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A note on relative amenability
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Abstract. P.-E. Caprace and N. Monod isolate the class X of locally compact groups for

which relatively amenable closed subgroups are amenable. It is unknown if X is closed

under group extension. In this note, we exhibit a large, group extension stable subclass

of X, which suggests X is indeed closed under group extension. Along the way, we

produce generalizations of the class of elementary groups and obtain information on groups

outside X.
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1. Introduction

In [2], P.-E. Caprace and N. Monod introduce the notion of relative amenability.

De�nition 1.1. For a locally compact group G, a closed subgroup H 6 G

is relatively amenable if H �xes a point in every non-empty convex compact

G-space.

A convex compact G-space is a convex compact subset of a locally convex topo-

logical vector space such that the subset has a continuous a�ne G action.

P.-E. Caprace and N. Monod go on to study the relationship between amenabil-

ity and relative amenability. In particular, they isolate a large and interesting class

of locally compact groups.

De�nition 1.2. The class X is the collection of locally compact groups for which

every relatively amenable closed subgroup is amenable.

Theorem 1.3 (Caprace and Monod, [2, Theorem 2]). The following properties

hold.

(a) X contains all discrete groups.

(b) X contains all groups amenable at in�nity.
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(c) X is closed under taking closed subgroups.

(d) X is closed under taking ( �nite) direct products.

(e) X is closed under taking adelic products.

(f) X is closed under taking directed unions of open subgroups.

Let N E G be a closed normal subgroup of a locally compact group G.

(g) If N is amenable, then G 2 X ” G=N 2 X.

(h) If N is connected, then G 2 X ” G=N 2 X.

(i) If N is open, then G 2 X ” N 2 X.

(j) If N is discrete and G=N 2 X, then G 2 X.

(k) If N is amenable at in�nity and G=N 2 X, then G 2 X.

Question 1.4 (Caprace and Monod). Two questions concerning the class X arise:

(1) is X stable under group extension?

(2) are there locally compact groups outside of X?

Our note contributes primarily to the study of the former. Indeed, let Y be the

smallest collection of locally compact groups such that

(1) Y contains all compact groups, discrete groups, and connected groups,

(2) Y is closed under group extensions, and

(3) Y is closed under directed unions of open subgroups. That is to say, if

G D
S

i2I Oi where ¹Oiºi2I is a directed system of open subgroups of G

such that Oi 2 Y for each i , then G 2 Y.

We prove the following result.

Theorem 1.5. The class Y is contained in X and enjoys the following additional

permanence properties:

(a) Y is closed under taking closed subgroups;

(b) Y is closed under taking quotients by closed normal subgroups.

This provides evidence the class X may be stable under group extensions.

Furthermore, it gives information on how groupsG 62 X look like; see Remark 4.4

below.
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2. Generalities on locally compact groups

All groups are taken to be Hausdor� topological groups. We abbreviate “locally

compact” by “l.c.”, “totally disconnected” by “t.d.”, and “second countable” by

“s.c.”. We write H 6o G to indicate H is an open subgroup of G. We denote by

U.G/ the collection of compact open subgroups of G.

As its statement is not the obvious generalization, we recall the �rst isomor-

phism theorem for locally compact groups (see [4, (5.33)]).

Let G be a locally group, A 6 G be closed, and H E G be closed. If A is

�-compact and AH is closed, then AH=H ' A=A \H as topological groups.

Locally compact �-compact groups are close to being second countable.

Theorem 2.1 (Kakutani and Kodaira, see [4, (8.7)]). If G is a �-compact t.d.l.c.

group, then there is a compactK E G such thatG=K is metrizable, hence second

countable.

A t.d.l.c. group G is said to be a small invariant neighborhood group, denoted

SIN, if G admits a basis at 1 of compact open normal subgroups. These groups

when compactly generated admit a useful characterization.

Theorem 2.2 (Caprace–Monod, [1, Corollary 4.1]). A compactly generated t.d.l.c.

group is SIN if and only if it is residually discrete.

The discrete residual of a t.d.l.c. group G, denoted Res.G/, is the intersection

of all open normal subgroups. When G is compactly generated, Theorem 2.2

implies G=Res.G/ is a SIN group.

Groups “built by hand” from pro�nite and discrete groups often appear when

studying t.d.l.c. groups. The class of elementary groups captures the intuitive idea

of such groups.

De�nition 2.3. The class of elementary groups is the smallest class E of t.d.l.c.s.c.

groups such that

(1) E contains all second countable pro�nite groups and countable discrete

groups;

(2) E is closed under taking group extensions of second countable pro�nite or

countable discrete groups, i.e. if G is a t.d.l.c.s.c. group and H E G is a

closed normal subgroup with H 2 E and G=H pro�nite or discrete, then

G 2 E;

(3) ifG is a t.d.l.c.s.c. group andG D
S

i2N
Oi where .Oi /i2N is an �-increasing

sequence of open subgroups of G with Oi 2 E for each i , then G 2 E . We

say E is closed under countable increasing unions.
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The class E enjoys robust permanence properties, which supports the thesis E

is exactly the groups “built by hand.”

Theorem 2.4 ([7, Theorem 3.18, Theorem 5.7]). E enjoys the following perma-

nence properties:

(a) E is closed under group extension;

(b) if G 2 E , H is a t.d.l.c.s.c. group, and  WH ! G is a continuous, injective

homomorphism, then H 2 E; in particular, E is closed under taking closed

subgroups;

(c) E is closed under taking quotients by closed normal subgroups;

(d) if G 2 E , H is a t.d.l.c.s.c. group, and  WG ! H is a continuous, injective

homomorphism with dense normal image, then H 2 E .

The class E admits a canonical rank function:

De�nition 2.5. The decomposition rank �W E ! Œ1; !1/ is an ordinal-valued

function satisfying the following properties:

(a) �.G/ D 1 if and only if G ' ¹1º;

(b) if G 2 E is non-trivial and G D
S

i2N
Oi with .Oi /i2N some �-increasing

sequence of compactly generated open subgroups of G, then

�.G/ D sup
i2N

�.Res.Oi //C 1:

By [7, Theorem 4.7] and [7, Lemma 4.10], such a function � exists, is unique,

and is equivalent to the decomposition rank as it is de�ned in [7].

The decomposition rank has a useful permanence property.

Lemma 2.6 ([5, Lemma 2.9]). SupposeG is a t.d.l.c.s.c. group andN is a closed

cocompact normal subgroup of G. If N 2 E , then G 2 E with �.G/ D �.N /.

3. The class E
�

We �rst argue E is a subclass of X. To this end, we require a lemma due to Caprace

and Monod.

Lemma 3.1 ([2, Lemma 13]). Suppose G is a locally compact group, H E G is

closed, and O 6o G contains H . If O 2 X and G=H 2 X, then G 2 X.
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Theorem 3.2. E � X.

Proof. We argue by induction on �.H/ for H 2 X. As the base case is obvious,

suppose �.H/ D ˇ C 1 and write H D
S

i2N
Oi with .Oi/i2N an inclusion

increasing sequence of compactly generated open subgroups of H .

Fixing i 2 N, the quotient Oi=Res.Oi / is a SIN group via Theorem 2.2. It is

therefore compact-by-discrete, and Theorem 1.3 implies it is in X. On the other

hand, the de�nition of the decomposition rank gives that �.Res.Oi // � ˇ, so

taking a compact open subgroup V � Oi , the group V Res.Oi / is elementary

with rank at mostˇ via Lemma 2.6. Applying the induction hypothesis, we deduce

that V Res.Oi / 2 X. Lemma 3.1 now ensures that Oi 2 X, and since X is closed

under direct limits, we conclude that H 2 X, completing the induction. �

We next relax the second countability assumption on E by introducing the

following class:

De�nition 3.3. The class E
� is the smallest collection of t.d.l.c. groups such that

(1) E
� contains all pro�nite groups and discrete groups,

(2) E
� is closed under group extensions of pro�nite and discrete groups, and

(3) E
� is closed under directed unions of open subgroups.

There is an ordinal rank on E�. ForG 2 E , we introduce the following de�nitions.

� G 2 E
�

0 if and only if G is pro�nite or discrete.

� Suppose E
�
˛ is de�ned. PutG 2 .E�/e˛ if and only if there existsN E G such

that N 2 E
�
˛ and G=N 2 E

�

0 . Put G 2 .E�/l˛ if and only if G D
S

i2I Hi

where .Hi /i2I is an �-directed set of open subgroups of G and Hi 2 E
�
˛ for

each i 2 I . De�ne E
�

˛C1 WD .E�/e˛ [ .E�/l˛ .

� For � a limit ordinal, E
�

�
WD

S
ˇ<� E

�

ˇ
.

Certainly, E
� D

S
˛2ORD E

�
˛ , so for G 2 E

�, we de�ne

rk.G/ WD min¹˛ 2 ORD j G 2 E
�

˛ º:

We call rk.G/ the construction rank of G.

The construction rank has a number of nice properties.

Lemma 3.4. Let G 2 E
�. Then

(a) rk.G/ is a successor ordinal when rk.G/ is non-zero.

(b) If G is compactly generated and has non-zero rank, then rk.G/ is given by a

group extension. I.e. if rk.G/ D ˇC 1, there isH E G such that rk.H/ D ˇ

and rk.G=H/ D 0.

(c) If O 6o G, then O 2 E
� and rk.O/ 6 rk.G/.

Proof. These follow by trans�nite induction on rk.G/. �
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Proposition 3.5. Let G 2 E
� be �-compact. If K E G is compact with G=K

second countable, then G=K 2 E .

Proof. We induct on the construction rank of G. As the proposition is immediate

if rk.G/ D 0, suppose rk.G/ D ˛ C 1.

Suppose rk.G/ is given by a directed union, so there is .Oi /i2I a directed

system of open subgroups of G such that G D
S

i2I Oi with rk.Oi/ 6 ˛ for each

i 2 I . Certainly,

G=K D
S

i2I OiK=K;

and we may �nd a countable subcover .OiK=K/i2N since G=K is Lindelöf. One

checks this cover may be taken to be an increasing �-chain. Further, OiK=K '

Oi=.Oi \K/, rk.Oi / 6 ˛, andOi \K is a compact normal subgroup ofOi whose

quotient is second countable. The induction hypothesis impliesOi=.Oi \K/ 2 E ,

and as G=K is the countable increasing union of .OiK=K/i2N, we conclude

G=K 2 E .

Suppose the construction rank ofG is given by a group extension; sayH E G

is such that rk.H/ D ˛ and rk.G=H/ D 0. SinceH is �-compact andK compact,

we have HK=K ' H=.H \ K/, and as rk.H/ D ˛, the induction hypothesis

implies H=.H \ K/ 2 E . On the other hand, HK=H E G=H is closed, and the

quotient

.G=H/=.HK=H/ ' G=HK ' .G=K/=.HK=K/

is second countable and either discrete or compact. We conclude G=K is a group

extension of G=HK by HK=K, hence G=K 2 E . This completes the induction,

and we conclude the proposition. �

Theorem 3.6. E
� � X.

Proof. Take G 2 E
�. Every locally compact group is the directed union of its

open compactly generated subgroups. Since X is closed under directed unions,

we may assume G is compactly generated and therefore �-compact. Applying

Theorem 2.1, there is K E G such that G=K is second countable. Proposition 3.5

implies G=K 2 E , and by Theorem 3.2, we have that G=K 2 X. Since K is

compact, we deduce from Theorem 1.3 that G 2 X. �

We conclude this section by noting three permanence properties of E
�.

Theorem 3.7. E� enjoys the following permanence properties:

(a) E
� is closed under group extension;

(b) if G 2 E
�, then every t.d.l.c. group admitting a continuous, injective homo-

morphism intoG also belongs to E
�. In particular, E

� is closed under taking

closed subgroups;

(c) E
� is closed under taking quotients by closed normal subgroups.
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Proof. Claim (a) follows just in the case of E; see the proof of [7, Proposition 3.5].

For (b), let G 2 E
�, let H be a t.d.l.c. group, and let  WH ! G be a

continuous, injective homomorphism. Every locally compact group is the directed

union of its compactly generated open subgroups. Since E
� is closed under

directed unions, we may therefore assume H is compactly generated. Therefore,

P WD  .H/ is also compactly generated.

Since H is �-compact, it has a compact normal subgroup K such that H=K

is second countable; likewise, P admits a compact normal subgroup L E P so

that P=L is second countable. The subgroup L .K/ is then a compact normal

subgroup of P so that P=L .K/ is second countable. The group H= �1.L/K

is also second countable, and  induces an injective, continuous homomor-

phism z WH= �1.L/K ! P=L .K/. Applying Proposition 3.5, we conclude

P=L .K/ 2 E and, via Theorem 2.4, H= �1.L/K 2 E .

On the other hand, we have an injection  �1.L/K !  .K/L with the latter

group residually discrete. The group  �1.L/K is then residually discrete, and it

follows from Theorem 2.2 that  �1.L/K 2 E
�. In view of part (a), we deduce

H 2 E� as desired.

For (c), supposeL E G is closed; as above, it su�ces to consider the case that

G is compactly generated. In view of Proposition 3.5, there is K E G compact

such that G=K 2 E . The group LK=K is a closed normal subgroup of G=K,

so Theorem 2.4 implies

.G=L/=.LK=L/ ' G=LK ' .G=K/=.LK=K/ 2 E:

On the other hand, LK=L ' K=.K \ L/ with the latter group compact. We

conclude G=L is compact-by-E and, via (a), belongs to E
�. �

4. The class Y

In order to prove Theorem 1.5, we introduce the class Y
� consisting of those locally

compact groupsG such thatG=Gı 2 E
� whereGı is the connected component of

the identity. By de�nition, we have that E
� � Y, hence Y

� � Y since Y is stable

under group extensions and contains all connected l.c. groups. We will eventually

show that Y
� D Y. The proof of this relies on the following proposition.

Proposition 4.1. The class Y
� enjoys the following permanence properties:

(a) Y
� is closed under directed unions of open subgroups;

(b) Y
� is closed under taking closed subgroups;

(c) Y
� is closed under taking group extensions;

(d) Y
� is closed under taking quotients by closed normal subgroups.
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The proof of (c) requires the following subsidiary fact.

Lemma 4.2. Let G be a �-compact l.c. group with closed L;P E G so that

L > Gı. If P 2 E
�, then PL=L 2 E

�.

Proof. Set H WD PL=L and let � WP ! H be the restriction of the usual

projection. The image of � is a dense normal subgroup ofH . Theorem 3.7 ensures

E
� is closed under taking quotients, so we may assume � is injective.

AsG is �-compact, P is �-compact, and additionally,H is � compact sinceP

has dense image inH . We may thus �nd K E P and R E H compact subgroups

so thatP=K andH=R are second countable. The subgroup�.K/ is then a compact

normal subgroup of H with H=�.K/R second countable.

The induced map z� WP=K��1.R/ ! H=�.K/R is an injective, continuous

homomorphism with dense normal image. Appealing to Proposition 3.5, we have

P=K��1.R/ 2 E . Theorem 2.4 thus implies H=�.K/R 2 E , and as E
� is closed

under group extensions, we conclude that H 2 E
�, verifying the lemma. �

Proof of Proposition 4.1. (a) LetG be the directed union of .Oi /i2I withOi 6o G

andOi 2 Y
� for each i 2 I . For each i , we haveGı D Oı

i 6 Oi sinceOi is open.

So G=Gı D
S

i2I Oi=O
ı

i , and therefore, G=Gı 2 E
�.

(b) Given H 6 G, we have that H=H \ Gı embeds continuously into G=Gı.

By Theorem 3.7, this impliesH=H \Gı 2 E
�. On the other hand,H \Gı 6 Gı

with Gı a connected locally compact group. By the solution to Hilbert’s �fth

problem, Gı is pro-Lie. Let K E Gı be compact such that Gı=K is a Lie group.

In view of Cartan’s theorem, see [6, LG 5.42], .H \ Gı/K=K is a Lie group.

Putting J WD K \H \Gı, we have

H ıJ=J D .H \Gı=J /ı 6o .H \Gı/=J;

so .H \ Gı/=H ıJ is discrete. Since we may �nd such J inside arbitrarily

small neighborhoods of 1, the group .H \ Gı/=H ı is residually discrete. Via

Theorem 2.2, we infer .H \Gı/=H ı is a directed union of SIN groups and so in

E
�. Since E

� is closed under group extension, H=H ı 2 E
�, whereby H 2 Y

� as

desired.

(c) LetH E G be such thatH and G=H both belong to Y
�. To showG 2 Y

�,

we may reduce to G compactly generated. Indeed, if O 6o G is compactly

generated, then

H ı D .O \H/ı 6 O \H E O

and .O \H/=H ı 6o H=H
ı. We thus deduce that .O \H/=H ı 2 E

�, whereby

O\H 2 Y
�. Similarly, O=.O\H/ 2 Y

�. The groupO is thus a group extension

of groups in Y
�. Therefore, if the claim holds for all compactly generated groups,

then O 2 Y
�, and since Y

� is closed under directed unions, G 2 Y
�.
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Suppose G is compactly generated, put zG WD G=.H \Gı/, and let � WG ! zG

be the usual projection. Since H ı 6 H \ Gı, zH WD �.H/ is a quotient of

H=H ı and, via Theorem 3.7, a member of E
�. Setting zGı WD �.Gı/, we apply

Lemma 4.2 to conclude zH zGı= zGı 2 E
�. Since

zH zGı= zGı ' HGı=Gı;

we indeed have that HGı=Gı 2 E
�.

The connected component of any locally compact group coincides with the

intersection of all its open subgroups. This implies HGı=H D .G=H/ı, so

.G=Gı/=.HGı=Gı/ ' G=HGı ' .G=H/=.HGı=H/ 2 E
�:

We conclude G=Gı is an extension of a group in E
� by another group in E

� and

thus a member of E
�. Therefore, G 2 Y

�.

(d) Let G 2 Y
� and N E G. As noticed above, we have NGı=N D .G=N/ı.

Therefore, in order to show thatG=N 2 Y
�, it su�ces to show thatG=GıN 2 E

�.

The latter is isomorphic to a quotient of G=Gı 2 E
�, so the desired conclusion

follows from Theorem 3.7. �

Corollary 4.3. Y D Y
� � X.

Proof. We have already observed that Y� � Y. Since Y� is stable under group

extensions and directed unions of open subgroups by Proposition 4.1, the reverse

inclusion follows. TakingG 2 Y
�, we seeG=Gı 2 E

� � X and, via Theorem 1.3,

G 2 X. �

Proof of Theorem 1.5. We have Y � X by Corollary 4.3. The permanence prop-

erties of Y follow from Proposition 4.1. �

Remark 4.4. The results of this note give new information concerning locally

compact groups G … X. As remarked in [2], we may take G … X to be a

compactly generated t.d.l.c. group. Applying Theorem 2.1, we have a compact

K E G such that G=K is second countable. Theorem 1.3 implies G=K must also

lie outside of X. We may thus take G … X to be a compactly generated t.d.l.c.s.c.

group.

By [7, Theorem 7.8], a t.d.l.c.s.c. group G admits a unique maximal closed

normal elementary subgroup, denoted RadE.G/ and called the elementary rad-

ical of G. Suppose G is a t.d.l.c.s.c. group outside of X and �x U 2 U.G/.

By Theorem 3.2, RadE.G/ 2 X, and since URadE.G/ 2 E , we further have

URadE.G/ 2 X. In view of Lemma 3.1, it must be the case G=RadE.G/ … X.

We may thus suppose G … X has trivial elementary radical, and via [7, Corol-

lary 9.12],G is ŒA�-semisimple. The de�nition and a discussion of ŒA�-semisimple

groups may be found in [3]. Here we merely recall that ŒA�-semisimple groups

have a canonical action on a lattice and, in many cases, a non-trivial boolean al-

gebra [3].
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