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and a Margulis’ lemma for Zn-actions,

with applications to homology
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Abstract. We consider the stable norm associated to a discrete, torsionless abelian group

of isometries � Š Zn of a geodesic space .X; d /. We show that the di�erence between the

stable norm k kst and the distance d is bounded by a constant only depending on the rank n

and on upper bounds for the diameter of xX D �nX and the asymptotic volume !.�; d /. We

also prove that the upper bound on the asymptotic volume is equivalent to a lower bound for

the stable systole of the action of � on .X; d /; for this, we establish a lemma à la Margulis

for Zn-actions, which gives optimal estimates of !.�; d / in terms of stsys.�; d /, and vice

versa, and characterize the cases of equality. Moreover, we show that all the parameters

n; diam. xX/ and !.�; d / (or stsys.�; d /) are necessary to bound the di�erence d �k kst, by

providing explicit counterexamples for each case.

As an application in Riemannian geometry, we prove that the number of connected

components of any optimal, integral 1-cycle in a closed Riemannian manifold xX either is

bounded by an explicit function of the �rst Betti number, diam. xX/ and !.H1. xX;Z//, or is

a sublinear function of the mass.
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1. Introduction

Consider a geodesic metric space .X; d/ with a Zn-periodic metric, i.e. admitting

a discrete, torsionless abelian group of isometries � of rank n acting properly

discontinuously:1 we mainly think of the Cayley graph of a word metric on Zn,

or to a Zn-covering of a compact Riemannian or Finsler manifold. A motivating

example is the torsion free homology covering X of any compact manifold xX with

nontrivial �rst Betti number, which has automorphism group � D H1. xX;Z/=tor.

1 That is, each x 2 X has an open neighbourhood U such that ¹ 2 � j :U \ U ¤ ¿º is
�nite.
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The associated stable norm on � is de�ned as

k  kst D lim
k!1

1

k
d.x0; k:x0/

and clearly it does not depend on the choice of x0 2 X , by the triangular inequality.

An isomorphism � Š Zn being chosen, this yields a well-de�ned norm2 on Rn,

extending the de�nition by homogeneity toQn �rst, and then to real coe�cients by

uniform continuity. For instance, when � D H1. xX;Z/=tor is the automorphism

group of the torsion free homology covering of a compact Riemannian manifold
xX , the stable norm coincides with the norm induced by the Riemannian length in

the homology with real coe�cients, that is (see [7] and [11] Chapter 4, §C):

k  kst D inf
°

X

k

jak j`.k/W ak 2 R; k Lipschitz 1-cycles,

 D
X

k

akk in H1. xX;R/
±

:

It is folklore (bounded distance theorem, cp. [4], [5], and [11]) that, when � acts

cocompactly by isometries, then .X; d/ is almost isometric to .Zn; kkst/: namely,

for every x0 2 X , there exists a constant C such that

j d.x0; :x0/ � k  kst j < C for all  2 �:

This fact was originally proved D. Burago for periodic metrics on Rn (see [2]

and [10]); however, we were not able to �nd a complete proof of the general case

in literature. The �rst purpose of this note is to investigate to what extent the

constant C depends on the basic geometric invariants of X , i.e. to estimate how

far a space admitting an abelian action is from a normed vector space. We prove:

Theorem 1.1 (quantitative bounded distance theorem). Let � D Zn act freely and

properly discontinuously by isometries on a length space .X; d/, with compact

quotient. There exists a constant c D c.n; D; �/ such that for all x0 2 X

j d.x0; x0/ � k  kst j < c.n; D; �/; (1)

where D and � are, respectively, upper bounds for the codiameter and the

asymptotic volume of � with respect to d .

We call co-diameter of � the diameter of the quotient xX D �nX .

The asymptotic volume of a group � Š Zn, endowed with a �-invariant

metric d , is the asymptotic invariant de�ned as (cp. [14])

!.�; d/ D lim
R!1

]¹ W d.x; :x/ < Rº
Rn

:

2 Since it can be bounded from below by a multiple of a word metric, cp. [5].
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For � acting on .X; d/ as above, for any choice of a base point x0 2 X , the group

� inherits from X a left-invariant distance dx0
, by identi�cation with the orbit

�x0; the asymptotic volume !.�; dx0
/ clearly does not depend on x0, and we

shall simply write !.�; d/. For � acting on .X; d/ as above, any choice of a base

point x0 2 X yields a left-invariant distance dx0
on �, by identi�cation with the

orbit �:x0; clearly, the asymptotic volume !.�; dx0
/ does not depend on x0, and

we shall simply write !.�; d/. Moreover, given any �-invariant measure � on X ,

it is easy to see, by a packing argument, that it equals the usual asymptotic volume

of the measure metric space .X; d; �/ divided by the measure of the quotient, i.e.,

!�.X; d/ D lim
R!1

�.B.X;d/.x0; R//

Rn
D �. xX/ � !.�; d/:

As a consequence of the QBD theorem 1.1, we have an explicit control of the

growth function of balls and annuli in .�; d/ (cp. Proposition 5.1), and of the

Gromov-Hausdor� distance between .X; �d/ and its asymptotic cone .Rn; k kst/

in terms of n; D; �:

dGH ..X; �d/; .Rn; k kst// � � � .c C 2D/

(notice that, for abelian groups endowed with a word metric, the linearity of the

rate of convergence of .X; �d/ to the asymptotic cone was already known, cp. [3]).

The QBD theorem 1.1 is obtained combining Burago’s original idea with a care-

ful control of the dilatation of “natural” maps .Rn; euc/ � .X; d/ quasi-inverse

one to each other.3 More precisely, the maps are induced from the identi�cation

of Zn with a �nite index subgroup Z of � generated by a set †n of n linearly inde-

pendent vectors .k/. The bounds on the codiameter and the asymptotic volume

are then needed to control the index Œ� W Z� and the relative variation of d=d†n

on Z. For this, we prove in Section §3 a lemma à la Margulis4 for abelian groups,

which gives an estimate from below of the minimal displacement of � in terms of

an upper bound on the asymptotic volume. Namely, let �� D � n ¹eº and de�ne,

respectively, the systole and the stable systole of the action of � on .X; d/ as

sys.�; d/ D inf
x2X

inf
2��

d.x; :x/;

stsys.�; d/ D inf
2��

k  kst:

Then clearly stsys.�; d/ � sys.�; d/, and we prove:

3 This di�culty does not emerge in [2], where � Õ R
n, since in that case we have two

metrics on a torus, which are obviously bi-Lipschitz via the identity map.

4 The classical Margulis’ lemma, in negative curvature, gives an estimate (at some point x0)
of the minimal displacement of a group � acting on a Cartan–Hadamard manifold X , under a
lower bound on the curvature of X . It has been extended in several directions, in particular with
a bound on the volume entropy replacing the bound on curvature, cp. [1] and [6].
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Lemma 1.2 (abelian Margulis’ lemma). Let � D Zn act freely and properly

discontinuously by isometries on a length space .X; d/, with cocompact quotient.

Then
2

nŠ
� 1

codiam.�; d/n�1 � !.�; d/
� stsys.�; d/ � 2

!.�; d/1=n
(2)

Moreover, these inequalities are optimal and the equality cases characterize, up to

almost-isometric equivalence, the action of speci�c lattices of Rn, endowed with

particular polyhedral norms. Namely, if codiam.�; d/ D D, stsys.�; d/ D � and

!.�; d/ � �, then there exists a constant C D C.n; D; �/ such that

� the equality holds in the left-hand side if and only if there is an equivariant,

C -almost isometry f W .X; d/ ! .Rn; k k1/, with respect to the action by

translations of the lattice �0 D � � Z � 2D � Zn�1 Š � on Rn;

� the equality holds in the right-hand side if and only if there is an equivariant,

C -almost isometry f W .X; d/ ! .Rn; k kh/, with respect to the canonical

action of � on Rn and where k kh is a parallelohedral norm;5 that is, a norm

whose unit ball is a �-parallelohedron (a convex polyhedron which tiles Rn

under the action by translations of �, i.e. whose �-translates cover Rn and

have disjoint interiors).

The left-hand side of (2) shows that, provided that the co-diameter is bounded,

an upper bound of the asymptotic volume is equivalent to a lower bound of the

stable systole. Therefore, the constant c.n; D; �/ in theorem 1.1 can as well be

expressed in terms of rank, co-diameter and of a lower bound stsys.�; d/ � � ,

instead of an upper bound !.�; d/ � �.

Notice that stsys.�; d/ cannot be bounded below uniquely in terms of n and

!.�; d/: any �at Riemannian torus .T; euc/ with unitary volume has fundamental

group � D �1.T / with asymptotic volume equal to the volume !n of the unit ball

in En, but the systole of � can be arbitrarily small (provided that the diameter of

T is su�ciently large).

It is natural to ask whether one can drop the dependence of the constant c in

the QBD theorem on any of the parameters n; D; � or � , and possibly replace

the dependence on the stable systole by a lower bound on the systole. In Section

§4 we give counterexamples ruling out each of these possibilities. In particular,

5 Examples of parallelohedral norms are

(i) in dimension n D 2, all norms whose unit ball is either a parallelogram or a convex
hexagon with congruent opposite sides (these are the only convex polygons which tasselate
R

2 under the action by translations of a 2-dimensional lattice, cp. [8], [12], and [13]);

(ii) in dimension n D 3, there are precisely 37 types of parallelohedra, cp. [9], including for
instance the standard n-cube (which gives rise to the sup-norm) or those obtained from
Z

n-tessellation by prisms with 2-dimensional base as in (i).

The complete classi�cation of parallelohedral norms is a particular case of Hilbert’s eighteenth
problem (tiling the Euclidean space by congruent polyhedra) and will be not pursued further here.
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one cannot generally bound d � k kst only in terms of rank, co-diameter and

systole: there exists a sequence of actions of Zn on length spaces .Xk ; dk/ with

sys.Zn; dk/ � 1 and codiam.Zn; dk/ � 1 such that the di�erence between dk and

the corresponding stable norms j jst;k is arbitrarily large, cp. Example 4.1. The

same example also shows that a lower bound of the systole does not imply any

upper bound for the asymptotic volume, i.e. the right-hand side of (2) does not

hold with the stable systole replaced by the systole.

Finally, in Section §5 we use the QBD theorem to address the following basic

problem on a closed Riemannian manifold xX : given an integral homology class

 2 H1. xX;Z/, what is the minimal number #CC of connected components of an

optimal cycle in ? Namely, we want to estimate the number

N./ D min¹#CC .c/ j c 2 Z1. xX;Z/; Œc� D ; `.c/ D j jH1
º;

where j jH1
is the mass in homology, i.e. the total length of a shortest,6 possibly

disconnected, collection of closed curves representing  . We call optimal a cycle

c 2 Œ� which is length-minimizing in its class and having precisely the minimum

number N./ of connected components.

Recall that the homological systole sysH1
. xX/ of xX is the length of the shortest

closed geodesic which is non-trivial in homology; if � D H1. xX;Z/ and .X; d/ is

the Riemannian homology covering of xX , we clearly have sysH1
. xX/ D sys.�; d/.

Notice that a lower bound of the homological systole sysH1
. xX/ � �1 (as given for

instance, in the torsionless case, by the left-hand side of the abelian Margulis’

lemma 1.2) readily implies an estimate N./ � ��1
1 j jH1

. However, as an

application of the QBD theorem, we actually show that N./ is sublinear in j jH1
.

Theorem 1.3. Assume that xX has �rst Betti number b1. xX/ D n, diam. xX/ < D

and !.H1. xX;Z// < �. Then, for any torsionless homology class  2 H1. xX;Z/,

(i) either N./ is bounded by an explicit, universal function N.n; D; �/,

(ii) or

N./ � 2 � 32n � �
1

nC1 � j j
n

nC1

H1
:

We will see that one can take

N.n; D; �/ D 218n3 � n2n � .nŠ/n.nC2/ � .�Dn C 1/6n2

:

It is noticeable that the bound (ii) does not even depend on the diameter of xX .

Aknowledgements. We thank D. Massart and S. Saboureau for useful discus-

sions.

6 Notice that a 1-cycle of minimal length in xX always exists, and is given by a �nite collection
of closed geodesics, by general representation results of minimizers in homology by currents, and
by regularity of recti�able 1-currents.
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2. QBD theorem

Let � Š Zn act freely, properly discontinuously and cocompactly by isometries

on a length space .X; d/. For any given x0 2 X we consider the left invariant

metric on � given by dx0
.1 ; 2/ D d.1:x0 ; 2:x0/. We will write dS for the

word metric relative to a generating set S of a group, and also use the abridged

notations j jx0
D d.x0; :x0/, j jS D dS .e; /.

Assume that diam.�nX/ � D, !.�; d/ � � and sys.�; d/ � � . We consider

the generating set7 †D D ¹ 2 �� j d.x0; x0/ � 3Dº, and we extract from †D

a set †n D ¹1; : : : ; nº of n linearly independent vectors which generate a �nite

index subgroup Z D h†ni, again isomorphic to Zn. Then, �x once and for all a

set of representatives S D ¹s0 D e; s1; : : : ; sd º for �=Z which are minimal for the

word metric d†D
associated to the generating set †D of �.

Let us consider the map f W .Z; dx0
/ ! .Zn; euc/ de�ned by sending each i

to the i-th vector of the standard basis of Rn. We shall prove that f and f �1

are two Lipschitz maps, whose Lipschitz constants M and M 0 are bounded in

terms of our geometric data n; D; � and � ; we will then extend f to a Lipschitz

map F W .X; d/ ! .Rn; euc/. The purpose of the next lemmas is to estimate the

constants M , M 0 by comparing with the dilatations of the following maps

f W .Z; dx0
/ �! .Z; d†D

jZ/ �! .Z; dy†n
/ �! .Z; d†n

/ �! .Zn; euc/; (3)

where

� d†D
jZ is the restriction of the word metric d†D

to Z;

� d†n
is the word metric on Z relative to †n;

� dy†n
is the word metric on Z relative to the generating set y†n of Z de�ned by

y†n D ¹si � s�1
j j si 2 S; � 2 †D and si � s�1

j 2 Z
�º

(with B.Z;dx0
/.r/; B.Z;†D/.r/; B.Z;†n/.r/ and B

.Z; y†n/
.r/ the relative balls cen-

tered at e.)

Notice that †n � y†n (since s0 D e 2 S ), but we might have †D 6� y†n.

Moreover, remark that .Z; d†n
/ is isometric to Zn endowed with the canonical

word metric k k1, so we have

1p
n

� j  j†n
� kf ./keuc � j  j†n

; (4)

!.Z; d†n
/ D 2n

nŠ
: (5)

7 The elements with d.x0; x0/ � 2D su�ce to generate �, cp. [11], p. 91; the constant 3D

is chosen here to bound from below dx0
=d†.
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Lemma 2.1 (cp. [11]). The set †D is a generating set for � such that

�

2
� j  j†D

� d.x0; :x0/ � 3D � j  j†D
:

Lemma 2.2. For all  2 Z we have

j jy†n
� j j†D

� .2 Œ� W Z� C 1/ � j jy†n
:

Proof. Let  D 1 : : : ` 2 Z with i 2 †D. Assume that 1 : : : i Z D ski
Z, then

 can be written as

 D .sk0
1 � s�1

k1
/ � .sk1

2 s�1
k2

/ � � � � � .sk`�2
`�1 s�1

k`�1
/ � .sk`�1 `skl

/

with sk0
D skl

D e, and any s�1
ki�1

iski
either is trivial or belongs to y†n.

Therefore j  jy†n
� j  j†D

. For the second inequality, recall that any class

si Z can be written as si Z D 1 : : : k Z with i 2 †D and k � Œ� W Z�. So, every

representative si , being †D-minimal, satis�es j si j†D
� Œ� W Z�, which implies

j  j†D
� .2 Œ� W Z� C 1/ � j  jy†n

. �

Lemma 2.3. The subgroup Z satis�es

Œ� W Z� � nŠ

2n
�.3D/nI(i)

dx0
.;Z/ � nŠ

2n
�.3D/nC1; for any  2 �I(ii)

diam.ZnX/ � D C �
nŠ

2n
.3D/nC1:(iii)

Proof. We consider the set S D ¹siºiD0;:::;d of representatives of �=Z with

minimal †D-length. Let M D maxsi
j si j†D

. Then

#B.�;†D/.R/ � Œ� W Z� � #B.Z;†D/.R � M/ � Œ� W Z� � #B.Z;d†n/.R � M/:

Dividing by Rn and taking the limit for R ! C1 yields

Œ� W Z� � !.�; d†D
/

!.Z; d†n
/

:

By Lemma 2.1 we have

!.�; d†D
/ � .3D/n!.�; d/ � .3D/n�;

while !.Z; d†n
/ D 2n=nŠ by (5); this proves (i).

To prove (ii), notice that the set ¹Z j  2 †Dº generates �=Z, and that every

class siZ is the product of at most Œ� W Z� classes iZ with i 2 †D. Since any

element of  2 � lies in some coset siZ, the †D-distance of  from Z is at most

Œ� W Z�. Then, Lemma 2.1 yields dx0
.;Z/ � 3D � Œ� W Z� .

Assertion (iii) then follows from (ii), as diam.�nX/ � D. �
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Lemma 2.4. The generating set y†n of Z satis�es:

!.Z; dy†n
/ � .2nC3nŠ/n � �Dn � .�Dn C 1/I(i)

j O j†n
� L.n; D; �/

D 2n2C4nC3.nŠ/nC1 � �Dn � .�Dn C 1/n for all O 2 y†nI
(ii)

j j†n
� L.n; D; �/ � j jy†n

for all  2 Z:(iii)

Proof. By Lemmas 2.1 and 2.2 we have

j jy†n
� 1

3D.2 Œ� W Z� C 1/
d.x0; x0/;

hence

!.Z; dy†n
/ � Œ3D.2 Œ� W Z� C 1/�n!.�; dx0

/;

so (i) follows from Lemma 2.3.

To prove (ii), assume that O 2 y†n has †n-length `, so it can be written as

a product O D i1 : : : i` , with every ik 2 †n. The sequence .i1 ; : : : ; i`/

corresponds to a geodesic path c0 in the Cayley graph C.Z; †n/. Let c be the

path in C.Z; †n/ obtained by concatenation of all the paths ck D Ok :c0; notice

that, since .Z; †n/ is isometric to .Zn; j j1/, the path c is still geodesic. Consider

now a new generating set: †n. O/ D †n [ ¹ Oº � O†n and call for brevity d O the

corresponding word metric. Chosen a radius R D m`, for m > 0, we consider the

points Pi D O2mi on the geodesic c, and we remark that

b`=2c
G

iD0

B.Z;d†n/
.Pi ; R � 2mi/ � B.Z;d O /.e; R/:

Actually, for j ¤ i � `=2 the balls

B.Z;d†n /.Pj ; R � 2mj / and B.Z;d†n/
.Pi ; R � 2mi/

are disjoint, since d†n
.Pi ; Pj / � j O2mj†n

D 2m` D 2R; moreover, these balls

are all contained in B.Z;d O /.e; R/ as d O .e; Pi/ D j O2mi j†n. O/ � 2mi .

Also, notice that, as !.Z; d†n
/ D 2n=nŠ, we have

#B.Z;†n/.Pj ; R � 2mi/ D #B.Z;†n/.m.` � 2i// � 2n�1

nŠ
mn.` � 2i/n

for m � 0. Thus

#B.Z;d O /.R/ �
b`=2c
X

iD0

2n�1

nŠ
mn.` � 2i/n � 2n�1

nŠ
mn`n

b`=3c
X

iD0

�2

3

�n

�
�4

3

�n `Rn

6 � nŠ
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which shows that !.Z; d O / � .4
3
/n `

6�nŠ
. On the other hand, we know by the above

lemmas that

j j†n. O/ � j j O†n
� 2n�1

3D.nŠ � �.3D/
n C 2

n
/

� j jx0
;

so
�4

3

�n `

6 � nŠ
� !.Z; d O / � .2nC3 � nŠ/n � �Dn.�Dn C 1/n;

which gives (ii). The third statement clearly follows from (ii). �

We deduce by the lemmas above that the map f de�ned in (3) is a bi-Lipschitz

map, with Lipschitz constants given by

M.f / � M D M.n; �; D; �/ D 1

�
� 2n2C4nC4 � .nŠ/nC1 � �Dn.�Dn C 1/n; (6)

M.f �1/ � M 0 D M 0.n; �; D/ D 8
�3

2

�np
n � nŠ � �DnC1: (7)

We will prove in the next section that we can get rid of the dependence on � .

Now, we extend f to a M 00-Lipschitz map F W .X; d/ ! .Rn; euc/, with

M 00 D p
nM , by extending each coordinate function fi of f as follows

Fi .x/ D inf
2Z

.fi.:x0/ C M.f / � d.:x0; x//

(notice that each Fi is M -Lipschitz, and then F is
p

nM -Lipschitz).

2.1. End of the proof of Theorem 1.1. We switch now to the additive notation

for the abelian groups � and Z, for easier comparison with Zn. Assume �rst that

 2 Z, and let cW I D Œ0; `� ! X be a minimizing geodesic (i.e. d.c.t /; c.t 0// D
jt � t 0j) from x0 to 2:x0. Then, we apply the following lemma due to D. Burago

and G. Perelman to the path co D F ı c, going from the origin o of Rn to 2f ./:o.

Lemma 2.5 (D. Burago and G. Perelman). Let cW I D Œ0; `� ! Rn be a Lipschitz

path. There exists an open set A D Sm
iD1.ai ; bi/ � Œ0; `� with m � n and with

Lebesgue measure �.A/ � 1=2 �.I / D =̀2 such that

m
X

iD1

.co.bi / � co.ai // D co.`/ � co.0/

2
:

This lemma provides a new path co=2W J D Œ0; �.A/� ! Rn going from the

origin o to f ./: o D Pm
1 .co.bi / � co.ai //, de�ned concatenating the paths

co;i D cojŒai ;bi �
co

2
D co;1 � � � � � co;m � co.a1/
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(where ˛ � ˇ in Rn means that the path ˇ is translated in order that its origin

coincides with the endpoint of ˛). Consider now, for each i D 1; : : : ; m, the orbit

points ˛i :x0, ˇi :x0 2 Zx0 closest respectively to c.ai /; c.bi / 2 X , and let ci be a

minimizing geodesic from ˛i :x0 to ˇi :x0. Then, let c0W Œ0; `0� ! X be the curve

c
0 D c

0
1 � � � � � c0

m � ˛1:x0

that is, the concatenation of (Z-translated of) the geodesics ci such that the end-

point of c0
1 � � � � � c0

i�1 coincides with the origin of c0
i , and c0.0/ D x0. Finally, let

 0:x0 D Œ
Pm

1 .ˇi � ˛i /�:x0 be the endpoint of c0.

Notice that, as the c0
i are geodesics,

d.x0;  0:x0/ �
m

X

iD1

`.c0
i /

� 2n diam.ZnX/ C
m

X

iD1

d.c.ai /; c.bi //

� 2n � diam.ZnX/ C `

2
:

Moreover,

F. 0:x0/ D
m

X

iD1

.F.ˇi :x0/ � F.˛i :x0//

as F D f on Zx0, so

kF. 0:x0/ � F.:x0/keuc

D k
X

i

ŒF.ˇi :x0/ � F.˛i :x0/� �
X

i

Œco.bi / � co.ai /�keuc

�
m

X

iD1

kF.ˇi :x0/ � F.c.bi //keuc C
m

X

iD1

kF.˛i :x0/ � F.c.ai //keuc

� 2nM 00 � diam.ZnX/

and from this and the Lipschitz property of f �1 we deduce that

d. 0:x0; :x0/ D d.f �1.F. 0:x0//; f �1.F.:x0/// � 2nM 0M 00 � diam.ZnX/:

Then,

d.x0; :x0/ � d.x0;  0:x0/ C d. 0:x0; :x0/

� `

2
C 2n.M 0M 00 C 1/ � diam.ZnX/
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that is,

d.x0; :x0/ � 1

2
d.x0; 2:x0/ C M 000

for a constant

M 000 D M 000.n; D; �; �/ D 2n.M 0M 00 C 1/ diam.ZnX/

which is given explicitly by (6), (7), and Lemma 2.3.

This implies the announced inequality jd.x0; :x0/ � k  kstj � M 000 for all

 2 Z. To get the inequality for all  2 �, let 0:x0 be a point of Z:x0 closest to

:x0; then

jd.x0; :x0/ � k  kstj � jd.x0; 0:x0/ � k 0 kstj C 2 d.:x0; 0:x0/

� c.n; D; �; �/

for

c.n; D; �; �/ D 2 diam.ZnX/.nM 0M 00 C n C 1/:

In the next section we show that the constant c actually does not depend on � .

3. Stable systole and asymptotic volume

We prove here the two relations of (almost) inverse proportionality between

!.�; d/ and stsys.�; d/. First notice that, as k � kst is a true norm, the ball of radius

2D in .�; k � kst/ is compact; so, there exists 1 2 � D Zn realizing the stable

systole. Let � D k 1 kst D stsys.�; d/ and D D codiam.�; d/ D diam.�nX/.

3.1. Proof of the abelian Margulis lemma, upper bound. Let

Dst D ¹p j kpkst < kp � :okst º
and

yDst D ¹p j kpkst � kp � :okst º

be respectively the open and closed Dirichlet domains of � acting on Rn, centered

at the origin, with respect to the stable norm, and let M � diam. yDst/. Notice that,

in general, the closure of Dst might be strictly included in yDst, and neither xDst

nor yDst a priori tile Rn under the action of � (think for instance of the Dirichlet

domain of 2Z�Z acting on .R2; k k1/). So, let F be a closed fundamental domain

such that Dst � F � yDst; that is,
S

2� :F D Rn and : VF \  0: VF D ¿ for  ¤  0.
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The open ball Bst.r/ D ¹p j kpkst < rº is included in Dst for r D �
2
, so

#ŒB.X;d/.x0; R/ \ ��

Rn
� #ŒBst.R/ \ Zn�

Rn

� Vol.Bst.R C M//

Vol.F/ � Rn

� Vol.Bst.R C M//

Vol.Dst/ � Rn

� Vol.Bst.R C M//

Vol.Bst.
�
2
// � Rn

D 2n.R C M/n

�n � Rn

(8)

and taking limits for R ! 1 yields the announced inequality.

Clearly, this inequality is an equality for the standard lattice Zn in .Rn; k k1/,

but this is not the only case in which the equality is satis�ed. Actually, assume

that the equality !.�; d/ D 2n

�n holds: then, all the inequalities in (8) are equalities

for R ! 1, so Vol.Bst.
�
2

// D Vol.Dst/ D Vol.F/. Since Bst.
�
2
/ � Dst � VF, we

deduce that Bst.
�
2
/ D Dst D VF. This implies that xDst � F is a convex set (being

the closure of a ball) which tiles Rn under the action of �. Actually, assume that

there exists p 2 Rn n �: xDst. Then, Rn n S

kkst�kpkC2M : xDst is a non-empty open

set, containing a small ball Bst.p; "/ centered at p. As F tiles, there exists  such

that Vol.F \ Bst.p; "// ¤ 0. This yields a contradiction, as xDst � F n Bst.p; "/

but Vol. xDst/ D Vol.F/.

We show now that xDst is a polyhedron. For this, let us �rst show that the

topological boundary @Dst is covered by a �nite number of hyperplanes: actually,

as the closed sets  xDst tile, we have

@Dst D
[

0<kk�2M

.@Dst \ :@Dst/ D
[

0<kk�2M

. xDst \ : xDst/

and as xDst \ : xDst is a convex set with zero measure, it is contained in an

a�ne hyperplane H D ¹p j f .p/ D 1º, for some linear function f ; since
xDst is convex, we may assume that xDst � H �

 , where H �
 denotes the sub-

level set f � 1. Let �0 be the subset of nontrivial elements  2 � such

that xDst \ : xDst ¤ ;. It then follows that xDst D T

2�0
H �

 . The inclusion
xDst � T

2�0
H �

 is clear. On the other hand, given p 2 T

2�0
H �

 , if p 62 xDst

then the segment op intersects @Dst at some point tp, for 0 < t < 1, hence there

exists some f such that f .tp/ D 1; hence f .p/ > 1, a contradiction. This

shows that xDst D xBst.
�
2
/ is a convex polyhedron tiling Rn under the action of �,

i.e. a �-parallelohedron (and Bst.1/ as well).
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Finally, as
ˇ

ˇd �k kst

ˇ

ˇ < c.n; D; �/ on �:x0 by the QBD theorem, by identifying

the orbit �:x0 with Zn we deduce a �-equivariant map

f W .X; d/ �! .Rn; k kst/

which is a C -almost isometry for

C D c.n; D; �/ C 2 codiam.�; d/ C codiam.Zn; k � kst/

� c.n; D; �/ C 2D C �:

3.2. Proof of the abelian Margulis lemma, lower bound. As 1 realizes the

stable systole, for any " > 0 there exists a K" such that

.1 � "/ jkj � � jk
1 jx0

� .1 C "/ jkj � for all jkj > K":

Complete 1 to a set †n D ¹1; 2; : : : ; nº of n linearly independent vectors,

taking 2; : : : ; n from the generating set †0
D D ¹ 2 � j d.x0; :x0/ � 2Dº, and

let Z D h†ni. Then, consider the norm k k�;2D given by the weighted `1-norm

on Rn, relative to the basis †n, with weights `.1/ D � and `.i / D 2D for i ¤ 1.

Finally, let Z" WD ¹k1

1 : : : 
kn
n j jj1j > K"º. Then, for all  2 Z" we have

j jx0
� jk1

1 jx0
C

n
X

kD2

jki

1 jx0

� .1 C �/jk1j � � C 2D

n
X

kD2

jki j

� .1 C �/ � kk�;2D:

Therefore we obtain

!.�; dx0
/ � !.Z; dx0

jZ/

� !.Z"; dx0
jZ"

/

� !.Z"; k k�;2D/

.1 C "/n

D !.Z"; d†n
/

.1 C "/n �.2D/n�1

(9)

which gives the announced bound, as � > 0 is arbitrary and since

!.Z"; d†n
/ D !.Z; d†n

/ D !.Zn; k k1/ D 2n

nŠ
I

actually, the set Z n Z" has polynomial growth of order n � 1 and is negligible

in the computation of the asymptotic volume, while .Z; d†n
/ is isometric to Zn

endowed with the canonical word metric.
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Notice that the equality holds for the action of the standard lattice Zn on

.Rn; k k1/. Furthermore, assume that, for � acting on .X; d/, we have the equality

!.�; dx0
/ D 2

nŠDn�1�
:

In particular, the �rst inequality in (9) is an equality, which implies Œ� W Z� D 1.

Moreover, we deduce that !.�; k kst/ D !.�; dx0
/ D !.�; k k�;2D/. However, by

construction, the stable and weighted norms satisfy k k�;2D � k kst; then, being

norms, we know that the equality of asymptotic volumes implies the equality of

1-balls, so k k�;2D D k kst. Therefore k kst is a�ne equivalent to the `1 norm

k � k1, via an a�ne map sending Zn to the lattice �0 D � � Z � 2D � Zn�1 of Rn.

It follows by the QBD theorem that the action of � on .X; d/ is equivalent, via

an equivariant C -almost isometry f W .X; d/ ! .Rn; k � k1/, to the action of �0 on

.Rn; k � k1/, for

C D c.n; D; �/ C 2 codiam.�; d/ C codiam.�0; k � k1/

� c.n; D; �/ C .2n C 2/D:

Remark 3.1. Let � D sys.�; d/ � � and !.�; d/ � � as in Section §2.

(i) Using the lower bound given by the abelian Margulis lemma and the fact that

D � �=2, we �nd �Dn � !.�; d/Dn � 1=nŠ. This estimate, together with

(iii) of Lemma 2.3, plugged in the expressions (6) and (7) for M; M 0, and in

the expressions for M 00; M 000 and c D M 000 C 2 diam.ZnX/ of §2.1, yields the

following estimate for the constant c of the QBD theorem:

c.n; D; �; �/ D c.n; D; �/ � 2n2C6nC10 � n2 � .nŠ/nC2 � D.�Dn C 1/nC4

Notice that the quantity �Dn is scale invariant.

(ii) We also remark, for future reference, that the same computations show that

the constant c that we �nd is �nD, namely c.n; D; �/ � 2n2C6nC8n2.nŠ/nD.

Remark 3.2. As a consequence, we have the explicit bound
ˇ

ˇ

ˇ

ˇ

j jx0

k  kst
� 1

ˇ

ˇ

ˇ

ˇ

� c.n; D; �/

k  kst
:

This should be compared with an asymptotics given by Gromov in [11],

pp. 247–249:
ˇ

ˇ

ˇ

ˇ

j jx0

j jH1

� 1

ˇ

ˇ

ˇ

ˇ

� c xX

j jn�1
H1

(10)

for the mass of  2 H1. xX;Z/. Notice however that Gromov’s bound is purely

qualitative (no information can be deduced on the constant c xX from his argument)

and that we always have k  kst � j jH1
, by the characterization of the stable norm

in real homology recalled in the introduction.
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4. Examples

Here we show that the constant c D c.n; D; �/ of Theorem 1.1 necessarily depends

on each of the three parameters rank, diameter and asymptotic volume. We say

that a sequence of actions of torsionless, discrete abelian groups �k on .Xk ; dk/

is noncollapsing if there exists � > 0 such that stsys.�k ; dk/ > � for all k.

Example 4.1 (collapsing actions with �xed rank and bounded co-diameter). LetZ

act on .Xk ; dk/ D C.Z; Sk/, the Cayley graph of Z with respect to the generating

set Sk D ¹˙1; ˙kº, and let k kst;k be the associated stable norm. Then

(i) codiam.Z; dk/ D 1;

(ii) sys.Z; dk/ D 1, while stsys.Z; dk/
k!1����! 0, as

j1jst;k D lim
m!1

dk.0; km/

km
� 1

k
I

(iii) !.Z; dk/ ! 1, as a consequence of Lemma 1.1;

(iv) d2k.0; k/ D k, while kkkst;2k � 1
2
.

This example shows that, the rank and the co-diameter of .�k ; dk/ being �xed,

without any assumption on the asymptotic volume (or the stable systole) the

di�erence between the distance and the associated stable norm can be arbitrarily

large.

It also shows that, whereas the collapse of the systole forces the asymptotic

volume to diverge (by the abelian Margulis lemma), the converse is not true.

Notice that, with little e�ort, the example can be modi�ed into a sequence

of Z-coverings of a compact Riemannian manifold with the same properties, in

the following way. Start with the �-tubular neighbourhood in R3 of a bouquet

of two circles ˛; ˇ with length 1, and consider its boundary xY . Let .Yk; dk/

the Riemannian covering of xY associated to the subgroup N D h˛; ˛kˇ�1i
of H1. xY;Z/: then, there exists a .1 C ı; ı/-quasi isometry between Yk and the

above graph Xk , with ı � �, which is equivariant with respect to the actions of

� D H1. xY;Z/=N Š Z. Therefore, � acts on Yk with the same properties (up to

multiplicative constants 1 C ı in the above estimates (i), (ii), and (iv)).

Example 4.2 (noncollapsing actions with �xed rank and large co-diameter). LetZ

act on .Xk ; dk/ D k �C.Z; Sp/, the Cayley graph ofZwith respect to the generating

set Sp D ¹˙1; ˙pº, with p > 1 �xed, and the graph metric dilated by a factor k.

Let k kst;k be the associated stable norm. Then

(i) diam.Xk; dk/ D k;

(ii) stsys.Z; dk/ � k
p

, since

kmkst;k D lim
h!1

dk.0; mhp/

hp
D k � m

p
� k

p
I
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(iii) p
k

� !.Z; dk/ � 2p
k

, as a consequence of Lemma 1.2;

(iv) dk.0; 1/ D k, while k1kst;k D k
p

.

This example shows that, the rank and the asymptotic volume being bounded,

without any assumption on the diameter the di�erence between the distance and

the associated stable norm can be arbitrarily large.

Example 4.3 (noncollapsing actions with large rank and bounded co-diameter).

Consider a round sphere .S3; d / with north pole x0, and remove an arbitrarily

large number n of small, disjoint balls Bi , centered at m equatorial points, with

boundary 2-spheres Si (so that d.x0; Si/ � �=2); then, take n copies Ti of a

�at torus, each with a small ball B 0
i removed and boundary spheres S 0

i , glue the

(almost isometric) spheres Si ; S 0
i through a cylinder of length `, and smooth the

metric to obtain a Riemannian manifold xXn. We may assume that ` is much larger

than the length � of the shortest nontrivial 1-cycle in the �at torus Ti (which

realizes the stable systole of H1.T1;Z/ acting on the universal covering of Ti ),

and that, nevertheless, diam. xXn/ stays bounded. The groups �n D H1. xXn;Z/ D
Ln

iD1 H1.Ti ;Z/ Š Z3n then act on the Riemannian homology coverings .Xn; dn/

of xXn without collapsing: actually, any class i 2 H1.Ti ;Z/ has length `.i / in

Xn not smaller than its original length in Ti (the ball B 0
i has been replaced by an

almost �at cylinder), and any decomposable class  D P

i i with i 2 H1.Ti ;Z/

has length greater than
P

i `.i /. Thus, stsys.�n; dn/ � � for all n. On the other

hand, for every  D P

i i , with nontrivial components i 2 H1.Ti ;Z/ for all i ,

we have d.x0; x0/ � 2n`CP

`.i / (as the shortest geodesic loop representing 

must travel forth and back at least n cylinders), while kkst � P

i `.i /; hence

d.x0; x0/ � kkst diverges for n ! 1. Notice that in these examples the

asymptotic volume !.�n; dn/ stays bounded for n ! 1, by Lemma 1.2, although

the rank is arbitrarily large.

We conclude this section with an example showing that the bounded distance

theorem may fail for abelian actions on metric spaces which are not length spaces.

Inner metric spaces,8 as de�ned by P. Pansu [14], are the closest spaces to length

spaces: .X; d/ is inner if, for every � > 0, there exist `.�/ such that for all

x; x0 2 X there exists a sequence of points x0 D x; x1; : : : ; xN C1 D x0 with

d.xi ; xiC1/ � `.�/ and
PN C1

iD1 d.xi�1; xi / � .1C�/d.x; x0/. The following is the

simplest example of inner metric space where the bounded distance theorem does

not hold.

Example 4.4 (noncollapsing Z-actions on inner spaces with bounded co-diame-

ter). Consider the group Z endowed with the left invariant metric induced by the

norm jjjmjjj D jmj C
p

jmj. It is straightforward to check that jjj jjj de�nes an inner

8 Any �nitely generated group � endowed with a word length, or with a geometric distance
deduced from a cocompact action on a length space, is an inner metric space.
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metric on Z. Actually, given � > 0, choose an integer ` > 4=�2, and write any

m 2 N as m D N ` C r , with r < `. If N D 0, there is nothing to prove; otherwise

call xi D i` for i � N and xN C1 D m, so
PN C1

iD1 jjjxi � xi�1jjj
jjjmjjj �

PN
iD1 jjj`jjj C jjjr jjj
jjjN ` C r jjj

D N.` C
p

`/ C r C p
r

.N ` C r/ C p
N ` C r

� N ` C r

.N ` C r/ C p
N ` C r

C 1p
`

C
p

r

N `

� 1 C 2p
`

< 1 C �:

Then, Z acts by left translation on itself, and the stable norm associated to jjj jjj
coincides with the absolute value j j. Therefore, we have

codiam.Z; jjj jjj/ D 1

2
C

r

1

2

and

stsys.Z; jjj jjj/ D 1;

but

jjjmjjj � jjjmjjjst D
p

jmj
is not bounded.

5. On the number of connected components of optimal cycles

Let xX be a Riemannian manifold, with torsion free homology covering .X; d/.

Let x0 2 X be �xed, let dx0
be the induced distance on � D H1. xX;Z/ acting on

.X; d/, and k kst be the associated stable norm on H1. xX;R/ as explained in §1.

Let � be the Busemann measure of the normed space .H1. xX;R/; k � kst/, that is

the Lebesgue measure assigning to its unit ball Bst.1/ the volume of the unitary

euclidean n-ball (which coincides with the n-dimensional Hausdor� measure).

Finally, let F be a closed fundamental domain included in the closed Dirichlet

domain yDst centered at the origin, for � acting on .H1. xX;R/; k � kst/, as in §3.1.

As recalled in the introduction, an easy packing of fundamental domains shows

that the asymptotic volume of the measure metric space .H1. xX;R/; k kst; �/ is

!�.Rn; k kst/ D !.�; k kst/ � �.F/ (11)

and, since k kst is a norm, this also equals the volume �.Bst.1// of the unit ball.
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Then, as a consequence of the bounded distance theorem (even without any

estimate of the constant c), one gets !.�; d/ D !.�; k kst/ D �.Bst.1//=�.F/. Let

us call V D �.F/ and V1 D �.Bst.1//, so that !.�; d/ D V1=V .

Let us now �x some notations for balls and annuli and for the corresponding

growth functions. We will write

B.�;dx0
/.R/ D ¹ 2 � j j jx0

< Rº
and

A.�;dx0
/.r; R/ D ¹ 2 � j r � j jx0

< Rº;
and similarly B.�;j jH1

/, B.�;st/, and A.�;j jH1
/, A.�;st/ for balls and annuli in � with,

respectively, the mass and the stable norm. We will write v� .R/, v� .r; R/ for the

corresponding cardinalities. Finally, we will use Bst and Ast for ball and annuli in

.H1. xX;R/; k kst/, and write vst.R/ D �.Bst.R//, vst.r; R/ D �.Ast.r; R//.

A by-product of the QBD theorem is the following explicit estimate of the

growth function of annuli in H1. xX;Z/ with respect to the mass.

Proposition 5.1. Assume n D rank H1. xX;Z/, diam. xX/ � D and !.X; d/ � �.

Let c D c.n; D; �/ be as in the QBD theorem 1.1. If � > 4nD C c we have

n!.�; d/ � �.R � �/n�1 � v.�;j jH1
/.R � �; R C �/

� 3n!.�; d/ � �.R � 3�/n�1

for R � 0, and

A.k�/n�1 � v.�;j jH1
/.k�; .k C 1/�/

� B.k�/n�1

for all k � 1, for constants A D n � !.�; d/ � � and B D 3n � A.

Proof. By Theorem 1.1 we have k  kst � j  jH1
� j  jx0

� k  kst C c and thus

A.�;st/.r; R � c/ � A.�;j jH1
/.r; R/ � A.�;st/.r � c; R/

Notice that, if Dst D diamst.F/ is the diameter ofF with respect to the stable norm,

we have Dst � 2nD. Actually, choose n linearly independent vectors v1; : : : ; vn 2
†0

D from the generating set †0
D D ¹ 2 �W j jx0

� 2Dº: the n-parallelotope

P determined by these vectors clearly contains F, so Dst � diamst.P/ � 2n D:

By an argument of packing and covering of the annuli Ast.r; R/ with copies of F,

we obtain

�.Ast.r C 2n D; R � C � 2n D//

V
� v.�;j jH1

/.r; R/

� �.Ast.r � 2n D � C; R C 2n D//

V
:
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We estimate the left-hand inequality for R � r C 4nD C c as

�.Ast.r C 2n D; R � C � 2n D// D V1 � Œ.R � C � 2n D/n � .r C 2n D/n�

� nV1 � .R � r � .4nD C c// � .r C 2nD/n�1

and, similarly, the right-hand as

�.Ast.r � C � 2n D; R C 2n D// � nV1 � .R � r C .4nD C c// � .R C 2nD/n�1:

Choosing
R � r

2
D � � 4nD C c

we obtain

n
V1

V
� �.R � �/n�1 � v.�;j jH1

/.R � �; R C �/ � 3n
V1

V
� �.R � 3�/n�1

which proves (i). The second statement follows from (i) taking R D .kC1/�. �

Proof of Theorem 1.3. Let � be as in Proposition 5.1 above.

First, we consider the case where N./ � v.�;H1/.2�/. As k kst � j jH1
, we

have

N./ � �Bst.2� C Dst/

V
� V1

V
.2� C nD/n D !.�; d/.9nD C c/n

and using the explicit estimates for c given in Remark 3.1(i)&(ii) we get the

announced bound N.n; D; �/. Assume now that N./ > v.�;H1/.2�/. Then,

there exists m D m./ � 1 such that

m
X

kD0

v.�;H1/.k�; .k C 1/�/ < N./ �
mC1
X

kD0

v.�;H1/.k�; .k C 1/�/:

Then, using the estimates of Proposition 5.1 we �nd

N./ � B

mC1
X

kD0

.k�/n�1 � B�n�1

n
.m C 2/n: (12)

Now, observe that if c is an optimal cycle representing  with N./ connected

components, then its components ci are non-homologous to each other; thus, its

total length is at least ` � Pm
kD0.k�/ �v.�;H1/.k�; .k C1/�/. Using the estimates

of Proposition 5.1 we �nd

` D j  jH1
� A

m
X

kD0

.k�/n � A�n

n C 1
� mnC1: (13)
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Putting together the two estimates (12) and (13) above and we obtain

N./ � B �n�1

n
.m C 2/n

� B �n�1

n

�

nC1

r

.n C 1/`

A�n
C 2

�n

� 3n�n�1B

n�
n2

nC1

�
� .n C 1/`

A

�n=.nC1/

and as A D n!.�; d/� D 3�nB , this yields

N./ � 32n � nC1

r

�

1 C 1

n

�n

� !.�; d/`n: �
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