denote
a group acting coboundedly by isometries on a hyperbolic space .S; d/. Let X be
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the generating set of G given by Lemma 2.4, so that �.G;X/ is equivariantly
quasi-isometric to S.

The main technical tool is the following lemma, which generalizes [40, Lemma
4.4]. Roughly speaking, it says that the products of large powers of WPD loxo-
dromic elements are commensurable only in the “obvious” cases.

Lemma 6.1. Let ¹g1; : : : ; glº � LWPD.G; S/, l � 2, be a set of pairwise non-

commensurable loxodromic WPD elements. Let F be a subset of G such that

jF nX j < 1 (e.g., F could be �nite).

There existsN4 2 N such that for any permutation � of ¹1; : : : ; lº and arbitrary

elements hi 2 EG.g�.i//, i D 1; : : : ; l , of in�nite order, the following holds.

Suppose that .g
m1

1 g
m2

2 : : : g
ml

l
/� is conjugate to .h

n1

1 f1h
n2

2 � � �h
nl

l
fl/

� in G, for

some fi 2 F , �; � 2 N, and mi ; ni 2 Z; jmi j � N4, jni j � N4 for all i D 1; : : : ; l .

Then � D � and there is k 2 ¹0; : : : ; l � 1º such that � is a cyclic shift by k, that

is �.i/ � i C k.mod l/ for all i 2 ¹1; 2; : : : ; lº, and fj 2 EG.g�.j //EG.g�.j C1//

when j D 1; 2; : : : ; l � 1, fl 2 EG.g�.l//EG.g�.1//.

Proof. This proof is very similar to the proof of [40, Lemma 4.4(2)], using the
appropriate references.

By Corollary 3.11 the family ¹EG.gi /º
l
iD1 is hyperbolically embedded in

.G;X/, and, by Lemma 2.15, we can enlarge X to ensure that F � X . Set
H WD tl

iD1.EG.gi /n¹1º/ and let the �nite subsets�i � EG.gi /, i D 1; : : : ; l and
K 2 N be chosen according to Lemma 2.17. Let S be the �nite subset of G given
by S WD

Sl
j D1¹h 2

˝

�j

˛

j jhj�j
� 7Kº.

First, let us show that for each i there is Ki 2 N such that gk … S when-
ever g 2 EG.gi / is an element of in�nite order and jkj � Ki . Indeed, since
jEG.gi / W hgi i j < 1 we see that every in�nite order element g 2 EG.gi / in fact
belongs to the subgroup EC

G .gi /. Note that the center of EC
G .gi / has �nite index

in it (e.g., by the last assertion of Lemma 2.9). Hence all the elements of �nite
order form a �nite normal subgroup Ti C EC

G .gi /, and the quotient EC
G .gi /=Ti

is an in�nite cyclic group, generated by the coset yTi , for some y 2 EC
G .gi /.

Since y has in�nite order and the set STi is �nite, there exists Ki 2 N such that
yk … STi provided jkj � Ki . Then for any in�nite order element g 2 EG.gi /

there is m 2 Z n ¹0º with g 2 ymTi . Thus for any k 2 Z, gk 2 ykmTi . But
if jkj � Ki then jkmj � Ki and hence ykmTi \ S D ;, implying that gk … S ,
as required.

Now, set N4 WD max¹Ki j i D 1; : : : ; lº. Choose arbitrary elements f1; : : : ,
fl 2 F and assume that

b.g
m1

1 g
m2

2 : : : g
ml

l
/�b�1 D .h

n1

1 f1h
n2

2 f2 : : : h
nl

l
fl /

�



1184 Y. Antolín, A. Minasyan, and A. Sisto

in G, for some in�nite order elements hi 2 EG.g�.i//, where � is a permutation
of ¹1; : : : ; lº, and some b 2 G, �; � 2 N, mi ; ni 2 Z with jmi j; jni j � N4,
i D 1; 2; : : : ; l . Then, for every n 2 N we have

b.g
m1

1 g
m2

2 : : : g
ml

l
/n�b�1 D .h

n1

1 f1h
n2

2 f2 : : : h
nl

l
fl /

n�: (5)

Let Ui , Vi and Wi be the letters from H and from X representing the elements
h

ni

i , gmi

i and fi , i D 1; : : : ; l , respectively. By our choice of mi and ni , the words
.V1V2 : : : Vl/

n� , and .U1W1U2W2 : : : UlWl /
n� are inW.O; 7K;X;H/ for all n 2 Z,

where O :D ¹�j ºl
j D1.

Choose a shortest word B over X [ H representing b in G. Set " D jBj and
let L D L."; 2l/ 2 N be the constant given by Lemma 4.4. Take n 2 N to be
su�ciently large so that nl > 6" and n�l � L.

In the Cayley graph �.G;X tH/ equation (5) gives rise to a cycle o D rqr 0q0,
in which Lab.r/ � B , q� D rC, Lab.q/ � .V1V2 : : : Vl/

n� , r 0
� D qC, Lab.r 0/ �

B�1, q0
� D r 0

C, Lab.q0/ � .U1W1U2W2 : : : UlWl /
�n�.

By construction, the paths q and q0 have exactly n�l and n�l components
respectively. Suppose that � > �. By Lemma 4.3.(c), at least n�l � 6" >

nl.� � 1/ � nl� components of q must be connected to components of q0, hence
two distinct components of q will have to be connected to the same component of
q0, contradicting Lemma 4.3.(c). Hence � � �. A symmetric argument shows that
� � �. Consequently � D �.

Since `.q/ D n�l � L, we can apply Lemma 4.4 to �nd 2l consecu-
tive components of q that are connected to 2l consecutive components of q0�1.
Therefore there are consecutive components p1; : : : ; plC1 of q and p0

1; : : : ; p
0
lC1

of q0�1 such that pj is connected to p0
j for each j , and Lab.pi / � Vi for

i D 1; : : : ; l , Lab.plC1/ � V1 (see Figure 3). Therefore Lab.p0
i / 2 EG.gi /,

i D 1; : : : ; l , Lab.p0
lC1
/ 2 EG.g1/. From the form of Lab.q0�1/ it follows that

there is k 2 ¹0; 1; : : : ; l � 1º such that Lab.p0
j / � Uj Ck for j D 1; : : : ; l C 1

(indices are added modulo l). Thus Uj Ck D h
nj Ck

j Ck
2 EG.gj /. On the other hand,

h
nj Ck

j Ck
2 EG.g�.j Ck// and it has in�nite order by the assumptions, hence g�.j Ck/

is commensurable with gj inG by Remark 2.11. The latter yields that �.jCk/ D j

for all j . Therefore � is a cyclic shift (by l � k) of ¹1; : : : ; lº.

To prove the last claim of the lemma, note that the subpathwi of q0�1 between
.p0

i /C and .p0
iC1/� is labelled by WiCk � W��1.i/. As we showed, the vertex

.pi /C D .piC1/� is connected to .wi /� by a path si with Lab.si / 2 EG.gi /,
and to .wi /C by a path ti with Lab.ti/ 2 EG.giC1/, i D 1; : : : ; l (here we use the
convention that glC1 D g1). Considering the cycle t�1

i siwi we achieve the desired
inclusion: f��1.i/ D Lab.wi / 2 EG.gi /EG.giC1/, i D 1; : : : ; l . �
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r 0
r

p2 p3
p4

q0

w2

p0
4

p0
2

s1 s3 t3t2t1 s2

w1

p0
3

w3

p0
1

p1

q

Figure 3.

Let H 6 G be a non-elementary subgroup such that H \ LWPD.G; S/ ¤ ;.
The following three lemmas are analogues of [40, Lemmas 4.5, 4.6, and 4.7]
respectively. The proofs are exactly the same as in [40] once one uses Lemma
5.4 instead of [40, Lemma 4.4.(i)], Lemma 6.1 instead of [40, Lemma 4.4.(ii)]
and Lemma 2.9.(c) instead of [40, Lemma 2.4.(b)].

Lemma 6.2. Suppose that 'WH ! G is a homomorphism such that '.h/
G
� h for

all h 2 H \ LWPD.G; S/. Then for any g1; g2; g3 2 H \ LWPD.G; S/, satisfying

gi

G

6� gj for i ¤ j , there exists N5 2 N such that for arbitrary n1; n2; n3 2 Z,

with jni j � N5, i D 1; 2; 3, and for g D g
n1

1 g
n2

2 g
n3

3 , one has g 2 LWPD.G; S/ and

.'.g//� D eg�e�1, for some e 2 G and � 2 N.

Lemma 6.3. Let a; b 2 LWPD.G; S/ be non-commensurable elements and let

y; z 2 G. There exists N6 2 N such that the following holds. Suppose that

ak0

ybl 0

z
G
� akbl for some integers k; l; k0; l 0 with jkj; jl j; jk0j; jl 0j � N6. Then

y 2 EG.a/EG.b/ and z 2 EG.b/EG.a/.

Lemma 6.4. Assume that g 2 SG.H; S/ and  WH ! G is a homomorphism

satisfying  .gn/ D gnz for some n 2 N and z 2 EG.H/. Then there is

f 2 EG.H/ such that  .g/ D gf .

7. Commensurating homomorphisms

This section is dedicated to proving our main technical theorem:

Theorem 7.1. LetG be a group acting coboundedly by isometries on a hyperbolic

space S. Let H 6 G be a non-elementary subgroup of G and let 'WH ! G be

a homomorphism. Suppose that H \ LWPD.G; S/ ¤ ; and '.h/
G
� h for all

h 2 H \ LWPD.G; S/.



1186 Y. Antolín, A. Minasyan, and A. Sisto

Then there exists a set map "WH ! EG.H/, whose restriction to CH .EG.H//

is a homomorphism, and an element w 2 G such that for every h 2 H , '.h/ D
w.h".h//w�1. Moreover, if '.H/ D H then w 2 NG.HEG.H//.

We need two auxiliary lemmas in order to prove the theorem. As usual, G is a
group acting isometrically and coboundedly on a hyperbolic space S and H 6 G

is a non-elementary subgroup with H \ LWPD.G; S/ ¤ ;.

Lemma 7.2. Let  WH ! G be a homomorphism such that  .h/
G
� h for

all h 2 H \ LWPD.G; S/. Suppose that g1; g2; g3 2 H \ LWPD.G; S/ is a

triple of pairwise non-commensurable (in G) elements with g1 2 SG.H; S/ and

g2; g3 2 CH .EG.H//. Then for any l; m 2 N there are n1; n2; n3; n
0
1 2 N such

that a WD g
ln1

1 g
mn2

2 g
n3

3 and b WD g
n0

1

1 g
mn2

2 g
n3

3 satisfy the following properties:

� a; b 2 SG.H; S/;

� the elements a; b; g1; g2; g3 are pairwise non-commensurable in G;

� there exist �; � 2 N, u; v 2 G such that  .a�/ D ua�u�1 and  .b�/ D
vb�v�1.

Proof. Let N1 2 N be given by Lemma 5.4 applied to the set ¹g1; g2; g3º and
F D ;. ChooseN5 2 N according to an application of Lemma 6.2 to  ; g1; g2; g3

and let n3 WD max¹N1; N5º. By Lemma 5.5, there is n2 � max¹N1; N5º such that
g

mn2

2 g
n3

3 2 H \LWPD.G; S/ and this element is not commensurable with g1 inG.
It follows that the element gmn2

2 g
n3

3 2 CH .EG.H// has in�nite order, and thus it
cannot belong to the virtually cyclic subgroupEG.g1/. Since g1 isH -special, we
can use Lemma 5.13 to �nd N3 2 N such that gn

1g
mn2

2 g
n3

3 2 SG.H; S/ whenever
n � N3. Take n1 2 N so that ln1 � max¹N1; N3; N5º, and apply Lemma 5.5 to

�nd n0
1 > ln1 such that the elements a D g

ln1

1 g
mn2

2 g
n3

3 and b D g
n0

1

1 g
mn2

2 g
n3

3 are
non-commensurable in G.

By Lemma 5.13 we have a; b 2 SG.H; S/, and by Lemma 5.4 neither of these
two elements is commensurable to any gi , i D 1; 2; 3. Finally, using Lemma 6.2,
one can conclude that there exist u; v 2 G, �; � 2 N such that  .a�/ D ua�u�1

and  .b�/ D vb�v�1. �

Lemma 7.3. Let  WH ! G be a homomorphism such that  .h/
G
� h for all

h 2 H \ LWPD.G; S/. Suppose that there are two non-commensurable elements

a; b 2 SG.H; S/ such that  .a�/ D a� and  .b�/ D b� for some �; � 2 N. Then

for every g 2 SG.H; S/ there is f D f .g/ 2 EG.H/ such that  .g/ D gf .

Proof. Consider any g 2 SG.H; S/. If g 2 EG.a/ then there is n 2 N such
that gn 2 ha�i because jEG.a/ W ha�i j < 1. Hence  .gn/ D gn and then by
Lemma 6.4,  .g/ D gf for some f 2 EG.H/.
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Suppose now that g 62 EG.a/. Recall that g 2 CH .EG.H// because this
element is H -special. Now, combining Lemmas 5.13 and 5.5, we can �nd some
l 2 N such that d WD al�g 2 SG.H; S/ and d is not commensurable with a and b
in G.

By Lemma 7.2, we can �nd n1; n2; n3 2 N such that c WD an1�bn2�dn3 2

SG.H; S/, c
G

6� a, c
G

6� b and  .c�/ D ec�e�1 for some � 2 N and e 2 G.
By Lemma 5.4, ak�ck� 2 H \LWPD.G; S/ for every su�ciently large k 2 N.

Hence ak�eck�e�1 D  .ak�ck�/
G
� ak�ck� whenever k is su�ciently large. So,

Lemma 6.3 shows that e 2 EG.a/EG.c/. Thus e D apcsf for some p; s 2 Z and
f 2 EG.H/. This implies that  .c�/ D apc�a�p since c 2 CH .EG.H//.

Similarly one proves that e 2 EG.b/EG.c/, and thus there is q 2 Z such that
 .c�/ D bqc�b�q . Hence .a�pbq/c�.a�pbq/�1 D c� and therefore a�pbq 2

EG.c/ by Lemma 2.9.(b).
Assume, �rst, that p ¤ 0. If a�pbq 2 EG.c/ has �nite order, then a�pbq 2

EG.H/ because c 2 SG.H; S/. Hence, ap 2 bqEG.H/ � EG.b/ contradicting

the assumption that a
G

6� b. Thus a�pbq must have in�nite order, and so there are
˛; ˇ 2 Z n ¹0º such that .a�pbq/˛ D cˇ .

Since .a�/ D a� and .b�/ D b� , by Lemma 6.4 there existf1; f2 2 EG.H/

such that  .a/ D af1 and  .b/ D bf2. Since a; b 2 CH .EG.H// we obtain that

 .cˇ / D  ..a�pbq/˛/ D .a�pbq/˛f3 D cˇf3 for some f3 2 EG.H/:

Then for  WD ˇ�jEG.H/j we get that c D  .c / D apca�p, implying that

ap 2 EG.c/, which contradicts a
G

6� c.
Therefore, p D 0 and, thus,  .c�/ D c�. By Lemma 6.4, there exists

f4 2 EG.H/ such that  .c/ D cf4. Since c D an1�bn2�dn3 and a�, b� are
�xed by  , we see that  .dn3/ D dn3f4. Applying Lemma 6.4 again, we �nd
f5 2 EG.H/ such that  .d/ D df5. Finally, since d D al�g, we achieve that
 .g/ D gf5 as needed. �

We are now ready to prove the main result of this section.

Proof of Theorem 7.1. SinceH\LWPD.G; S/ ¤ ;, by Lemma 5.12 there is at least
one element g1 2 SG.H; S/. Since H is non-elementary and CH .EG.H// has
�nite index in it, CG.EG.H// is non-elementary itself. On the other hand,EG.g1/

is elementary by Lemma 2.9, hence there exists y 2 CH .EG.H// nEG.g1/.

By Lemma 5.5, there is k2 2 N such that g2 WD g
k2

1 y 2 LWPD.G; S/

and g2

G

6� g1. Using the same lemma again, we can �nd k3 2 N such that

g3 WD g
k3

1 y 2 LWPD.G; S/ and g3

G

6� gi for i D 1; 2.
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Note that, by construction, g2; g3 2 CH .EG.H//, so one can use Lemma 7.2
to �nd non-commensurable elements a; b 2 SG.H; S/ such that '.a�/ D ua�u�1

and '.b�/ D vb�v�1 for some u; v 2 G and �; � 2 N.
Let �WH ! G be the homomorphism de�ned by �.h/ D u�1'.h/u for all

h 2 H . Then �.a�/ D a�, �.b�/ D .u�1v/b�.u�1v/�1: Note that �.h/
G
� h for

every h 2 H \ LWPD.G; S/. By Lemma 5.4, .a�/k.b�/k 2 H \ LWPD.G; S/ if
k 2 N is large enough. Therefore

ak�.u�1v/bk�.u�1v/�1 D �.ak�bk�/
G
� ak�bk�

for every su�ciently large k 2 N. Consequently, by Lemma 6.3, u�1v 2

EG.a/EG.b/, thus u�1v D asbtf for some s; t 2 Z and f 2 EG.H/. Hence
�.b�/ D .asbtf /b�.asbtf /�1, and since b 2 CH .EG.H//, �.b�/ D asb�a�s.
Let w WD uas 2 G and let the homomorphism  WH ! G be de�ned by
 .h/ D w�1'.h/w D a�s�.h/as for all h 2 H . By construction

 .a�/ D a�; '.b�/ D b� and  .h/
G
� h for each h 2 H \ LWPD.G; S/:

Now we are under the hypothesis of Lemma 7.3, claiming that for every g 2
SG.H; S/ there exists f D f .g/ 2 EG.H/ such that  .g/ D gf .

By Proposition 5.14, CH .EG.H// is generated by SG.H; S/, therefore for each
x 2 CH .EG.H// there is Q".x/ 2 EG.H/ such that  .x/ D x Q".x/: Since the
map  is a homomorphism, the map Q"WCH .EG.H// ! EG.H/ will also be a
homomorphism. By construction, we have '.x/ D w .x/w�1 D wx Q".x/w�1 for
all x 2 CH .EG.H//.

Now we need to extend the homomorphism Q"WCH .EG.H// ! EG.H/ to a set
map "WH ! EG.H/. De�ne

l WD jH W CH .EG.H//j; m WD jEG.H/j; n WD ml 2 N:

Since EG.H/ is normalized by H , the centralizer CH .EG.H// is a normal
subgroup of H . Consequently, for any z 2 H we have that zl 2 CH .EG.H// and

 .zn/ D zn Q".zl/m D zn: (6)

Take an arbitrary h 2 H . For any g 2 H \LWPD.G; S/we have .h/gn .h/�1 D
 .hgnh�1/ D hgnh�1, implying that h�1 .h/ 2 EG.g/. Since g was an
arbitrary element of H \ LWPD.G; S/, we conclude that h�1 .h/ 2 EG.H/ D
\g2H\LWPD.G;S/EG.g/ (see Lemma 5.6).

After de�ning the ".h/ WD h�1 .h/ for each h 2 H , one immediately sees that
"WH ! EG.H/ is a map with the required properties. Evidently the restriction of
" to CH .EG.H// is the homomorphism Q".
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It remains to prove the last claim of the theorem. Assume that '.H/ D H .
Consider any element f 2 EG.H/. By the above assumption, for any g 2
H \ LWPD.G; S/ there is h 2 H such that '.h/ D g. Recalling (6) and the
de�nition of  we achieve gn D '.hn/ D w .hn/w�1 D whnw�1. But
hn 2 CH .EG.H//, therefore

wfw�1gn.wf w�1/�1 D wf hnf �1w�1 D whnw�1 D gn:

Hence, wfw�1 2 EG.g/ for every g 2 H \LWPD.G; S/; consequentlywfw�1 2
EG.H/. The latter implies that wEG.H/w

�1 � EG.H/ and since EG.H/ is
�nite, we conclude that w normalizes EG.H/.

Observe that yH WD HEG.H/ is a subgroup of G because EG.H/ is nor-
malized by H (see Lemma 5.6). For any h 2 H we have that whw�1 D
wh".h/w�1w".h/�1w�1 2 HEG.H/; thus wHw�1

6 yH . Since w�1'.h/w D

h".h/ 2 yH and '.H/ D H , one gets w�1Hw � yH . Therefore w yHw�1 �
yHwEG.H/w

�1 D yH; w�1 yHw � yHw�1EG.H/w D yH , i.e., w 2 NG. yH/. This
�nishes the proof of the theorem. �

Theorem 7.1 allows us to generalize Corollaries 5.3 and 5.4 from [40].

Corollary 7.4. Let G be group acting coboundedly and by isometries on a hy-

perbolic space S. Suppose that H 6 G is a non-elementary subgroup, with

H \ LWPD.G; S/ ¤ ;, and 'WH ! G is a homomorphism. The following are

equivalent:

(a) ' is commensurating;

(b) '.g/
G
� g for every g 2 H \ LWPD.G; S/;

(c) there is a set map "WH ! EG.H/, whose restriction to CH .EG.H// is

a homomorphism, and an element w 2 G such that for every g 2 G,

'.g/ D w.g".g//w�1.

In particular, if EG.H/ D ¹1º then every commensurating homomorphism from

H to G is the restriction to H of an inner automorphism of G.

Proof. (a) implies (b) by de�nition, and (b) implies (c) by Theorem 7.1. It remains
to show that (c) implies (a). Indeed, let the homomorphism ' satisfy (c), and let
g be an arbitrary element of H . Thus '.g/ D w.g".g//w�1 for some w 2 G and
".g/ 2 EG.H/.

Since EG.H/ is a �nite subgroup of G normalized by H , the subgroup
CH .EG.H// is normal and of �nite index in H . Set m WD jEG.H/j 2 N

and l WD jH W CH .EG.H//j 2 N. It follows that gl 2 CH .EG.H// and
".glm/ D ".gl /

m
D 1 in G by the assumptions of (c). Therefore

'.g/lm D '.glm/ D wglm".glm/w�1 D wglmw�1:

Hence '.g/
G
� g for all g 2 H , as required. �
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An application of the above corollary to the case H D G gives rise to the
following characterization of commensurating endomorphisms, which is very
similar to the result for relatively hyperbolic groups from [40, Corollary 1.4]:

Theorem 7.5. Let G be an acylindrically hyperbolic group. An endomorphism

'WG ! G is commensurating if and only if there is a set map "WG ! EG.G/,

whose restriction to CG.EG.G// is a homomorphism, and an elementw 2 G such

that '.g/ D w.g".g//w�1 for every g 2 G. In particular, if EG.G/ D ¹1º then

every commensurating endomorphism is an inner automorphism of G.

Proof. By Theorem 2.19, sinceG is acylindrically hyperbolic, it is non-elementary
and admits a cobounded action on a hyperbolic space S such thatLWPD.G; S/ ¤ ;.
Now the claim follows from Corollary 7.4 applied to the case when H D G. �

Remark 7.6. If G is a �nitely generated acylindrically hyperbolic group then
Theorem 7.5 easily implies that Inn.G/ has �nite index in the group Autcom.G/

of all commensurating automorphisms of G. On the other hand, it is not di�cult
to show that this is not true for F1 � Z2, the direct product of the free group
of countably in�nite rank and the cyclic group of order 2 (in fact this group has
uncountably many commensurating automorphisms).

The above remark shows that to establish Corollary 1.5 we need to work a bit
more since the group G may not be �nitely generated (however, the proof is very
similar to that of [40, Corollary 5.4]).

Proof of Corollary 1.5. Again, by Theorem 2.19, G is non-elementary and admits
a cobounded action on a hyperbolic space S such that LWPD.G; S/ ¤ ;. Applying
Corollary 7.4 to the case when H D G, we see that for any automorphism
' 2 Autpi.G/, there exist w 2 G and a map "WG ! EG.G/ such that '.h/ D
wg".g/w�1 for each g 2 G. Take any element h 2 SG.G; S/. Then h commutes
with ".h/ 2 EG.G/, and, consequently, .'.h//m D whmw�1 where m WD
jEG.G/j 2 N.

Now, since ' is a pointwise inner automorphism of G, there is x 2 G such
that '.h/ D xhx�1. Hence xhmx�1 D '.hm/ D whmw�1, i.e., w�1x 2
EG.h/ Š hhi � EG.G/, hence w�1x 2 CG.h/. Consequently, we have h D

w�1xh.w�1x/�1 D h".h/, which implies that ".h/ D 1. Since the latter holds
for any h 2 SG.G; S/, it follows from Proposition 5.14 that ".CG/ D ¹1º, where
CG WD CG.EG.G//.

Note that jG W CG j < 1, hence there are g1; : : : ; gl 2 G such that G D
Fl

iD1 CGgi . For any g 2 G there are a 2 CG and i 2 ¹1; : : : ; lº such that g D agi ,
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and one has

'.a/'.gi / D '.g/

D wg".g/w�1

D .waw�1/.wgi".agi /w
�1/

D '.a/.'.gi /w.".gi//
�1".agi /w

�1/:

Therefore ".g/ D ".agi / D ".gi /, i.e., the map " is uniquely determined by
the images of g1; : : : ; gl . Since '.g/ D w.g".gi //w

�1, the automorphism ' 2

Autpi.G/, up to composition with an inner automorphism of G, is completely
determined by the �nite collection of elements ".g1/; : : : ; ".gl/ 2 EG.G/, and
since EG.G/ is �nite, we can conclude that j Autpi.G/ W Inn.G/j < 1.

Finally, if EG.G/ D ¹1º we have '.g/ D wgw�1 for all g 2 G, that is
' 2 Inn.G/. �

Combining Grossman’s criterion with Corollary 1.5, we obtain the following

Corollary 7.7. Let G be a �nitely generated acylindrically hyperbolic group.

If G is conjugacy separable and contains no non-trivial �nite normal subgroups

then Out.G/ is residually �nite.

In [15, Corollary 1.6] Caprace and the second author showed that any pointwise
inner automorphism of a �nitely generated Coxeter groupW is inner. Theorem 7.5
can be used to say much more in the case when W is acylindrically hyperbolic.

Lemma 7.8. Suppose thatW is a �nitely generated in�nite irreducible non-a�ne

Coxeter group. Then W is acylindrically hyperbolic and EW .W / D ¹1º.

Proof. The assumptions imply that W is not virtually cyclic and W contains a
rank 1 isometry for the natural action on the associated Davis CAT(0) complex;
see [14]. Therefore W is acylindrically hyperbolic by [47].

It remains to note that EW .W / D ¹1º because any �nite normal subgroup of a
Coxeter group is contained in a �nite normal parabolic subgroup, but an in�nite
irreducible Coxeter group cannot have any proper normal parabolic subgroups
(the normalizer of a parabolic subgroup P 6 W is itself a parabolic subgroup,
which is isomorphic to the direct product P � R, where R is the orthogonal
complement of P in W – see [18, 30]). �

A combination of Lemma 7.8 with Theorem 7.5 immediately yields the fol-
lowing:

Corollary 7.9. IfW is a �nitely generated in�nite irreducible non-a�ne Coxeter

group then every commensurating endomorphism ofW is an inner automorphism.
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8. Normal endomorphisms of acylindrically hyperbolic groups

This section is dedicated to proving Theorem 1.7. Our argument uses the powerful
machinery of algebraic Dehn �llings, developed for hyperbolically embedded
subgroups by Dahmani, Guirardel and Osin [17]:

Theorem 8.1 ([17, Theorem 7.19]). Let G be a group, X a subset of G, ¹H�º�2ƒ

a collection of subgroups of G. Suppose that ¹H�º�2ƒ ,!h .G;X/. Then there

exists a family of �nite subsetsF� � H�n¹1º, � 2 ƒ, such that for every collection

of normal subgroups N D ¹N� C H� j � 2 ƒº, satisfying N� \ F� D ; for all

� 2 ƒ, the following hold:

(a) N \H� D N� for all � 2 ƒ, where N WD hhN� j � 2 ƒiiG
C G;

(b) every element of N is either conjugate to an element of
S

�2ƒN� � G

or is loxodromic with respect to the action of G on �.G;X t H/, where

H WD
F

�2ƒ .H� n ¹1º/;

(c) N is isomorphic to the free product of copies of groups from N.

Combining the above result with Corollary 3.11 one obtains the following
statement:

Lemma 8.2. Assume that G is a group acting isometrically and coboundedly on

a hyperbolic space S. For any element g 2 LWPD.G; S/ there exists M 2 N such

that if jmj � M and hgmi C EG.g/ then the normal closure hhgmiiG
C G is free

and every non-trivial element in it is loxodromic (with respect to the action of G

on S).

Proof. Let X be a symmetric generating set of G given by Lemma 2.4. By
Corollary 3.11, EG.g/ ,!h .G;X/, therefore we can apply Theorem 8.1, which
claims that there exists a �nite subset F � EG.g/n ¹1º such that for every normal
subgroup N0 C EG.g/, with N0 \ F D ;, the normal closure N WD hhN0iiG is
isomorphic to the free product of some copies of N0, and every element of N is
either conjugate to an element of N0 in G or is loxodromic with respect to the
action of G on the Cayley graph �.G;X tEG.g/ n ¹1º/.

Since the order of g is in�nite, there is M 2 N such that hgmi \ F D ;
whenever jmj � M . So, if m satis�es this inequality and hgmi C EG.g/, by the
previous paragraph we see that hhgmiiG

C G is isomorphic to the free product of
in�nite cyclic groups (hence, it is free) and every element h 2 hhgmiiG n ¹1º is
either conjugate to some non-zero power of g in G or is loxodromic with respect
to the action of G on �.G;X t EG.g/ n ¹1º/. Therefore such h is loxodromic
with respect to the action ofG on �.G;X/: in the former case this is true because
g 2 LWPD.G; S/ and in the latter case this is demonstrated in the �rst paragraph
of the proof of Lemma 5.1 (one can take X1 WD X [EG.g/ n ¹1º). It follows that
h is loxodromic with respect to the action of G on S. �
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Proof of Theorem 1.7. The argument will be split in two cases.

Case 1 . EG.G/ D ¹1º. We need to show that either '.G/ D ¹1º or ' is an
inner automorphism of G. Arguing by contradiction suppose that '.G/ ¤ ¹1º

and ' … Inn.G/. Let us �rst prove the following claim:

there is some g1 2 LWPD.G; S/ such that '.g1/ 2 LWPD.G; S/ and '.g1/
G

6� g1:

(7)

Since G is acylindrically hyperbolic, it has a symmetric generating set X such
that S :D �.G;X/ is hyperbolic, j@Sj > 2, and G acts on S acylindrically.
Then G is non-elementary and LWPD.G; S/ ¤ ; (as explained in Theorem 2.19
and in the paragraph after it), hence G is generated by the G-special elements
(by Proposition 5.14).

Therefore there must exist g 2 SG.G; S/ such that '.g/ ¤ 1. Choose M 2 N

according to Lemma 8.2. Then for any m � M , hgmi C EG.g/ D hgi
and every non-trivial element of N WD hhgmiiG is loxodromic. It follows that
N n ¹1º � LWPD.G; S/ by Remark 2.18 and the fact that the action of G on S is
acylindrical. Since '.g/ ¤ 1, there exists m � M such that '.gm/ ¤ 1. On the
other hand, '.N/ � N as ' is a normal endomorphism, hence we can conclude
that '.gm/ 2 LWPD.G; S/. Consequently, '.g/ 2 LWPD.G; S/ by Remark 2.7.

If '.g/
G

6� g, then claim (7) is true for g1 D g. So, suppose that '.g/
G
� g.

Since EG.G/ D ¹1º and ' … Inn.G/, ' is not commensurating by Theo-
rem 7.5. Hence, according to Corollary 7.4, there exists h 2 LWPD.G; S/ such that

'.h/
G

6� h. Recall that EG.h/ is virtually cyclic, hence there is L 2 N such that
˝

hl
˛

C EG.h/ whenever l is divisible by L. Therefore, we can apply Lemma 8.2
as before to �nd l 2 N such that hhhl iiG n ¹1º � LWPD.G; S/. Again, since '
is normal, it must map this normal closure into itself. So, if '.hl / ¤ 1 then
'.hl / 2 LWPD.G; S/, consequently '.h/ 2 LWPD.G; S/ and g1 D h satis�es
claim (7).

Thus it remains to consider the case when '.hl / D 1. Then hl … EG.g/ D hgi,
and by Lemma 5.5, there exists n 2 N such that the element g1 :D gnhl belongs

to LWPD.G; S/ and is not commensurable with g in G. But '.g1/ D '.gn/
G
� g

by the assumption above, therefore '.g1/ 2 LWPD.G; S/ (by Remarks 2.7 and 2.8)

and '.g1/
G

6� g1 (as g
G

6� g1). Thus we have shown the validity of claim (7).
So, let g1 2 LWPD.G; S/ be as in claim (7). Then, according to Corol-

lary 3.11, the family ¹EG.g1/; EG.'.g1//º is hyperbolically embedded in G. Now
we can use the theory of algebraic Dehn �llings: let F1 � EG.g1/ n ¹1º and
F2 � EG.'.g1//n ¹1º be the �nite subsets given by Theorem 8.1. Evidently, there
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is n 2 N such that
˝

gn
1

˛

\ F1 D ; and
˝

gn
1

˛

C EG.g1/. Then we can take
N1 :D

˝

gn
1

˛

C EG.g1/ and N2 :D ¹1º C EG.'.g1//. Since Ni \ Fi D ;,
Theorem 8.1 claims that for N :D hhN1; N2iiG D hhgn

1 iiG
C G one has

N \EG.g1/ D N1 D hgn
1 i and N \EG.'.g1// D N2 D ¹1º:

Thus the image of g1 in G=N has �nite order n 2 N and the image of '.g1/ has
in�nite order in G=N . On the other hand, since 'WG ! G is a normal endomor-
phism, '.N/ � N , hence it naturally induces an endomorphism N'WG=N ! G=N ,
de�ned by the formula N'.fN/ :D '.f /N for all f 2 G. This yields a contradic-
tion, as the order of N'.g1N/ does not divide the order of g1N in G=N . Therefore,
the proof under the assumption of Case 1 is complete.

Case 2. EG.G/ ¤ ¹1º. In this case xG :D G=EG.G/ is also acylindrically
hyperbolic andE xG.

xG/ D ¹1º (see [29, Lemma 5.10]). Since 'WG ! G is normal,
it naturally induces an endomorphism N'WG ! xG. Clearly N' will be a normal
endomorphism of xG. Therefore we can apply Case 1 to xG and N', concluding that
either N'. xG/ D ¹1º or there exists an element Nw 2 xG such that N'. Nf / D Nw Nf Nw�1

for all Nf 2 xG.

If N'. xG/ D ¹1º then '.G/ � EG.G/, as required. In the remaining case, pick
some preimage w 2 G of Nw 2 xG. Then for every f 2 G there exists ".f / 2
EG.G/ such that '.f / D wf".f /w�1. Clearly, since ' is an endomorphism, the
restriction of " to CG.EG.G// is a homomorphism from G to EG.G/, hence, by
Corollary 7.4, ' is commensurating. �

Remark 8.3. Now that we have proved Theorem 1.7, one can show that if G is
acylindrically hyperbolic then Inn.G/ has �nite index in the group of all normal
automorphisms Autn.G/ 6 Aut.G/. If G is �nitely generated, then this is a
consequence of Remark 7.6. IfG is not �nitely generated, then one can use a more
involved argument similar to the one from [40, Theorem 6.4 and Corollary 6.5].

Remark 8.4. If the �nite radical of an acylindrically hyperbolic group G is non-
trivial, then it may possess non-commensurating normal automorphisms with
non-trivial �nite images. Indeed, let F be the free group of rank 2 and let Q be a
non-abelian �nite simple group. Let G WD F �Q be the direct product of F and
Q, so thatG is hyperbolic andEG.G/ D Q. ThenG has a natural endomorphism
'WG ! G, which is the projection onto Q. It is not di�cult to check that every
normal subgroup N C G either contains Q or is contained in ker.'/ D F .
It follows that ' is a normal endomorphism of G with '.G/ D Q.
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9. Commensurating endomorphisms

of subgroups of right angled Artin groups

The purpose of this section is to prove Theorem 1.6 from the Introduction.
Let � D .V; E/ be a simplicial graph with the vertex set V � D V and the edge

set E� D E. The associated right angled Artin group A D A.�/ is the group
given by the presentation

hV k Œu; v� D 1; for all ¹u; vº 2 Ei:

The cardinality jV j is said to be the rank of A. Algebraically, the rank of A is
exactly the smallest cardinality of a generating set of A (this can be justi�ed by
looking at the abelianization of A, which is isomorphic to Z

jV j).
Right angled Artin groups are special cases of graph products of groups,

when all the vertex groups are in�nite cyclic (see [4, Subsection 2.2] for some
background on graph products).

Lemma 9.1. Suppose that A is a right angled Artin group and H 6 A is any

subgroup.

(i) If N C H is a normal subgroup which does not contain non-abelian free

subgroups, then N is central in H .

(ii) The quotient of H by its center Z D Z.H/ is centerless.

Proof. To prove (i), suppose that N is not central in H . Then there exist
h 2 H n ¹1º and g 2 N n ¹1º such that hg ¤ gh. By a theorem of Baudisch [7]
(see also [4, Corollary 1.6]), the latter implies that h and g generate a free subgroup
F , of rank 2, in A. Since g 2 F \N , this intersection is a non-trivial normal sub-
group of F , hence it is a non-abelian free group. This contradicts the assumption
that N has no non-abelian free subgroups. Therefore N must be central in H .

To verify (ii), let N C H be the full preimage of the center of H=Z under
the homomorphism H ! H=Z. Then N is nilpotent of class at most 2, hence
it satis�es the assumptions of (i), and therefore it must be central in H . Thus
N 6 Z; on the other hand Z 6 N by the de�nition of N . It follows that N D Z,
and so the image of N in H=Z (i.e., the center of H=Z) is trivial. �

For any subset U of V the subgroup AU WD hU i is said to be a full subgroup

of A. It is not di�cult to show that AU is naturally isomorphic to the right angled
Artin group A.�U /, where �U the full subgraph of � spanned on the vertices
from U (see, for example, [38, Section 6]). For every U � V there is a canonical

retraction �U WA ! AU de�ned on the generators of A by �U .x/ D x, if x 2 U

and �U .x/ D 1 if x … U .
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A subgroupH 6 A.�/ is called parabolic if it is conjugate to a full subgroup,
i.e., there exist U � V and a 2 A such that H D a�1AUa; we will say that H
is a proper parabolic subgroup of A.�/ if U ¤ V . If the graph � is �nite then
any subgroup H 6 A.�/ is contained in a unique minimal parabolic subgroup
Pc�.H/, called the parabolic closure of H in A.�/ (see [4, Proposition 3.10]).

Using the terminology from [4], we will say that a graph � is reducible if there
exists a partition V D A t B into non-empty disjoint subsets A and B such that
every vertex fromA is adjacent to every vertex fromB in�. Otherwise, � is said to
be irreducible. Alternatively, � is irreducible if and only if the complement graph

�c is connected (recall that �c is de�ned by V �c WD V andE�c WD .V �V /nE).
Every �nite graph� can be decomposed into irreducible subgraphs; this means

that there is a partition V D U1 t � � � t Uk , where Ui ¤ ;, �Ui
is irreducible for

i D 1; : : : ; k, and for any pair of indices i ¤ j , every vertex of Ui is adjacent with
every vertex ofUj in � (this corresponds to the decomposition of�c into the union
of its connected components). Using this we obtain the standard factorization of
the right angled Artin group A D A.�/:

A D A0 � A1 � � � � � Al ;

where A0 is a free abelian group (i.e., the right angled Artin group corresponding
to a complete subgraph of �) and each Ai , i D 1; : : : ; l , is a right angled Artin
group corresponding to a full irreducible subgraph �i , of �, with jV �i j � 2.
We will say that A0 is the abelian factor of A and A1; : : : ; Al are the irreducible

factors of A. Note that A0 is central in A by de�nition (in fact A0 coincides with
the center of A, which, for example, follows from Lemma 9.4 below).

The following fact was proved in [4, Corollary 3.15]:

Lemma 9.2. Let � be a �nite irreducible graph and let A D A.�/ be the

associated right angled Artin group. Suppose that H 6 A and N C H is a

non-trivial normal subgroup of H . If Pc�.H/ D A then Pc�.N / D A.

We will also need the following statement, which is a special case of [39,
Corollary 6.20].

Lemma 9.3. Let A D A.�/ be a right angled Artin group corresponding to

some �nite irreducible graph � with jV �j � 2. Then A acts simplicially and

coboundedly by isometries on a simplicial tree T so that the following holds.

For any subgroupH 6 A with Pc�.H/ D A one has H \ LWPD.A;T/ ¤ ;.

Note that the geometric realization of a simplicial tree is 0-hyperbolic. There-
fore, Lemma 9.3 shows that the theory which we developed in Section 7 can be
applied to any suchH .
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Lemma 9.4. Let � be a �nite irreducible graph and let A D A.�/ be the

corresponding right angled Artin group. Suppose that H 6 A is a non-cyclic

subgroup such that Pc�.H/ D A. Then H has trivial center and there is h 2

H n ¹1º such that EA.h/ D hhi � H , where the subgroup EA.h/ 6 A is de�ned

as in Remark 2.10.

Proof. Since H is not cyclic, jV �j � 2, and so we can apply Lemma 9.3 to
�nd a simplicial tree T such that A acts on T isometrically and coboundedly, and
H \ LWPD.A;T/ ¤ ;. Recall that right angled Artin groups are torsion-free,
hence EA.H/ D ¹1º (see Lemma 5.6) and H is non-elementary (because it is
not cyclic, and a torsion-free elementary group is cyclic). Therefore we can apply
Lemma 5.12 to �nd an in�nite order element h 2 H such that EA.h/ D hhi.
Moreover, by Lemma 5.8, there is an element g 2 H \ LWPD.A;T/ such that g
is not commensurable with h in A. In view of Remark 2.11, the latter implies that
EA.h/ \ EA.g/ D ¹1º. Since this intersection contains the center of H , H must
be centerless. �

The following simple observation will be useful:

Remark 9.5. If H is a free abelian group then the only commensurating endo-
morphisms of H are endomorphisms of the form h 7! hs for some s 2 Z n ¹0º

and for all h 2 H .

We can now prove the main result of this section.

Proof of Theorem 1.6. Choose a �nite graph �, with the smallest possible jV �j,
so that the corresponding right angled Artin group A D A.�/ contains (an
isomorphic copy of)H . Let A D A0 �A1 � � � � �Al be the standard factorization
ofA, whereA0 is the abelian factor ofA andA1; : : : ; Al are the irreducible factors
of A. Observe that A0 is a �nitely generated free abelian group and l � 1 as H is
non-abelian. Let �i WA ! Ai denote the canonical retraction (in other words, �i is
the i-th coordinate projection), i D 0; 1; : : : ; l .

Note that for every i 2 ¹1; : : : ; lº, the image �i .H/ cannot be isomorphic to a
subgroup of a right angled Artin group G whose rank is strictly smaller than the
rank of Ai . Indeed, otherwise H would embed into the direct product

P WD A0 � A1 � Ai�1 � G � AiC1 � � � � � Al ;

which would be a right angled Artin group of smaller rank than A, contradicting
the choice of �. It follows that for each i 2 ¹1; : : : ; lº, �i .H/ cannot be cyclic (as
the rank ofAi is at least 2 by the de�nition of irreducible factors) and the parabolic
closure of �i .H/ in Ai is Ai .
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One can also deduce that Ni WD H \ Ai C H is non-trivial whenever
i D 1; : : : ; l , because otherwise H would embed into the direct product of
A0 �A1 �Ai�1 �AiC1 � � � � �Al , which is a right angled Artin group of smaller
rank than A. Observe that Ni D �i .Ni / C �i .H/, hence Pc�i

.Ni / D Ai by
Lemma 9.2, where �i is the full irreducible subgraph of � corresponding to Ai ,
i D 1; : : : ; l . Moreover,Ni cannot be cyclic in view of Lemma 9.1.(i) as the center
of �i .H/ is trivial by Lemma 9.4. Hence we can apply Lemma 9.4 to Ai and Ni

in to �nd an element hi 2 Ni n ¹1º such that EAi
.hi / D hhi i � Ni , i D 1; : : : ; l .

Now consider any commensurating endomorphism 'WH ! H . For each
i 2 ¹0; 1; : : : ; lº let Bi C A denote the product of all Aj , j ¤ i ; thus A D AiBi Š
Ai � Bi and Bi D ker �i . By the hypothesis, for any g 2 H \ Bi , '.g/ 2 H and
'.g/m D ugnu�1 2 Bi for somem; n 2 Zn ¹0º and u 2 A. And since A=Bi Š Ai

is torsion-free, we can conclude that '.g/ 2 Bi . The latter shows that ' preserves
the kernel of the restriction of �i to H , i D 0; 1; : : : ; l . Therefore ' naturally
induces an endomorphism 'i W �i .H/ ! �i .H/ for i D 0; 1; : : : ; l , de�ned by the
formula 'i .�i .g// WD �i .'.g// for all g 2 H .

Evidently, 'i will be a commensurating endomorphism of �i .H/ for each
i D 0; 1; : : : ; l . Therefore, according to Remark 9.5, there must exist s 2 Z n ¹0º

such that '0.a/ D as for all a 2 �0.H/. On the other hand, if i 2 ¹1; : : : ; lº,
we can recall that Ai is an irreducible factor of A and �i .H/ is a non-elementary
subgroup of Ai such that the parabolic closure of �i .H/ in Ai is Ai . Therefore, in
view of Lemma 9.3, all the assumptions of Theorem 7.1 are satis�ed, hence there
exists wi 2 Ai such that 'i .a/ D wiaw

�1
i for all a 2 �i .H/ (here we used the fact

that EAi
.�i .H// D ¹1º as Ai is torsion-free), i D 1; : : : ; l .

Let  2 Inn.A/ be the inner automorphism de�ned by  .g/ WD wgw�1 for
all g 2 A, where w WD w1 � � �wl 2 A. Let us show that the endomorphism ' is
actually the restriction of  to H . The preceding paragraph implies that this is
true if the abelian factor A0 is trivial, because in this case for every g 2 H one
would have g D �1.g/ � � ��l .g/, and so

'.g/ D �1.'.g// : : : �l .'.g//

D '1.�1.g// : : : 'l .�l .g//

D �1.g/
w1 : : : �l .g/

wl

D gw :

On the other hand, ifA0 is non-trivial, thenN0 WD H\A0 is also non-trivial (by
the minimality of the rank ofA). So, pick any h0 2 N0n¹1º. Let h1 2 N1 D H\A1

be the element constructed above. Since ' is commensurating and h0h1 2 H ,
there must exist m; n 2 Z n ¹0º and u 2 H such that

'.h0h1/
m D u.h0h1/

nu�1 D hn
0u1h

n
1u

�1
1 ; where u1 WD �1.u/ 2 A1:
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But we also have '.h0h1/ D '0.h0/'1.h1/ D hs
0w1h1w

�1
1 . Therefore

hsm
0 w1h

m
1 w

�1
1 D hn

0u1h
n
1u

�1
1 :

Applying �0 and �1 to the above equation we obtain

hsm
0 D hn

0 and u�1
1 w1h

m
1 w

�1
1 u1 D hn:

The former yields that n D sm; and the latter shows that u�1
1 w1 2 EA1

.h1/ D

hh1i, in particular this element commutes with h1. Thus hm
1 D hn

1 , and so m D n.
Consequently, s D 1, which implies that '.g/ D wgw�1 D  .g/ for all g 2 H .
If w 2 H then the proof would have been �nished. However, this may not be the
case, so one more step is needed.

Let hi 2 Ni D H \ Ai , i D 1; : : : ; l , be the elements constructed above
so that EAi

.hi / D hhi i � H , and set h WD h1 � � �hl 2 H . By the assumption,
there exist m; n 2 Z n ¹0º and u 2 H such that '.h/m D uhnu�1. On the other
hand, we know that '.h/ D whw�1. Combining these two equalities one gets
whmw�1 D uhnu�1 in A. Applying �i yields that u�1

i wi 2 EAi
.hi/ D hhi i,

where ui WD �i .u/ 2 Ai , for i D 1; : : : ; l . It follows that for every i D 1; : : : ; l ,
there exists ti 2 Z such that wi D uih

ti
i in Ai . Thus, denoting u0 WD �0.u/ 2 A0,

we achieve

w D w1 : : : wl D u1h
t1
1 : : : ulh

tl
l

D u�1
0 uh

t1
1 : : : h

tl
l

D u�1
0 v;

where the element v WD uh
t1
1 � � �h

tl
l

belongs to H by construction. Since u0 2 A0

is central in A, we see that '.g/ D wgw�1 D vgv�1 for all g 2 H , thus ' is
indeed an inner automorphism of H . �

Remark 9.6. The claim of Theorem 1.6 would be no longer true if one dropped the
assumption that the ambient right angled Artin group is �nitely generated. Indeed,
let G be the direct product of in�nitely (countably) many copies of the free group
of rank 2. ThenG is a normal subgroup in the cartesian (i.e., unrestricted) product
P of these free groups and any inner automorphism of P induces a pointwise
inner automorphism of G. It follows that G has uncountably many pointwise
inner (hence, commensurating) but non-inner automorphisms.

10. Criteria for residual �niteness of outer automorphism groups

Recall that, given a group G, the pro�nite topology on G is the topology whose
basic open sets are cosets to normal subgroups of �nite index in G. It is easy to
see that group operations and group homomorphisms are continuous with respect
to this topology. In particular, G, equipped with this topology, is a topological
group. One can also observe that the pro�nite topology is Hausdor� if and only if
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¹1º is a closed subset of G if and only if G is residually �nite. It follows that any
�nite subset of a residually �nite group is closed (in the pro�nite topology).

If N C G, then G=N is residually �nite if and only if N is closed in G. Thus
if G is residually �nite and jN j < 1 then G=N is also residually �nite. Finally,
residual �niteness is preserved under taking subgroups or overgroups of �nite
index.

Remark 10.1. Suppose that G is a group and for every g 2 G n ¹1º there is a
homomorphism  from G to a residually �nite group K such that  .g/ ¤ 1.
Then G is residually �nite.

In this section we discuss various conditions one can impose on G to ensure
residual �niteness of Out.G/. One set of conditions is given by Grossman’s cri-
terion [21], mentioned in the Introduction. In particular, since any pointwise in-
ner automorphism is commensurating, we can combine this criterion with Theo-
rem 1.6 to obtain

Corollary 10.2. Let G be a �nitely generated conjugacy separable subgroup of a

right angled Artin group. Then Out.G/ is residually �nite.

In [38, Corollary 2.1] the second author proved that groups from the class VR
(i.e., virtual retracts of �nitely generated right angled Artin groups) are conjugacy
separable. Since these groups are �nitely generated (and even �nitely presented),
as virtual retracts of �nitely presented groups, we can apply Corollary 10.2 to
achieve

Corollary 10.3. If G 2 VR then Out.G/ is residually �nite.

Another useful tool for establishing residual �niteness of Out.G/ is given by
the following observation:

Lemma 10.4 ([22, Lemma 5.4]). Suppose that G is a �nitely generated group,

and N is a centerless normal subgroup of �nite index in G. Then some �nite

index subgroup Out0.G/ 6 Out.G/ is isomorphic to a quotient of a subgroup of

Out.N / by a �nite normal subgroup. In particular, if Out.N / is residually �nite

then so is Out.G/.

For our purposes we will also need a criterion (see Proposition 10.6 below)
which applies when the center of N is non-trivial.

Given a subgroupH 6 G, de�ne

Aut.GIH/ WD ¹˛ 2 Aut.G/ j ˛.H/ D H º 6 Aut.G/;

and let Out.GIH/ be its image in Out.G/. Since a �nitely generated group
contains only �nitely many subgroups of any given �nite index, the following
observation can be made:
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Remark 10.5. If G is a �nitely generated group andH 6 G has �nite index then
j Aut.G/ W Aut.GIH/j < 1 and j Out.G/ W Out.GIH/j < 1.

If Q is an abelian group and n 2 N then Qn WD ¹zn j z 2 Qº is called a
congruence subgroup of Q. Clearly, every �nite index subgroup of Q contains
Qn for some n 2 N. If, additionally, Q is �nitely generated, then jQ W Qnj < 1
for all n 2 N, hence the pro�nite topology of Q is generated by the congruence
subgroups. It follows that for any �xedm 2 N, the pro�nite topology onQ is also
generated by the collection ¹Qmn j n 2 Nº.

Let us also specify some notation. If x; y are elements of a group G, we
will write xy for the conjugate yxy�1 and Œx; y� for the commutator xyx�1y�1.
If E � G then Ey and ŒE; x� will denote the subsets ¹ey j e 2 Eº � G and
¹Œe; x� j e 2 Eº � G respectively.

Proposition 10.6. Let G be a �nitely generated group, let N C G be a normal

subgroup of �nite index such that the center Z D Z.N/, of N , is �nitely gener-

ated. Suppose that Out.G=Z/ is residually �nite and there is m 2 N such that

Out.G=Zmn/ is residually �nite for all n 2 N. Then Out.G/ is also residually

�nite.

Proof. In view of Remark 10.5 and since Out.GIN/ 6 Out.GIZ/ (because Z is
a characteristic subgroup of N ), it is enough to prove that Out.GIZ/ is residually
�nite. So, consider any ˛ 2 Aut.GIZ/ n Inn.G/ (note that Inn.G/ 6 Aut.GIZ/
as Z C G) and let N̨ 2 Out.GIZ/ denote its image in Out.G/.

Note that ˛.Zn/ D Zn for every n 2 N, hence ˛ naturally induces an
automorphism of G=Zn (as it permutes the cosets of Zn in G). This gives rise to
the following commutative diagram between automorphism groups:

Aut.GIZ/ //

��

Aut.G=ZnIZ=Zn/ //

��

Aut.G=Z/

��

Out.GIZ/ // Out.G=ZnIZ=Zn/ // Out.G=Z/

In view of the assumptions and Remark 10.1, to prove the proposition it is
enough to show that there exists s 2 ¹1º [ mN such that the image of N̨ in
Out.G=Zs/ (coming from the commutative diagram above) is non-trivial.

If ˛ induces a non-inner automorphism of G=Z, then the image of N̨ will be
non-trivial in Out.G=Z/. Thus, we can now suppose that ˛ induces an inner
automorphism of G=Z. This means that we can replace ˛ by its composition
with an inner automorphism of G (this does not a�ect N̨ ) to further assume that ˛
induces the identity on G=Z. In other words, ˛.g/g�1 2 Z for all g 2 G.

Choose a �nite generating set ¹x1; : : : ; xkº of G. Then for every i D 1; : : : ; k,
there is zi 2 Z such that ˛.xi / D zixi . Let C be the full preimage in G of the
center Z.G=Z/, and set C1 WD C \N .
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Let P D G � � � � �G be the k-th direct power of G, letQ D Z � � � � �Z 6 P

be the k-th direct power of Z, and let D WD ¹.g; : : : ; g/ j g 2 Gº 6 P be the
corresponding diagonal subgroup of P .

Observe that for any given n 2 N, ˛ induces an inner automorphism of G=Zn

if and only if there exists a 2 C such that ˛.xi / � axia
�1 (mod Zn) for every

i D 1; : : : ; k. The latter equality can be re-written as zi � Œa; xi � (mod Zn) in
G. Thus ˛ induces an inner automorphism of G=Zn if and only if .z1; : : : ; zk/ 2
ŒE; .x1; : : : ; xk/� (mod Qn), where E WD .C � � � � � C/ \ D 6 P . Note that
ŒE; .x1; : : : ; xk/� � Q as Œa; g� 2 Z for all a 2 C , g 2 G, by the de�nition of C .

Observe that the subgroup E1 WD .C1 � � � � � C1/ \ D 6 Q has �nite index
in E (because jC W C1j < 1). Moreover, if c; c0 2 C1 then Œcc0; g� D Œc; g�Œc0; g�

for any g 2 G. This can be derived from the commutator identities, because
Œc; g�; Œc0; g� 2 Z, andZ is an abelian subgroup centralized by C1 6 N . It follows
that ŒE1; .x1; : : : ; xk/� is actually a subgroup of the �nitely generated abelian
group Q. Therefore, ŒE1; .x1; : : : ; xk/� is closed in the pro�nite topology of Q
(in fact any subgroup H 6 Q is closed because the quotient Q=H is again a
�nitely generated abelian group, and so it is residually �nite as a direct sum of
cyclic groups).

By construction, there exist e1; : : : ; el 2 E such that E D
Sl

j D1 ejE1.
Utilizing commutator identities once again, we get

ŒE; .x1; : : : ; xk/� D

l
[

j D1

ŒE1; .x1; : : : ; xk/�
ej Œej ; .x1; : : : ; xk/�:

This shows that ŒE; .x1; : : : ; xk/� is also a closed subset of Q, as �nite union of
closed subsets. Recall, that ˛ … Inn.G/, therefore .z1; : : : ; zk/ … ŒE; .x1; : : : ; xk/�

in Q. It follows that we can �nd n 2 N such that .z1; : : : ; zk/ … ŒE; .x1; : : : ; xk/�

(mod Qmn). The latter demonstrates that ˛ induces a non-inner automorphism
of G=Zmn, which �nishes the proof of the proposition. �

Remark 10.7. The proof of Proposition 10.6 actually shows that if G is a �nitely
generated group andN C G is a �nite index normal subgroup such that the center
Z, of N , is �nitely generated then for any m 2 N, Out.GIZ/ embeds into the
cartesian product Out.G=Z/ �

Q

n2N Out.G=Zmn/.

11. Residual �niteness of outer automorphism groups of groups from AVR

In this section we will prove Theorem 1.1. In view of Corollary 10.3 and
Lemma 10.4, essentially it remains to deal with the case when a �nite index normal
subgroup N 2 VR of a group G 2 AVR has non-trivial center.
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Lemma 11.1. Let A be the right angled Artin group corresponding to a �nite

graph � and let A D A0 � A1 � � � � � Al be its standard factorization, where A0

is the abelian factor and A1; : : : ; Al are the irreducible factors of A. Suppose that

H 6 A is a subgroup such that Pc�.H/ D A and �i .H/ is not cyclic, for each

i D 1; : : : ; l , where �i WA ! Ai denotes the canonical retraction. Then the center

of H is equal to the intersection of H with A0.

Proof. Consider any i 2 ¹1; : : : ; lº and observe that if �i .H/ is contained
in a proper parabolic subgroup aBia

�1 of Ai (where a 2 Ai and Bi is a
full subgroup of Ai , and, hence, of A), then H is contained in the subgroup
a .A0A1 : : : Ai�1BiAiC1 : : : Al/ a

�1, which is a proper parabolic subgroup of A,
contradicting the assumption that Pc�.H/ D A. Therefore the parabolic closure
of �i .H/ in Ai is the whole of Ai , i D 1; : : : ; l .

Let Z denote the center ofH . Then �i.Z/ is contained in the center of �i .H/,
which is trivial for i D 1; : : : ; l , by Lemma 9.4. Thus �i .Z/ D ¹1º for each
i 2 ¹1; : : : ; lº, which implies that Z 6 A0. Evidently, H \A0 6 Z because A0 is
central in A, hence Z D H \ A0, as claimed. �

It is not di�cult to see that the class VR is closed under taking subgroups of
�nite index (see [38, Remark 9.4]). To prove the main result of this section we will
also need the fact that this class is closed under taking quotients by the center:

Proposition 11.2. Let C be a �nitely generated right Angled Artin group,

let H 6 C be an arbitrary subgroup and let Z be the center of H .

(a) For any subgroup Z1 6 Z, Z1 is �nitely generated and the quotient H=Z1

is residually �nite.

(b) If H is a virtual retract of C then H=Z 2 VR.

Proof. Since C has �nite rank, there exists a right angled Artin subgroup A 6 C

which containsH and has minimal rank (among all such subgroups of C ). Let �
be the �nite simplicial graph corresponding to A and let A D A0 � A1 � � � � � Al

be the standard factorization of A, where A0 is the abelian factor and A1; : : : ; Al

are the irreducible factors of A. If l D 0 then the groups H and A D A0 are free
abelian of �nite rank, hence both statements are evidently true. Therefore we can
assume that l � 1. Let �i WA ! Ai denote the canonical projection of A onto Ai ,
i D 0; 1; : : : ; l .

We remark that Pc�.H/ D A, by the choice ofA. If �i.H/ is a cyclic subgroup
B of Ai for some i 2 ¹1; : : : ; lº, then H embeds into the subgroup P 6 A where

P WD A0A1 : : : Ai�1BAiC1 : : : Al Š A0 �A1 � � � � �Ai�1 �B �AiC1 � � � � �Al ;

which is a right angled Artin group of strictly smaller rank than A, contradicting
the choice of A. Therefore we can conclude that �i.H/ is non-cyclic for every
i 2 ¹1; : : : ; lº. Thus we are able to apply Lemma 11.1, claiming that Z D H \A0.
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Consider any subgroupZ1 6 Z 6 A0. Since A0 is a �nitely generated abelian
group we see that Z1 is also �nitely generated. Moreover, the quotient H=Z1

naturally embeds into the quotient A=Z1 Š A0=Z1 � A1 � � � � � Al . Therefore
A=Z1 (and henceH=Z1) is residually �nite, as a direct product of residually �nite
groups: A0=Z1 is a �nitely generated abelian group and Ai , i D 1; : : : ; l , are right
angled Artin groups, whose residual �niteness is well-known (see [19, Chapter 3,
Theorem 1.1] or [28, Corollary 3.5]). Thus (a) is proved.

To prove (b) assume that H is a virtual retract of C . This implies that for any
subgroup D 6 C such that H � D, H is a virtual retract of D. In particular, H
will also be a virtual retract of A. Thus A contains a �nite index subgroupK such
thatH � K and there is a retraction � WK ! H . Since A0 is central in A,K \A0

is central in K, and so �.K \ A0/ � Z.
Consider the canonical projection �WA ! A=A0 Š A1 � � � � �Al , and observe

that

�.K \ ker �/ D �.K \ A0/ � Z D H \ A0 � K \ ker �:

It follows (see [38, Lemma 4.1]) that � naturally induces a retraction N� of �.K/ onto
its subgroup �.H/. Thus �.H/ is a retract of �.K/, and the latter has �nite index
in the �nitely generated right angled Artin group A=A0, because jA W Kj < 1.
It remains to recall that H \ ker � D H \ A0 D Z, hence �.H/ Š H=Z. Thus
H=Z 2 VR, and the proposition is proved. �

Remark 11.3. (1) Part (a) of Proposition 11.2 can actually be derived from more
general results. Indeed, it is known that the �nitely generated right angled Artin
group C can be embedded into GLk.Z/ for some k 2 N. Therefore every solvable
subgroupB 6 H 6 GLk.Z/ is polycyclic (hence, �nitely generated) and is closed
in the pro�nite topology of GLk.Z/ by a result of Segal [46, 4.C, Theorem 5].
Since the pro�nite topology ofH is �ner than the topology induced by the pro�nite
topology of GLk.Z/, we can conclude that B is closed in H .

(2) Since right angled Artin groups are CAT(0), it is easy to prove a weaker
version of Proposition 11.2.(b), that H=Z 2 AVR, using the Flat Torus Theorem
[11, II.7.1.(5)].

Combining Proposition 11.2 with Lemma 9.1.(ii) one immediately obtains

Corollary 11.4. Suppose that H 2 VR and Z is the center of H . Then the group

H=Z is centerless and belongs to VR.

Proof of Theorem 1.1. Let G be any group from the class AVR. This means that
G contains a �nite index subgroupH 2 VR; in particular, G is �nitely generated.
Note that N WD

T

g2G H
g is a �nite index normal subgroup of G, and N 2 VR

because the class VR is closed under taking �nite index subgroups.
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Let Z denote the center of N . We are going to check that all the assumptions
of the criterion from Proposition 10.6 are satis�ed. First, the fact that Z is �nitely
generated follows from Proposition 11.2.(a). Second, take any n 2 N and note that
N=Zn is residually �nite, also by Proposition 11.2.(a). Hence there is a �nite index
normal subgroup M C N=Zn such that M has trivial intersection with the �nite
subgroup Z=Zn in N=Zn. Again, we can replace M with the intersection of all
its conjugates in G=Zn to further assume that M C G=Zn.

By construction, M injects into the quotient N=Z under the natural epimor-
phism N=Zn ! N=Z. Let xM Š M denote the image of M in N=Z 6 G=Z.
Since N=Z 2 VR by Proposition 11.2.(b) and xM has �nite index in N=Z, we see
that xM 2 VR. Hence, according to Corollary 10.3, Out. xM/ Š Out.M/ is residu-
ally �nite. Moreover, since the center ofN=Z 2 VR is trivial (Lemma 9.1.(ii)), the
center of Z. xM/ must be trivial as well (because Z. xM/ is an abelian normal sub-
group of N=Z and so it is central in N=Z by Lemma 9.1.(i)). Therefore M Š xM

is a centerless �nite index normal subgroup in G=Zn with a residually �nite outer
automorphism group. Consequently, Lemma 10.4 yields that Out.G=Zn/ is resid-
ually �nite. Since this works for arbitrary n 2 N, we see that all the assumptions
of Proposition 10.6 are satis�ed. It remains to apply this proposition to conclude
that Out.G/ is residually �nite, which �nishes the proof of the theorem. �

12. Outer automorphisms of 3-manifold groups

This last section of the paper is dedicated to proving Theorem 1.3. We start with
the following lemma, which allows to deal with the Seifert �bered case.

Lemma 12.1. Suppose that G is a �nitely generated group containing a �nite

index subgroupH that �ts into the short exact sequence

¹1º �! K �! H �! L �! ¹1º;

where K is a cyclic group and L has a �nite index subgroup which embeds into

the fundamental group of a compact surface. Then Out.G/ is residually �nite.

Proof. Since K is cyclic, its automorphism group is �nite. Moreover, H acts on
K by conjugation becauseK C H , and the kernel of this action is the centralizer
of K in H . It follows that jH W CH .K/j < 1. Combining this with the other
assumptions on G and H , we can �nd a �nite index normal subgroup N C G

such that N 6 H , Z :D N \ K is central in N and N=Z is a subgroup of some
compact surface group. Note that N is �nitely generated, as this is true for G by
the hypothesis, hence the quotient N=Z is itself isomorphic to the fundamental
group of some compact surface † (because any �nitely generated subgroup of a
surface group is itself a surface group). Evidently we can also assume that † is
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orientable. It follows that N=Z Š �1.†/ is either abelian (isomorphic to ¹1º,
Z or Z

2) or is non-elementary torsion-free hyperbolic. In the former case, N
is polycyclic, hence G is virtually polycyclic and so Out.G/ is residually �nite
(according to a theorem of Wehrfritz [50], Out.G/ is linear over Z). Thus we can
assume that N=Z is a torsion-free hyperbolic group, which, in particular, implies
that it is centerless and so the cyclic subgroup Z is equal to the center of N .

Now, in order to apply Proposition 10.6, we check that Out.G=Zn/ is residually
�nite for any n 2 N. Indeed, observe that Z=Zn is a �nite central subgroup
of N=Zn such that the quotient .N=Zn/=.Z=Zn/ Š N=Z is isomorphic to
the surface group �1.†/. It follows that N=Zn possesses a �nite index normal
subgroup M C N=Zn which intersects Z=Zn trivially (see [34, Lemma 4.2]).
Thus the image xM , ofM inN=Z, is naturally isomorphic toM and has �nite index
in �1.†/. Consequently, xM is itself isomorphic to the fundamental group of a
compact orientable surface, which �nitely covers†. By Grossman’s theorem [21],
Out.M/ Š Out. xM/ is residually �nite; moreover, M Š xM is centerless because
it is a non-elementary torsion-free hyperbolic group (as it has �nite index in
N=Z). SinceM has �nite index in G=Zn, Lemma 10.4 implies that Out.G=Zn/ is
residually �nite for any n 2 N. Therefore we can use Proposition 10.6 to conclude
that Out.G/ is residually �nite. �

One of the main ingredients of the proof of Theorem 1.3 is the following
beautiful result of Hamilton, Wilton and Zalesskii, which is based on the deep
work of Wise [51] and Agol [1] mentioned in the Introduction.

Theorem 12.2 ([26, Theorem 1.3]). If M is a compact orientable 3-manifold, then

�1.M/ is conjugacy separable.

The other ingredient comes from the following trichotomy, established by the
second author and Osin:

Theorem 12.3 ([39, Theorem 5.6]). Let M be a compact 3-manifold and letH be

a subgroup of �1.M/. Then exactly one of the following three conditions holds.

(I) H is acylindrically hyperbolic with EH .H/ D ¹1º;

(II) H contains an in�nite cyclic normal subgroupK such thatH=K is virtually

a subgroup of the fundamental group of a compact surface;

(III) H is virtually polycyclic.

Proof of Theorem 1.3. By the assumptions H :D �1.M/ has �nite index in G,
thus both H and G are �nitely generated because M is compact. Moreover, after
replacing H with some �nite index subgroup, we can assume that H C G.

If H is virtually polycyclic then so is G, hence Out.G/ is residually �nite
by Wehrfritz’s theorem [50]. If H satis�es condition (II) of Theorem 12.3 then
Out.G/ is residually �nite by Lemma 12.1.
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Thus, in view of Theorem 12.3, we can assume thatH is acylindrically hyper-
bolic and EH .H/ D ¹1º. Therefore we can apply Corollary 1.5, stating that every
pointwise inner automorphism of H is inner. Recall that H is �nitely generated
and conjugacy separable by Theorem 12.2, hence Out.H/ is residually �nite by
Grossman’s criterion [21, Theorem 1].

It remains to observe that the center Z.H/, of H , is �nite because H is
acylindrically hyperbolic (see [42, Corollary 4.34]), hence Z.H/ 6 EH .H/ D
¹1º, i.e., H is centerless. Consequently, Lemma 10.4 implies that Out.G/ is
residually �nite. �
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