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Representation zeta functions of self-similar branched groups

Laurent Bartholdi1

Abstract. We compute the numbers of irreducible linear representations of self-similar

branched groups, by expressing these numbers as the coë�cients rn of a Dirichlet series
P

rnn
�s .

We show that this Dirichlet series has a positive abscissa of convergence and satis�es

a functional equation thanks to which it can be analytically continued (through root singu-

larities) to the right half-plane.

We compute the abscissa of convergence and the functional equation for some promi-

nent examples of branched groups, such as the Grigorchuk and Gupta–Sidki groups.
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1. Introduction

Let G be a group, and let yG denote its set of equivalence classes of irreducible,
�nite-dimensional complex linear representations; assume that there are �nitely

1 The work is supported by the Courant Research Centre “Higher Order Structures” of the
University of Göttingen and the DFG research grants BA4197/x. Part of the research was done
at the Mittag-Le�er Institute, Stockholm and the University of Chicago.
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many such representations in each degree (G is then called rigid). The represen-

tation zeta function of G is the Dirichlet series with integer coë�cients

�G.s/ D
X

�2 yG

.deg �/�s D
X

n�1

rnn
�s ;

with rn denoting the degree-n representations in yG, that is, irreducible represen-
tations of G in GLn.C/. If the numbers rn grow polynomially, then analytic prop-
erties of �G yield asymptotic information on rn and conversely. For example, let
�0.G/ denote the abscissa of convergence of �G ; then, assuming

P

rn D1,

�0.G/ D lim sup
n!1

log
Pn
jD1 rj

log n
; (1.1)

so the partial sums
Pn
jD1 rj grow approximately as n�0 . More precisely, the

Landau-Phragmén theorem implies that �G.s/ has a singularity at �0, and if a
limiting behaviour �G.s/ D .s � �0/eg.s/C h.s/ is known with g; h holomorphic
in ¹<.s/ � �0º and e 2 R nN, then

n
X

jD1

rj �
g.�0/

�0�.�e/
n�0.log n/�e�1;

see [26, Theorem 15, p. 243] and [8].
Note that it is easy to deduce the number of linear representations of given

degree out of the number of irreducible ones, and vice versa; indeed every linear
representation decomposes into a direct sum of irreducibles whose multiplicities
are uniquely determined. Letting Rn denote the number of representations of
degree n, we have the Euler-product formula

X

n�0

Rnt
n D

Y

n�1

� 1

1 � tn

�rn
:

1.1. Self-similar branched groups. Representation zeta functions have been
extensively investigated for linear groups (see §1.2 for a quick summary); in this
article, we focus on self-similar branched groups. They are certain kinds of groups
G equipped with an injective homomorphism  WG ! Gd Ì Sd , and possessing
a �nite-index subgroup K such that  .K/ contains Kd ; see De�nitions 2.1, 2.2,
and 5.1 for the exact de�nitions.

Thus in particular G and Gd have isomorphic �nite-index subgroups. The
integer d > 1 is called the degree of the branched group, and one says that G is
branched over K. Iterating the map  on its components, one obtains for every
branched group an action by permutation on the setX� of words over an alphabet
X of cardinality d .
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Self-similar branched groups constitute a well-studied class of groups, con-
taining such prominent examples as Grigorchuk’s torsion group of intermediate
word growth [12] and Gupta–Sidki’s examples [13]. Their topological closures in
Aut.X�/may be thought of as analogues of algebraic groups, de�ned by equations
over in�nitely many variables indexed by X�, see [25].

On the one hand, branched groups have many �nite quotients coming from the
action of the group on Xn for all n 2 N; so have many �nite, and in particular
linear, representations. On the other hand, they contain abelian subgroups of
arbitrarily large rank and large normalizer, so they are quite di�erent from linear
groups.

In this article, I show that the zeta function of a self-similar branched group
admits quite remarkable properties:

Theorem A. Let G be a self-similar group of degree d > 1, branched over its

subgroup K. Then G is rigid if and only if K=ŒK;K� is �nite. In that case, its

representation zeta function �G

(1) has a positive, �nite abscissa of convergence �0, so that the coë�cients rn
grow polynomially;

(2) is a linear combination of the solutions �i .s/ of a system of functional equa-

tions of the form

Fi .�1.s/; �1.2s/; : : : ; �1.ds/;

�2.s/; �2.2s/; : : : ; �2.ds/;
::: (1.2)

�N .s/; �N .2s/; : : : ; �N .ds// D �i .s/; i D 1; : : : ; N;

for some N;P 2 N and some Dirichlet polynomials

F1; : : : ; FN 2 QŒz1;1; : : : ; zN;d ; 2
�s; : : : ; P�s�I

furthermore, if zj;k have degree k, then the polynomials Fi are homogeneous

of degree d ;

(3) can be continued to a bounded, multivalued analytic function on the half-

plane <.s/ > 0, with only root singularities;

(4) has a Puiseux series expansion at �0 of the form

�G.s/ D

1
X

nD0

an.s � �0/
n=e;

for some integer e � d .
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The functional equation can be determined algorithmically out of the descrip-
tion of G as a self-similar branched group, and has been implemented in Gap

code; it is part of the author’s package Fr freely available on Internet. This code
was used to compute the various examples in §2.

Note that in general the functional equation (1.2) is not su�cient to determine
�G . However, under a judicious choice of �nite data extracted from G, it deter-
mines �G and permits a very e�cient calculation of its coë�cients.

It is easy to generalize Theorem A to more general character series. Let us say
that an element g 2 G of a self-similar group is �nite-state if there exists a �nite
subsetW � G, containing g, such that  .W / � W d �Sd . In words, the element
g is de�ned by a �nite set of recursive rules via the map  . For any g 2 G, write
its Lambda series

ƒ.g; s/ D
X

�2 yG

tr �.g/ deg.�/�s:

In particular, ƒ.1; s/ D �G.s � 1/. The proof of Theorem A actually gives:

Theorem A0. Let G be a self-similar branched group of degree d > 1, and let

g 2 G be �nite-state. Then all properties of �G claimed in Theorem A also hold

for ƒ.g; s/.

In particular, the variables in the functional equation shall be of the form
ƒi .w; s/ for all w 2 W and i D 1; : : : ; N , and the coë�cients in the functional
equation will belong to the �eld generated by the character values of G. I omit
details.

Theorem A extends the main results of [4], in which the groupG was assumed
to be isomorphic to G oX Q. Here and below the wreath product G oX Q of the
group G with the group Q, along the Q-set X , is by de�nition GX ÌQ, and we
write G oQ if X D Q with its regularQ-action. I will make liberal use of results
from [4].

1.2. Historical background. If the group G is a topological or algebraic group,
then it is natural to restrict to continuous, respectively rational representations.
Since these behave usually much better, part of the art is to relate the representation
zeta function of a topological (e.g. Lie) group to that of its lattices.

It seems that the �rst occurrence of representation zeta functions is in [28],
which relates �G.2g � 2/ to the moduli space of �at connections of G-principal
bundles over†g , forG a compact, simple, simply connected Lie group and†g an
orientable surface of genus g � 2. However, �G was already implicitly considered
earlier; for example, it follows from Weyl’s theory that, if ` be G’s rank and �
be the number of positive roots of G’s Lie algebra over C, then there exists a
polynomial P of degree � in ` variables such that

�G.s/ D
X

n1�0;:::;n`�0

P.n1; : : : ; n`/
�s:
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It follows that the abscissa of convergence of �G is `=�, and that �G extends to a
meromorphic function on the whole plane; see [18, Theorem 5.1].

Larsen and Lubotzky consider in [18] arithmetic lattices in semisimple alge-
braic groups G, and show, under the “congruence subgroup property”, that these
lattices � D G.O/ are products of local factors G.Ov/ and archimedian factors
G.C/; consequently, the representation zeta function �� is the product of the re-
spective zeta functions; for example,

�SL3.Z/.s/ D �SL3.C/.s/
Y

p prime

�SL3.Zp/.s/:

A careful study of the abscissæ of convergence of the �G.Ov/ as a function of
v allowed Avni to prove, in [2], that �� has a rational abscissa of convergence;
though its precise value is still mysterious.

The local factors G D G.Ov/ are compact p-adic analytic groups, and Jaikin-
Zapirain shows in [16] that the representation zeta function of such a group may
be written as

�G.s/ D

k
X

iD1

n�s
i fi .p

�s/

for natural numbers n1; : : : ; nk and rational functions f1; : : : ; fk 2 Q.p�s/.

1.3. “Quoi de neuf, docteur?” Here is a quick summary of the main di�erences
between this article and [4].

Firstly, Isaacs’ notion of “character triples” is fundamental to the calculations
done here. I found it necessary to express character triples slightly di�erently,
by making explicit a marking with a given �nite group. This makes also more
transparent the extent to which character triples are convenient computational
tools to study and manipulate cohomological information. Thus while character
triples are triples .�; N;G/ with � 2 yN and N GG, I prefer to �x a group B , and
call B-character triple a pair .�; f /with � 21ker f and f a homomorphism to B .
One recovers the classical notion by taking for f the natural map G 7! G=N .

Secondly, I associate a branch structure to a branched group G. This is a data
structure made of a �nite groupB , a subgroupBC ofB oXQ, and a surjective map
BC � B . It seems to capture in an e�cient manner the important properties of
a branched group. The group G itself is not determined by the branch structure,
but one may construct out of the branch structure a pro�nite group G.B/ with a
canonical map G ! G.B/.

1.4. Acknowledgments. I am grateful to Marty Isaacs for an enlightening com-
ment on the isotropy of induced representations, to Pierre de la Harpe for helpful
comments on earlier installments of the text, to Patrick Neumann for help with
Lemma 3.2, to Joerg Brüdern for references on Tauberian theorems, and to the
referee for his/her thoughtful remarks.
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2. Illustrations

I describe here some examples of self-similar branched groups, and some infor-
mation on their representation zeta functions. Let us start by the precise de�nition
of self-similar groups that we will use. The de�nition of branched groups will
appear in §5.

De�nition 2.1. A self-similar group is a group G endowed with an injective
homomorphism  WG ! G oX Q, for a permutation group Q acting on a �nite
setX . The map  is called a self-similarity structure, and the integer #X is called
its degree. Usually, the self-similarity structure is implicit, and one simply denotes
by G the self-similar group.

The notation hhg1; : : : ; gd iiq refers to the element ofGoXQwith .g1; : : : ; gd / 2
GX and q 2 Q. So as to avoid degenerate cases, we make the following restriction.

De�nition 2.2. An e�ective self-similar group is a self-similar group whose
branch structure satis�es the following conditions:

(1) the degree #X is at least 2;

(2) the action of Q on X is transitive;

(3) the projection  .G/ ! Q is surjective, and for each x 2 X , the projection
 .G/ \GX ! G on coördinate x is surjective.

The second condition could, in fact, be relaxed to the requirement that Q act
without �xed points on X . The third condition may be ensured by replacingQ by
the image of and/or replacingG by the projection of .G/\GX to a coördinate
(possibly after post-composing the self-similarity structure by an automorphism
of G oX Q). All self-similar groups in this text are assumed to be e�ective.

The map  can be applied diagonally to all entries in GX , yielding a map
GX ! .G oX Q/

X , and therefore a map G oX Q ! .G oX Q/ oX Q D G oX�X

.Q oXQ/; more generally, we write onXQ for the iterateQ oX � � � oXQ, and get maps
G oXn .onXQ/ ! G oXnC1 .onC1

X Q/ which we all denote by  . We may compose
these maps, and write  n for the iterate  nWG ! G oXn .onXQ/.

By projecting to the permutation part, we then have homomorphismsG!SXn

for all n 2 N and, assembling these homomorphisms together, we get a permuta-
tional action of G on X� D

F

n�0X
n; one may identify X� with the vertex set of

a rooted #X-regular tree, by connecting v1 : : : vn to v1 : : : vnvnC1 for all vi 2 X .
In this manner, G acts by graph isometries. This action need not be faithful; if it
is, then G is called a faithful self-similar group. In �rst three examples below, this
action is faithful; while in the fourth it is not.
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Lemma 2.3. Let G be an e�ective self-similar group. Then its action on Xn is

transitive for all n 2 N. In particular, G is in�nite.

Proof. We proceed by induction, the case n D 1 being given by the second
condition. Then, assuming that the action ofG is transitive onXn, it follows from
the third condition that the action of .G/\GX on xXn is transitive for all x 2 X ,
so the orbits of  .G/\GX are precisely ¹xXnºx2X . Now since  .G/maps onto
Q which is transitive, these orbits form a single G-orbit on XnC1. In�niteness of
G follows from the �rst assertion. �

The examples of groups that we consider below will be described by the
following data: a �nite group Q, a �nite Q-set X , a �nitely presented group F ,
and a homomorphism z WF ! F oXQ. De�ne normal subgroups of F by R0 D 1
and RnC1 D z 

�1.RXn / for all n � 0. The injective quotient of F is by de�nition
the self-similar group G WD F=

S

n�0Rn. The homomorphism z descends to an
injective map  WG ,! G oX Q.

2.1. The Alëshin and Grigorchuk groups. The Grigorchuk group is obtained
as follows. The cyclic group of order 2 is written C2. Set

F D ha; b; c; d j a2; b2; c2; d2; bcd i D C2 � .C2 � C2/;

and de�ne z WF ! F o C2 by

z .a/ D hh1; 1ii.1; 2/; z .b/ D hha; cii; z .c/ D hha; d ii; z .d/ D hh1; bii:

Let G be the injective quotient of F . It acts faithfully on ¹1; 2º�. A related
group (see below) was �rst considered by Alëshin in [1], providing a “tangible”
example of an in�nite, �nitely generated, residually �nite, torsion group (the �rst
examples of groups with these properties are due to Golod [11]). Grigorchuk
proved in [12] that G’s word growth is strictly between polynomial and exponen-
tial. See [14, Chapter VIII] for an elementary introduction to G. For its structure
as a branched group, see §5.1.

Since G is a 2-group, all its irreducible representations are 2n-dimensional for
some n; therefore �G.s/ D f .2�s/ for a power series f 2 NŒŒ2�s��. Let us write
q D 2�s for brevity; then the �rst values are

f .q/ D 8C 10q C 29q2 C 100q3 C 413q4 C 1990q5 C 9787q6 C 50810q7

C 278797q8 C 1593796q9 C 9572828q10 C 60125360q11

C 396548538q12 C 2732836832q13 C 19674348692q14

C 147148989714q15 C � � �

and, for illustration, there are 5554240222 : : : 8648974784 � 5:5 � 1093 irreducible
representations of degree 2100. This calculation took 4 minutes on a 2010 laptop
using Gap and the author’s package Fr. The functional equation involves 62
variables �1; : : : ; �62.
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The abscissa of convergence of �G is computed as described in §7.3, and is
�0.G/ � 3:293330470.

Here is a brief description of Alëshin’s group zG and its relation to G. The
Alëshin group can be viewed as a group acting on ¹1; 2º�, generated by two
elements A;B . The recursions de�ning the generator’s actions are

 2.A/ D hhhha; cii; hh1; d iiii;  2.B/ D hhhh1; 1ii; hh1; 1ii.1; 2/ii.1; 2/:

Lemma 2.4. The groups G and zG have a common �nite-index subgroup.

Proof. Consider the normal closure zG0 of A in zG. Clearly zG0 has index 4 in zG,
and the generators of zG0 are involutions. The derived subgroup zG0

0 therefore has
�nite index in zG. Now  2. zG0

0/ contains

 2.ŒA; AB�/ D Œhhhha; cii; hh1; d iiii; hhhhd; 1ii; hha; ciiii� D hhhhŒa; d �; 1ii; hh1; 1iiii;

so it contains hhhhL;Lii; hhL;Liiii for the subgroup L D hŒa; d �iG of G. A direct
computation shows that L has index 32 in G. Therefore, L andK have a common
�nite-index subgroup, so every two of the following subgroups of the automor-
phism group of the binary tree zG, �2hhhhL;Lii; hhL;Liiii, �2hhhhK;Kii; hhK;Kiiii,
K and G have a common �nite-index subgroup. �

It was already shown in [17, p. 229] that G is a section of zG; they poetically
describe the extraction of G from zG as “tearing o� Adam’s rib.”

Corollary 2.5. The representation zeta functions of G and zG have the same

abscissa of convergence.

Proof. By Lemma 2.4, the groupsG and zG are commensurable. For two Dirichlet
series �.s/ D

P

ann
�s and �.s/ D

P

bnn
�s , let us write � � � to mean

P

j�n aj �
P

j�n bj for all n 2 N. It follows from [19, Lemma 2.2] that if G;H
are groups and H is a �nite-index subgroup of G, then

�H .s/ � ŒG W H�
1Cs�G.s/ and �G.s/ � ŒG W H��H .s/; (2.1)

so �H and �G have the same domain of convergence. �

2.2. The Gupta–Sidki group. The Gupta–Sidki groups are obtained as follows.
The cyclic group of order p is written Cp. For each prime p � 3, set

Fp D ha; t j a
p; tpi D Cp � Cp;

and de�ne z WFp ! Fp o Cp by

z .a/ D hh1; : : : ; 1ii.1; : : : ; p/; z .t/ D hha; a�1; 1; : : : ; 1; tii:

Let Gp be the injective quotient of Fp . It acts faithfully on ¹1; : : : ; pº�.
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These groups Gp are shown in [13] to be in�nite, �nitely-generated torsion
p-groups. For their structure as branched groups, see §5.2. The study of their
representations was initiated by Passman and Temple [21]; their main result, in
the present paper’s language, is �0.Gp/ � p � 2.

We restrict our consideration to the case p D 3. Since G3 is a 3-group, all
its irreducible representations are 3n-dimensional for some n; therefore �G3

.s/ D
f .3�s/ for a power series f 2 ZŒŒ3�s ��. Writing q D 3�s, the �rst values are

f .q/ D 9C 26q C 402q2 C 6876q3 C 178160q4 C 7527942q5 C 461931336q6

C 31704156696q7 C 2421457788330q8

C 197775615899520q9 C 16915932297409064q10 C � � �

and there are 1386068855 : : : 8306590020 � 1:3 � 1096 representations of de-
gree 350. This calculation took 6 seconds on a 2010 laptop using Gap and the
author’s package Fr. The functional equation involves 8 variables. It may be writ-
ten in the slightly simpli�ed form as

�G3
.s/ D

1

9
q2�1.s/C q�2.s/C q�3.s/C 2q�4.s/C .9C 2q/�6.s/;

�1.s/ D
1

9
q2�1.s/

3 C
1

3
q2�1.s/

2�2.s/C
1

3
q2�1.s/

2�3.s/C
2

3
q2�1.s/

2�4.s/

C q2�1.s/
2�6.s/C

1

3
q2�1.s/�2.s/

2 C
2

3
q2�1.s/�2.s/�3.s/

C
4

3
q2�1.s/�2.s/�4.s/C 2q

2�1.s/�2.s/�6.s/C
1

3
q2�1.s/�3.s/

2

C
4

3
q2�1.s/�3.s/�4.s/C 2q

2�1.s/�3.s/�6.s/C q
2�1.s/�4.s/

2

C 2q2�1.s/�4.s/�6.s/C q�2.s/
3 C

1

3
q2�2.s/

2�3.s/C
2

3
q2�2.s/

2�4.s/

C 9q�2.s/
2�6.s/C

4

3
q2�2.s/�3.s/�4.s/C

2

3
q2�2.s/�4.s/

2

C 18q�2.s/�6.s/
2 C

1

9
q2�3.s/

3 C
2

3
q2�3.s/

3�4.s/

C
�

3q C
2

3
q2

�

�3.s/�4.s/
2 C 18q�3.s/�4.s/�6.s/C 18q�3.s/�6.s/

2

C
2

9
q2�4.s/

3 C 6q�4.s/
2�6.s/C 36q�4.s/�6.s/

2 C 72�6.s/
3

� q2�1.3s/ � 9q�2.3s/ � q
2�3.3s/ � 2q

2�4.3s/ � 18�6.3s/

D 54CO.q/;
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�2.s/ D
1

3
q2�1.s/�4.s/

2 C 2q2�1.s/�4.s/�6.s/C 3q
2�1.s/�6.s/

2

C
1

3
q2�2.s/�3.s/

2 C 2q2�2.s/�3.s/�6.s/C
2

3
q2�2.s/�4.s/

2

C 4q2�2.s/�4.s/�6.s/C 9q�2.s/�6.s/
2 C q2�3.s/

2�6.s/

C
1

3
q2�3.s/�4.s/

2 C 2q2�3.s/�4.s/�6.s/C 9q�3.s/�6.s/
2

C
2

3
q2�4.s/

3 C .3q C 3q2/�4.s/
2�6.s/C 18q�4.s/�6.s/

2

C .9C 18q/�6.s/
3 � 3�6.3s/

D 6CO.q/;

�3.s/ D q
2�1.3s/C 3q�2.3s/C q

2�3.3s/C 2q
2�4.3s/C 6�6.3s/ D 6CO.q/;

�4.s/ D 3q�2.3s/C 6�6.3s/ D 6CO.q/;

�6.s/ D �6.3s/ D 1:

The abscissa of convergence of �G3
is computed as described in §7.3, and is

�0.G3/ � 4:250099133. In view of the Passman-Temple result mentioned above,
it would be interesting to examine the dependency of �0.Gp/ on p.

2.3. Wreath products. There exist sundry residually-�nite, �nitely generated
groups that are isomorphic to their wreath product with a non-trivial �nite group;
here is such an example. Set

F D A5 � A5;

with A5 the alternating group on �ve letters, and distinguish both copies of A5 by
writing ‘ Na’ for permutations in the second copy. Set X D ¹1; : : : ; 5º, and de�ne
z WF ! F oX A5 by

z .a/ D hh1; : : : ; 1iia; z . Na/ D hh Na; a; 1; 1; 1ii:

Let W be the injective quotient of F ; it acts faithfully on X�.
This example was considered, among others, in [4, Example 4]; it is a branched

group, and more precisely  is an isomorphism. The representation zeta function
of W starts as

�W .s/ D 1C 2 � 3
�s C 4�s C 5�s C 6 � 15�s C 3 � 20�s C 3 � 25�s C 2 � 45�s

C 60�s C 19 � 75�s C 4 � 90�s C 9 � 100�s C � � � ;

and has abscissa of convergence

�0.W / � 1:17834859575464;

computed as described in §7.3.
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2.4. Non-faithful self-similar groups. The group W acts on the tree X�, and
therefore on its boundary X1. Consider the ray � D 11 in it, and its orbit O in
X1. Consider then the permutational wreath product G WD C2 oO W . This group
is also self-similar; to see that, consider now

F D hA5; SA5; s j s
2; Œs; Na� for all Na 2 SA5i;

extend z by
z .s/ D hhs; 1; 1; 1; 1ii;

and let G be the injective quotient of F . Remark that s acts trivially on X�,
so that G does not act faithfully on X�. The group G is also branched, see §5.3.
The zeta function of G starts as

�G.s/ D 2C 4 � 3
�s C 2 � 4�s C 8 � 5�s C 4 � 10�s C 26 � 15�s C 14 � 20�s

C 48 � 25�s C 8 � 45�s C 24 � 50�s C 28 � 60�s C 172 � 75�s C 12 � 80�s

C 24 � 90�s C 132 � 100�s C � � � ;

and has abscissa of convergence

�0.G/ � 1:64046292658488;

as follows from §7.3.

3. Representations of extensions

I recall Cli�ord’s construction of representations of an extension. First, a linear

representation of a group G is a homomorphism �WG ! GLn.C/. Two linear
representations �; �0WG ! GLn.C/ are equivalent, written �, if there exists
T 2 GLn.C/ such that �.g/T D T�0.g/ for all g 2 G.

A projective representation of a group G is a homomorphism

�WG �! PGLn.C/ WD GLn.C/=C
�:

Two projective representations �; �0 are equivalent if there exists T 2 PGLn.C/

such that �.g/T D T�0.g/ for all g 2 G.
Let � be a linear or projective representation, to GLn.C/ or PGLn.C/. Its degree

deg.�/ is n. The contragredient representation �_ is de�ned by �_.g/ D �.g�1/�,
the matrix adjoint. For linear representations �; � of degree m; n respectively, the
tensor product �˝ � is the linear representation g 7! �.g/˝ �.g/ into GLmn.C/;
and if �; � are both projective representations, their tensor product is a projective
representation into PGLmn.C/.
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Let �WG!PGLn.C/ be a projective representation. Choose a lift

Q�WG �! GLn.C/:

De�ne then
Qc Q�WG �G �! C�

by
Qc Q�.g; h/ D Q�.g/ Q�.h/= Q�.gh/:

A quick calculation shows that Qc Q� satis�es the 2-cocycle identity

Qc Q�.g; h/ = Qc Q�.g; hk/ � Qc Q�.gh; k/ = Qc Q�.h; k/ D 1;

and therefore de�nes a cohomology class c� in H 2.G;C�/, which depends on �
only, and not on the choice of lift Q�.

3.1. Exact sequences. Let now

1 �! N �! G
f
�! Q �! 1

be an exact sequence. If � be a representation (linear or projective) of N , its
inertia is the group G� D ¹g 2 G j g� � �º consisting of those g 2 G such that
the conjugate representation g�W n 7! �.ng/ is equivalent to �. The representation
� is said to be inert in H wheneverH � G�.

Assume now that � is an irreducible, degree-n linear representation of N .
Then � extends to a unique projective representation N� of G�, as follows. Fix
a right transversal X of N in G�. For each x 2 X , choose Tx 2 GLn.C/

such that Tx�.hx/ D �.h/Tx for all h 2 N ; this Tx is unique up to scalars, by
Schur’s Lemma. For g D hx 2 G�, set Q�.g/ D �.h/Tx, and let N�.g/ be Q�.g/’s
image in PGLn.C/. Then, since the Tx are uniquely determined, N� is a projective
representation. Furthermore, the 2-cocycle Qc Q� vanishes on N � N , so de�nes a
cohomology class c� 2 H 2.G�=N;C

�/.
Let � be an irreducible projective representation of G�=N with cohomology

class c�1
� ; then N� ˝ .� ı f / is a projective representation of G� with trivial co-

homology class. Say � is of degree m, and let Q� be a lift G�=N ! GLm.C/

of �; then Q� ˝ . Q� ı f / is a lift of N� ˝ .� ı f /, so its 2-cocycle is a cobound-
ary, namely the 2-cocycle .ıb/.g; h/Db.g/b.h/=b.gh/ associated with a function
bWG�=N!C�. Furthermore, b is unique up to multiplication by a homomor-
phism � 2 H 1.G�=N;C

�/. Then g 7! Q�.g/˝ Q�.f .g//=b.g/ is a linear represen-
tation of G�, which we denote by � 0

�;�.
We call such � 0

�;� extensions of �; they are irreducible representations whose
restriction to N is a direct sum of copies of �. Finally, let ��;�;� be the induced
representation of � 0

�;� ˝ � up to G.
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Theorem 3.1 (Cli�ord [7]). With the notation above, ��;�;� is an irreducible

representation of G, and every irreducible representation of G is equivalent to

some ��;�;�.

The multiplicity of ��;�;� in that list behaves as follows: for a group Q and a

class c 2 H 2.Q;C�/, denote by yQc the set of equivalence classes of projective

representations of Q with cocycle c; then the correspondence .�; �; �/ 7! ��;�;�
is a map

� W
G

�2 yN

.1G�=N
c�1

� �H 1.G�=N;C
�// �! yG

which is surjective, and such that every ��;�;� has #H 1.G�=N;C
�/ � ŒG W G��

preimages. �

We will need to understand how the inertia subgroup changes under extension.
I state the following property as a general lemma:

Lemma 3.2. LetG be a group with normal subgroupN . Let � be a representation

of N . Consider a subgroup H with N � H � G�. Let � be an extension of �

to H . Then G� � G�.

Proof. Since � is an extension of � and � is inert in H , the restriction of � to
N is a direct sum of ŒH W N� copies of �. Consider g 2 G� , and write Tg as
a ŒH W N� � ŒH W N� block matrix. Then .Tg/ij�.ng/ D �.n/.Tg/ij for all
i; j 2 ¹1; : : : ; ŒH W N�º; and since Tg is invertible, the .Tg/ij span Mn.C/ so
some linear combination Ug of them is invertible; then Ug�.ng/ D �.n/Ug so
g 2 G�. �

4. Representation triples

I recall Isaacs’ notion of character triple, with a slightly di�erent notation. See
also [16, §5] for a more modern formulation.

De�nition 4.1. Let B be a �nite group. A B-representation triple is a pair
‚ D .�; f /, with f WG ! B a homomorphism with kernel N and � 2 yN a
representation that is inert in G.

(The reader may wonder why they are called triples and not pairs. Isaacs’
original de�nition involves triples .�; N;G/ with � an N -character that is inert
in G. We explicitly add a marking by a group B to the data, and remove B , G and
N from the notation.)
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We introduce the following terminology: for a B-representation triple ‚ D
.�; f /, its source is src.‚/ WD src.f / WD G; its image is im.‚/ WD im.f / WD
f .G/ � B; its representation is �.‚/ WD �; its marking is f .‚/ WD f .
If ‚ D .�; f /, we also de�ne ‚_ D .�_; f / the triple with same marking but
contragredient representation.

A morphism between two B-representation triples .�; f / and .�0; f 0/ is a map
� W src.f /! src.f 0/ such that f 0 D f ı � and � � �0 ı � . There is also a weaker
notion than isomorphism of B-representation triples, that of equivalence, which
we describe now.

For G a group with normal subgroup N and � 2 yN , let R.Gj�/ denote the
monoid of representations of G whose restriction to N is a multiple of �. It is
an abelian monoid, freely generated by the irreducible representations of G that
restrict to a multiple of �, and admits a scalar product hji making the irreducible
representations an orthonormal basis.

De�nition 4.2 (essentially [15, De�nition 11.23]). Two B-representation triples
.�; f / and .�0; f 0/ are equivalent if im.f / D im.f 0/ and for every H � im.f /
there exists an isometry

�H WR.f
�1.H/j�/ �! R..f 0/�1.H/j�0/

such that, for every N � H � im.f / and every � 2 R.f �1.H/j�/, we have

�f �1.N/.�f �1.N// D .�f �1.H/.�//.f 0/�1.N/;

�f �1.H/.�˝ .ˇ ı f // D �f �1.H/.�/˝ .ˇ ı f
0/ for all ˇ 2 1im.f /:

Schur considered projective representations in [23] and [24]. In modern lan-
guage, he showed that H2.G;Z/ is �nite for every �nite group G, and that there
exists at least one extension

1 �! H2.G;Z/ �! zG
f
�! G �! 1

such thatH2.G;Z/ is contained in Œ zG; zG�; this implies in particular that the lift of
any generating set of G is a generating set of zG. One calls zG a Schur cover of G,
and the epimorphism f a Schur covering map.1

Theorem 4.3 (Isaacs [15, Theorem 11.28]). EveryB-representation triple is equiv-

alent to a B-representation triple .�; f / with f W zH ! H � B a Schur covering

map, and � 24H2.H;Z/ D H
2.H;C�/.

In particular, there are �nitely many equivalence classes of B-representation
triples. A B-representation triple‚ D .�; f / is a convenient way of keeping track
of a group im.f / and a cohomology class in H 2.im.f /;C�/.

1 zG is sometimes called a stem cover.
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The two procedures at the heart of Cli�ord’s description from §3 – extension
and induction – can be rephrased in terms of representation triples.

Consider aB-representation triple‚D .�; f /, and a homomorphism gWB!C .
Let L denote the kernel of g ı f ; we have ker.f / D N � L � G D src.f /. Let
¹�1; : : : ; �nº denote those irreducible representations of L that restrict on N to a
multiple of �. For i D 1; : : : ; n, let Gi denote the inertia of �i in G. The g-exten-

sions of ‚ are the C -representation triples

‚1 D .�1; .g ı f /jG1
/; : : : ; ‚n D .�n; .g ı f /jGn

/:

Lemma 4.4. The equivalence classes of the C -triples .‚i /1�i�n depend only on

the equivalence class of ‚.

Proof. Follows immediately from De�nition 4.2 and Lemma 3.2. �

Note that extension of triples covers both extension and induction; the induc-
tion is performed from ker.g/ \ im.f / to ker.g/, or, equivalently, from im.f / to
im.f / ker.g/, and in fact does not modify the triple at all. This is seen as follows.
Consider a B-representation triple ‚ D .�; f / with � 2 yN and f WG ! B . Let
H;M be groups with N GG � H;N �M GH and M \G D N and MG D H

and H� D G. Then G=N Š H=M ; de�ne hWH ! B by h.xy/ D f .y/ for
x 2 M;y 2 G; this is well-de�ned because M \ G D N D ker.f /. Note
ker.h/ DM . Induce � to M , and let ‚0 be the B-representation .�M ; h/.

Lemma 4.5 (see [16, Corollary 5.3]). The triples ‚ and ‚0 are equivalent.

Proof. Follows immediately from De�nition 4.2. The map

� WR.Gj�/ �! R.H j�M /

is simply given by induction to H , namely � 7! �H . �

We may deduce from Theorem 3.1 a formula expressing the representation zeta
function of a group in terms of representations of a normal subgroup. Consider
an exact sequence

1 �! N �! G
f
�! B �! 1

For a B-representation triple ‚, de�ne the Dirichlet series

�G;‚.s/ D
X

�2 yN
.�;f /�‚

.deg �/�s:
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Proposition 4.6. With the notation above,

�G.s/ D
X

‚2¹B-representation triplesº

�G;‚.s/�‚_.s/ŒB W im.‚/��1�s:

Proof. Consider an irreducible representation � ofN with character triple‚; such
representations are counted by �G;‚.s/. According to Theorem 3.1, a representa-
tion of G is obtained by tensoring � with a representation � of opposite cocycle,
so as to obtain a linear representation of �’s inertia subgroup; such � are counted
by �‚_.s/. This representation is then induced to a representation of G; induction
increases the degree by ŒB W im.‚/�, and yields ŒB W im.‚/� copies of the same
representation of G. �

5. Branched groups

We turn now to the notion of self-similar branched group, presenting it in a slightly
more general and algebraic manner than is usual; see [20] or [3] for classical
references.

Let G be a self-similar group with self-similarity structure  WG ! G oX Q.

De�nition 5.1. The self-similar group G is branched if there exists a �nite-index
subgroupK � G such that .K/ � KX . One says then thatG is branched overK.

The subgroup K may be assumed to be normal; and in fact there exists a
maximal such K, because if K0; K1 both satisfy  .Ki/ � KX

i then hK0; K1i
also satis�es that property.

For purposes of computation, it is useful to introduce a �nite structure captur-
ing important features of branched groups.

De�nition 5.2. A branch structure is a pair .B; �/ such that

(1) B is a �nite group;

(2) � is an epimorphism from a subgroup BC of B oX Q onto B .

Let G be a self-similar group. A branch structure for G is a branch structure
.B; �/ such that

(1) there exists an epimorphism f WG � B;

(2) for a map f as in (1), denoting f1 the natural map f o 1WG oX Q! B oX Q,
we have BC D f1 .G/ and f D �f1 :

G  .G/ � G oX Q

B BC � B oX Q:

 - !
 

 �f  � f1

 

�

�
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Lemma 5.3. A self-similar group is branched if and only if it has a branch

structure.

Proof. Assume �rst that G is branched over its normal subgroup K. De�ne
B D G=K with natural map f WG ! B . De�ne then f1 as in De�nition 5.2,
and set BC D f1 .G/. De�ne �nally �WBC � B by �.f1. .g/// D f .g/. This
map is well-de�ned becauseKX �  .K/.

Conversely, if .B; �/ is a branch structure for G then let K denote the kernel
of a map f WG ! B as in De�nition 5.2, and note that G is branched overK. �

Note that, just as there exists a maximal subgroup K in De�nition 5.1, there
exists a minimal branch structure .B; �/.

The branch structure captures all the information we will need of G, so that
we may forget G altogether when we have its branch structure. In fact, let .B; �/
be a branch structure for G. De�ne then a sequence of groups Gn, with maps
�nWGn ! Gn�1, as follows: G�1 D B ,G0 D BC, �0 D �, andGnC1 D ¹hhgxiiq 2

Gn oX Q j hh�n.gx/iiq 2 Gnº, with �nC1.hhgxiiq/ D hh�n.gx/iiq. Finally form the
inverse limit

G.B/ D lim
 �
.Gn; �n/:

Lemma 5.4. If .B; �/ be a branch structure, then the group G.B/ is a pro�nite

self-similar branched group, and B is a branch structure for G.B/.

If furthermore .B; �/ be a branch structure forG, then there exists a canonical

map �WG ! G.B/ interlacing the self-similarity structures of G and G.B/, and �

is injective if G is faithful.

Proof. It is clear that G.B/ is pro�nite, being de�ned as a limit of �nite groups.
An element of G.B/ is a sequence h D .� � � � hn � hn�1 � � � � /,

with hn 2 Gn, namely hn D hhgn;xiiqn, with qn D q for all n � 0. De�ne
 .h/ D hh.� � �� gn;x � gn�1;x/xiiq. This shows that G.B/ is self-similar.

We next show that B is a branch structure for G.B/. Projection on the last
group G�1 de�nes a homomorphism G.B/ ! B , and  .G.B// projects to
G0 � B oX Q.

Suppose �nally thatB is a branch structure for the self-similar branched group
G with self-similarity structure  WG ! G oX Q. De�ne inductively maps
�nWG ! Gn by ��1 D f and �n.g/ D hh�n�1.gx/iiq if  .g/ D hhgxiiq, for all
n � 0. Then �n ı �n D �n�1 for all n � 0, so the maps �n assemble into a map
�WG ! lim

 �
Gn.

If G is faithful, then
T

n�0  
�n.KXn

/ D 1, so
T

n�0 ker.�n/ D 1 and � is
injective. �
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Note then that G.B/ de�nes a topology on G, which is intermediate between
the congruence topology (in which neighbourhoods of the identity are stabiliz-
ers of large subtrees) and the pro�nite completion (in which every �nite-index
subgroup is a neighbourhood). This topology is Hausdor� precisely when G is
faithful. See [5] for details on these topologies.

Proposition 5.5. Let G be a self-similar branched group over K, and consider

a linear representation �WG ! GLn.C/ of G. Then, for all ` 2 N large enough

depending only on n, the kernel of � contains  �`.ŒK;K�X
`
/.

Proof. Assume ŒK;K� ¤ 1, otherwise there is nothing to show. The image of
 �`.KX`

/ in GLn.C/ has bounded rank, so that there exists a constant b, de-
pending only on n, with the following property: for all ` there exists a sub-
set � � X`, with #.X` n �/ � b, such that ker � \  �`.KX`

/ maps onto
 �`.K�/. In particular, for ` � 0 one has � ¤ ;, say ! 2 �; then Œker �,
 �`.1� � � � �K � � � � � 1/� D  �`.1� � � � � ŒK;K�� � � � � 1/, with the non-trivial
entry each times in position !. Since the action of G on Xn is transitive, we get
 �`.ŒK;K�X

`
/ � ker �. �

Corollary 5.6. Let G be a self-similar group, branched over K. Then G is rigid

if and only if K=ŒK;K� is �nite.

Proof. IfK=ŒK;K� is in�nite, then it has in�nitely many irreducible 1-dimensional
representations, soG=ŒK;K� has in�nitely many representations of degree at most
ŒG W K�.

Conversely, assume K=ŒK;K� is �nite, and consider n 2 N. By Proposi-
tion 5.5, there exists ` 2 N such that all n-dimensional representations ofG factor
through G= �`.ŒK;K�X

`
/, which is �nite; so there are �nitely many n-dimen-

sional representations. �

Remark 5.7. In case ŒK;K� contains �`.KX`
/ for some ` 2 N, then the sharper

statement holds that every linear representation has kernel containing  �`.KX`
/

for some ` 2 N.

Remark 5.8. If the self-similar group G is branched over K, then it is also
branched over ŒK;K�, so that there exists a branch structure with B D G=ŒK;K�

and with the additional property that every linear representation �WG ! GLn.C/

factors through G` for some ` large enough.
Therefore, the representation zeta function of G coincides with the zeta func-

tion counting all continuous representations of the pro�nite group G.B/.

We now turn to the examples introduced in §2, and describe their branch
structures.
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5.1. The Grigorchuk group. The maximal branching subgroup of the Grig-
orchuk group (see §2.1) is well-known; we recall it brie�y.

In the Grigorchuk group G, consider the subgroup K D hŒa; b�iG . A direct
computation shows thatK has index 16 in G, using the relations a2 D b2 D c2 D
d2 D bcd D .ad/4 D 1. The computation  .ŒŒa; b�; d �/ D hh1; Œa; b�ii shows that
 .K/ contains K �K.

In the corresponding branch structure, one has B D C2 �D8.

Another direct computation shows that ŒK;K� contains  �3.K23

/, so that, by
Remark 5.7, the representations of G and G.B/ are in bijection.

5.2. The Gupta–Sidki groups. The maximal branching subgroups of the Gup-
ta-Sidki groups (see §2.2) are well-known; we recall them brie�y.

In the Gupta–Sidki group Gp, consider the subgroup K D ŒGp; Gp�. A direct
computation shows that K has index p2 in Gp. If p � 5, then the computation
 .Œt; ta�/ D hhŒa; t �; 1; : : : ; 1ii shows that  .K/ contains Kp. For p D 3, the
computation is slightly di�erent:  .Œt ta; tata

2
�/ D hhŒt�1; a�1�; 1; 1ii.

In the corresponding branch structure, one has B D Cp � Cp.

Another direct computation shows that ŒK;K� contains  �2.Kp2
/, so that, by

Remark 5.7, the representations of G and G.B/ are in bijection.

5.3. Non-faithful actions. If G is a self-similar branched group, but is not
faithful, it may still be possible to construct a branch structure for it. Consider
the example of §2.4: it is a group of the form G D H oO W , for an abelian group
H , a self-similar branched group W and an orbit O of W on the boundary of the
tree X�.

Let .B; �/ be a branch structure for W , with B oX Q � BC

�
� B . Set

B 0 D H � B and B 0
C D H

X � BC � B
0 oX Q, and de�ne �0WB 0

C ! B 0 by

�0
�

.hx/x2X ; b
�

D
�

Y

x2X

hx; �.b/
�

: (5.1)

Then .B 0; �0/ is a branch structure for G.

6. Proof of Theorem A

The criterion “G is rigid if and only if K=ŒK;K� is �nite” is Corollary 5.6.

6.1. Abscissa of convergence. The next statement of the Theorem asserts that
the abscissa of convergence of �G is �nite and positive. The proof follows very
closely that in [4], so I only describe its main steps.
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Proposition 6.1 (see [4, Proposition 13]). The abscissa of convergence of �G is

positive.

Proof. We let rn denote the number of irreducible degree-n representations ofK.
As a �rst step, there are in�nitely many irreducible representations of K, so that,
for every B 2 N, there exists n such that

P

j�n rj � B .

For every integer `, there are then at leastBd
`

representations ofKX`

of degree
at most nd

`

.
Induce and extend these representations to G, and apply (2.1): the index

of  �`.KX`
/ in G is ŒK W  �1.KX/�.d

`�1/=.d�1/ŒG W K� � kd
`

for some
constant k, so there are at least .B=k/d

`
irreducible representations of G of

degree at most .nk/d
`

. Choosing any B > k gives the desired inequality �0 �
log.B=k/= log.nk/. �

Proposition 6.2 (see [4, Proposition 12]). The abscissa of convergence of �G is

�nite.

Proof. Since the proof follows closely [4, Proposition 12], let me only sketch the
proof. Furthermore, the �niteness of the abscissa of convergence also implicitly
follows from the functional equation.

Let rn denote the number of irreducible, n-dimensional complex representa-
tions of K. We claim that there exist constants A 2 N and t > 1 such that

rn � Srn WD A.n=�0.n//
t ; (6.1)

with �0.n/ denoting the number of divisors of n.
Up to replacing X by X` for some ` 2 N, we may assume that K acts non-

trivially on X . Indeed G acts transitively on X`, so since K has �nite index in G
it acts with boundedly many orbits.

From Proposition 5.5, all representations of K may be seen as representations
of K= �`.ŒK;K�X

`
/ for some ` 2 N. Let us denote by rn;` the number of

those representations of K that factor through K= �`.ŒK;K�X
`

/. We have rn D
sup` rn;`, and rn;0 D 0 for all n � 2 while rn;0 D ŒK W ŒK;K��. We prove by
induction on ` that (6.1) holds for all ` 2 N.

To compute rn;`C1 in terms of rm;` for all mjn, we apply Theorem 3.1. We
tensor d representations of K to obtain a representation of KX , extend it to its
inertia subgroup I � K, and induce it to a representation of K. Therefore

rn;`C1 �
X

 �1.KX /�I�K

nDn1���nd eŒKWI�

rn1
� � � rnd

Ne;

with Ne denoting the number of e-dimensional projective representations of
I= �1.KX/. We consider only n � 3. The summands with eŒK W I � � 2 are
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easily controlled by a bound of the form Srn=2, if t is large enough (independently
of `). Consider then summands with K D I and e D 1. The d -tuple of rep-
resentations of K we are inducing must then be constant on K-orbits, and since
these orbits are non-trivial, there are repetitions in the K-tuple, diminishing the
number of factors rn1

� � � rnd
; so this term may again by bounded by Srn=2, if t is

large enough (independently of `). �

6.2. Functional equation. We �x a branched groupG, a branch structure .B; �/,
and an epimorphism f WG ! B . LetK D ker.f / denote the branching subgroup.
Up to replacing K by ŒK;K� if needed, we assume by Proposition 5.5 that every
representation of G factors through G= �`.KX`

/ for some ` 2 N.
Let T denote a complete set of equivalence class representatives of B-repre-

sentation triples. Recall that T is �nite, being the disjoint union of the second
cohomology groups of all subgroups of B . For ‚ a B-representation triple, we
denote by Œ‚� its representative in T .

Without loss of generality, we assume that whenever‚;‚0 2 T are represen-
tation triples such that im.‚/ and im.‚0/ are conjugate in B , say by b 2 B , then
src.‚/ D src.‚0/ and ."conjugation by b"/ ı f .‚/ D f .‚0/.

In order to compute the zeta function �G.s/, we introduce Dirichlet series

�G;‚.s/ D
X

�2 yK

Œ.�;f /�D‚

.deg �/�s:

Then, by Proposition 4.6, these series can then be assembled into �G as follows:

�G.s/ D
X

‚D.�;f /2T

�G;‚.s/�‚_.s/ŒB W im.‚/��1�s: (6.2)

In fact, the functional equation we derive will have the following form, equiv-
alent to (1.2), for polynomials F‚ to be de�ned in (6.3):

Equation (6.2); and �G;‚.s/ D F‚.¹�G;‚0.s/; : : : ; �G;‚0.ds/º‚02T / for all ‚ 2 T :

For greater clarity, we consider

GC D  .G/ D ¹hhgxiiq 2 G oX Q j hhf .gx/iiq 2 BCº;

and produce a functional equation relating the zeta functions of G and GC. Since
G and GC are isomorphic (via  ), we will be done.

In a di�erent language, we know from Remark 5.8 that the zeta functions of
G and of the pro�nite group G.B/ coincide, and G.B/ D lim

 �
Gn. The zeta func-

tion ofG is the coë�cient-wise limit of the zeta functions of the �nite groupsGn,
and the functional equation (6.3) may also be interpreted as a functional equation
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between the zeta functions of Gn and GnC1, with Gn taking the role of G and
GnC1 taking the role of GC. Starting from G�1 D B , we obtain by iteration and
taking a limit the zeta function of G.B/.

For brevity of notation, we consider the free module � with base T over the
ring of Dirichlet series, and its element

�G;T WD
X

‚2T

�G;‚ �‚:

An equation in � is a convenient way of writing #T equations among zeta
functions.

Theorem 3.1 asserts that all representations of K may be obtained by running
through all choices of �x , extending

N

x2X �x to its inertia in K � GC, tensoring
by a projective representation, and inducing to K. We show that the equivalence
class of the obtained representation triple depends only on the equivalence classes
of the representation triples .�x; f / and the datum of which �x are equivalent:

Proposition 6.3. Let .�x/x2X be a collection of irreducible representations ofK,

with associated representation triples ‚x WD Œ.�x; fx/� 2 T . Write

�.s/ D
X

�2 yK extending
N

x �x

dim.�/�sŒ.�; f /� 2 �:

Then �.s/
Q

x2X dim.�x/s depends only on the ‚x and on the relation

¹.x; y/W �x � �yº � X
2:

Proof. The inertia of
N

x �x in G oX Q has the form .
Q

x G�x
/Qc

Ì P , for some
Qc 2 GX and the subgroupP � Q consisting of all q 2 Q such that �x � �qx for all
x 2 X . It is also the preimage by f1WG oXQ! B oXQ ofH D .

Q

x im.‚x/ÌP /c

for some c 2 BX , and is therefore determined by the character triples ‚x and the
relation ¹.x; y/W �x � �yº.

De�ne then I D
Q

x src.‚x/ Ì P , and fCW I ! B oX Q by fC.hhgxiip/ D
.hhfx.gx/iip/

c . On N WD ker.fC/ D
Q

x ker.fx/, de�ne the representation
�C D

N

x �x. Then .�C; fC/ is a .B oX Q/-representation triple.
Write IC D f �1

C .BC/, and denote still by fC the restriction of fC to IC.
We obtain a BC-representation triple .�C; fC/. Set NC D f

�1
C .ker�/. Let � run

over all the extensions of �C to NC, and note that �’s inertia still lies in IC, by
Lemma 3.2.

Note that the representation �C was extended from N to NC; this extension
degree is therefore expressible as dim.�/= dim.�C/.

Consider then the induced representation triple .�; � ı fC/. The induction
degree is Œker� W ker� \ im.fC/�.
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This recipe is based on Theorem 3.1, and follows Proposition 4.6 producing
all representations of K out of representations of its normal subgroup  �1.KX /.
The equivalence class of the representation triple .�; � ı fC/ depends only on the
classes ‚x and on the choice of subgroup H , which in turn was dictated by the
relation ¹.x; y/ W �x � �yº. Furthermore, the extension and induction degrees are
determined by character triples as required. �

We are now ready to construct the functional equation expressing �GC;T in
terms of �G;T . We follow Proposition 6.3 in writing �GC;T as a sum, over
all d -tuples of character triples .‚x/x2X , of all representations of K � GC

whose restriction to KX is a multiple of
N

x �x for representations �x of K with
Œ.�x ; f /� D ‚x for all x 2 X .

Once a family .‚x/x2X 2 T
X of B-representation triples has been �xed, we

sum over all possible inertias of the corresponding tensor product of representa-
tions. Since the inertia containsKX , it su�ces to consider its image inB oXQ. We
are therefore led to enumerate all subgroupsH � B oX Q satisfying the following
two properties: H \BX D

Q

x im.‚x/; and, denoting by P � Q the image ofH
in Q, the family .‚x/x2X is constant on P -orbits. The �rst condition implies that
abstractly H Š

Q

x im.‚x/ Ì P , and in fact H D .
Q

x im.‚x/ Ì P /c for some
c 2 BX .

We then consider all representations induced and extended from all irreducible
representations

N

x �x of KX such that Œ.�x; f /� D ‚x and �x � �y if and only
if x 2 Py. For a P -orbit Y , we write ‚Y WD ‚y for any y 2 Y .

To conclude the enumeration, observe that the subgroups H as above form a
lattice, under reverse inclusion, so that the lattice’s maximal element is

Q

xim.‚x/.
Let � denote the lattice’s Möbius function [22]; so

P

H�H 0�H 00 �.H;H 0/ D

ıH;H 00 .
It is convenient to replace the condition “if and only if x 2 Py” by “if x 2 Py”,

and apply inclusion-exclusion on the lattice of subgroups H . Indeed, then, the
contribution to �GC;T .s/ is �.s/

Q

x dim �.‚x/
s
Q

P -orbits Y �G;‚Y
.s/ with �.s/ as

in Proposition 6.3.
We have arrived at the following formula expressing �GC;T in terms of �G;T ; recall
the notation ‚C D .�C; fC/ from the proof of Proposition 6.3:

�GC;T .s/ D
X

.‚x/2T X

X

Q

x im.‚x/�H�BoXQ

X

� induced from .�C;fC/

.�C;fC/ extending
N

x �.‚C/

Œker� W ker� \ im.fC/�
�1�s

� dim.�/

dim.�C/

��s

X

Q

x im.‚x/�H 0�H

�.H;H 0/
Y

Y orbit ofH 0 on X

�G;‚Y
.#Ys/ � Œ.�; � ı fC/�:

(6.3)
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This equation takes place in the module�; by writing it in the basis T , one obtains
equations �GC;‚ D F‚.¹�G;‚0 W ‚0 2 T º/ for polynomials F‚ with coë�cients in
Q.2�s; : : : ; P�s/ for P D #BC, as required.

6.3. Singularities. We recall some arguments from [4]. Let as usual �0 denote
the abscissa of convergence of �G ; it is the maximum of the abscissæ of conver-
gence of �G;‚ for all ‚ 2 T , since all �G;‚ are positive-coë�cient power se-
ries counting subsets of the representations counted by �G , and combining to �G
by (6.2). Let H .k/ denote the ring of holomorphic functions in ¹<.s/ > 2�k�0º.
Observe then that �G;‚ converges in H .0/ for all ‚ 2 T , and that

H .0/ � H .1/ � � � � �
[

k�0

T .k/ D ¹f W ¹<.s/ > 0º �! Cº:

Treating all variables �G;‚.ks/ with k � 2 as coë�cients, the functional equa-
tion (6.3) may be viewed as a polynomial equation system in unknowns �G;‚.s/
and coë�cients in H .1/. As such, it de�nes the �G;‚.s/ as algebraic functions, in
a �nite extension of H .1/. More generally, let H .k/ denote an algebraic closure
of H .k/; then, for every k � 1, the functional equation (6.3) may be viewed as a
polynomial equation system in unknowns �G;‚.s/ and coë�cients in H .k/, hence
describing �G;‚.s/ 2 H .k/.

It remains to check that the leading coë�cients in the functional equation
never vanish. To see that, consider a monomial S D �G;‚1

.s/ : : : �G;‚d
.s/ in

a term of (6.3). It is associated with representations that extend/induce from
�1 ˝ � � � ˝ �d whose inertia is precisely

Q

x G�x
, namely for which the group P

as above is trivial. There is therefore no inclusion-exclusion, and the coë�cient
of S in the functional equation is the Dirichlet polynomial counting representa-
tions of .

Q

x G�x
\ GC/=K

X with given cocycle; in particular, this coë�cient is
holomorphic in ¹<.s/ > 0º, and bounded away from 0.

We have therefore shown that all the singularities in ¹<.s/ > 0º of �G;‚ are
algebraic; since an algebraic closure of the ring of holomorphic functions may
be taken as the ring of convergent Puiseux series (see e.g. [9, Corollary 13.15]),
we have power series expansions in s1=e about all s 2 C with <.s/ > 0, and in
particular in �0. The root order e at �0 is at least 2, because �0 is a singularity of
�G , and it bounded by the degree d of the functional equation.

6.4. Layered groups. In the special case thatG Š GoXQ, we recover Theorem 3
from [4] as follows: B D 1, and there is a single representation triple. The
subgroups H are then in bijection with subgroups of Q. Theorems 1 and 3 in [4]
were in fact written in terms of the lattice of partitions of X ; however, if two
subgroups Q;Q0 induce the same orbit partition on X , then these subgroups
contribute many times to (6.3), but that multiplicity is compensated by the Möbius
function. Since the cohomology classes in question are all trivial, the summation
on all � may in fact be written via the zeta function of Q.
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7. Implementation details

The proof given in §6 is constructive enough that it can be implemented easily in
a computer algebra system such as Gap [10]. The code is freely available, and is
part of my package Fr designed to manipulate self-similar groups. Some changes
to the method given in §6 made the computation more e�cient.

7.1. Representation triples. Representation triples are objects consisting of a
linear representation and a homomorphism. Cohomology classes in H 2.G;C�/

are represented as 2-cocycles, namely, as lists of cyclotomic numbers indexed by
G � G.

A function computes the cocycle of a representation triple.
Another function converts a representation triple to an equivalent one in which

the marking is a Schur covering map.
More precisely, this function �nds, given a representation triple ‚ and a list T

of representation triples, the one from the list that is equivalent to ‚.
A function computes all the B-representation triples up to equivalence. This is

done by enumerating subgroups of B; computing their Schur cover; and for each
subgroup enumerating the characters of the kernel of its Schur covering map.

A function computes all projective representations of a group with given
cocycle; the group and cocycle are respectively given to the function as image
and representation of a representation triple.

A function, given a projective representation � of G that is equivalent to a
linear one and an epimorphism f WG � B such that the restriction of � to ker.f /
is linear, computes all linear representations of G that are equivalent to �. These
are in bijection with H 1.B;C�/.

Finally, a function computes, given a linear representation � ofH and a group
G � H , all irreducible representations of G that extend �.

7.2. Constructing the functional equation. The parameters stated in Theo-
rem A are N D #T and P D #B . In particular, the partial zeta functions �i .s/ are
really �G;‚.s/, and the homogeneous polynomials Fi are really F‚.

It is too costly to enumerate all subgroups H as in §6. Rather, given the
triples .‚x/x2X , we �rst compute all admissible partitions of X , namely those
P D .Y1; : : : ; Yk/ such that if x; y are in the same part then ‚x D ‚y . We denote
byQP the stabilizer of P inQ. We then de�ne subsets Cx of B , for every x 2 X ,
as follows. For each part Yi , we choose a representative xi ; we let Cxi

be a right
transversal of the normalizer of im.‚xi

/ in B . For the other x 2 Yi , we let Cx be
a right transversal of im.‚x/ in B .

The corresponding subgroupH of BC is .
Q

x im.‚x/ÌQP /
c for an arbitrary

choice of c 2
Q

x Cx. We do not construct H explicitly, but rather let I, the
“possible inertias”, be the list, for all choices of a partition P and c 2

Q

x Cx, of the
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homomorphism f from I D
Q

x src.‚x/ÌQP toB oXQ given by .
Q

x f .‚x//�id

followed by conjugation by c.
We then construct a I � I-matrix �, with �.f; f 0/ D 1 if im.f / � im.f 0/ and

�.f; f 0/ D 0 otherwise. The Möbius function of I is just the matrix inverse of �.
Now, for every f 2 I, we compute the extensions � of

Q

x �.‚x/ to
f �1.ker�/; and keep track of the extension degree e and the induction degree
i , as well as the representative of ‚0 D .�; � ı f / in T . Summing over all f 0 2 I

the expression�.f; f 0/e�si�1�s, we have just computed a term of F‚0 . We repeat
this for all tuples .‚x/x2X 2 T

X .

7.3. Using the functional equation. To compute the coë�cient of n�s in �G , it
is su�cient to work with Dirichlet series truncated at degree n. One starts with the
Dirichlet series �B;T , which can easily be computed because B is a �nite group,
and iterates the functional equation to obtain a �xed point. The iteration converges
because the polynomials Fi � zi;1 are homogeneous of degree at least two. This
is how high-degree coë�cients were computed.

On the other hand, to continue �G analytically, one starts by computing a large
number of terms of �G;T as above, up to, say, degree n D 1010, obtaining a
Dirichlet polynomial. For s 2 C with su�ciently large real part, �G.s/ is well
approximated by the Dirichlet polynomials of �G;T and (6.2). For smaller values of
s, one goes through the functional equation (6.3), and replaces �G;‚.ks/, whenever
k � 2, by its value using the Dirichlet polynomial. What remains is a sequence of
#T polynomials with complex coë�cients and in variables ¹�G;‚.s/º‚2T . Such
a system can be solved numerically, e.g. using PHC [27] or the more recent
Bertini [6]. The system usually has more than one solution, and one picks the
relevant one; in particular, for real s, one picks (following analytic continuation)
the solution in CT that is closest to the one computed for a neighbouring s.

Finally, to obtain the abscissa of convergence, one restricts oneself to real
s; and �nds, by repeated subdivision, the minimal s such that the solutions
returned by numerically solving for �G;‚.s/ remain all real. By the Landau-
Phragmén theorem mentioned in the Introduction, the abscissa of convergence
is a number �0 such that all �G;‚.k�0/ may be accurately computed using the
Dirichlet polynomial truncation, while the polynomial system derived from the
functional equation has a multiple root at �0.
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