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Construction of minimal skew products

of amenable minimal dynamical systems
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Abstract. For an amenable minimal topologically free dynamical system ˛ of a group

on a compact metrizable space Z and for a compact metrizable space Y satisfying a mild

condition, we construct a minimal skew product extension of ˛ on Z �Y . This generalizes

a result of Glasner and Weiss. We also study the pure in�niteness of the crossed products of

minimal dynamical systems arising from this result. In particular, we give a generalization

of a result of Rørdam and Sierakowski.
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1. Introduction

Recall that a topological dynamical system � Õ X is said to be minimal if

every �-orbit is dense in X . It is an interesting question to ask that for a given

group � which space admits a minimal (topologically) free dynamical system

of �. Certainly a space admitting a minimal �-dynamical system must have a

nice homogeneity. However, this is not su�cient even for the simplest case, that

is, the case � D Z. For example, an obstruction from homological algebra shows

that there is no minimal homeomorphism on even dimensional spheres S2n (see

Chapter I.6 of [3] for instance).

In [10], Glasner and Weiss have shown the existence of minimal skew product

extensions of a minimal homeomorphism under mild conditions. Their result

in particular shows that many spaces admit a minimal homeomorphism. For

example, it follows that there exists a minimal homeomorphism on the product

of the Hilbert cube and S1. This solved a question asked by T. Chapman [7].

For certain amenable groups, their result is generalized in [16]. (It also deals

generalizations of other results in [10]; e.g., the existence of strictly ergodic

skew products.) In this paper, following the argument of Glasner and Weiss

in [10], we construct minimal skew products of amenable minimal topologically

free dynamical systems (Theorem 2.1). This provides many new examples of

(amenable) minimal topologically free dynamical systems of exact groups.
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We also study the reduced crossed product of these minimal skew products.

Recall that a unital C�-algebra A is purely in�nite and simple if for any nonzero

positive element a 2 A, there is b 2 A with b�ab D 1. Pure in�niteness plays

an important role in the study of C�-algebras. See [8], [12], [13], [18], and [21] for

example. A C�-algebra is said to be a Kirchberg algebra if it is simple, separable,

nuclear, and purely in�nite. A deep theorem of Kirchberg [12] and Phillips [18]

states that the Kirchberg algebras are classi�ed in terms of the KK-theory. In par-

ticular, the Kirchberg algebras in the UCT class are classi�ed by their K-theoretic

data, and consequently each of which is isomorphic to the one constructed in [21].

For these reasons, it is important to know whether a given C�-algebra is purely

in�nite. Obviously pure in�niteness implies other in�niteness properties; e.g.,

tracelessness, properly in�niteness. The latter conditions are easy to check in

many situations. However, even in the nuclear case, Rørdam has constructed a

counterexample for the converse implications [23]. See [22] and the references

therein for more information on pure in�niteness and Kirchberg algebras. In Sec-

tion 3, under certain assumptions on Y and ˛W� Õ Z, we show that the crossed

products of many of dynamical systems obtained in our result are Kirchberg alge-

bras in the UCT class (Proposition 3.11). For this purpose, we generalize the notion

of the �nite �lling property, which is introduced in [11] for dynamical systems, to

étale groupoids. It turns out that the generalized version is useful to construct

minimal skew products with the purely in�nite crossed products. This result is

applied particularly to the case that Y is a connected closed topological manifold

and that ˛ is a dynamical system on the Cantor set constructed in [24]. As a conse-

quence, we generalize a result of Rørdam and Sierakowski [24], which is a result

for the Cantor set, to the products of connected closed topological manifolds and

the Cantor set (Theorem 3.12). This is the �rst generalization of their result, and

shows that for topological dynamical systems, not only the structure of groups but

also the structure of spaces is not an obstruction to form a Kirchberg algebra.

In Section 4, we study the K-theory of the crossed products of these minimal

skew products in the free group case. Using the Pimsner–Voiculescu six-term ex-

act sequence, we prove a Künneth-type formula for them. As an application, for

any connected closed topological manifold M and for any (non-amenable, count-

able) virtually free group �, we show that there exist continuously many amenable

minimal free dynamical systems of � on the product of M and the Cantor set

whose crossed products are mutually non-isomorphic Kirchberg algebras. This

generalizes a result in [26].

Spaces of dynamical systems. For a compact metrizable space X , let H.X/

denote the group of homeomorphisms on X . We equip the metric d on H.X/ as

follows. First let us �x a metric dX on X . Then de�ne

d.';  / WD max
x2X

.dX .'.x/;  .x///Cmax
x2X

.dX .'
�1.x/;  �1.x///
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for ';  2 H.X/. It is not hard to check that the metric d is complete and H.X/

becomes a topological group with respect to d . Note that the sequence .'n/n in

H.X/ converges to ' in this topology if and only if 'n uniformly converges to '.

For a countable group �, let H.�; X/ denote the set of dynamical systems of �

on X , i.e., H.�; X/ D Hom.�;H.X//. This set is naturally regarded as a closed

subset of
Q

� H.X/. Since � is countable, this makes H.�; X/ to be a complete

metric space.

Next let Y be a compact metrizable space and let G Õ Y be a continuous

action of a topological group G on Y . Let ˛W� Õ Z be a topological dynamical

system of a group� on a compact metrizable spaceZ. PutX D Z�Y . Recall that

a continuous map cW� � Z ! G is said to be a cocycle if it satis�es the equation

c.s; t:z/c.t; z/ D c.st; z/ for all s; t 2 � and z 2 Z. When there is a continuous

map hWZ ! G satisfying c.s; z/ D h.s:z/�1h.z/ for all s 2 � and z 2 Z, the

cocycle c is said to be a coboundary. Each cocycle cW� � Z ! G de�nes an

extension of ˛ on X by the following equation.

s:.z; y/ D .s:z; c.s; z/y/ for s 2 � and .z; y/ 2 X:

Such an extension is called a skew product extension. Note that when c is a

coboundary, the associated skew product extension is conjugate to N̨ . Here and

throughout the paper, for a dynamical system ˛W� Õ Z and a compact space Y ,

we denote by N̨ the diagonal action of ˛ and the trivial action on Y . Since the

space Y is always clear from the context, we omit Y in our notation.

For a continuous map h fromZ into G, we have an associated homeomorphism

H on X de�ned by the formula H.z; y/ WD .z; hz.y// for .z; y/ 2 X . We denote

by Gs the set of homeomorphisms given in the above way. Obviously, Gs is a

subgroup of H.X/. For a topological dynamical system ˛W� Õ Z, we de�ne a

subset SG.˛/ of H.�; X/ to be

SG.˛/ WD ¹H�1 ı N̨ ıH WH 2 Gsº:

We note that the set SG.˛/ consists of skew product extensions of ˛ by cobound-

aries. We denote by xSG.˛/ the closure of SG.˛/ in H.�; X/. Note that any

ˇ 2 xSG.˛/ is a skew product extension of ˛ on X whose associated cocy-

cle takes the value in xG. Here xG denotes the closure of the image of G in

H.X/. In particular, when ˛ is amenable, every dynamical system contained

in xSG.˛/ is amenable. Throughout the paper, we always �x metrics dY and dZ

on Y and Z respectively and consider the metric on X D Z � Y de�ned by

dX ..z1; y1/; .z2; y2// D dY .y1; y2/C dZ.z1; z2/, and use these metrics to de�ne

metrics on the homeomorphism groups.

In Section 3, we discuss étale groupoids. Throughout the paper, we always

assume that étale groupoids are locally compact Hausdor� and their unit spaces

are compact and in�nite (as a set). For an étale groupoid G, we denote by r and

s the range and source map unless they are speci�ed. As usual, for a dynamical
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system ˛ of a discrete group � on a compact space X , we usually regard the

transformation groupoid X Ì˛ � as the following subspace of X � � �X .

X Ì˛ � D ¹.˛g.x/; g; x/ 2 X � � �X W x 2 X; g 2 �º:

Note that the range and source map correspond to the projections onto the �rst

and third coordinate respectively. For detailed explanations and basic knowledges

of étale groupoids, we refer the reader to Section 5.6 of [4].

Notation.

� For a subset U of a topological space, its closure and interior are denoted by

cl.U / and int.U / respectively.

� For a �-homomorphism ˛ between C�-algebras, denote by ˛�;i the homo-

morphism induced on the Ki -groups.

� Denote by K the C�-algebra of all compact operators on `2.N/.

� Let A be a C�-algebra. For a projection p in A or A˝K, denote by Œp�0 the

element of K0.A/ represented by p.

� For a compact spaceX , we denoteKi.C.X// by K i .X/ for short. (Note that

this coincides with the usual de�nition of K i -group.)

2. Construction of minimal skew product

The goal of this section is to prove the following theorem. The proof is done by

following the same line as that of Theorem 1 in [10].

Before the proof, recall that a dynamical system ˛W� Õ Z of a group � on

a compact metrizable space Z is said to be amenable if there is a sequence of

continuous maps

�nWZ �! Prob.�/

satisfying

lim
n�!1

sup
z2Z

ks:�z
n � �s:z

n k1 D 0 for all s 2 �:

Here Prob.�/ denotes the space of probability measures on � with the pointwise

convergence topology, and � acts on Prob.�/ by the left translation. It is shown

by Ozawa [17] that for discrete groups, the existence of an amenable action is

equivalent to exactness. See [1] and [4] for more information on amenable actions.

In the proof of the following theorem, we use amenability of dynamical systems to

construct suitable continuous functions. In other word, amenability of dynamical

systems plays the role of the Følner sets in the proof of Theorem 1 of [10].
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Theorem 2.1. Let G Õ Y be a minimal action of a path connected group G on a

compact metrizable spaceY . Let˛W� Õ Z be an amenable minimal topologically

free dynamical system of a countable group � on a compact metrizable space Z.

Then the set

¹ˇ 2 xSG.˛/Wˇ is minimalº
is a Gı-dense subset of xSG.˛/.

Proof. Let G Õ Y and ˛W� Õ Z be as in the statement. For an open set U of

X D Z � Y , we de�ne the subset EU of xSG.˛/ to be

EU WD
°

ˇ 2 xSG.˛/W
[

g2�

ˇg .U / D X
±

:

Since X is compact, it is not hard to check that the set EU is open in xSG.˛/.

Let .Un/n be a countable basis of X . We observe that an element in xSG.˛/ is

minimal if and only if it is contained in
T

n EUn
. Therefore, thanks to the Baire

category theorem, our claim follows once we show the density of EU in xSG.˛/ for

each non-empty open set U in X . To see this, it is enough to show the following

claim. For anyH 2 Gs and any non-empty open setU � X ,H�1ı N̨ ıH 2 cl.EU /:

This is equivalent to the condition N̨ 2 cl.HEUH
�1/. A direct computation shows

that HEUH
�1 D EH.U /. Since H.U / is again a non-empty open set, now it is

enough to show the following statement. For any non-empty open set U � X , we

have N̨ 2 cl.EU /. Now let U be a non-empty open set inX . Let S be a �nite subset

of� and let � > 0. Take non-empty open setsV � Y andW � Z withW �V � U .

By assumption, there are Qh0; : : : ; Qhn 2 G satisfying
S

0�i�n
Qhi .V / D Y . Since G

is path-connected, there is a continuous map hW Œ0; 1� ! G satisfying hi=n D Qhi

for 0 � i � n. By the continuity of h, there is ı > 0 such that the condition

jt1 � t2j < ı implies d.h�1
t1
ht2 ; idY / < �. Now we use the amenability of ˛ to

choose a continuous map �WZ ! Prob.�/ satisfying supz2Z ks:�z � �s:zk1 < ı
for all s 2 S . By perturbing � within a small error and replacing W by a smaller

one, we may assume that there is a �nite set F � � such that supp.�w/ � F for

all w 2 W . (Cf. Lemma 4.3.8 of [4].) Since ˛ is topologically free, by replacing

W by a smaller one further, we may assume that the open sets .g:W /g2F �1 are

mutually disjoint. SinceW is a locally compact metrizable space without isolated

points, we can choose a compact subsetK ofW homeomorphic to the Cantor set.

(To see this, take a sequence of families ..Ki1;:::;in/0�i1;:::;in�1/n2N satisfying the

following conditions. Each family .Ki1;:::;in/i1;:::;in consists of pairwise disjoint

closed subsets of W with non-empty interior, Ki1;:::;in � Ki1;:::;in�1
for any

i1; : : : ; in, and maxi1;:::;in¹diam.Ki1;:::;in/º converges to 0 as n tends to in�nity.

Then the set
T

n

S

i1;:::;in
Ki1;:::;in gives the desired subset.)

Next take a continuous surjection �0WK ! Œ0; 1�. Extend �0 to a map
F

g2F �1 gK ! Œ0; 1� by the formula �0.g:z/ WD �0.z/ for g 2 F �1 and z 2 K.
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Then take a continuous extension Q� WZ ! Œ0; 1� of �0. Using Q� and �, we de�ne

� WZ ! Œ0; 1� by

�.z/ WD
X

g2�

�z.g�1/ Q�.g:z/:

Note that the continuity of Q� and� implies that of � . For z 2 K, since supp.�z/ �
F , we have �.z/ D �0.z/. In particular, �.K/ D Œ0; 1�. Moreover, for z 2 Z and

s 2 S , we have

j�.s:z/ � �.z/j D
ˇ

ˇ

ˇ

ˇ

X

g2�

.�s:z.g�1/ Q�.gs:z/ � �z.g�1/ Q�.g:z//
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

X

g2�

.�s:z.g�1/ Q�.gs:z/ � �z.s�1g�1/ Q�.gs:z//
ˇ

ˇ

ˇ

ˇ

� k�s:z � s:�zk1
< ı:

Now de�ne the map gWZ ! G by gz WD h�.z/ for z 2 Z. We will show that

the corresponding homeomorphism G 2 Gs satis�es the following conditions:

(1) d. N̨s ; G�1 ı N̨s ıG/ < � for s 2 S ;

(2) G�1 ı N̨ ıG 2 EU .

Since U , �, and S are arbitrarily, this ends the proof. Let s 2 S and .z; y/ 2 X .

Then a direct computation shows that

.G�1 ı N̨s ıG/.z; y/ D .˛s.z/; g
�1
s:zgz.y//:

Since d.g�1
s:zgz; idY / < � for all z 2 Z, we obtain the �rst condition.

For the second condition, note that G�1 ı N̨ ı G 2 EU if and only if
S

g2� N̨g.G.U // D X holds. By the choice of G, for any 0 � i � n, there is

w 2 W satisfying gw D Qhi . It follows that for any 0 � i � n, there is w 2 W
with ¹wº � Qhi .V / � G.U /. Since

S

i
Qhi .V / D Y , this shows that for any y 2 Y ,

the intersection .Z � ¹yº/\G.U / is non-empty (which is open in Z � ¹yº). This

with the minimality of ˛ shows that
S

g2� N̨g.G.U // D X . �

Remark 2.2. Theorem 2.1 does not hold when Z is not metrizable. To see this,

consider a minimal subsystem ˛W� Õ Z of � Õ ˇ�. (Note that ˛ is amenable

when � is exact.) Then ˛ is the universal minimal �-system (see Theorem 1.24

of [9]). Thus it does not have a nontrivial minimal extension.
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Remark 2.3. Let ˛W� Õ Z be a minimal topologically free dynamical system

of an amenable group � whose crossed product is quasi-diagonal. Then for any

ˇ 2 xSG.˛/, its crossed product is quasi-diagonal. Indeed, since ˇ is a limit

of conjugations of N̨ , there is a continuous �eld of C�-algebras over N [ ¹1º,
the one-point compacti�cation of N, whose �ber at n 2 N is isomorphic to

C.Y / ˝ .C.Z/ Ì˛ �/ and the one at 1 is isomorphic to C.X/ Ìˇ �. (See

Corollary 3.6 of [20].) Now Lemma 3.10 of [5] proves the quasi-diagonality of

C.X/ Ìˇ �.

3. Pure in�niteness of crossed products of minimal skew products

3.1. Finite �lling property for étale groupoids. To study the pure in�niteness

of crossed products of dynamical systems arising from Theorem 2.1, we introduce

a notion of the �nite �lling property for étale groupoids. First recall from [11]

the �nite �lling property for dynamical systems. Although their de�nition and

result also cover noncommutative C�-dynamical systems, in this paper, we con-

centrate on the commutative case. See [11] for the general case. We remark that,

although the following formulation is slightly di�erent from the original one, it is

easily checked that they are equivalent. (Cf. De�nition 0.1, Proposition 0.3, and

Remark 0.4 of [11].)

De�nition 3.1. A dynamical system � Õ X is said to have the n-�lling property

if for any non-empty open set U of X , there are n elements g1; : : : ; gn 2 � with
Sn

iD1 gi .U / D X . We say that a dynamical system has the �nite �lling property

if it has the n-�lling property for some n 2 N.

Note that the �nite �lling property implies minimality. In [11], it is shown

that the �nite �lling property of a topological dynamical system implies the pure

in�niteness of the reduced crossed product by a similar way to the one in [14].

However, as shown in [11], the n-�lling property is inherited to factors. This makes

the usage of the n-�lling property restrictive in our application. To avoid this

di�culty, we introduce a notion of the �nite �lling property for étale groupoids,

which can be regarded as a localized version of [11]. This helps to construct

minimal skew products with the purely in�nite reduced crossed product.

Next we recall that a subset U of an étale groupoid G is said to be a G-set

if both the range and source map are injective on U . For two G-sets U and V ,

we set UV WD ¹uv 2 GWu 2 U; v 2 V; s.u/ D r.v/º. Obviously it is again a

G-set. Furthermore, if both U and V are open, then UV is again open. Recall

also that an étale groupoid is said to be minimal if for any x 2 G.0/, the set

¹r.u/Wu 2 G; s.u/ D xº is dense in G.0/. Note that the unit space G.0/ has no

isolated points wheneverG is minimal. (Recall that G.0/ is always assumed to be

in�nite.)
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De�nition 3.2. Let G be an étale groupoid. For a natural number n, we say that

G has the n-�lling property if every non-empty open set W of G.0/ satis�es the

following conditon. There are n open G-sets U1; : : : ; Un satisfying

n
[

iD1

r.UiW / D G.0/:

For short, we say that a dynamical system has the weak n-�lling (resp. weak �nite

�lling) property if its transformation groupoid has the n-�lling (resp. �nite �lling)

property.

Obviously, for dynamical systems, the n-�lling (resp. �nite �lling) property

implies the weak n-�lling (resp. weak �nite �lling) property. However, the con-

verses are not true.

We also remark that it is possible to de�ne the weak �nite �lling property

without going through the transformation groupoid. However, this specialization

does not make the arguments below easier and this generality makes notation

simpler. Considering applications elsewhere also, we study the property under

this generality.

When the unit space G.0/ has �nite covering dimension, we have a useful

criteria for the �nite �lling property. The following de�nition is inspired from [15]

and [24].

De�nition 3.3. We say that an étale groupoid G is purely in�nite if for any non-

empty open set U of G.0/, there is a non-empty open subset V of U with the

following condition. There are open G-sets U1 and U2 such that r.Ui / � V �
s.Ui / for i D 1; 2 and r.U1/ and r.U2/ are disjoint. We say that a dynamical

system is purely in�nite if its transformation groupoid is purely in�nite.

We remark that Matui [15] has introduced pure in�niteness for totally discon-

nected étale groupoids for the study of the topological full groups. Clearly, our

de�nition is weaker than Matui’s one. We will see later that our de�nition of

pure in�niteness coincides with Matui’s one for minimal totally disconnected étale

groupoids.

Proposition 3.4. Let G be a minimal purely in�nite étale groupoid and assume

that dim.G.0// D n <1. Then G has the .nC 1/-�lling property.

Proof. Let U be a non-empty open subset of G.0/. Replacing U by a smaller one,

we may assume that there are openG-sets U1 andU2 such that r.Ui / � U � s.Ui /

for i D 1; 2 and r.U1/ and r.U2/ are disjoint. We �rst show that for any

N 2 N, there are N open G-sets V1; : : : ; VN satisfying r.Vi/ � U � s.Vi / for

i D 1; : : : ; N and the ranges r.V1/; : : : ; r.VN / are mutually disjoint. To see this,
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�rst take M 2 N with 2M � N and then take N mutually distinct elements from

the set

¹Ui1Ui2 � � �UiM W ik D 1 or 2 for each kº:
Then it gives the desired sequence.

By the compactness ofG.0/ and the minimality ofG, for some natural number

N , there areN openG-setsW1; : : : ; WN with
SN

iD1 r.WiU/ D G.0/: TakeN open

G-sets V1; : : : ; VN as in the previous paragraph and put Zi WD WiV
�1

i for each i .

Then we have
N
[

iD1

r.ZiU/ �
N
[

iD1

r.WiU/ D G.0/:

Note that since s.Zi / � r.Vi/, the sources of Zi ’s are mutually disjoint. Since

dim.G.0// D n, we can choose a re�nement .Yj /j 2J of .r.ZiU//
N
iD1 with the

decomposition J D J0tJ1t� � �tJn such that the members of the family .Yj /j 2Jk

are mutually disjoint for each k. Choose a map 'W J ! ¹1; : : : ; N º satisfying

Yj � r.Z'.j /U/ for each j 2 J . Set Xk WD
S

j 2Jk
YjZ'.j / for each k. Then it

is not hard to check that each Xk is an open G-set and that r.XkU/ D
S

j 2Jk
Yj .

This shows
Sn

kD0 r.XkU/ D G.0/. �

Remark 3.5. The argument in Remark 4.12 of [15] shows that for totally dis-

connected étale groupoids, the �nite �lling property implies pure in�niteness in

Matui’s sense. Thus for a minimal totally disconnected étale groupoidG, pure in-

�niteness in Matui’s sense [15], that in our sense, the �nite �lling property, and the

1-�lling property are equivalent. (Here total disconnectedness is used to replace

open G-sets by clopen ones.)

Next we see a few examples of dynamical systems with the weak �nite �lling

property. The following three examples are particularly important for us. See [11]

for more examples of dynamical systems with the �nite �lling property.

Example 3.6. It follows from the proof of Theorem 6.11 of [24] that every count-

able non-amenable exact group admits an amenable minimal free purely in�nite

dynamical system on the Cantor set. (To see this, use the equivalence of conditions

(i) and (iii) in Proposition 5.5 in the proof of Proposition 6.8.) By Proposition 3.4,

it has the weak 1-�lling property. We remark that these dynamical systems almost

never have the �nite �lling property.

Recall that a manifold is said to be closed if it is compact and has no bound-

aries.

Lemma 3.7. Let M be a connected closed topological manifold. Let H0.M/

denote the path connected component of H.M/ containing the identity. Then the

action H0.M/ Õ M has the �nite �lling property.
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Proof. It is not hard to show that the above action is transitive by using the

connectedness of M with the fact that M is locally homeomorphic to R
n.

Take an open cover U1; : : : ; UN of M each of which is homeomorphic to R
n.

We show that for any non-empty open set V in M , for any i , and for any compact

subset K of Ui , there is an element g 2 H0.M/ with g.V / � K. Since M is

compact, the claim with a standard argument for compactness shows the N -�lling

property of the action in the question. Since the action is transitive, replacing V

by g.V / for a suitable g 2 H0.X/ and replacing it by a smaller one further, we

may assume that V is contained in Ui . Take a homeomorphism 'WUi ! R
n

satisfying 0 2 '.V /. Take a su�ciently large positive number � > 0 with

'.K/ � �'.V /. Then choose a continuous function f WR�0 ! R�0 satisfying

the following conditions:

(1) for t � diam.'.V //, we have f .t/ D �;

(2) for all su�ciently large t , we have f .t/ D 1;
(3) the function t 7! tf .t/ is strictly monotone increasing.

Now set 'f .x/ WD '�1.f .k'.x/k/'.x// for x 2 Ui . Here k � k denotes the Eu-

clidean norm onR
n. From the assumptions on f , the map 'f is a homeomorphism

on Ui satisfying K � 'f .V /. We extend 'f to a homeomorphism  f on M as

follows:

 f .x/ WD
´

'f .x/ if x 2 Ui ;

x if x 2M n Ui :

It is clear from the properties of f that  f is indeed a homeomorphism on M .

Clearly we have K �  f .V /. Moreover, the map t 2 Œ0; 1� 7!  .1�t/f Ctk de�nes

a continuous path in H.M/ from  f to the identity. Here k denotes the constant

function of value 1 de�ned on R�0. Thus we have  f 2 H0.M/. �

Next we see examples of �nite �lling actions of path-connected groups on

in�nite dimensional spaces. Let Q WD
Q

N
Œ0; 1� be the Hilbert cube. Recall that

a topological space is said to be a Hilbert cube manifold if there is an open cover

each of the member is homeomorphic to an open subset of Q. It is not hard to

show that open subsets of Q in the de�nition can be taken to be Œ0; 1/ �Q. (See

Theorem 12.1 of [7] for instance.) Obvious examples are Q itself and the product

of Q and a topological manifold (possible with boundary). We refer the reader to

[7] for more information of Hilbert cube manifolds.

Lemma 3.8. Let M be a connected compact Hilbert cube manifold. Then the

action H0.M/ Õ M has the �nite �lling property.

Proof. We �rst show the following claim. For any open subset U of Œ0; 1/� Œ0; 1�n
of the form .a; b/n � Œ0; 1� (0 < a < b < 1) and for any compact subset K of

Œ0; 1/ � Œ0; 1�n, there is a homeomorphism h 2 Hc;0.Œ0; 1/ � Œ0; 1�n/ satisfying
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K � h.U /. Here, for a locally compact metrizable space Y , Hc;0.Y / denotes the

subgroup of homeomorphisms on Y de�ned as follows. First we de�ne Hc.Y /

to be the group of homeomorphisms on Y which coincide with the identity o� a

compact subset. Then we identify Hc.Y / with the inductive limit of subgroups

of homeomorphism groups of compact subsets of Y in the natural way. Then

we topologize Hc.Y / with the inductive topology. Now we de�ne Hc;0.Y / to

be the path-connected component of Hc.Y / containing the identity with respect

to this topology. To show the claim, we �rst construct a homeomorphism h1 2
Hc;0.Œ0; 1/� Œ0; 1�n/ satisfying h1.¹0º � Œ0; 1�n/ � .a; b/n � Œ0; 1� in a similar way

to the proof of Lemma 3.7. Then, since h1 is a homeomorphism, there is a positive

number ı > 0 satisfying h1.Œ0; ı/� Œ0; 1�n/ � .a; b/n � Œ0; 1�: On the one hand, it

is easy to �nd h2 2 Hc;0.Œ0; 1/ � Œ0; 1�n/ satisfying K � h2.Œ0; ı/ � Œ0; 1�n/: Now

the homeomorphism h WD h2 ı h�1
1 satis�es the required condition.

Next we observe that for any compact metrizable space X and its open sub-

set U , any h 2 Hc;0.U / extends to a homeomorphism Qh in H0.X/ by de�ning
Qh.x/ D x o� U . Now thanks to the claim in the previous paragraph with this

observation, the rest of the proof can be completed by a similar way to that of

Lemma 3.7. �

We next show that the �nite �lling property gives a su�cient condition for

the pure in�niteness of the reduced groupoid C�-algebra. Recall from [15] that

an étale groupoid G is said to be essentially principal if the interior of the set

¹g 2 GW r.g/ D s.g/º coincides withG.0/. Note that for transformation groupoids,

this condition is equivalent to the topological freeness of the original dynamical

system.

Proposition 3.9. Let G be an étale groupoid with the �nite �lling property. As-

sume further that G is essentially principal. Then the reduced groupoid C�-alge-

bra C�
r .G/ is purely in�nite and simple. In particular, ifG is additionally assumed

to be second countable and amenable, then C�
r .G/ is a Kirchberg algebra in the

UCT class.

We note that the last statement immediately follows from the �rst one since

the reduced groupoid C�-algebra of an amenable étale groupoid is nuclear (see

Theorem 5.6.18 of [4]) and is in the UCT class [28]. To show the main statement,

we need the following lemma, which is the analogue of Lemma 1.5 of [11].

Lemma 3.10. Let G be an étale groupoid with the n-�lling property. Let b be a

positive element inC.G.0//with norm one. Then for any � > 0, there is c 2 C�
r .G/

such that kck �
p
n and c�bc � 1� �.

Proof. Set U WD ¹x 2 G.0/W b.x/ > 1 � �º. Take n mutually disjoint non-

empty open subsets U1; : : : ; Un of U . Since G is minimal, there are n open G-

sets V1; : : : ; Vn with the property that the intersection
T

i r.ViUi / is non-empty.
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Using the n-�lling property ofG with this observation, we can �nd n openG-sets

W1; : : : ; Wn satisfying
n

[

iD1

r.WiUi / D G.0/:

By replacingWi byWiUi , we may assume s.Wi / � Ui . SinceG is locally compact

and G.0/ is compact, replacing each Wi by a smaller one if necessary, we may

assume further that eachWi is relatively compact inG. SinceG is locally compact,

for each i , it is not hard to �nd an increasing net .Wi;�/�2ƒ of open subsets ofWi

that satis�es the following conditions. The closure of Wi;� in G is contained in

Wi for each �, and the union
S

�Wi;� is equal to Wi . Since the unit space G.0/ is

compact, there is � 2 ƒ satisfying
Sn

iD1 r.Wi;�/ D G.0/. Now �x such � and put

Zi WD cl.Wi;�/ for each i . Then, by the choice ofWi;�, the Zi is a compact G-set.

Moreover we have

G.0/ D
n

[

iD1

r.Wi;�/ �
n

[

iD1

r.Zi /:

Now for each i , take a continuous function fi 2 Cc.G/ satisfying the following

conditions:

(1) 0 � fi � 1;

(2) supp.fi / � Wi ;

(3) fi � 1 on Zi .

(Since Zi and the closure ofWi in G are compact, such function exists.) SinceWi

is a G-set, these conditions imply that fi � f �
i 2 C.G.0// and that fi � f �

i � 1.
Since the sets s.W1/; : : : ; s.Wn/ are mutually disjoint, we have fi � f �

j D 0 for

two distinct i and j . Now put c WD
Pn

iD1 f
�

i . The above observations show that

c��c 2 C.G.0// and that c��c � n. Thus kck �
p
n. Since theG-setsW1; : : : ; Wn

have mutually disjoint sources, we also get c��b�c 2 C.G.0//. Since s.Wi / � U
for each i and

Sn
iD1 r.Zi / D G.0/, we further obtain c� � b � c � 1� �: �

Proof of Proposition 3.9. The rest of the proof is basically the same as that in [11].

We �rst observe that since G is essentially principal, it is not hard to show that

for any b 2 Cc.G/ and � > 0, there is a positive element y 2 C.G.0// with norm

one satisfying yby D yE.b/y and kybyk > kE.b/k � �, where E denotes the

restriction map Cc.G/ ! C.G.0//. Note that the map E extends to a faithful

conditional expectation on C�
r .G/. From this with Lemma 3.10, for any positive

element b 2 Cc.G/ with kE.b/k D 1, there is an element c 2 Cc.G
.0// satisfying

kck �
p
n and c�bc � 1=2: Since the norm of c is bounded by the �xed constantp

n, now a standard argument completes the proof. �



Construction of minimal skew products 87

3.2. Minimal skew products with purely in�nite crossed products. Now us-

ing the �nite and weak �nite �lling property, we construct minimal skew products

whose crossed products are purely in�nite.

Proposition 3.11. Let ˛W� Õ Z be an amenable topologically free dynamical

system with the weak n-�lling property. Let G Õ Y be a minimal dynamical

system of a path connected group G with the m-�lling property. Then the set

¹ˇ 2 xSG.˛/Wˇ has the weak .nm/-�lling propertyº

is a Gı-dense subset of xSG.˛/:

Proof. For an open set U of X D Z � Y , let FU denote the set of elements ˇ of
xSG.˛/ satisfying the following condition. There are nm openGˇ -sets V1; : : : ; Vnm

with
S

i r.ViU/ D X . HereGˇ denotes the transformation groupoidX Ìˇ � of ˇ.

Then for a countable basis .Un/n of X , the set in the question coincides with the

intersection
T

n FUn
. Hence it su�ces to show that each FU is open and dense in

xSG.˛/.

We �rst show the openness of FU . Let ˇ 2 FU . Let V1; : : : ; Vnm be open

Gˇ -sets as above. Replacing Vi ’s by smaller ones, we may assume that they

are relatively compact in Gˇ and that the sources s.Vi / are contained in U . Set

F WD �.
S

i Vi /, where � WX Ìˇ � ! � denotes the projection onto the second

coordinate. Since each Vi is relatively compact in Gˇ , the set F is a �nite subset

of �. Now we apply the argument in the proof of Lemma 3.10 to .Vi /i to choose

compactGˇ -setsW1; : : : ; Wnm with the following properties. TheWi is contained

in Vi for each i and the union
S

i r.int.Wi// is equal to X . Now for a Gˇ -set W

and g 2 �, de�ne the subset Wg � X to be r.W \ ��1.¹gº//: Then, for each i ,

the sets .Wi;g/g2F are mutually disjoint compact sets in X . Moreover, the union
S

i;g int.Wi;g/ is equal to X .

For W � X and ı > 0, we de�ne the (open) subsets Nı.W / and Iı.W / of X

as follows.

Nı.W / WD
[

x2W

B.x; ı/;

Iı.W / WD ¹x 2 X W there is � > ı with B.x; �/ � W º:

Here for x 2 X and � > 0, B.x; �/ denotes the open ball of center x and

radius �. Then, from the properties of Wi ’s and the compactness of X , for a

su�ciently small positive number ı > 0, the following conditions hold. The sets

.Nı.Wi;g//g are mutually disjoint for each i and the sets .Iı.Wi;g//i;g coverX . We

�x such positive number ı. From the �rst condition, for any  2 xSG.˛/ satisfying

d.s ; ˇs/ < ı for all s 2 F , eachWi is aG -set. HereWi is regarded as a subset of

G by identifying the transformation groupoids with the set ��X by ignoring the

�rst coordinates. Let rˇ and r denote the range map of Gˇ and G respectively.
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Then we have

[

i

r .int.Wi // �
[

i

Iı.rˇ .int.Wi /// D
[

i;g

Iı.Wi;g/ D X:

Therefore we have  2 FU , which proves the openness of FU .

To show the density of FU , by the similar reason to that in the proof of

Theorem 2.1, it su�ces to show the following statement. For any � > 0 and any

�nite subset S � �, there is a homeomorphism H 2 Gs satisfying the following

conditions:

(1) d. N̨s ; H�1 ı N̨s ıH/ < � for s 2 S ;

(2) H�1 ı N̨ ıH 2 FU .

Replacing U by a smaller open set, we may assume U D W �V for someW � Z
and V � Y . By the m-�lling property of G Õ Y , we can choose m elements
Qh1; : : : ; Qhm of G with

S

i
Qhi.V / D Y . Now proceeding the same argument as in

the proof of Theorem 2.1, we get a continuous map gWZ ! G with the following

conditions:

(1) d.g�1
s:zgz; idY / < � for all z 2 Z and s 2 S ;

(2) there are m elements w1; : : : ; wm in W with the condition
S

i gwi
.V / D Y .

Let H 2 Gs be the element corresponding to g. Then from the �rst condition, we

conclude d. N̨s ; H�1 ı N̨s ıH/ < � for s 2 S . To show ˇ WD H�1 ı N̨ ıH 2 FU ,

it su�ces to show the following claim. There are nm open G N̨ -sets W1; : : : ; Wnm

with
S

i r.WiH.U // D X: Indeed the sets

¹.H�1.z/; s;H�1.w// 2 X � � �X W .z; s; w/ 2 Wiº .i D 1; : : : ; nm/

then de�ne the desired open Gˇ -sets. To show the claim, �rst note that since g is

continuous, there are an open subsetUi ofU containingwi for i D 1; : : : ; m and an

open covering .Vi /
m
iD1 of Y satisfying the following condition. For any z 2 Ui , we

have Vi � gz.V /. From these conditions, we haveH.U / �
Sm

iD1.Ui � Vi /. Now

for each 1 � i � m, take n openG˛-setsWi;1; : : : ; Wi;n with
Sn

j D1 r.Wi;jUi / D Z.

For each 1 � i � m and 1 � j � n, set Zi;j WD '�1.Wi;j /, where 'WG N̨ ! G˛

denotes the canonical quotient map. Then each Zi;j is an open G N̨ -set and we

further get

[

i;j

r N̨ .Zi;jH.U // �
[

i;j

r N̨ .Zi;j .Ui � Vi // D
[

i;j

.r˛.Wi;jUi / � Vi / D X: �

In [24], Rørdam and Sierakowski have shown that every countable non-

amenable exact group admits an amenable minimal free dynamical system on the

Cantor set whose crossed product is a Kirchberg algebra in the UCT class. Propo-

sition 3.11 particularly gives an extension of their result to more general spaces.
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Theorem 3.12. Let M be a connected closed topological manifold, a connected

compact Hilbert cube manifold, or a countable direct product of these manifolds.

Let X be the Cantor set. Then every countable non-amenable exact group admits

an amenable minimal free dynamical system onM �X whose crossed product is

a Kirchberg algebra in the UCT class.

Proof. For the �rst two cases, the statement immediately follows from Exam-

ple 3.6, Lemmas 3.7 and 3.8, and Propositions 3.9 and 3.11.

For the last case, let M1;M2; : : : be a sequence of spaces each of which is

either connected closed topological manifold or connected compact Hilbert cube

manifold. Set Nn WDM1� � � ��Mn�X for each n. We put ˛0 WD ˛ and N0 WD X
for convenience. We inductively apply Proposition 3.11 to ˛nW� Õ Nn and MnC1

to get a minimal skew product extension ˛nC1W� Õ NnC1 of ˛n with the weak

�nite �lling property. Then we get the projective system .˛n/
1
nD1 of dynamical

systems of �. Since pure in�niteness of C�-algebras is preserved under taking

increasing union (Prop 4.1.8 of [22]), the projective limit ˛1 WD lim �˛n possesses

the desired properties. �

4. Minimal dynamical systems of free groups on products

of Cantor set and closed manifolds

In this section, we investigate the K-groups of the crossed products of minimal

dynamical systems obtained in Theorem 2.1 for the free group case. By using the

Pimsner–Voiculescu six term exact sequence [19], we give a Künneth-type formula

for K-groups of their crossed products. As an application, we give the following

generalization of Theorems 4.10 and 4.22 of [26].

Theorem 4.1. Let � be a countable non-amenable virtually free group. LetM be

either connected closed topological manifold or connected compact Hilbert cube

manifold. Then there exist continuously many amenable minimal free dynamical

systems of � on the product of M and the Cantor set whose crossed products are

mutually non-isomorphic Kirchberg algebras.

In the below, we regard abelian groups as Z-modules. We simply denote the

tensor product ‘˝Z’ by ‘˝’ for short. Recall that for two abelian groupsG;H , the

group TorZ1 .G;H/ is de�ned as follows. First take a projective resolution of G.

� � � �! P2 �! P1 �! P0 �! G �! 0:

Then by tensoring H with the above resolution, we obtain a complex

� � � �! P2 ˝H �! P1 ˝H �! P0 ˝H �! 0:
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The group TorZ1 .G;H/ is then de�ned as the �rst homology of the above complex.

Note that the de�nition does not depend on the choice of the projective resolution.

We remark that when we have a projective resolution of length one

0 �! P1 �! P0 �! G �! 0;

then TorZ1 .G;H/ is computed as the kernel of the homomorphism

P1 ˝H �! P0 ˝H:

See [3] for the detail.

Proposition 4.2. Let ˛WFd Õ X be an amenable minimal topologically free

dynamical system of the free group Fd on the Cantor set X . Let G Õ Y be a

minimal action of a path-connected group G on a compact metrizable space Y .

Let ˇ 2 xSG.˛/. Let A and B denote the crossed product of ˛ and ˇ respectively.

Then for i D 0; 1, we have the following short exact sequence:

0 �! K0.A/˝K i .Y / �! Ki.B/

�! .K1.A/˝K1�i .Y //˚ TorZ1 .K0.A/;K
1�i.Y // �! 0:

Moreover, the �rst map maps Œ1A�0 ˝ Œ1Y �0 to Œ1B �0 when i D 0.

Proof. Since C.X/ is an AF-algebra, we have a canonical isomorphism

K i.X � Y / �! C.X;K i.Y //.Š K0.X/˝K i .Y //

for i D 0; 1. Here C.X;K i.Y // denotes the group of continuous maps from X

intoK i .Y / andK i.Y / is regarded as a discrete group. For i D 0, the isomorphism

is given by mapping the element Œp�0 where p is a projection in K˝C.X/˝C.Y /
to the map x 2 X 7! Œp.x; �/�0 2 K0.Y / and similarly for the case i D 1.

From this isomorphism and the fact thatG is path-connected, for any  2 SG.˛/

and g 2 Fd , we have .g/�;i D .˛g/�;0 ˝ idKi .Y / for i D 0; 1. Here we identify

K i .X �Y / with K0.X/˝K i .Y / under the above isomorphism. By continuity of

the K-theory, the above equality holds for all  2 xSG.˛/. Now let S be a free basis

of Fd . Then by the Pimsner–Voiculescu six term exact sequence [19], we have the

following short exact sequence:

0 �! coker.' ˝ idKi .Y // �! Ki.B/ �! ker.' ˝ idK1�i .Y // �! 0:

Here ' denotes the homomorphism

'WK0.X/˚S �! K0.X/

which maps .fs/s2S to
P

s2S .fs � .˛s/�;0.fs//. Since K0.X/ is a free abelian

group, the exact sequence

0 �! K1.A/ �! K0.X/˚S �! K0.X/ �! K0.A/ �! 0
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obtained by the Pimsner–Voiculescu six-term exact sequence is a free resolution

of K0.A/. This also gives the free resolution

0 �! im.'/ �! K0.X/ �! K0.A/ �! 0

of K0.A/. Here the �rst map is given by the inclusion map, say �.

Let  WK0.X/˚S ! im.'/ be the surjective homomorphism obtained by

restricting the range of '. By tensoring K i .Y / with the second free resolution,

we obtain the following exact sequence:

0 �! TorZ1 .K0.A/;K
i.Y // �! im.'/˝K i .Y /

�! K0.X/˝K i .Y / �! K0.A/˝K i .Y / �! 0:

This shows that

ker.�˝ idKi .Y // Š TorZ1 .K0.A/;K
i.Y //:

Since the second map surjects onto im.' ˝ idKi .Y //, we also obtain the isomor-

phism

coker.' ˝ idKi .Y // Š K0.A/˝K i .Y /:

Since ' D � ı  and  is surjective, we have the following exact sequence:

0 �! ker. ˝ idKi .Y // �! ker.' ˝ idKi .Y // �! ker.�˝ idKi .Y // �! 0: (1)

Here the �rst map is the canonical inclusion and the second map is the restriction

of  ˝ idKi .Y /. Since im.'/ is free abelian, there is a direct complement K of

ker.'/ inK0.X/˚S . Note that the restriction of onK is an isomorphism. Hence

we have the isomorphism

ker. ˝ idKi .Y // D ker. /˝K i.Y / Š K1.A/˝K i .Y /:

Again by the freeness of im.'/, we have a right inverse � of  . Then the

homomorphism � ˝ idKi .Y / gives a splitting of the short exact sequence (1).

Combining these observations, we obtain the isomorphism

ker.' ˝ idKi .Y // Š .K1.A/˝K i.Y //˚ TorZ1 .K0.A/;K
i.Y //:

Now the �rst exact sequence completes the proof. �

Remark 4.3. Certainly, when K�.Y / has a good property, the short exact se-

quence in Proposition 4.2 is spilitting. For example, it holds true when K1�i.Y /

is projective or one of K0.A/ or K i.Y / is injective. (Recall that K1.A/ is always

free abelian and that the tensor product of an injective Z-module with an arbitrary

Z-module is again injective by Corollary 4.2 of Ch.III of [3].) However, we do not

know whether it is splitting in general. Recall that a splitting of the Künneth tensor

product theorem is obtained by replacing considered C�-algebras by easier ones

by using suitable elements of the KK-groups (see Remark 7.11 of [25]). However,

in our setting, this argument does not work. Such replacement does not respect

the relation among C.X/; C.Y /; A; B; and Fd .
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Proof of Theorem 4.1. We �rst prove the claim for free groups. Theorem 5.3

of [27] shows that for any �nite d , there is an amenable minimal topologically free

dynamical system  of Fd on the Cantor set whose crossed productA satis�es the

following condition. The unit Œ1�0 2 K0.A/ generates a direct summand ofK0.A/

isomorphic to Z. Note that this property passes to unital C�-subalgebras of A.

Moreover, since  is found as a factor of the ideal boundary action, its restriction

to any �nite index subgroup of Fd is minimal. It is also not hard to show that the

restriction of  to any �nite index subgroup ofFd is purely in�nite (cf. the proof of

Lemma 4.8 of [27]). Applying the argument in the proof of Theorem 4.22 in [26]

using  instead of the action used there, we obtain the following consequence.

(By �nite generatedness, in this case the proof becomes easier than the one there.)

For any non-empty set Q of prime numbers, there is an amenable minimal free

purely in�nite dynamical system ˛Q of Fd on the Cantor set whose K0-group G

satis�es the following condition.

¹p 2 PW Œ1�0 2 pGº D Q:

Here P denotes the set of all prime numbers. The similar statement for F1 is

shown in the proof of Theorem 4.22 of [26]. We also denote by ˛Q a dynamical

system of F1 satisfying the above conditions.

Now let M be as in the statement. Put

R WD ¹p 2 PWK1.M/ contains an element of order pº:

Then by [6], R is �nite. (Indeed, in either case, M � Œ0; 1�N is a compact Hilbert

cube manifold. Now the main theorem of [6] shows that K1.M/ is in fact �nitely

generated.)

Let G denote the path-connected component of H.M/ containing the identity.

For each non-empty subsetQ ofPnR, we apply Proposition 3.11 to ˛Q to chooseˇ

from xSG.˛Q/ whose crossed product is a Kirchberg algebra. For i D 0; 1, denote

by Gi and Hi the Ki -group of the crossed products of ˛Q and ˇ respectively.

We claim that
zQ WD ¹p 2 P nRW Œ1�0 2 pH0º D Q:

Since the cardinal of the power set of P n R is continuum, this ends the proof.

The inclusion Q � zQ is obvious. To see the converse, let p 2 zQ and take

h 2 H0 with ph D Œ1�0. Denote by @i the third map of the short exact sequence

in Proposition 4.2. Then since @0.Œ1�0/ D 0, we have p@0.h/ D 0. On the other

hand, by the de�nition of R and the fact thatG1 is torsion free, there is no element

of order p in the third term of the short exact sequence. Thus p@0.h/ D 0 implies

@0.h/ D 0. Hence there is an element y in the �rst term of the short exact

sequence with �0.y/ D h. Here �i denotes the second map in the short exact

sequence. Then from the injectivity of �0 and the equality ph D Œ1�0, we must

have py D Œ1�0˝ Œ1M �0. Now let � WK0.M/! Z be the homomorphism induced
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from a character on C.M/. Put w WD .id˝�/.y/ 2 G0. (We identify G0 with

G0 ˝ Z in the obvious way.) Then we have pw D .id˝�/.Œ1�0 ˝ Œ1M �0/ D Œ1�0.

Thus we get p 2 Q as desired.

The proof for general case is done by taking the induced dynamical systems of

the actions obtained in above. For the detail, see the proof of Theorem 4.7 in [26]

for instance. �
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