Groups Geom. Dyn. 11 (2017), 121-138 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/391 © European Mathematical Society

Isolated orderings on amalgamated free products

Tetsuya Ito!

Abstract. We show that an amalgamated free product G x4 H admits a discrete isolated
ordering, under some assumptions of G, H and A. This generalizes the author’s previous
construction of isolated orderings, and unlike known constructions of isolated orderings,
can produce an isolated ordering with many non-trivial proper convex subgroups.
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1. Introduction

A total ordering < of a group G is a left-ordering if the relation < is preserved
by the left action on G itself, namely, a <g b implies ga <g gbforalla,b,g € G.
A group admitting a left-ordering is called left-orderable.

For g € G, let U, be the set of left-orderings <¢g of G that satisfy 1 <¢g g.
The set of all left-orderings of G can be equipped with a topology so that {Ug }geG
is an open sub-basis. We denote the resulting topological space by LO(G) and call
it the space of left-orderings of G [16].

An isolated ordering is a left ordering which is an isolated point in LO(G).
A left-ordering < is isolated if and only if < is determined by the sign of finitely
many elements. That is, <¢ is isolated if and only if there exists a finite subset
{g1.....gn} of G such that (}_; Uy, = {<g}. We call such a finite subset a
characteristic positive set of <g. In particular, if the positive cone P(<¢g) of <g,
the sub semi-group of G consisting of <g-positive elements, is finitely generated
then <g is isolated.

Isolated orderings are quite interesting object in several points of view. First,
if a group G has an isolated ordering whose positive cone is generated by finitely
many elements {gi,..., g}, then every non-trivial element g € G is written
as either a positive or negative word over a finite alphabet {g1,..., g,}. This
imposes a strong combinatorial feature on G. Moreover, isolated orderings can

1 The author was partially supported by JSPS KAKENHI, Grant Number 25887030.
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serve as a source of stimulating examples in non-commutative ring theory. In [7]
we constructed a chain domain with exceptional ideals, whose existence was a
question in the past [2, 5].

In a dynamics point of view, an isolated ordering can be seen as a “very rigid”
action on the real line. Let us consider a countable group G and an isolated
ordering with a characteristic positive set {g1, ..., g»}. Then up to conjugacy, its
dynamical realization (see [12]), a faithful action of G on the real line R from the
isolated ordering, is completely determined by finitely many conditions 0 < g; (0)
i=1,...,n).

An isolated ordering <g of G is genuine if LO(G) contains non-isolated
points. This is equivalent to saying that LO(G) is not a finite set. Since the
classification of groups with finitely many left-orderings (non-genuine isolated
orderings) is known (see [10, Theorem 5.2.1]), we concentrate our attention to
genuine isolated orderings. Several classes of groups do not have genuine isolated
ordering. The non-existence of isolated orderings are observed for the free groups
of rank > 1 [11], (in a different context), the free abelian groups of rank > 1 [16],
and nilpotent groups [12]. More generally, it is shown that the free products of
more than one groups [14], and virtually solvable groups [15] never admit a genuine
isolated ordering.

Recent developments provide several examples of genuine isolated orderings,
but our catalogues and knowledge are still limited and it is hard to predict when a
left-orderable group admits an isolated ordering. At present, we have three ways
of constructing (genuine) isolated orderings; Dehornoy-like orderings [8, 13],
partially central cyclic amalgamation [9], and triangular presentations with certain
special elements [4].

The aim of this paper is to extend a partially central cyclic amalgamated prod-
uct construction of isolated orderings [9] in more general and abstract settings.
Our argument brings a better understanding on how an isolated ordering arises
when a group admits a graph of group decomposition.

To state the main theorem, we introduce the following two notions. Let A be a
subgroup of a left-orderable group G. First we extend the notion of isolatedness
in a relative setting.

Definition 1.1. Let Res: LO(G) — LO(A) be the continuous map induced by the
restriction of left orderings of G on A. We say that a left ordering <¢g of G is
relatively isolated with respect to A if <g is an isolated point in the subspace
Res™!(Res(<g)) C LO(G). Thus, <g is relatively isolated if and only if there
exists a finite subset {g1, . .., g»} of G such that Res™! (Res(<)) N Ug, = {<g}-
We call such a finite set a characteristic positive set of < relative to A.

The next property plays a crucial role in our construction of isolated orderings.
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Definition 1.2. We say that a subgroup A4 is a stepping with respect to a left-
ordering <g of G if for each g € G both the maximal and the minimal

{a(g) = max<,{a € A:a <¢ g},

a4+(g) =minc;{a € A: g <¢ a}.

always exist.

For example, if A4 is an infinite cyclic subgroup generated by a € G, then A4 is
a stepping with respect to <g if and only if a is a cofinal element: for any g € G,
there exists N € Z such thata™V <g g <g a®.

Using these notions our main theorem is stated as follows. Here is a situation
we consider. Let A, G and H be left-orderable groups. We fix embeddings
ig:A — G and ig: A — H so we always regard A as a common subgroup

of G and H.

Theorem 1.3. Let <g and <y be discrete orderings of G and H. Assume that
<g and <y satisfy the following conditions.

(a) The restriction of <g and <g on A yields the same left ordering <4 of A.
(b) A is a stepping with respect to both <g and <g.

(¢c) <g is isolated and <y is relatively isolated with respect to A.
Then the amalgamated free product X = G x4 H admits isolated orderings <§(1)

)
X

and <y;° which have the following properties.

(1) Both <§(1)'and <§(2) extend the orderings <g and <H: ifg<g g (g.8 €G)
then g <\ g, and if h <g I (h, 1 € H) then h <@ I’ (i = 1,2).

) If {g1,...,8gm} is a characteristic positive set of <g and {hy,...,h,} is a
characteristic positive set of <y relative to A, then

-1
g1, .. &m. h1,..., hnyhminamingmin}
is a characteristic positive set of <§(1) and

81, 8&m. b, ..o hy, gmina;ilnhmin}
is a characteristic positive set of <§(2). Here amin, gmin and hmin represent
the minimal positive elements of the orderings <4, <g and <pg, respectively.
(Note that A is a stepping implies that <4 is discrete, see Lemma 2.1).

3) <§(1) is discrete with the minimal positive element hm;na;ilngmm, and <§(2) is

discrete with the minimal positive element gm;na;ilnhmin.

(1)
X

and <

. . . . @
(4) A is a stepping with respect to the orderings < x -
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The assumption (a) is an obvious requirement for X to have a left ordering
extending both <g and <g. The crucial assumptions are (b) and (c). It should be
emphasized that the orderings <4 and <y may not be isolated. We also note that,
The property (4) allows us to iterate a similar construction, hence Theorem 1.3
produces huge examples of isolated orderings.

Remark 1.4. As for the existence of isolated orderings, Theorem 1.3 contains the
main theorem of [9], but [9, Theorem 1.1] states much stronger results.

In [9], we treated the case that A = Z with additional assumptions that the
isolated ordering <p is preserved by the right action of A4, and that A is central
in G. Under these assumptions, we proved that the positive cone of the resulting
isolated ordering is finitely generated, and determined all convex subgroups.
Moreover, one can algorithmically determine whether x <x x’ or not.

On the other hand, for the isolated orderings <§(i) in Theorem 1.3, we do
not know whether its positive cone is finitely generated or not in general, and

a computation of <§£) is more complicated. As for the computational issues, see
Remark 2.13.

In light of the above remark, finding a generating set of the positive cone of
<§}), and determining when it is finitely generated are quite interesting.

As for convex subgroups, in Proposition 2.14 we show that a convex subgroup
of A with additional properties yields a convex subgroup of (X, <x). Thus, the
resulting isolated ordering of X can admit many non-trivial convex subgroups.
This also makes a sharp contrast in [9], where the obtained isolated ordering
contains exactly one non-trivial proper convex subgroup. It should be emphasized
that the Dubrovina-Dubrovin ordering of the braid groups [3, 6] are the only
known examples of genuine isolated ordering with more than one proper non-
trivial convex subgroup. In Example 2.15, starting from 7 with standard ordering,
the simplest isolated ordering, we construct many isolated orderings with more
than one non-trivial convex subgroups.

2. Construction of isolated orderings

For a totally ordered set (S, <g) and s,s” € S, we say that s’ is the successor of s
and we denote by s <g s’, if 5" is the minimal element in S that is strictly greater
than s with respect to the ordering <g.

A left ordering < of a group G is discrete if there exists the successor gmin
of the identity element. That is, <g admits the minimal <g-positive element.
By left-invariance, a discrete left ordering <g satisfy gg—1 <g g <G ggmin for
all g € G.
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Let us consider the situation in Theorem 1.3. Let G and H be groups admitting
discrete left orderings <g and <p, and A be a common subgroup of G and H,
such that the restriction of <g and <y yield the same left ordering <4 .

The assumption that A4 is a stepping (assumption (b)) implies the following.

Lemma 2.1. Fora subgroup A of a left-orderable group G, if A is a stepping with
respect to a left-ordering <g, then the restriction of <g on A is discrete.

Proof. From the definition of stepping,

amin = min{a € A:1 <4 a} = min{a € A:1 <g a} = a4+ (1)
<4 <G

exists. O

Thus <4 is also discrete. We denote the minimal positive elements of <4,
<¢ and <g by amin, gmin and hnin, respectively. We put gy = aming;iln and
hw = aminhn_qilna SO gum <G amin and hpyr <H Amin.

We start to construct an isolated ordering on a group X = G x4 H. We mainly
explain the construction of the isolated ordering <§(1), which we simply denote by
<x. Although the hypothesis on G and H are not symmetric, as we will discuss
at the end of the proof of Theorem 1.3, the construction of <§(2) is similar: the

ordering <§(2) is obtained by interchanging the role of G and H.
The amalgamated free product structure of X induces a filtration

F_1(X) C Foo5(X) C Fo(X) C Fos(X)
cHhHX)YCchRX)Cc---CFHIX)C---

defined by
Fa(X) =0,
Fos5(X) = 4,
Fo(X)=H,

Fos(X)=GUH,

Friv1(X) = GFy,
Foi(X) = HFj—1.

The non-integer parts of the filtrations are exceptional, and the filtration
Fo.5(X) is the most important because it is the restriction on Fy 5(X) that even-
tually characterizes the isolated ordering <y .

Starting from <g and <g, we inductively construct a total ordering <; on
Fi(X). To be able to extend <; to a left ordering of X, we need the following
obvious property.
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Definition 2.2. We say a total ordering <; on F;(X) is compatible if for any
x € X and s, t € F;(X), xs <; xt whenever s <; t and xs, xt € F;(X).

By definition, if <; is a restriction of a left ordering of X on F;(X), then <;
is compatible. Conversely, Bludov-Glass proved that a compatible ordering <; on
Fi(X) can be extended to a compatible ordering <;4; of F;4+1(X) under some
conditions [1]. This is a crucial ingredient of the proof of Bludov-Glass’ theorem
on necessary and sufficient conditions for an amalgamated free product to be left-
orderable [1, Theorem A].

From the point of view of the topology of LO(G x4 H), it is suggestive to note
that Bludov-Glass’ extension of <; to <;1 is far from unique. This illustrates and
explains the intuitively obvious fact that “most” left orderings of G x4 H are not
isolated. Our isolated ordering is constructed by specifying a situation in which
Bludov-Glass’ extension procedure must be unique.

As the first step of construction, we define an ordering <pase On Fo.5(X). Since
we have assumed that A is a stepping with respect to both <g and <p, we have
the function

a:fo.s(X) — A
defined by
max a€ Aa<gx x €G),
a(x) = <t <g¢ x} ( ) o1
max<,{a € Ara <g x} (x € H).
Using the function a, we define the total ordering <p,se as follows:
8 <base g/ if g, g/ € Gand g <g g/,
h <pase B ifh,h € Handh <g I/, 2.2
h <pase g ifheH—A,geG—Aanda(h) <4 a(g), '
g <paseh ifheH-—-A,geG—Aanda(g) <4 a(h).
The ordering <pase can be schematically understood by Figure 1.
H G H G
——— ——f—_——
1 hmin -+ hu Emin " &M Amin a ahmin---ahy Aagmin---Agm  Admin

o-e o} ..-.}o o-e o |—»
(fO.S(X)- <base)

Figure 1. Ordering <pase 0n Fo.5(X).
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Lemma 2.3. The ordering <pase is the unique compatible ordering of Fo.5(X)
such that

BI the restriction of <pase on G and H agrees with <g and <g, respectively;
B2 hy = aminhn_qiln <base &min-

Proof. By definition, <pase is a compatible ordering with Bl and B2. Assume that
<’ is another compatible total ordering on Fy 5(X) with the same properties. To
see the uniqueness, it is sufficient to show that for g € G —Aand h € H — A,
h <pase g implies h <’ g.

By definition of <pase, a(h) <4 a(g). If a(h) <4 a(g), then h <" a(h)amin <’
a(g) < gsoh <’ g. Assume that a(h) = a(g) and puta = a(g) = a(h). By Bl,
1 <" a™'h < amin hence 1 <’ a™'h <’ hy = aminh, . Similarly, 1 <" a~'g so
gmin <' a”'g. By B2,

a”'h <" hw <" gmin <" g,
hence a='h <’ a~'g. Since <’ is compatible, h <’ g. O

Lemma 2.3, combined with our assumption (c) of Theorem 1.3, shows the
following.

Proposition 2.4. The compatible ordering <pase is characterized by finitely
many inequalities. Let {g1,...,gm} be a characteristic positive set of <g and
{h1, ..., hy} be a characteristic positive set of <g relative to A. Then <pase is the
unique compatible ordering on Fy 5(X) that satisfies the inequalities

I <base &i i=1,...,m),

1 <pase hj (j = 1,...,1’1), (2.3)

aminhn_qiln <base &min-
Proof. The set of inequalities {1 <pase gi} uniquely determine the restriction
of <pase ON G so in particular, determine the restriction of <p,se On A. Since
<pg is relatively isolated with respect to A, the additional inequalities {1 <pase

h;} uniquely determine the restriction of <psse on H. Therefore the family of
inequalities (2.3) implies Bl and B2 in Lemma 2.3. |

The next step is to extend the ordering <pase to a compatible ordering <; of
Fi1(X) = GH.Fora € A,let

Ag=the H—A:a(h) =a}
={he H—A:a <pg h <g aamin)
={heH—A:ahmin <g h <y ahu}.

First we observe the following property which plays a crucial role in proving
the uniqueness.
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Lemma 2.5. For g, g’ € G and h,h' € H, if ga(h) = g'a(h’) then gA,pn) =
g' Aoy

Proof. ga(h) = g'a(h’) implies that g='g’ = a(h)a(h’)~! € A. This shows
(&' Aawy = a(W)a(h") " Ay = Aamy hence gAuny = &' Daqir)- O

Proposition 2.6. There exists a unique compatible total ordering <, on F1(X)
that extends <pase.

Proof. Foreacha € Aand g € G — A, we regard gA, as a totally ordered set
equipped with an ordering <; defined by gh <, gh’ (h,h’ € A,) if and only if
h <H h.

First we check that this ordering <; is well-defined on each gA,. Assume that
gAs = g'Ay as asubset of F1(X). Let gho = g'hy. ghi = g'h’| be elements
of gA, = g'Ay, where ho,hy € Ay and hy, b} € Ay Note that gA, = g'Ay
implies that g~!g’ € A. Therefore,

gho <1 ghy <= ho <m i
&= (g7'ehy <u (g7'gHh,
< hy < I}
< g'hy <1 g'H,.

This shows that < is a well-defined total ordering on gA,.

Since F1(X) = Fo(X) U (|JgAq4), we construct the desired ordering <; by
inserting the ordered sets gA, into Fo(X). We show that the way to inserting gA,
is unique.

Since a <pase I <pase agmin for h € A,, a compatible ordering <; must satisfy
ga <1 gh <1 gagmin (g € G — A).

By definition of <pase, g0 <base £agmin, that is, there are no elements of Fy 5(X)
that lies between ga and gagmin. This says that to get a compatible ordering, we
must insert the ordered set gA, between ga and gagmin. Moreover, by Lemma 2.5,
ga(h) = g'a(h’) implies gAyn)y = &' Aqnry. This means that the ordered set gA,
inserted between ga and gagmin must be unique.

Therefore there is the unique way of inserting gA, into Fo(X) to get a compat-
ible ordering on F1(X). The process of inserting gA, is schematically explained
in Figure 2.
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a Ay agmin admin
\\\ \\\ (Fo.5(X), <base)
g\ N

a(ga)hw N gAL
—}-o ce

a(ga) a(ga)gmin

8a <pase §a48min (F1(X), <1)

Figure 2. Ordering <;: inserting gA, between ga and gagmin.

The resulting ordering <; is written as follows. For x = gh and x’ = g'h’
(g € G,h € H), we have

x <1 x' & ceither (1) ga(h) <pase g'a(h’)

2.4)
or

(2) ga(h) = g'a(h') and h <pase (¢~"g")'.
Note that by the proof of Lemma 2.5, ga(h) = g'a(h’) implies g7 'g’ € A,
hence (g7 'g")h’ € Fo.5(X). Hence the inequality & <pase (g~'g’)h’ makes sense.

O

In a similar manner, we extend the ordering <; of F;(X) to a compatible
ordering <, of F,(X). We define the map cq: F1(X) — Fo(X) — Fo(X) by

co(x) = mgx{y € Fo(X):y <1 x},

and for y € Fo(X), we put

Ay ={x € F1(X) = Fo(X):co(x) = y}
={x e F1(X):y <1 x <1 Yhmin}.
Note that A, might be empty.

Lemma 2.7. The map co and the set A, have the following properties.

(1) Forx =ghe Fi(X)—Fo(X)(g e G—A,h € H), co(gh) = a(ga(h))hp.
Here a: Fo5(X) — A is the map defined by (2.1).

(2) For x,x" € Fi(X) — Fo(X) and h,h' € H, if hco(x) = hco(x') then
hAcyx) = 1 Dcyxry-
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Proof. Note that a(ga(h)) <1 ga(h) <1 gh. By definition of <; given in (2.4),
there are no elements of Fo(X) = H between ga(h) and gh. Moreover, for
g € G co(g) = a(g)hwm (see Figure 2 again). This proves co(gh) = co(ga(h)) =
a(ga(h))hw.

To see (2), write x = gy and x = g’y (g, ¢’ € G, y,y’ € Fo). Then by (1),
heo(x) = h'co(x") implies that A= i = co(x)co(x") ™! = a(ga(y))a(g'a(y’))™! €
A. This shows (h_lh/)ACO(x/) = ACO(X) hence hAco(x) = h/ACO(x’)- O

Proposition 2.8. There exists a unique compatible total ordering <, on F»(X)
that extends <.

Proof. Forh € H andy € F;(X), weregard h A, as atotally ordered set equipped
with a total ordering <, defined by ix <, hx’ (x,x" € A,) if and only if x <; x’.
By the same argument as Proposition 2.6, this ordering is well-defined on each
subset hA,,.

Fa(X) = Fi(X) U (UhA,) so we construct the desired ordering <, by
inserting the ordered sets #A,, into F;(X), as we have done in Proposition 2.6.

By the compatibility requirement, for x € A, and # € H, a desired extension
<, must satisfy

hy <3 hx <3 hyhmin

so we need to insert A, between hco(x) and hco(x)hmin. By Lemma 2.7 (1),
A, is empty unless y = ahy for some a € A, and that if A, is non-empty then
hy <1 hyhmin for h € H — A. That is, there are no elements of F7(X) between
hy and hyhmin. Moreover, Lemma 2.7 (2) shows that an ordered set A, inserted
between hy and hyhmin must be unique.

Thus, the process of inserting hA, to F;(X) is unique, and we get a well-
defined compatible ordering <,. Figure 3 gives schematic illustration of the
inserting process.

ahM
I
4 ahmin Y agmin A, Admin
O—@ [ 2
Vi 7z
7 7z
//' ,” (]:l(X)’<])
// ,’,,
h y4
.
a(hahy) / ,/'
/ 7’
” // // /
a / hAy R a dmin
/

' o| »

hahy <1 haamin  a’hu (Fa(X). <2)

Figure 3. Ordering <»: inserting hA,, between hy = hahy and hyhmin = haamin.
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As a consequence, the ordering <, is given as follows. For x = hy and
x'=hy (he H,y e Fi (X)), we have
x <z x' < ceither (1) hco(y) <1 h'co(y’) (2.5)
or  (2) hco(y) =Hheo(y)andy <y (h7'R)y'.

Note that hco(y) = h'co(y’) implies h~'h’ € A as we have seen in the proof
of Lemma 2.7 (2), so the inequality y <; (h~'4’)y’ € F;(X) makes sense. [

Now we inductively extend compatible orderings. Assume that we have de-
fined a compatible ordering <; of F;+;. We define the map c;—;: F;(X) —
Fi—1(X) = Fi—1(X) by

¢i—1(x) = max{y € Fi—1(X) | y <i x}

and for y € F;_;(X), we put
Ay ={x € F(X) = Fi-1(X) | ci-1(x) = y}.

Here we have assumed that ¢;_; is well-defined, that is, the maximal exists.
We will say that <; satisfies the ping pong property if the ordering <; satisfies
the following three properties.

P1. The maps c;—; and c;_, satisfy the equality

gci—a(y) (x=gy,ge€G—A,y e Fi_1(X), ifi is odd),

Ci—1(X) =
1) {hci_z(y) (x =hy,he H—A,y e Fi_1(X), if i is even).

Moreover, ¢;—1(x) € Fi—2(X) — Fi—3(X).
P2, ¢i—1(x) <i—1 ¢i—1(X)hmin.
P3. If x € Fi(X) — Fi—2(X), x <; Xhmin-
The reason why we call these properties “ping pong” will be explained in
Remark 2.12. Note that ping pong property P2 shows that
Ay ={x e Fi(X) = Fic1(X) | y <i x <i yhmin}. (2.6)
Lemma 2.9. The ordering <, satisfies the ping pong property.

Proof. This is easily seen from the description (2.5) of <, (see Figure 3 again).
For x = hy € F(X) —Fi(X) (h € H— A,y € Fi(X) — Fo(X)),

hco(y) <z hy. There are no elements of F;(X) — Fo(X) that lie between hco(y)

and hy so c1(x) = hco(y). In particular, c; (x) € Fo(X) = H hence by definition
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of <; given in (2.4) (see Figure 2 again), c;(x) <1 c¢1(x)hmin. Moreover, the
description (2.5) of <, shows

X <2 Xhmin ifx & H,
x <2 xhy'gmin if x € H.

The ping pong property shows the counterparts of Lemma 2.5 and 2.7.

Lemma 2.10. Assume that <; satisfies the ping pong property and let x,x’ €
Fi(X) — Fi—1(X).
o Ifi is odd, then gc;—1(x) = g'ci1(X') (8.8 € G) implies gA¢; | (x) =

g/ACi—l(x’)'
o Ifi is even, then hc;—1(x) = Wec;—1(x") (h,h' € H) implies hA., | (x) =
h/ACi—l(x’)‘

Proof. We show the case i is odd. The case i is even is similar. Put y = ¢;_1(x)
and y" = ¢;—1(x’), respectively. We show g’A,, C gA,. The converse inclusion
is proved similarly. By (2.6), z’ € A, if and only if y' <;—; 2’ <i—1 ¥'hmin.
By compatibility,

y=g"¢y <is1(g7'¢)7 <iz1 7' ¢V hmin = Yhmin
so (g71g’)z’ € A,. This proves g'z’ € gA,. O

The following proposition completes the construction of isolated ordering <y .

Proposition 2.11. If <; (i > 1) is a compatible ordering with the ping pong
property, then there exists a unique compatible ordering <;4+1 on Fi+1(X) that
extends <;. Moreover, this compatible ordering <; 1 also satisfies the ping pong

property.

Proof. The construction of <; is almost the same as the construction of <,. We
treat the case i is even. The case i is odd is similar.

We regard each gA, (y € Fi—1(X),g € G — A) as a totally ordered set,
by equipping a total ordering <;4; defined by gx <;11 gx’ (x,x’ € A)) if
and only if x <; x’. By the same argument as Proposition 2.6, the ordering
<;+1 is well-defined on each gA,. The desired compatible ordering <;1; on
Fiv1(X) = Fi(X) U (|JgA,) is obtained by inserting gA, into F; (X).

By the ping pong property P2, for y € F;_;(X) if A, is non-empty, then
¥ <i—1 Yhmin. Thus we need to insert gA, between gy and gyhmi,. By the ping
pong property P3, gy <; gyhmin, so there are no elements of F; (X) between gy
and gyhmin. Moreover, Lemma 2.10 shows that there are exactly one ordered set
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of the form gA, that should be inserted between gy and gyhmin. Therefore the
process of insertions is unique, and the resulting ordering <; 4 is given as follows.
Forx =gyandx’ = ¢g'y’, (g, g’ € G and y, y’ € F;(X)), we define

x <iy1 X' = either (1) gci1(y) <i g'ci-1(y")

or  (2) gci—1(y)=gcim(y)andy <; (g71g)y.
2.7)

Next we show that <;4; also satisfies the ping pong property. We have
inserted x = gy € Fir1(X) — Fi(X) (g € G— A,y € Fi(X)) between
gci—1(y) and gci—1(¥)hmin. By definition of <;4;, there are no elements of
Fi(X) that lie between x and gc;—;(x), hence ¢;(x) = gci—1(y). By P1 for <;,
ci-1(y) € Fi—a(X) — Fi—3(X). Hence ¢;(x) = gci—1(y) € Fi—1(X) — Fi—2(X)
S0 <;j+1 satisfies P1. Moreover by P3 for <;, ¢;(x) € Fi—1(X) — Fi—»(X) implies
that ¢; (x) <; ¢;(x)hmin hence <; 41 satisfies P2.

Finally we show that <;; satisfies P3. Assume that x € F;11(X) — Fi(X),
andputx = gy (g € G — A,y € Fi(X) — Fi—1(X)). By P3 for <;, we have
¥y <;i Yhmin. Hence by definition of <;4; we have x = gy <;+1 €V/min = Xhmin-

Ifx e F;(X) - Fic1(X) ¢ Fi — Fi—a(X), then by P3 for <; we have
X <; Xhmin. No elements of F;1(X) — F; (X) are inserted between x and x/min,
hence x <;+1 Xhmin. O

Proof of Theorem 1.3. For x, x’ € X, we define the isolated ordering <x :<§(1) by
x<xx' & x<yx

where N is chosen to be sufficiently large so that x, x’ € Fx (X). Proposition 2.11
shows that <x is a well-defined left ordering of X. By Proposition 2.4, <x is
isolated with characteristic positive set

{g1,....8m. h,. --,hn’hmina;ilngmin},

if {g1,..., gm} is a characteristic positive set of < and {h;, ..., h,} is a charac-
teristic positive set of <y relative to A.

It remains to show that A4 is a stepping with respect to <y. To see this, for

x € X, define

a(x) =ao---ocy—pocy(x)
where N is taken so that x € Fx(X). By definition of ¢;, a(x) = max.,{a €
Aa <x x}.

A construction of isolated orderings <§(2) is similar. Note that in the construc-
tion of <§(1), we only used the assumption (b), and that we used the assumption (c),
where the role of G and H are the not the same, only at Proposition 2.4. Hence
by interchanging the role of G and H, we get another left ordering <§(2) of X.
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As in the case <§(1), the ordering <§(2) is uniquely determined by the restriction

on G U H, which we denote by <{_... By the same argument as Proposition 2.4,

the ordering <{__,, hence <§(2), is characterized by finitely many inequalities

1 <pase gi (i:1,...,m),
1<basehj (=1,...,n),
amingn_‘,iln <base Nmin- O

Remark 2.12. Here we explain why we call the properties P1-P3 the ping pong
property. This may help to understand the isolated ordering <x we constructed.
Let us divide X — 4 into two disjoint subsets £ and O as follows:

E =Ugeqlx € Xia <x x <x ahw},
O = ealx € X:agmin <x X <x admin}-

By definition of <pase, Fo(X) — A = H — A C &, and by definition of <,
Fi(X) — Fo(X) = GH — H C O. Now the ping pong property P1 says that

{g(fzi(X) —Fi-1(X)) cé& (g€G—-A),
W Frit1(X) — Foic1(X) Cc O (he H—A).

Thus, we conclude

{5 = {even part} = |J; (F2i (X) — Fri—1(X)),
O = {odd part} = |J; (Fai+1(X) — F2: (X)),

andforg e G—Aand h € H — A, we have
gO)ycé& hE)cCO.

Therefore the subsets O and £ provides the setting of a famous ping pong
argument. The rest of the ping pong properties P2 and P3, as we have seen in the
proof of Proposition 2.11, rather follows from P1. This explains why we call the
properties P1-P3 the ping pong property.

Remark 2.13. Here we briefly explain the computability of the resulting isolated
ordering <y.

By (2.7), for x € Fi+1(X) — F;i(X), determining whether 1 <x x (which is
equivalent to 1 <;41 x) is reduced to the computation of ¢;(x) and the ordering
<;. By ping pong property P1, c;(x) is computed from the function ¢;—;. Thus,
eventually one can reduce to the computations of the base orderings <g and <g
and the map a: Fo.5(X) — A. That is,
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the ordering <y is algorithmically computable if and only if the or-
derings <g, <g and the map a : Fos5(X) — A are algorithmically
computable.

The problem may occur when we want to compute the map a. Even if we have
a nice algorithm to compute <g and <, this does not guarantee an algorithm to
compute the map a, in general because it involves the maximum.

Finally we study convex subgroups. A subset C of a totally ordered set (S, <g)
is convex if ¢ <g s <g ¢’ (c,c’ € C,s € S) implies s € C. For a subset T of
(S, <g), the convex hull Convs(T) of T in S is the minimum convex subset that
contains 7. Namely,

Convs(T) = (VcoTwconvexy C = s € S:31, 1" € Tyt <5 s <g t'}.

Let (G, <g) be a left-ordered group and let A be a subgroup of G. We denote
the restriction of <g on A by <4. We say a convex subgroup B of (4, <4) is a
(G, <g)-strongly convex if its convex hull Convg(B) is a subgroup of G.

Proposition 2.14. Let <y be an isolated ordering on X = G x4 H as in The-
orem 1.3. If a convex subgroup B of A is both (G, <g)- and (H, <g)-strongly
convex, then B is (X, <x)-strongly convex. In particular, if B and B’ are dif-
ferent convex subgroups, then Convy (B) and Convy (B’) yield different convex
subgroups of (X, <x).

Proof. The case B = {1} is trivial so we assume that B # {1}. By induction
on N, we prove that if x € Convyx(B) N Fx(X) then xx” € Convy(B) for any
x" € Convy (B).

First assume that x € Fy5(X) = G U H. For x’ € Convy(B), take b € B
so that b! <y x’ <x b. Then xb™! <y xx’ <x xb. Since B is (G, <g)-
and (H, <g)-strongly convex, xb, xb~! € Convg(B) U Convy (B) C Convy(B),
hence xx’ € Convy (B).

To show general case, assume that x € Fy(X) — Fy—1(X) and put x = gy
(g€ G—A,y € Fn—1(X)). We consider the case N is odd, since the case N is
even is similar.

By Theorem 1.3 (3), A is a stepping so

a(y) =max{a € A:a <x y}
<x

exists. On the other hand, x € Convy(B) so there exists b € B C A such that
b~! <x x <x b. By definition of a(y),

b~' <x ga(y) <x x <x b
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hence ga(y) € Convy(B). We have assumed that B is a non-trivial convex
subgroup of A, s0 amin € B. Since 1 <x a(y)™'y <x a@min,a(y)™'y € Convx(B).
By induction, (a(y)~!y)x’ € Convx (B) if x’ € Convx(B). This shows that

xx' = (ga(y))(a(y)~'y)x" € Convx(B)
as desired. O

We close the paper by giving new examples of isolated orderings obtained by
Theorem 1.3.

Example 2.15. Let B3 be the 3-strand braid group
Bs=7Zx%xy 7 = ()c,y:x2 = y3) = (01, 02: 010201 = 020102).

By Theorem 1.3, B3 admits an isolated ordering <pp, which is known as the
Duborvina-Dubrovin ordering [3, 6]. The Dubrovina-Dubrovin ordering is dis-
crete with minimum positive element o,. For p > 1, let A = A4, be the kernel of
the mod p abelianization map e: B, — 7/ pZ. Since for x € B;

—1 2
+++<pD X0, <pD X <pp X02 <pD X0, <DpD ***,

A is a stepping with respect to <pp. The maximum and minimum functions are
given by

a(x) = xcrz_e(x), ar(x) = xof_e(x) (e(x) €{0,1,...,p—1}).

By Theorem 1.3,
X =X,
= (01,02: 010201 = 020102) *4,, (S1,52: 15251 = 525152)

= B3 x4, B3

admits an isolated ordering <x. (One can apply the same construction for the
Dubrovina-Dubrovin ordering on B, for n > 3 to get more examples of groups
admitting isolated orderings.)

The convex subgroup B of A generated by o7 = s5, which is the minimal
positive element of <pp |4, is (B3, <pp)-strongly convex. Hence by Proposi-
tion 2.14, Convy (B) is a non-trivial proper convex subgroup of (X, <x).

On the other hand, By Theorem 1.3 (3), the <y-minimum positive element
is s;_” 0> hence (X, <x) contains another non-trivial proper convex subgroup
generated by sé_p 0>. Thus (X, <x) has at least two non-trivial proper convex
subgroup.

Iterating this kind of construction, starting from Z we are able to construct
isolated ordering with arbitrary many proper non-trivial convex subgroups.
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