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Isolated orderings on amalgamated free products
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Abstract. We show that an amalgamated free product G �A H admits a discrete isolated

ordering, under some assumptions of G; H and A. This generalizes the author’s previous

construction of isolated orderings, and unlike known constructions of isolated orderings,

can produce an isolated ordering with many non-trivial proper convex subgroups.
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1. Introduction

A total ordering <G of a group G is a left-ordering if the relation <G is preserved

by the left action on G itself, namely, a <G b implies ga <G gb for all a; b; g 2 G.

A group admitting a left-ordering is called left-orderable.

For g 2 G, let Ug be the set of left-orderings <G of G that satisfy 1 <G g.

The set of all left-orderings of G can be equipped with a topology so that ¹Ugºg2G

is an open sub-basis. We denote the resulting topological space by LO.G/ and call

it the space of left-orderings of G [16].

An isolated ordering is a left ordering which is an isolated point in LO.G/.

A left-ordering <G is isolated if and only if <G is determined by the sign of �nitely

many elements. That is, <G is isolated if and only if there exists a �nite subset

¹g1; : : : ; gnº of G such that
Tn

iD1 Ugi
D ¹<Gº. We call such a �nite subset a

characteristic positive set of <G . In particular, if the positive cone P.<G/ of <G ,

the sub semi-group of G consisting of <G-positive elements, is �nitely generated

then <G is isolated.

Isolated orderings are quite interesting object in several points of view. First,

if a group G has an isolated ordering whose positive cone is generated by �nitely

many elements ¹g1; : : : ; gnº, then every non-trivial element g 2 G is written

as either a positive or negative word over a �nite alphabet ¹g1; : : : ; gnº. This

imposes a strong combinatorial feature on G. Moreover, isolated orderings can

1 The author was partially supported by JSPS KAKENHI, Grant Number 25887030.
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serve as a source of stimulating examples in non-commutative ring theory. In [7]

we constructed a chain domain with exceptional ideals, whose existence was a

question in the past [2, 5].

In a dynamics point of view, an isolated ordering can be seen as a “very rigid”

action on the real line. Let us consider a countable group G and an isolated

ordering with a characteristic positive set ¹g1; : : : ; gnº. Then up to conjugacy, its

dynamical realization (see [12]), a faithful action of G on the real line R from the

isolated ordering, is completely determined by �nitely many conditions 0 < gi .0/

.i D 1; : : : ; n/.

An isolated ordering <G of G is genuine if LO.G/ contains non-isolated

points. This is equivalent to saying that LO.G/ is not a �nite set. Since the

classi�cation of groups with �nitely many left-orderings (non-genuine isolated

orderings) is known (see [10, Theorem 5.2.1]), we concentrate our attention to

genuine isolated orderings. Several classes of groups do not have genuine isolated

ordering. The non-existence of isolated orderings are observed for the free groups

of rank > 1 [11], (in a di�erent context), the free abelian groups of rank > 1 [16],

and nilpotent groups [12]. More generally, it is shown that the free products of

more than one groups [14], and virtually solvable groups [15] never admit a genuine

isolated ordering.

Recent developments provide several examples of genuine isolated orderings,

but our catalogues and knowledge are still limited and it is hard to predict when a

left-orderable group admits an isolated ordering. At present, we have three ways

of constructing (genuine) isolated orderings; Dehornoy-like orderings [8, 13],

partially central cyclic amalgamation [9], and triangular presentations with certain

special elements [4].

The aim of this paper is to extend a partially central cyclic amalgamated prod-

uct construction of isolated orderings [9] in more general and abstract settings.

Our argument brings a better understanding on how an isolated ordering arises

when a group admits a graph of group decomposition.

To state the main theorem, we introduce the following two notions. Let A be a

subgroup of a left-orderable group G. First we extend the notion of isolatedness

in a relative setting.

De�nition 1.1. Let ResW LO.G/ ! LO.A/ be the continuous map induced by the

restriction of left orderings of G on A. We say that a left ordering <G of G is

relatively isolated with respect to A if <G is an isolated point in the subspace

Res
�1.Res.<G// � LO.G/. Thus, <G is relatively isolated if and only if there

exists a �nite subset ¹g1; : : : ; gnº of G such that Res�1.Res.<G//\
T

Ugi
D ¹<Gº.

We call such a �nite set a characteristic positive set of <G relative to A.

The next property plays a crucial role in our construction of isolated orderings.
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De�nition 1.2. We say that a subgroup A is a stepping with respect to a left-

ordering <G of G if for each g 2 G both the maximal and the minimal

´

a.g/ D max<G
¹a 2 AW a �G gº;

aC.g/ D min<G
¹a 2 AW g <G aº:

always exist.

For example, if A is an in�nite cyclic subgroup generated by a 2 G, then A is

a stepping with respect to <G if and only if a is a co�nal element: for any g 2 G,

there exists N 2 Z such that a�N <G g <G aN .

Using these notions our main theorem is stated as follows. Here is a situation

we consider. Let A, G and H be left-orderable groups. We �x embeddings

iG W A ,! G and iH W A ,! H so we always regard A as a common subgroup

of G and H .

Theorem 1.3. Let <G and <H be discrete orderings of G and H . Assume that

<G and <H satisfy the following conditions.

(a) The restriction of <G and <H on A yields the same left ordering <A of A.

(b) A is a stepping with respect to both <G and <H .

(c) <G is isolated and <H is relatively isolated with respect to A.

Then the amalgamated free product X D G �A H admits isolated orderings <
.1/
X

and <
.2/
X which have the following properties.

(1) Both <
.1/
X and <

.2/
X extend the orderings <G and <H : if g <G g0 .g; g0 2 G/

then g <
.i/
X g0, and if h <H h0 .h; h0 2 H/ then h <

.i/
X h0 .i D 1; 2/.

(2) If ¹g1; : : : ; gmº is a characteristic positive set of <G and ¹h1; : : : ; hnº is a

characteristic positive set of <H relative to A, then

¹g1; : : : ; gm; h1; : : : ; hn; hmina
�1
min

gminº

is a characteristic positive set of <
.1/
X and

¹g1; : : : ; gm; h1; : : : ; hn; gmina
�1
min

hminº

is a characteristic positive set of <
.2/
X . Here amin, gmin and hmin represent

the minimal positive elements of the orderings <A, <G and <H , respectively.

(Note that A is a stepping implies that <A is discrete, see Lemma 2.1).

(3) <
.1/
X is discrete with the minimal positive element hmina

�1
min

gmin, and <
.2/
X is

discrete with the minimal positive element gmina
�1
min

hmin.

(4) A is a stepping with respect to the orderings <
.1/
X and <

.2/
X .
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The assumption (a) is an obvious requirement for X to have a left ordering

extending both <G and <H . The crucial assumptions are (b) and (c). It should be

emphasized that the orderings <A and <H may not be isolated. We also note that,

The property (4) allows us to iterate a similar construction, hence Theorem 1.3

produces huge examples of isolated orderings.

Remark 1.4. As for the existence of isolated orderings, Theorem 1.3 contains the

main theorem of [9], but [9, Theorem 1.1] states much stronger results.

In [9], we treated the case that A D Z with additional assumptions that the

isolated ordering <H is preserved by the right action of A, and that A is central

in G. Under these assumptions, we proved that the positive cone of the resulting

isolated ordering is �nitely generated, and determined all convex subgroups.

Moreover, one can algorithmically determine whether x <X x0 or not.

On the other hand, for the isolated orderings <
.i/
X in Theorem 1.3, we do

not know whether its positive cone is �nitely generated or not in general, and

a computation of <
.i/
X is more complicated. As for the computational issues, see

Remark 2.13.

In light of the above remark, �nding a generating set of the positive cone of

<
.i/
X , and determining when it is �nitely generated are quite interesting.

As for convex subgroups, in Proposition 2.14 we show that a convex subgroup

of A with additional properties yields a convex subgroup of .X; <X /. Thus, the

resulting isolated ordering of X can admit many non-trivial convex subgroups.

This also makes a sharp contrast in [9], where the obtained isolated ordering

contains exactly one non-trivial proper convex subgroup. It should be emphasized

that the Dubrovina-Dubrovin ordering of the braid groups [3, 6] are the only

known examples of genuine isolated ordering with more than one proper non-

trivial convex subgroup. In Example 2.15, starting from Z with standard ordering,

the simplest isolated ordering, we construct many isolated orderings with more

than one non-trivial convex subgroups.

2. Construction of isolated orderings

For a totally ordered set .S; <S/ and s; s0 2 S , we say that s0 is the successor of s

and we denote by s �S s0, if s0 is the minimal element in S that is strictly greater

than s with respect to the ordering <S .

A left ordering <G of a group G is discrete if there exists the successor gmin
of the identity element. That is, <G admits the minimal <G-positive element.

By left-invariance, a discrete left ordering <G satisfy gg�1
min

�G g �G ggmin for

all g 2 G.
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Let us consider the situation in Theorem 1.3. Let G and H be groups admitting

discrete left orderings <G and <H , and A be a common subgroup of G and H ,

such that the restriction of <G and <H yield the same left ordering <A .

The assumption that A is a stepping (assumption (b)) implies the following.

Lemma 2.1. For a subgroup A of a left-orderable group G, if A is a stepping with

respect to a left-ordering <G , then the restriction of <G on A is discrete.

Proof. From the de�nition of stepping,

amin D min
<A

¹a 2 AW 1 <A aº D min
<G

¹a 2 AW 1 <G aº D aC.1/

exists. �

Thus <A is also discrete. We denote the minimal positive elements of <A,

<G and <H by amin, gmin and hmin, respectively. We put gM D aming
�1
min

and

hM D aminh
�1
min

, so gM �G amin and hM �H amin.

We start to construct an isolated ordering on a group X D G �A H . We mainly

explain the construction of the isolated ordering <
.1/
X , which we simply denote by

<X . Although the hypothesis on G and H are not symmetric, as we will discuss

at the end of the proof of Theorem 1.3, the construction of <
.2/
X is similar: the

ordering <
.2/
X is obtained by interchanging the role of G and H .

The amalgamated free product structure of X induces a �ltration

F�1.X/ � F�0:5.X/ � F0.X/ � F0:5.X/

� F1.X/ � F2.X/ � � � � � Fi .X/ � � � �

de�ned by

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

F�1.X/ D ;;

F�0:5.X/ D A;

F0.X/ D H;

F0:5.X/ D G [ H;

F2iC1.X/ D GF2i ;

F2i .X/ D HF2i�1:

The non-integer parts of the �ltrations are exceptional, and the �ltration

F0:5.X/ is the most important because it is the restriction on F0:5.X/ that even-

tually characterizes the isolated ordering <X .

Starting from <G and <H , we inductively construct a total ordering <i on

Fi .X/. To be able to extend <i to a left ordering of X , we need the following

obvious property.
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De�nition 2.2. We say a total ordering <i on Fi .X/ is compatible if for any

x 2 X and s; t 2 Fi .X/, xs <i xt whenever s <i t and xs; xt 2 Fi .X/.

By de�nition, if <i is a restriction of a left ordering of X on Fi .X/, then <i

is compatible. Conversely, Bludov-Glass proved that a compatible ordering <i on

Fi .X/ can be extended to a compatible ordering <iC1 of FiC1.X/ under some

conditions [1]. This is a crucial ingredient of the proof of Bludov-Glass’ theorem

on necessary and su�cient conditions for an amalgamated free product to be left-

orderable [1, Theorem A].

From the point of view of the topology of LO.G �A H/, it is suggestive to note

that Bludov-Glass’ extension of <i to <iC1 is far from unique. This illustrates and

explains the intuitively obvious fact that “most” left orderings of G �A H are not

isolated. Our isolated ordering is constructed by specifying a situation in which

Bludov-Glass’ extension procedure must be unique.

As the �rst step of construction, we de�ne an ordering <base onF0:5.X/. Since

we have assumed that A is a stepping with respect to both <G and <H , we have

the function

aWF0:5.X/ ! A

de�ned by

a.x/ D

´

max<G
¹a 2 AW a �G xº .x 2 G/;

max<H
¹a 2 AW a �H xº .x 2 H/:

(2.1)

Using the function a, we de�ne the total ordering <base as follows:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

g <base g0 if g; g0 2 G and g <G g0;

h <base h0 if h; h0 2 H and h <H h0;

h <base g if h 2 H � A; g 2 G � A and a.h/ �A a.g/;

g <base h if h 2 H � A; g 2 G � A and a.g/ <A a.h/:

(2.2)

The ordering <base can be schematically understood by Figure 1.

1 hmin hM gmin gM amin min ahM agmin agM aamin

.F0:5.X/; <base/

Figure 1. Ordering <base on F0:5.X/.



Isolated orderings on amalgamated free products 127

Lemma 2.3. The ordering <base is the unique compatible ordering of F0:5.X/

such that

B1 the restriction of <base on G and H agrees with <G and <H , respectively;

B2 hM D aminh
�1
min

<base gmin.

Proof. By de�nition, <base is a compatible ordering with B1 and B2. Assume that

<0 is another compatible total ordering on F0:5.X/ with the same properties. To

see the uniqueness, it is su�cient to show that for g 2 G � A and h 2 H � A,

h <base g implies h <0 g.

By de�nition of <base, a.h/ �A a.g/. If a.h/ <A a.g/, then h <0 a.h/amin �0

a.g/ <0 g so h <0 g. Assume that a.h/ D a.g/ and put a D a.g/ D a.h/. By B1,

1 <0 a�1h <0 amin hence 1 <0 a�1h �0 hM D aminh
�1
min

. Similarly, 1 <0 a�1g so

gmin �0 a�1g. By B2,

a�1h �0 hM <0 gmin �0 a�1g;

hence a�1h <0 a�1g. Since <0 is compatible, h <0 g. �

Lemma 2.3, combined with our assumption (c) of Theorem 1.3, shows the

following.

Proposition 2.4. The compatible ordering <base is characterized by �nitely

many inequalities. Let ¹g1; : : : ; gmº be a characteristic positive set of <G and

¹h1; : : : ; hnº be a characteristic positive set of <H relative to A. Then <base is the

unique compatible ordering on F0:5.X/ that satis�es the inequalities
8

ˆ

ˆ

<

ˆ

ˆ

:

1 <base gi .i D 1; : : : ; m/;

1 <base hj .j D 1; : : : ; n/;

aminh
�1
min

<base gmin:

(2.3)

Proof. The set of inequalities ¹1 <base giº uniquely determine the restriction

of <base on G so in particular, determine the restriction of <base on A. Since

<H is relatively isolated with respect to A, the additional inequalities ¹1 <base

hiº uniquely determine the restriction of <base on H . Therefore the family of

inequalities (2.3) implies B1 and B2 in Lemma 2.3. �

The next step is to extend the ordering <base to a compatible ordering <1 of

F1.X/ D GH . For a 2 A, let

�a D ¹h 2 H � AW a.h/ D aº

D ¹h 2 H � AW a <H h <H aaminº

D ¹h 2 H � AW ahmin �H h �H ahMº:

First we observe the following property which plays a crucial role in proving

the uniqueness.
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Lemma 2.5. For g; g0 2 G and h; h0 2 H , if ga.h/ D g0a.h0/ then g�a.h/ D

g0�a.h0/.

Proof. ga.h/ D g0a.h0/ implies that g�1g0 D a.h/a.h0/�1 2 A. This shows

.g�1g0/�a.h0/ D a.h/a.h0/�1�a.h0/ D �a.h/ hence g�a.h/ D g0�a.h0/. �

Proposition 2.6. There exists a unique compatible total ordering <1 on F1.X/

that extends <base.

Proof. For each a 2 A and g 2 G � A, we regard g�a as a totally ordered set

equipped with an ordering <1 de�ned by gh <1 gh0 (h; h0 2 �a) if and only if

h <H h0.

First we check that this ordering <1 is well-de�ned on each g�a. Assume that

g�a D g0�a0 as a subset of F1.X/. Let gh0 D g0h0
0; gh1 D g0h0

1 be elements

of g�a D g0�a0 , where h0; h1 2 �a and h0
0; h0

1 2 �a0 . Note that g�a D g0�a0

implies that g�1g0 2 A. Therefore,

gh0 <1 gh1 () h0 <H h1

() .g�1g0/h0
0 <H .g�1g0/h0

1

() h0
0 <H h0

1

() g0h0
0 <1 g0h0

1:

This shows that <1 is a well-de�ned total ordering on g�a.

Since F1.X/ D F0.X/ [
�

S

g�a

�

, we construct the desired ordering <1 by

inserting the ordered sets g�a into F0.X/. We show that the way to inserting g�a

is unique.

Since a <base h <base agmin for h 2 �a, a compatible ordering <1 must satisfy

ga <1 gh <1 gagmin .g 2 G � A/:

By de�nition of <base, ga �base gagmin, that is, there are no elements of F0:5.X/

that lies between ga and gagmin. This says that to get a compatible ordering, we

must insert the ordered set g�a between ga and gagmin. Moreover, by Lemma 2.5,

ga.h/ D g0a.h0/ implies g�a.h/ D g0�a.h0/. This means that the ordered set g�a

inserted between ga and gagmin must be unique.

Therefore there is the unique way of inserting g�a into F0.X/ to get a compat-

ible ordering on F1.X/. The process of inserting g�a is schematically explained

in Figure 2.
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Figure 2. Ordering <1: inserting g�a between ga and gagmin.

The resulting ordering <1 is written as follows. For x D gh and x0 D g0h0

.g 2 G; h 2 H/, we have

x <1 x0 () either (1) ga.h/ <base g0a.h0/

or (2) ga.h/ D g0a.h0/ and h <base .g�1g0/h0:

(2.4)

Note that by the proof of Lemma 2.5, ga.h/ D g0a.h0/ implies g�1g0 2 A,

hence .g�1g0/h0 2 F0:5.X/. Hence the inequality h <base .g�1g0/h0 makes sense.

�

In a similar manner, we extend the ordering <1 of F1.X/ to a compatible

ordering <2 of F2.X/. We de�ne the map c0WF1.X/ � F0.X/ ! F0.X/ by

c0.x/ D max
<1

¹y 2 F0.X/W y <1 xº;

and for y 2 F0.X/, we put

�y D ¹x 2 F1.X/ � F0.X/W c0.x/ D yº

D ¹x 2 F1.X/W y <1 x <1 yhminº:

Note that �y might be empty.

Lemma 2.7. The map c0 and the set �y have the following properties.

(1) For x D gh 2 F1.X/ � F0.X/ (g 2 G � A; h 2 H ), c0.gh/ D a.ga.h//hM.

Here aWF0:5.X/ ! A is the map de�ned by (2.1).

(2) For x; x0 2 F1.X/ � F0.X/ and h; h0 2 H , if hc0.x/ D h0c0.x0/ then

h�c0.x/ D h0�c0.x0/.
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Proof. Note that a.ga.h// <1 ga.h/ <1 gh. By de�nition of <1 given in (2.4),

there are no elements of F0.X/ D H between ga.h/ and gh. Moreover, for

g 2 G c0.g/ D a.g/hM (see Figure 2 again). This proves c0.gh/ D c0.ga.h// D

a.ga.h//hM.

To see (2), write x D gy and x D g0y0 .g; g0 2 G; y; y0 2 F0/. Then by (1),

hc0.x/ D h0c0.x0/ implies that h�1h0 D c0.x/c0.x0/�1 D a.ga.y//a.g0a.y0//�1 2

A. This shows .h�1h0/�c0.x0/ D �c0.x/ hence h�c0.x/ D h0�c0.x0/. �

Proposition 2.8. There exists a unique compatible total ordering <2 on F2.X/

that extends <1.

Proof. For h 2 H and y 2 F1.X/, we regard h�y as a totally ordered set equipped

with a total ordering <2 de�ned by hx <2 hx0 .x; x0 2 �y/ if and only if x <1 x0.

By the same argument as Proposition 2.6, this ordering is well-de�ned on each

subset h�y .

F2.X/ D F1.X/ [
�

S

h�y

�

so we construct the desired ordering <2 by

inserting the ordered sets h�y into F1.X/, as we have done in Proposition 2.6.

By the compatibility requirement, for x 2 �y and h 2 H , a desired extension

<2 must satisfy

hy <2 hx <2 hyhmin

so we need to insert h�y between hc0.x/ and hc0.x/hmin. By Lemma 2.7 (1),

�y is empty unless y D ahM for some a 2 A, and that if �y is non-empty then

hy �1 hyhmin for h 2 H � A. That is, there are no elements of F1.X/ between

hy and hyhmin. Moreover, Lemma 2.7 (2) shows that an ordered set h�y inserted

between hy and hyhmin must be unique.

Thus, the process of inserting h�y to F1.X/ is unique, and we get a well-

de�ned compatible ordering <2. Figure 3 gives schematic illustration of the

inserting process.

Figure 3. Ordering <2: inserting h�y between hy D hahM and hyhmin D haamin.
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As a consequence, the ordering <2 is given as follows. For x D hy and

x0 D h0y0 .h 2 H; y 2 F1.X//, we have

x <2 x0 () either (1) hc0.y/ <1 h0c0.y0/

or (2) hc0.y/ D h0c0.y0/ and y <1 .h�1h0/y0:

(2.5)

Note that hc0.y/ D h0c0.y0/ implies h�1h0 2 A as we have seen in the proof

of Lemma 2.7 (2), so the inequality y <1 .h�1h0/y0 2 F1.X/ makes sense. �

Now we inductively extend compatible orderings. Assume that we have de-

�ned a compatible ordering <i of FiC1. We de�ne the map ci�1WFi .X/ �

Fi�1.X/ ! Fi�1.X/ by

ci�1.x/ D max
<i

¹y 2 Fi�1.X/ j y <i xº

and for y 2 Fi�1.X/, we put

�y D ¹x 2 Fi .X/ � Fi�1.X/ j ci�1.x/ D yº:

Here we have assumed that ci�1 is well-de�ned, that is, the maximal exists.

We will say that <i satis�es the ping pong property if the ordering <i satis�es

the following three properties.

P1. The maps ci�1 and ci�2 satisfy the equality

ci�1.x/ D

´

gci�2.y/ .x D gy; g 2 G � A; y 2 Fi�1.X/; if i is odd/;

hci�2.y/ .x D hy; h 2 H � A; y 2 Fi�1.X/; if i is even/:

Moreover, ci�1.x/ 2 Fi�2.X/ � Fi�3.X/.

P2. ci�1.x/ �i�1 ci�1.x/hmin.

P3. If x 2 Fi .X/ � Fi�2.X/, x �i xhmin.

The reason why we call these properties “ping pong” will be explained in

Remark 2.12. Note that ping pong property P2 shows that

�y D ¹x 2 Fi .X/ � Fi�1.X/ j y <i x <i yhminº: (2.6)

Lemma 2.9. The ordering <2 satis�es the ping pong property.

Proof. This is easily seen from the description (2.5) of <2 (see Figure 3 again).

For x D hy 2 F2.X/ � F1.X/ (h 2 H � A, y 2 F1.X/ � F0.X/),

hc0.y/ <2 hy. There are no elements of F1.X/ � F0.X/ that lie between hc0.y/

and hy so c1.x/ D hc0.y/. In particular, c1.x/ 2 F0.X/ D H hence by de�nition
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of <1 given in (2.4) (see Figure 2 again), c1.x/ �1 c1.x/hmin. Moreover, the

description (2.5) of <2 shows

´

x �2 xhmin if x 62 H;

x �2 xh�1
M

gmin if x 2 H:

�

The ping pong property shows the counterparts of Lemma 2.5 and 2.7.

Lemma 2.10. Assume that <i satis�es the ping pong property and let x; x0 2

Fi .X/ � Fi�1.X/.

� If i is odd, then gci�1.x/ D g0ci�1.x0/ .g; g0 2 G/ implies g�ci�1.x/ D

g0�ci�1.x0/.

� If i is even, then hci�1.x/ D h0ci�1.x0/ .h; h0 2 H/ implies h�ci�1.x/ D

h0�ci�1.x0/.

Proof. We show the case i is odd. The case i is even is similar. Put y D ci�1.x/

and y0 D ci�1.x0/, respectively. We show g0�y0 � g�y . The converse inclusion

is proved similarly. By (2.6), z0 2 �y0 if and only if y0 <i�1 z0 <i�1 y0hmin.

By compatibility,

y D g�1g0y0 <i�1 .g�1g0/z0 <i�1 g�1g0y0hmin D yhmin

so .g�1g0/z0 2 �y . This proves g0z0 2 g�y . �

The following proposition completes the construction of isolated ordering <X .

Proposition 2.11. If <i .i > 1/ is a compatible ordering with the ping pong

property, then there exists a unique compatible ordering <iC1 on FiC1.X/ that

extends <i . Moreover, this compatible ordering <iC1 also satis�es the ping pong

property.

Proof. The construction of <iC1 is almost the same as the construction of <2. We

treat the case i is even. The case i is odd is similar.

We regard each g�y .y 2 Fi�1.X/; g 2 G � A/ as a totally ordered set,

by equipping a total ordering <iC1 de�ned by gx <iC1 gx0 .x; x0 2 �y/ if

and only if x <i x0. By the same argument as Proposition 2.6, the ordering

<iC1 is well-de�ned on each g�y. The desired compatible ordering <iC1 on

FiC1.X/ D Fi .X/ [
�

S

g�y

�

is obtained by inserting g�y into Fi .X/.

By the ping pong property P2, for y 2 Fi�1.X/ if �y is non-empty, then

y �i�1 yhmin. Thus we need to insert g�y between gy and gyhmin. By the ping

pong property P3, gy �i gyhmin, so there are no elements of Fi .X/ between gy

and gyhmin. Moreover, Lemma 2.10 shows that there are exactly one ordered set
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of the form g�y that should be inserted between gy and gyhmin. Therefore the

process of insertions is unique, and the resulting ordering <iC1 is given as follows.

For x D gy and x0 D g0y0, (g; g0 2 G and y; y0 2 Fi .X/), we de�ne

x <iC1 x0 () either (1) gci�1.y/ <i g0ci�1.y0/

or (2) gci�1.y/ D g0ci�1.y0/ and y <i .g�1g0/y0:

(2.7)

Next we show that <iC1 also satis�es the ping pong property. We have

inserted x D gy 2 FiC1.X/ � Fi .X/ .g 2 G � A; y 2 Fi .X// between

gci�1.y/ and gci�1.y/hmin. By de�nition of <iC1, there are no elements of

Fi .X/ that lie between x and gci�1.x/, hence ci .x/ D gci�1.y/. By P1 for <i ,

ci�1.y/ 2 Fi�2.X/ � Fi�3.X/. Hence ci .x/ D gci�1.y/ 2 Fi�1.X/ � Fi�2.X/

so <iC1 satis�es P1. Moreover by P3 for <i , ci .x/ 2 Fi�1.X/ �Fi�2.X/ implies

that ci .x/ �i ci .x/hmin hence <iC1 satis�es P2.

Finally we show that <iC1 satis�es P3. Assume that x 2 FiC1.X/ � Fi .X/,

and put x D gy (g 2 G � A, y 2 Fi .X/ � Fi�1.X/). By P3 for <i , we have

y �i yhmin. Hence by de�nition of <iC1 we have x D gy �iC1 gyhmin D xhmin.

If x 2 Fi .X/ � Fi�1.X/ � Fi � Fi�2.X/, then by P3 for <i we have

x �i xhmin. No elements of FiC1.X/ �Fi .X/ are inserted between x and xhmin,

hence x �iC1 xhmin. �

Proof of Theorem 1.3. For x; x0 2 X , we de�ne the isolated ordering <X D<
.1/
X by

x <X x0 () x <N x0

where N is chosen to be su�ciently large so that x; x0 2 FN .X/. Proposition 2.11

shows that <X is a well-de�ned left ordering of X . By Proposition 2.4, <X is

isolated with characteristic positive set

¹g1; : : : ; gm; h1; : : : ; hn; hmina
�1
min

gminº;

if ¹g1; : : : ; gmº is a characteristic positive set of <G and ¹h1; : : : ; hnº is a charac-

teristic positive set of <H relative to A.

It remains to show that A is a stepping with respect to <X . To see this, for

x 2 X , de�ne

a.x/ D a ı � � � ı cN �2 ı cN .x/

where N is taken so that x 2 FN .X/. By de�nition of ci , a.x/ D max<X
¹a 2

AW a �X xº.

A construction of isolated orderings <
.2/
X is similar. Note that in the construc-

tion of <
.1/
X , we only used the assumption (b), and that we used the assumption (c),

where the role of G and H are the not the same, only at Proposition 2.4. Hence

by interchanging the role of G and H , we get another left ordering <
.2/
X of X .
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As in the case <
.1/
X , the ordering <

.2/
X is uniquely determined by the restriction

on G [ H , which we denote by <0
base

. By the same argument as Proposition 2.4,

the ordering <0
base

, hence <
.2/
X , is characterized by �nitely many inequalities

8

ˆ

ˆ

<

ˆ

ˆ

:

1 <base gi .i D 1; : : : ; m/;

1 <base hj .j D 1; : : : ; n/;

aming
�1
min

<base hmin: �

Remark 2.12. Here we explain why we call the properties P1–P3 the ping pong

property. This may help to understand the isolated ordering <X we constructed.

Let us divide X � A into two disjoint subsets E and O as follows:

´

E D
S

a2A¹x 2 X W a <X x <X ahMº;

O D
S

a2A¹x 2 X W agmin <X x <X aaminº:

By de�nition of <base, F0.X/ � A D H � A � E , and by de�nition of <1,

F1.X/ � F0.X/ D GH � H � O. Now the ping pong property P1 says that

´

g.F2i .X/ � F2i�1.X// � E .g 2 G � A/;

h.F2iC1.X/ � F2i�1.X// � O .h 2 H � A/:

Thus, we conclude

´

E D ¹even partº D
S

i .F2i .X/ � F2i�1.X//;

O D ¹odd partº D
S

i .F2iC1.X/ � F2i .X//;

and for g 2 G � A and h 2 H � A, we have

g.O/ � E ; h.E/ � O:

Therefore the subsets O and E provides the setting of a famous ping pong

argument. The rest of the ping pong properties P2 and P3, as we have seen in the

proof of Proposition 2.11, rather follows from P1. This explains why we call the

properties P1–P3 the ping pong property.

Remark 2.13. Here we brie�y explain the computability of the resulting isolated

ordering <X .

By (2.7), for x 2 FiC1.X/ � Fi .X/, determining whether 1 <X x (which is

equivalent to 1 <iC1 x) is reduced to the computation of ci .x/ and the ordering

<i . By ping pong property P1, ci .x/ is computed from the function ci�1. Thus,

eventually one can reduce to the computations of the base orderings <G and <H

and the map aWF0:5.X/ ! A. That is,
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the ordering <X is algorithmically computable if and only if the or-

derings <G , <H and the map a W F0:5.X/ ! A are algorithmically

computable.

The problem may occur when we want to compute the map a. Even if we have

a nice algorithm to compute <G and <H , this does not guarantee an algorithm to

compute the map a, in general because it involves the maximum.

Finally we study convex subgroups. A subset C of a totally ordered set .S; <S/

is convex if c �S s �S c0 .c; c0 2 C; s 2 S/ implies s 2 C . For a subset T of

.S; <S /, the convex hull ConvS .T / of T in S is the minimum convex subset that

contains T . Namely,

ConvS .T / D
T

¹C�T Wconvexº C D ¹s 2 S W 9t; t 0 2 T; t �S s �S t 0º:

Let .G; <G/ be a left-ordered group and let A be a subgroup of G. We denote

the restriction of <G on A by <A. We say a convex subgroup B of .A; <A/ is a

.G; <G/-strongly convex if its convex hull ConvG.B/ is a subgroup of G.

Proposition 2.14. Let <X be an isolated ordering on X D G �A H as in The-

orem 1.3. If a convex subgroup B of A is both .G; <G/- and .H; <H /-strongly

convex, then B is .X; <X/-strongly convex. In particular, if B and B 0 are dif-

ferent convex subgroups, then ConvX .B/ and ConvX .B 0/ yield di�erent convex

subgroups of .X; <X/.

Proof. The case B D ¹1º is trivial so we assume that B ¤ ¹1º. By induction

on N , we prove that if x 2 ConvX .B/ \ FN .X/ then xx0 2 ConvX .B/ for any

x0 2 ConvX.B/.

First assume that x 2 F0:5.X/ D G [ H . For x0 2 ConvX .B/, take b 2 B

so that b�1 <X x0 <X b. Then xb�1 <X xx0 <X xb. Since B is .G; <G/-

and .H; <H /-strongly convex, xb; xb�1 2 ConvG.B/ [ ConvH .B/ � ConvX .B/,

hence xx0 2 ConvX .B/.

To show general case, assume that x 2 FN .X/ � FN �1.X/ and put x D gy

.g 2 G � A; y 2 FN �1.X//. We consider the case N is odd, since the case N is

even is similar.

By Theorem 1.3 (3), A is a stepping so

a.y/ D max
<X

¹a 2 AW a <X yº

exists. On the other hand, x 2 ConvX.B/ so there exists b 2 B � A such that

b�1 <X x <X b. By de�nition of a.y/,

b�1 �X ga.y/ <X x <X b
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hence ga.y/ 2 ConvX .B/. We have assumed that B is a non-trivial convex

subgroup of A, so amin 2 B . Since 1 <X a.y/�1y <X amin, a.y/�1y 2 ConvX .B/.

By induction, .a.y/�1y/x0 2 ConvX .B/ if x0 2 ConvX.B/. This shows that

xx0 D .ga.y//.a.y/�1y/x0 2 ConvX.B/

as desired. �

We close the paper by giving new examples of isolated orderings obtained by

Theorem 1.3.

Example 2.15. Let B3 be the 3-strand braid group

B3 D Z �Z Z D hx; yW x2 D y3i D h�1; �2W �1�2�1 D �2�1�2i:

By Theorem 1.3, B3 admits an isolated ordering <DD , which is known as the

Duborvina-Dubrovin ordering [3, 6]. The Dubrovina-Dubrovin ordering is dis-

crete with minimum positive element �2. For p > 1, let A D Ap be the kernel of

the mod p abelianization map eW Bn ! Z=pZ. Since for x 2 B3

� � � �DD x��1
2 �DD x �DD x�2 �DD x�2

2 �DD � � � ;

A is a stepping with respect to <DD . The maximum and minimum functions are

given by

a.x/ D x�
�e.x/
2 ; aC.x/ D x�

p�e.x/
2 .e.x/ 2 ¹0; 1; : : : ; p � 1º/:

By Theorem 1.3,

X D Xp

D h�1; �2W �1�2�1 D �2�1�2i �Ap
hs1; s2W s1s2s1 D s2s1s2i

D B3 �Ap
B3

admits an isolated ordering <X . (One can apply the same construction for the

Dubrovina-Dubrovin ordering on Bn for n > 3 to get more examples of groups

admitting isolated orderings.)

The convex subgroup B of A generated by �
p
2 D s

p
2 , which is the minimal

positive element of <DD jA, is .B3; <DD/-strongly convex. Hence by Proposi-

tion 2.14, ConvX.B/ is a non-trivial proper convex subgroup of .X; <X/.

On the other hand, By Theorem 1.3 (3), the <X -minimum positive element

is s
1�p
2 �2 hence .X; <X/ contains another non-trivial proper convex subgroup

generated by s
1�p
2 �2. Thus .X; <X/ has at least two non-trivial proper convex

subgroup.

Iterating this kind of construction, starting from Z we are able to construct

isolated ordering with arbitrary many proper non-trivial convex subgroups.
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