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1. Introduction

Let n � 2 be an integer, let G
def
D SLn.R/, let A � G be the subgroup of diagonal

matrices with positive entries and let Ln
def
D G=SLn.Z/ be the space of unimodular

lattices in R
n. The dynamics of the A-action on Ln is a well-studied topic in view

of applications to number theory. For instance, McMullen [4] studied this action

in connection with his fundamental work on Minkowski’s conjecture. A lattice

x 2 Ln is called well-rounded if the nonzero vectors of shortest length in x

span R
n, and McMullen proved that any compactA-orbit contains a well-rounded

lattice.

Theorem 1.1. Suppose x 2 Ln and Ax is closed. Then Ax contains a well-

rounded lattice.

The proof of Theorem 1.1 closely follows McMullen’s strategy; namely

McMullen deduced theorem 1.1 from a covering result regarding covers of the

torus Tn, while we deduce it from a di�erent covering result.

McMullen also showed that any bounded A-orbit contains a well-rounded lat-

tice in its closure. It is natural to inquire whether this result could be strengthened,

by removing either of the italicized phrases. As we show in Proposition 2.2, this

strengthening holds for almost every A-orbit, but whether or not it holds for every

A-orbit is an open question. Our result could be seen as a partial step in this di-

rection. Our proofs rely on results of Tomanov and the authors [8, 7] classifying

closed orbits for the A-action, as well as a covering result which is of independent

interest. For another perspective on this and related questions, see [5].
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2. Preliminaries

2.1. The behavior of almost every lattice. Let WR � Ln denote the set of

well-rounded lattices. Suppose x 2 WR and v1; : : : ; vn are linearly independent

shortest vectors of x. We will say that x is a generic well-rounded lattice if for

any v 2 x X ¹0;˙v1; : : : ;˙vnº, kvk > kvik: For instance the lattice Z
n is generic

well-rounded.

Proposition 2.1. If x 2 Ln is a generic well-rounded lattice, then there is an

open neighborhood U � Ln of x, such that WR \ U is a submanifold of Ln of

codimension n � 1.

Proof. The fact that x is generic implies that there is a neighborhood V of the

identity in G, such that for g 2 V, any shortest vector of gx is ˙gvi for some i .

Making V smaller if necessary we obtain that the multiplication map g 7! gx is a

homeomorphism of V onto U D Vx, and we obtain that WR\U D ¹gxW kgv1k D

� � � D kgvnkº: Since ¹g 2 GW kgv1k D � � � D kgvnkº is a subvariety of G cut

out by n � 1 independent equations, WR \ U is a submanifold of codimension

n � 1. �

The spaceLn is equipped with a uniqueG-invariant probability measure which

is induced by the Haar measure of G. With respect to this measure we have the

following:

Proposition 2.2. For almost every x 2 Ln, the orbit Ax contains a well-rounded

lattice.

Proof. Let x0 be a generic well-rounded lattice, with shortest vectors v1; : : : ; vn,

and let U be the neighborhood of x0 as in Proposition 2.1. Suppose in addition

that derivatives of the maps a 7! kavik; i D 1; : : : ; n� 1 are linearly independent

(seen as linear functionals on the Lie algebra a). A simple computation shows

that this condition is satis�ed for the lattice x0 D Z
n. This condition implies that

the orbit Ax0 and the manifold WR\U intersect transversally at x0. In particular

there is a neighborhood U0 � U such that if x 2 U0 then there is a 2 A such

that ax 2 WR. Thus any A-orbit entering U0 contains a well-rounded lattice.

By Moore’s ergodicity theorem (see e.g. [9]) the A-action on Ln is ergodic, and

hence almost every A-orbit enters U0. �
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2.2. The structure of closed orbits. The following statement was proved by the

authors in [7, Cor. 5.8], using earlier results of [8].

Proposition 2.3. Suppose Ax is closed. Then there is a decomposition A D

T1 � T2 and a direct sum decomposition R
n D

Ld
1 Vi such that the following

hold:

� each Vi is spanned by some of the standard basis vectors;

� T1 is the group of linear transformations which act on eachVi by a homothety,

preserving Lebesgue measure on R
n. In particular dimT1 D d � 1;

� T2 is the group of diagonal matrices whose restriction to each Vi has deter-

minant 1;

� T2x is compact and T1x is divergent, i.e. Ax Š T1 � T2=.T2/x , where

.T2/x
def
D ¹a 2 T2 W ax D xº is cocompact in T2;

� settingƒi
def
D Vi \ x, eachƒi is a lattice in Vi , so that

L

ƒi is of �nite index

in x.

2.3. Some preparations. Let e1; : : : ; en denote the standard basis of Rn. For

1 � d � n, let

In
d

def
D ¹1 � i1 < � � � < id � nº

denote the collection of multi-indices of length d and for J D .i1; : : : ; id / 2 In
d

let eJ
def
D ei1 ^ � � � ^ eid be the corresponding vector in the d -th exterior power

of Rn. We equip
Vd

R
n with the inner product with respect to which ¹eJ º is an

orthonormal basis, and denote by Ed;n the quotient of
Vd

R
n by the equivalence

relation w � �w. Note that the product of an element of Ed;n with a positive

scalar is well-de�ned. We will (somewhat imprecisely) refer to elements of Ed;n

as vectors. Given a subspace L � R
n with dimL D d , we denote by wL 2 Ed;n

the image of a vector of norm one in
Vd

L: If ƒ � R
n is a discrete subgroup of

rank d , we denote by wƒ 2 Ed;n the image of the vector v1 ^� � �^vd ;where ¹viº
d
1

forms a basis forƒ. The reader may verify that these vectors are well-de�ned (i.e.

independent of the choice of the vj ) and satisfy wƒ D jƒjwL where L D spanƒ

and jƒj is the covolume ofƒ in L, with respect to the volume form induced by the

standard inner product on R
n. We denote the natural action of G on Ed;n arising

from the d -th exterior power of the linear action on R
n, by .g; w/ 7! gw. Given

a subspace L � R
n and a discrete subgroup ƒ we set

AL
def
D ¹a 2 AW awL D wLº and Aƒ

def
D ¹a 2 AW awƒ D wƒº:

Note that AL D Aƒ when ƒ spans L. Note also that the requirement awL D wL

is equivalent to saying that aL D L and det.ajL/ D 1. Given a �ag

F D ¹0   L1   � � �   Lk   R
nº (2.1)
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(not necessarily full), let AF

def
D

T

i ALi
: The support of an element w 2 Ed;n is

the subset of In
d for which the corresponding coe�cients of an element of

Vd
R

n

representing w are nonzero, and we write supp.L/ or supp.ƒ/ for the supports of

wL and wƒ. For J D .i1 < � � � < id / 2 In
d , set RJ def

D span .eij / and de�ne the

multiplicative characters

�J WA �! R
�; �J .a/

def
D det.ajRJ /:

Then for any subspace L � R
n,

AL D
\

J 2supp.L/

ker�J (2.2)

(and similarly for discrete subgroups ƒ).

We �x an invariant metric d on A. We will need the following lemma (cf. [4,

Theorem 6.1]):

Lemma 2.4. Let T � A be a closed subgroup and let x 2 Ln be a lattice with

a compact T -orbit. Then for any C > 0 there exists R > 0 such that for any

collection ¹ƒiº of subgroups of x, there exists b 2 A such that

¹a 2 T W for all i; kawƒi
k � C º �

®

a 2 AW d
�

a; b
�

T

i Aƒi

��

� R
¯

: (2.3)

Proof. In the argument below we will sometimes identify A with its Lie algebra

a via the exponential map, and think of the subgroups Aƒ as subspaces. By (2.2)

only �nitely many subspaces arise as Aƒ. In particular, given a collection of

discrete subgroups ¹ƒiº, the angles between the spaces Aƒi
(if nonzero) are

bounded below, by a bound which is independent of the collection ¹ƒiº. Therefore

there exists a function  WR ! R with  .R/ ����!
R!1

1, such that

®

a 2 AW for all J 2
S

i supp.wƒi
/;  .R/�1 � �J .a/ �  .R/

¯

�
®

a 2 AW d
�

a;
T

i Aƒi

�

� R
¯

:
(2.4)

Since T x is compact, there exists a compact subset � � T such that for any

a 2 T there exists b D b.a/ 2 T satisfying bx D x and b�1a 2 �. It follows that

there exists M � 1 such that

(I) for any subspace L, kbwLk � MkawLk and

(II) for any multi-index J , �J .ba
�1/ � M .
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Given C > 0, let C 0 def
D MC and consider the �nite set

S
def
D ¹ƒ � xW kwƒk � C 0º:

For any ƒ 2 S write wƒ D
P

J 2supp.wƒ/ ˛J .ƒ/eJ : Let

0 < " < min¹j˛J .ƒ/j Wƒ 2 S; J 2 supp.wƒ/º;

and chooseR large enough so that .R/ > C 0=". We claim that for any ¹ƒiº � S,

¹a 2 T W for all i; kawƒi
k � C º �

®

a 2 T W d
�

a;
T

i Aƒi

�

� R
¯

: (2.5)

To prove this claim, suppose a is an element on the left hand side of (2.5). By (2.4)

it is enough to show that for any J 2
S

i supp.ƒi / we have  .R/�1 � �J .a/ �

 .R/. Since the coe�cient of eJ in the expansion of awƒi
is �J .a/˛J .ƒi / and

since kawƒi
k � C , we have

�J .a/ �
C

j˛J .ƒi /j
�
C

"
�  .R/:

On the other hand, letting b D b.a/ we have bƒi 2 S from (I), and

" � j˛J .bƒi /j D �J .b/j˛J .ƒi /j H) �J .b
�1/ � C="

(II)
H) �J .a

�1/ D �J .a
�1b/�J .b

�1/

� C 0=" �  .R/;

which completes the proof of (2.5).

Let ¹ƒiº be any collection of subgroups of x and assume that the set on the

left hand side of (2.3) is non-empty. That is, there exists a0 2 T such that for all i ,

ka0wƒi
k � C . Let b D b.a0/ 2 T , and set ƒ0

i

def
D bƒi . It follows that ¹ƒ0

iº � S

and so

¹a 2 T W for all i; kawƒi
k � C º

D b¹a 2 T W for all i; kawƒ0
i
k � C º

(2.5)
� b

®

a 2 T W d
�

a;
T

i Aƒ0
i

�

� R
¯

D
®

a 2 T W d
�

a; b
�

T

i Aƒi

��

� R
¯

;

where in the last equality we used the fact that Aƒ0
i

D Aƒi
because A is commu-

tative. �

Lemma 2.5. Let F be a �ag of length k as in (2.1) and let AF be its stabilizer.

Then AF is of co-dimension � k in A.
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Proof. Given a nested sequence of multi-indices J1   � � �   Jk it is clear that the

subgroup
k

\

iD1

ker�Ji

is of co-dimension k inA. In light of (2.2), it su�ces to prove the following claim:

Let F be a �ag as in (2.1) with di
def
D dimLi . Then there is a nested sequence of

multi-indices Ji 2 I
n
di

such that Ji 2 supp.Li /.

In proving the claim we will assume with no loss of generality that the �ag

is complete. Let v1; : : : ; vn be a basis of R
n such that Li D span¹vj ºi

j D1 for

i D 1; : : : ; n�1: Let S be the n�nmatrix whose columns are v1; : : : ; vn. Given a

multi-index J of length jJ j, we denote by SJ the square matrix of dimension jJ j

obtained from S by deleting the last n� jJ j columns and the rows corresponding

to the indices not in J . Note that with this notation, eachwLd
is the image in Ed;n

of a vector proportional to

v1 ^ � � � ^ vd D
X

J 2In
d

.detSJ /eJ : (2.6)

In particular, J 2 supp.Ld / if and only if detSJ ¤ 0.

Proceeding inductively in reverse, we construct the nested sequence Jd by

induction on d D n; : : : ; 1. Let Jn D ¹1; : : : ; nº so that S D SJn
. Suppose

we are given multi-indices Jn � � � � � JdC1 such that Ji 2 supp.wLi
/ for

i D n; : : : ; d C 1. We want to de�ne now a multi index Jd 2 supp.wLd
/ which

is contained in JdC1. By (2.6), detSJdC1
¤ 0. When computing detSJdC1

by expanding the last column we express detSjdC1
as a linear combination of

¹detSJ W J � JdC1; jJ j D dº. We conclude that there must exist at least one

multi-index Jd � JdC1 for which detSJd
¤ 0. In turn, by (2.6) this means that

Jd 2 supp.wLd
/. This �nishes the proof of the claim. �

3. Reduction to a topological statement

We will require the following topological result which generalizes Theorem 5.1

of [4]. Let s; t be non-negative integers, and let � denote the s-dimensional

simplex, which we think of concretely as conv.e1; : : : ; esC1/, where the ej are

the standard basis vectors in R
sC1. We will discuss covers of M

def
D � � R

t ,

and give conditions guaranteeing that such a cover must cover a point at least

s C t C 1 times. For j D 1; : : : ; s C 1 let Fj be the face of � opposite to ej , that

is Fj D conv.ei W i ¤ j /. Also let Mj
def
D Fj � R

t be the corresponding subset

of M . Given R > 0 and a positive integer k, we say that a subset U � R
t is
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.R; k/-almost a�ne if it is contained in an R-neighborhood of a k-dimensional

a�ne subspace of Rt .

Theorem 3.1. Suppose that U is a cover ofM by open sets satisfying the following

conditions:

(i) for any connected component U of any element of U there exists j such that

U \Mj D ¿I

(ii) there is R so that for any connected component U of the intersection of

k � s C t distinct elements of U, the projection of U to R
t is .R; s C t � k/-

almost a�ne.

Then there is a point of M which is covered at least s C t C 1 times.

The case s D 0 is McMullen’s result, and the case t D 0 is known as the

Knaster–Kuratowski–Mazurkiewicz theorem (see e.g. [3]). Note that hypothe-

sis (ii) is trivially satis�ed when k � s, since any subset of Rt is .1; t /-almost

a�ne. We will prove Theorem 3.1 in §4. In this section we use it to prove Theo-

rem 1.1.

Given a lattice x 2 Ln let ˛.x/ denote the length of a shortest nonzero vector

in x. Given ı > 0 let

Minı.x/
def
D ¹v 2 x X ¹0ºW kvk < .1C ı/˛.x/º;

Vı.x/
def
D span Minı.x/;

dimı.x/
def
D dim Vı.x/:

Finally, for " > 0, let U."/ D ¹U
."/

j ºn
j D1 be the collection of open subsets of A

de�ned by

Uj D U
."/

j

def
D ¹a 2 AW for all ı in a neighborhood of j"; dimı.ax/ D j º: (3.1)

Note that these sets depend on x 2 Ln but in our application x will be considered

�xed and so we suppress this dependence from our notation. By [4, Theorem 7.2],

U."/ is an open cover of A.

Lemma 3.2. For any n there is a compact K � Ln such that if x 2 Ln and

a 2 U
."/
n for " < 1, then ax 2 K.

Proof. If a 2 U
."/
n and " < 1 then ax has n linearly independent vectors of length

at most .nC 1/˛.ax/. Since ax is unimodular, there is a constant C (depending

only on n) such that ˛.x/ � C . The set K
def
D ¹x 2 LnW ˛.x/ � C º is compact by

Mahler’s compactness criterion, and ful�lls the requirements. �
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Proof of Theorem 1.1. It su�ces to show that for each " > 0, U
."/
n ¤ ¿: Indeed, if

this is the case, then letting "j be a sequence of positive numbers such that "j ! 0,

for each j , we let aj 2 U
."j /
n . By Lemma 3.2, the lattices ajx belong to a �xed

compact set K, so there is subsequence converging to some x0 2 K; we continue

to denote the subsequence by .ajx/. For each j there are linearly independent

v
.j /
1 ; : : : ; v

.j /
n 2 x such that kav

.j /
i k � .1 C "j /˛.ajx/. The angle between each

aj v
.j /
i and the space spanned by the other aj v

.j /

`
; ` ¤ i is bounded from below

independently of j . Passing to a subsequence we can assume that each aj v
.j /
i

converges to a nonzero vector vi 2 x0. Since ˛ is a continuous function, the vi all

have length equal to ˛.x0/, and by the lower bound on the angles between them,

they are linearly independent; that is, x0 is well-rounded.

In order to prove thatU
."/
n is non-empty, we will apply Theorem 3.1 to the cover

U."/ (restricted to an appropriate subset of A). Since n D sC tC1, the conclusion

of Theorem 3.1 implies that all the sets in U."/ are non-empty and in particular,

U
."/
n ¤ ¿. The �rst step is to �nd a decomposition A ' R

n�1 D R
s � R

t and

a simplex � � R
s, so that the restriction of the cover to � � R

t satis�es the two

hypotheses of Theorem 3.1.

LetA D T1�T2 andR
n D

Ld
1 Vi be the decompositions as in Proposition 2.3,

and let s
def
D dimT1 D d �1. For a 2 T1 we denote by �i.a/ the number satisfying

av D e�i .a/v for all v 2 Vi . Thus each �i is a homomorphism from T1 to the

additive group of real numbers. The mapping a 7!
L

i �i .a/IdVi
, where IdVi

is

the identity map on Vi , is nothing but the logarithmic map of T1 and it endows T1

with the structure of a vector space. In particular we can discuss the convex hull

of subsets of T1. For each � we let

��
def
D ¹a 2 T1W max

i
�i.a/ � �º:

Then �� D conv.b1; : : : ; bd / where bi is the diagonal matrix acting on each

Vj ; j ¤ i by multiplication by e�, and contracting Vi by the appropriate constant

ensuring that det bi D 1.

Let Pi WR
n ! Vi be the natural projection associated with the decomposition

R
n D

L

Vi . Since
L

ƒj is of �nite index in x, each Pi .x/ contains ƒi as a

subgroup of �nite index and hence is discrete in Vi . Moreover, the orbit T2x is

compact, so for each a 2 T2 there is a0 belonging to a bounded subset of T2 such

that ax D a0x. This implies that there is � > 0 such that for any i and any a 2 T2,

if v 2 ax and Pi .v/ ¤ 0 then kPi.v/k � �. Let C > 0 be large enough so that

˛.x0/ � C for any x0 2 Ln. Let � be large enough so that

e�� > 2C: (3.2)

We restrict the covers U."/ (where " 2 .0; 1=n/) to �� �T2 and apply Theorem 3.1

with t
def
D dimT2 D n � d .
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Let U be a connected subset of U
."/

k
2 U."/. By [4, §7],the k-dimensional

subspace L
def
D a�1Vk".ax/ as well as the discrete subgroup ƒ

def
D L \ x are

independent of the choice of a 2 U . By de�nition of U
."/

k
, for any a 2 U , aƒ

contains k vectors vi D vi.a/; i D 1; : : : ; k which span aL and satisfy

kvik 2 Œr; .1C k"/r�; where r
def
D ˛.ax/: (3.3)

In order to verify hypothesis (i) of Theorem 3.1, we need to show that there is

at least one j for which U \ Mj D ¿. Since kerP1 \ � � � \ kerPd D ¹0º and

dimL D k � 1, it su�ces to show that whenever U \Mj ¤ ¿, L � kerPj . The

face Fj of �� consists of those elements a1 2 T1 which expand vectors in Vj by

a factor of e�. If U \ Mj ¤ ¿ then there is a 2 T2; a1 2 Fj so that a1a 2 U .

Now (3.2) and (3.3) and the choice of � andC ensure that the vectors vi D vi.a1a/

satisfy Pj .vi/ D 0. Therefore L � kerPj .

It remains to verify hypothesis (ii) of Theorem 3.1. LetU be a connected subset

of an intersection Ui1 \ � � � \ Uik \ .�� � T2/ and let Lij

def
D a�1Vij ".ax/ and

ƒij

def
D Lij \ x. As remarked above, Lij ; ƒij are independent of a 2 U .

By the de�nition of the Lij ’s we have that Lij   Lij C1
and so they form a �ag

F as in (2.1). Lemma 2.5 applies and we deduce that

AF D

k
\

j D1

ALij
is of co-dimension � k in A: (3.4)

For each a 2 U and each j let ¹v
.j /

`
.a/º 2 aƒij be the vectors spanning aLij

which satisfy (3.3). Let u
.j /

`
.a/

def
D a�1v

.j /

`
2 ƒij .

(a) span
Z

¹u
.j /

`
.a/º is of �nite index inƒij and in particular, u

.j /
i1
.a/̂ � � �^u

.j /
ij
.a/

is an integer multiple of ˙wƒij
. As a consequence

kawƒij
k � kv

.j /
i1
.a/ ^ � � � ^ v

.j /
ij
.a/k:

(b) Because of (3.3) we have that kv
.j /
i1
.a/^� � �^v

.j /
ij
.a/k < C for some constant

C depending on n alone.

It follows from (a),(b) and Lemma 2.4 that there existR > 0 and an element b 2 T2

so that

U � �� � ¹a 2 T2W for all ij such that kawƒij
k < C º

� T1 � ¹a 2 T2W d.a; bAF/ � Rº:

By (3.4) we deduce that if p2WA ! T2 is the projection associated with the

decomposition A D T1 � T2 then p2.U / is .R0; sC t � k/-almost a�ne, where R0

depends only on R; �. This concludes the proof. �
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4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1. Our proof gives an elementary alterna-

tive proof of McMullen’s result. Moreover it shows that McMullen’s hypothesis

that the inradius of the cover is positive, is not essential.

Below X will denote a second countable locally connected metric space.

We will use calligraphic letters like U for collections of sets. The symbol mesh.A/

will denote the mesh of A, i.e. the supremum of the diameters of the sets in A.

We sometimes refer to a cover of �nite mesh as a uniformly bounded cover. The

symbol Leb.A/ will denote the Lebesgue number of a cover A, i.e. the supremum

of all numbers r such that each ball of radius r in X is contained in some element

of A. The symbol ord.A/will denote the order of A, i.e. largest number of distinct

elements of A with non-empty intersection.

De�nition 4.1. Let ¹Xj ºj 2J be a collection of subsets of X . We consider eachXj

as an independent metric space with the metric inherited from X , and say that the

collection is uniformly of asymptotic dimension � n if for every r > 0 there is

R > 0 such that for every j 2 J there is an open cover Xj of Xj such that

� mesh.Xj / � R,

� Leb.Xj / > r ,

� ord.Xj / � nC 1.

As an abbreviation we will sometimes write “asdim” in place of “asymptotic

dimension.”

Let A be a cover of X . We say that A is locally �nite if every x 2 X has a

neighborhood which intersects �nitely many sets in A. A cover B is a re�nement

of A if for every B 2 B there exists A 2 A such that B � A. We call the

intersection of k distinct elements of A a k-intersection, and denote the union of

all k-intersections by ŒA�k. We will need the following two Propositions for the

proof of Theorem 3.1. We �rst prove Theorem 3.1 assuming them and then turn to

their proof.

Proposition 4.2. Let A be a locally �nite open cover of X such that ord.A/ � m

and the collection of components of the k-intersections of A, 1 � k � m, is

uniformly of asdim � m� k. Then A can be re�ned by a uniformly bounded open

cover of order at most m.

Note that McMullen’s theorem, namely the case s D 0 of Theorem 3.1, already

follows from Proposition 4.2, since by a theorem of Lebesgue [2], a uniformly

bounded open cover of Rt is of order at least t C 1.
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Proposition 4.3. Let �1 and �2 be simplices, X D �1 � �2, pi WX ! �i

the projections and A a �nite open cover of X such that for every A 2 A and

i D 1; 2 the set pi .A/ does not meet at least one of the faces of �i . Then

ord.A/ � dim�1 C dim�2 C 1.

Proof of Theorem 3.1. Let m
def
D dimM D s C t , and suppose by contradiction

that ord.U/ � m. Since every cover of M has a locally �nite re�nement, there is

no loss of generality in assuming that U is locally �nite. Replacing U with the set

of connected components of elements of U, we may assume that all elements of

U are connected. For any r0, and any bounded set Y , the product space Y � R
d

can be covered by a cover of order d C 1 and Lebesgue number greater than r0.

Hence our hypothesis (ii) implies that for each k D 1; : : : ; m, the collection of

connected components of intersections of k distinct elements of U is uniformly of

asymptotic dimension at most m � k. Therefore we can apply Proposition 4.2 to

assume that U is uniformly bounded and of order at most m. Take a su�ciently

large t -dimensional simplex �1 � R
t so that the projection of every set in U

does not intersect at least one of the faces of �1. We obtain a contradiction to

Proposition 4.3. �

For the proofs of Propositions 4.2 and 4.3 we will need some auxiliary lemmas.

Lemma 4.4. Let ¹Gi W i 2 Iº be a locally �nite collection of open subsets of X ,

and let Z be an open subset such that for each i ¤ j , Gi \ Gj � Z. Then there

are disjoint open subsets Ei ; i 2 I; such that for any i

Gi XZ � Ei � Gi :

Proof. Let G D
S

i2IGi . Without loss of generality we can assume that X D

G[Z. De�ne Fi
def
D Gi XZ;F

def
D GXZ: Then the sets Fi are closed and disjoint,

and since the collection ¹Giº is locally �nite, the sets F X Fi are closed as well.

Denote by d the metric onX as well as the distance from a point to a closed subset.

Then it is easy to verify that the sets

Ei
def
D ¹x 2 Gi W d.x; Fi / < d.x; F X Fi /º

satisfy the requirements. �

We denote the nerve of a cover A by Nerve.A/; and consider it with the

metric topology induced by barycentric coordinates. Given a partition of unity

subordinate to a cover A of X , there is a standard construction of a map

X �! Nerve.A/I

such a map is called a canonical map.
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Lemma 4.5. Let a locally connected metric space Y be the union of two open

subsets D and E, and let D and E be open covers of D and E respectively, with

bounded mesh and ord, and such that ifC � D\E is a connected subset contained

in an element of D, then it is contained in an element of E. Then, there is an open

cover Y of Y such that

(1) the cover Y re�nes D [ E;

(2) mesh.Y/ � max.mesh.D/;mesh.E//;

(3) ord.Y/ � max.ord.D/C 1; ord.E//.

Proof. Let ord.D/ D nC 1, let A
def
D Nerve.D/, and let � W D ! A be a canonical

map. Take an open cover of A of A such that ord.A/ � nC 1 and ��1.A/ re�nes

D. Let f WY ! Œ0; 1� be a continuous map such that f jY XE � 0 and f jY XD � 1.

Set C
def
D f �1 .Œ0; 1// and

gW C �! B
def
D A � Œ0; 1� ; g.c/

def
D .�.c/; f .c//:

Since dim B � nC 1 there is an open cover B of B such that ord.B/ � nC 2, the

projection of B to A re�nes A and the projection of B to Œ0; 1� is of mesh < 1=2.

Let C denote the collection of connected components of sets ¹g�1.B/WB 2 Bº.

By construction C re�nes D. Moreover ord.C/ � nC2 and no element of C meets

both f �1.0/ and f �1
��

1
2
; 1

��

: Then for every C 2 C which meets f �1
��

1
2
; 1

��

we have that C � D \ E and there is an element D 2 D such that C � D and

hence there is E 2 E such that C � E. We choose one such E and say that E

marks C .

We now modify elements of E, de�ning

zE
def
D

�

E \ f �1
��1

2
; 1

i��

[
[

E marks C

C:

Finally de�ne Y as the collection of modi�ed elements of E and the elements

of C which do not meet f �1
��

1
2
; 1

��

. It is easy to see that Y has the required

properties. �

Lemma 4.6. Let Y be a locally connected metric space and let D;Ei ; i 2 I be

open subsets which cover Y . Assume that the Ei ’s are disjoint, connected, and are

uniformly of asdim � `. Let D be an open cover of D which is of bounded mesh

and ordD � `. Then Y has an open coverYwhich re�nes the coverD[¹Ei W i 2 Iº,

is of bounded mesh and ordY � `C 1.
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Proof. Using the assumption that Ei is uniformly of asdim � ` we �nd an open

cover Ei of Ei which is of uniformly bounded mesh, such that ordEi � `C 1 and

LebEi > meshD. We assume that the sets in Ei are subsets of Ei and Leb.Ei/ is

determined with respect to the metric of Y restricted to Ei . Let

E
def
D

[

i2I

Ei and E
def
D

[

i2I

Ei :

Clearly it su�ces to verify that the hypotheses of Lemma 4.5 are satis�ed.

Indeed, by assumption the cover D is of bounded mesh and order, and E is of

bounded mesh because of the uniform bound on mesh.Ei /. We also have that

ordE � ` C 1 because of the bounds ordEi � ` C 1 and the fact that the Ei

are disjoint. For the last condition, let a connected subset C � D \ E which is

contained in an element of D be given. By the connectedness and disjointness of

the Ei ’s we conclude that there exists i with C � Ei . Because LebEi > meshD

we deduce that since C is contained in an element of D it must be contained in an

element of Ei and in turn, it must be contained in an element of E. �

Proof of Proposition 4.2. Proceeding inductively in reverse order, we will con-

struct, for k D m; : : : 1, a uniformly bounded open cover Ak of ŒA�k such that

ord.Ak/ � mC1�k andAk re�nes the restriction ofA to ŒA�k. The construction is

obvious for k D m. Namely, our hypothesis and De�nition 4.1 with n D m�k D 0

mean that ŒA�m has a cover of bounded mesh and order 1, that is, we can just set

Am to be the connected components of ŒA�m. Assume that the construction is

completed for k C 1 and proceed to k as follows. First notice that for two distinct

k-intersections A and A0 of A the complements A X ŒA�kC1 and A0 X ŒA�kC1 are

disjoint. By Lemma 4.4, we can cover ŒA�k X ŒA�kC1 by a collection ¹Ei W i 2 Iº of

disjoint connected open sets such that every Ei is contained in a k-intersection of

A. In particular, the collection ¹Ei W i 2 Iº is uniformly of asdim � m� k. We can

therefore apply Lemma 4.6 with the choices Y D ŒA�k ;D D ŒA�kC1 ;D D AkC1,

the collection ¹Ei W i 2 Iº, and ` D m � k, and obtain an open cover Y of ŒA�k of

order � m� kC 1 that re�nes D[ ¹Ei W i 2 Iº and in particular, re�nes AjY . This

completes the inductive step. �

Proof of Proposition 4.3. For everyA 2 A choose a vertex vA
i of�i so that pi .A/

does not intersect the face of �i opposite to vA
i . Let Y

def
D Nerve.A/ and let

f WX ! X be the composition of a canonical map X ! Y and the map Y ! X

which is a�ne on each simplex of Y and sends the vertex of Y related to A 2 A to

the point .vA
1 ; v

A
2 / 2 X . Take a point x 2 @�1 ��2. Then p1.x/ belongs to a face

�0

1 of �1 and hence for every A 2 A containing x we have that vA
1 2 �0

1. Thus

both x and f .x/ belong to�0

1 ��2. Applying the same argument to�1 �@�2 we

get that the boundary @X is invariant under f and f restricted to @X is homotopic

to the identity map of @X . If ord.A/ � dim�1 C dim�2 then dimY � dimX � 1

and hence there is an interior point a of X not covered by f .X/. Take a retraction
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r WXX¹aº ! @X . Then the identity map of @X factors up to homotopy through the

contractible spaceX which contradicts the non-triviality of the reduced homology

of @X . �

See §5 for another proof of Proposition 4.3.

5. Another argument for Theorem 3.1

In this section we will sketch another proof of Theorem 3.1. The proof, suggested

by Roman Karasev, proceeds by reducing the theorem to its special case s D 0.

Let �CFK denote the Coxeter-Freudenthal-Kuhn simplex

¹.x1; : : : ; xn/ 2 R
nW 0 � x1 � � � � � xn � 1º;

and let � be the group generated by isometric re�ections of Rn in the facets of

�CFK. Then it is known [1] that � acts discretely on R
n with fundamental domain

�CFK (� is the so-called a�ne Coxeter group of type zAn). Using this fact, we

prove Theorem 3.1 as follows.

Recall that the case s D 0 of the Theorem was proved by McMullen, see [4,

Thm. 5.1]. According to this result, a cover V of Rm with Leb.V/ > 0 has order

at least mC 1, provided it satis�es the following analogue of (ii):

(ii)’ There is R so that for connected component V of the intersection of k � m

distinct elements of V is .R;m� k/-almost a�ne.

We remark that McMullen assumed that V has positive inradius, i.e. there is r > 0

such that for any x 2 R
m, there is an element of V containing the ball of radius r

around x. However as we remarked above, this hypothesis is not essential.

Setting m
def
D s C t , starting with a cover of M satisfying (i) and (ii) we will

form a cover of Rm satisfying (ii)’.

Clearly there is no loss of generality in assuming that � D �CFK: Let

'WRm ! � � R
t be the map which sends .x; y/; where x 2 R

s; y 2 R
t to

.x0; y/ where x0 is the representative of the orbit �x in �. Let V be the cover of

R
sCt obtained by pulling back the cover U. For each j , let xj be the vertex of

� opposite Fj and let �j be the �nite subgroup of � �xing xj . Then �j� is a

polytope all of whose boundary faces are images of Fj under �j . In light of as-

sumption (i), this implies that any connected component of any V 2 V is within a

uniformly bounded distance of ¹vº � R
t for some v 2 V . Therefore (ii)’ holds for

V, for k � s, while for k > s, (ii)’ for V is implied by (ii) for U. By McMullen’s

theorem, the order of V is at least s C t C 1, and therefore the same holds for U.

A similar argument, also suggested by Roman Karasev, gives another proof of

Proposition 4.3. Namely suppose that for i D 1; 2,�i � R
ni is realized concretely

as the Coxeter-Freudenthal-Kuhn simplex of dimension ni . Let� D �1��2 where

�i is the group generated by re�ections in the facets of�i . Then a cover of�1��2
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gives rise to a cover of Rn1Cn2 by open sets of uniformly bounded diameter, and

hence Lebesgue’s theorem implies that there is a point which is covered n1Cn2C1

times.
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