Groups Geom. Dyn. 11 (2017), 121[–138](#page-17-0) DOI 10.4171/GGD/391

Groups, Geometry, and Dynamics © European Mathematical Society

Isolated orderings on amalgamated free products

Tetsuya Ito¹

Abstract. We show that an amalgamated free product $G \ast_A H$ admits a discrete isolated ordering, under some assumptions of G , H and A . This generalizes the author's previous construction of isolated orderings, and unlike known constructions of isolated orderings, can produce an isolated ordering with many non-trivial proper convex subgroups.

Mathematics Subject Classification (2010). Primary: 20F60; Secondary: 06F15.

Keywords. Orderable groups, isolated ordering, space of left orderings.

1. Introduction

A total ordering \lt_G of a group G is a *left-ordering* if the relation \lt_G is preserved by the left action on G itself, namely, $a <_G b$ implies $ga <_G gb$ for all $a, b, g \in G$. A group admitting a left-ordering is called *left-orderable*.

For $g \in G$, let U_g be the set of left-orderings \lt_G of G that satisfy $1 \lt_G g$. The set of all left-orderings of G can be equipped with a topology so that $\{U_g\}_{g \in G}$ is an open sub-basis. We denote the resulting topological space by $LO(G)$ and call it the *space of left-orderings of* G [\[16\]](#page-16-0).

An *isolated ordering* is a left ordering which is an isolated point in $LO(G)$. A left-ordering \lt_G is isolated if and only if \lt_G is determined by the sign of finitely many elements. That is, \lt_G is isolated if and only if there exists a finite subset $\{g_1, \ldots, g_n\}$ of G such that $\bigcap_{i=1}^n U_{g_i} = \{\langle g_i \rangle\}$. We call such a finite subset a *characteristic positive set* of \lt_G . In particular, if the positive cone $P(\lt_G)$ of \lt_G , the sub semi-group of G consisting of \leq _G-positive elements, is finitely generated then \lt_G is isolated.

Isolated orderings are quite interesting object in several points of view. First, if a group G has an isolated ordering whose positive cone is generated by finitely many elements $\{g_1, \ldots, g_n\}$, then every non-trivial element $g \in G$ is written as either a positive or negative word over a finite alphabet $\{g_1, \ldots, g_n\}$. This imposes a strong combinatorial feature on G. Moreover, isolated orderings can

¹ The author was partially supported by JSPS KAKENHI, Grant Number 25887030.

serve as a source of stimulating examples in non-commutative ring theory. In [\[7\]](#page-16-1) we constructed a chain domain with exceptional ideals, whose existence was a question in the past $[2, 5]$ $[2, 5]$.

In a dynamics point of view, an isolated ordering can be seen as a "very rigid" action on the real line. Let us consider a countable group G and an isolated ordering with a characteristic positive set $\{g_1,\ldots,g_n\}$. Then up to conjugacy, its dynamical realization (see [\[12\]](#page-16-4)), a faithful action of G on the real line R from the isolated ordering, is completely determined by finitely many conditions $0 < g_i(0)$ $(i = 1, \ldots, n).$

An isolated ordering \leq_G of G is *genuine* if $LO(G)$ contains non-isolated points. This is equivalent to saying that $LO(G)$ is not a finite set. Since the classification of groups with finitely many left-orderings (non-genuine isolated orderings) is known (see $[10,$ Theorem 5.2.1]), we concentrate our attention to genuine isolated orderings. Several classes of groups do not have genuine isolated ordering. The non-existence of isolated orderings are observed for the free groups of rank > 1 [\[11\]](#page-16-6), (in a different context), the free abelian groups of rank > 1 [\[16\]](#page-16-0), and nilpotent groups [\[12\]](#page-16-4). More generally, it is shown that the free products of more than one groups [\[14\]](#page-16-7), and virtually solvable groups [\[15\]](#page-16-8) never admit a genuine isolated ordering.

Recent developments provide several examples of genuine isolated orderings, but our catalogues and knowledge are still limited and it is hard to predict when a left-orderable group admits an isolated ordering. At present, we have three ways of constructing (genuine) isolated orderings; Dehornoy-like orderings [\[8,](#page-16-9) [13\]](#page-16-10), partially central cyclic amalgamation [\[9\]](#page-16-11), and triangular presentations with certain special elements [\[4\]](#page-16-12).

The aim of this paper is to extend a partially central cyclic amalgamated product construction of isolated orderings [\[9\]](#page-16-11) in more general and abstract settings. Our argument brings a better understanding on how an isolated ordering arises when a group admits a graph of group decomposition.

To state the main theorem, we introduce the following two notions. Let A be a subgroup of a left-orderable group G . First we extend the notion of isolatedness in a relative setting.

Definition 1.1. Let Res: $LO(G) \rightarrow LO(A)$ be the continuous map induced by the restriction of left orderings of G on A. We say that a left ordering \lt_G of G is *relatively isolated* with respect to A if \lt_G is an isolated point in the subspace Res⁻¹(Res(\lt_G)) \subset LO(*G*). Thus, \lt_G is relatively isolated if and only if there exists a finite subset $\{g_1, \ldots, g_n\}$ of G such that Res⁻¹(Res($<_G$)) $\cap \bigcap U_{g_i} = \{<_G\}$. We call such a finite set a *characteristic positive set* of \lt_G relative to A.

The next property plays a crucial role in our construction of isolated orderings.

Definition 1.2. We say that a subgroup A is a *stepping* with respect to a leftordering \leq_G of G if for each $g \in G$ both the maximal and the minimal

$$
\begin{cases} a(g) = \max_{\leq G} \{ a \in A : a \leq_G g \}, \\ a_+(g) = \min_{\leq_G} \{ a \in A : g <_{G} a \}. \end{cases}
$$

always exist.

For example, if A is an infinite cyclic subgroup generated by $a \in G$, then A is a stepping with respect to \lt_G if and only if a is a cofinal element: for any $g \in G$, there exists $N \in \mathbb{Z}$ such that $a^{-N} < g g < a^N$.

Using these notions our main theorem is stated as follows. Here is a situation we consider. Let A , G and H be left-orderable groups. We fix embeddings $i_G: A \hookrightarrow G$ and $i_H: A \hookrightarrow H$ so we always regard A as a common subgroup of G and H .

Theorem 1.3. Let \lt_G and \lt_H be discrete orderings of G and H. Assume that <*^G and* <*^H satisfy the following conditions.*

- (a) *The restriction of* \lt_G *and* \lt_H *on A* yields the same left ordering \lt_A *of A*.
- (b) A *is a stepping with respect to both* \lt_G *and* \lt_H .
- (c) \leq_G *is isolated and* \leq_H *is relatively isolated with respect to A.*

Then the amalgamated free product $X = G *_{A} H$ *admits isolated orderings* $\lt_{X}^{(1)}$ *X* and $\lt_{X}^{(2)}$ which have the following properties.

- (1) *Both* $\lt_{X}^{(1)}$ $\chi^{(1)}$ and $\langle \chi^{(2)} \rangle$ $\chi^{(2)}$ *extend the orderings* \lt_G *and* \lt_H *: if* $g \lt_G g'$ (g, $g' \in G$) *then* $g \lt_{X}^{(i)} g'$, and if $h \lt_{H} h'$ ($h, h' \in H$) then $h \lt_{X}^{(i)} h'$ ($i = 1, 2$).
- (2) If $\{g_1, \ldots, g_m\}$ is a characteristic positive set of $\langle G \rangle$ and $\{h_1, \ldots, h_n\}$ is a *characteristic positive set of* \lt_H *relative to* A, then

 $\{g_1,\ldots,g_m,h_1,\ldots,h_n,h_{\text{min}}a_{\text{min}}^{-1}g_{\text{min}}\}$

is a characteristic positive set of $\lt_{X}^{(1)}$ $\chi^{\left(1\right)}$ and

$$
\{g_1, \ldots, g_m, h_1, \ldots, h_n, g_{\min} a_{\min}^{-1} h_{\min}\}
$$

is a characteristic positive set of $\lt_{X}^{(2)}$ *X . Here* amin*,* gmin *and* hmin *represent the minimal positive elements of the orderings* \lt_A , \lt_G *and* \lt_H *, respectively. (Note that A is a stepping implies that* \lt_A *is discrete, see Lemma* [2.1](#page-4-0)*)*.

- $(3) ⁽¹⁾$ _X ⁽¹⁾ is discrete with the minimal positive element $h_{\text{min}}a_{\text{min}}^{-1}g_{\text{min}}$, and $\lt_{X}^{(2)}$ *X is* discrete with the minimal positive element $g_{\text{min}}a_{\text{min}}^{-1}h_{\text{min}}$.
- (4) A *is a stepping with respect to the orderings* $\lt_{X}^{(1)}$ $\frac{1}{X}$ and $\lt_{X}^{(2)}$ $\frac{(2)}{X}$.

The assumption (a) is an obvious requirement for X to have a left ordering extending both \lt_G and \lt_H . The crucial assumptions are (b) and (c). It should be emphasized that the orderings \lt_A and \lt_H may not be isolated. We also note that, The property (4) allows us to iterate a similar construction, hence Theorem [1.3](#page-2-0) produces huge examples of isolated orderings.

Remark 1.4. As for the existence of isolated orderings, Theorem [1.3](#page-2-0) contains the main theorem of [\[9\]](#page-16-11), but [\[9,](#page-16-11) Theorem 1.1] states much stronger results.

In [\[9\]](#page-16-11), we treated the case that $A = \mathbb{Z}$ with additional assumptions that the isolated ordering \lt_H is preserved by the right action of A, and that A is central in G . Under these assumptions, we proved that the positive cone of the resulting isolated ordering is *finitely generated*, and determined all convex subgroups. Moreover, one can algorithmically determine whether $x \leq_X x'$ or not.

On the other hand, for the isolated orderings $\lt_{X}^{(i)}$ $X^{(1)}$ in Theorem [1.3,](#page-2-0) we do not know whether its positive cone is finitely generated or not in general, and a computation of $\lt_X^{(i)}$ χ ^{(*i*}) is more complicated. As for the computational issues, see Remark [2.13.](#page-13-0)

In light of the above remark, finding a generating set of the positive cone of $\lt^{(i)}_X$ χ ^{(*i*}), and determining when it is finitely generated are quite interesting.

As for convex subgroups, in Proposition [2.14](#page-14-0) we show that a convex subgroup of A with additional properties yields a convex subgroup of (X, \leq_X) . Thus, the resulting isolated ordering of X can admit many non-trivial convex subgroups. This also makes a sharp contrast in [\[9\]](#page-16-11), where the obtained isolated ordering contains exactly one non-trivial proper convex subgroup. It should be emphasized that the Dubrovina-Dubrovin ordering of the braid groups $[3, 6]$ $[3, 6]$ are the only known examples of genuine isolated ordering with more than one proper nontrivial convex subgroup. In Example 2.15 , starting from $\mathbb Z$ with standard ordering, the simplest isolated ordering, we construct many isolated orderings with more than one non-trivial convex subgroups.

2. Construction of isolated orderings

For a totally ordered set $(S, <_S)$ and $s, s' \in S$, we say that s' is the *successor* of s and we denote by $s \prec_S s'$, if s' is the minimal element in S that is strictly greater than s with respect to the ordering \lt _S.

A left ordering \lt_G of a group G is *discrete* if there exists the successor g_{min} of the identity element. That is, \lt_G admits the minimal \lt_G -positive element. By left-invariance, a discrete left ordering \lt_G satisfy $gg_{\text{min}}^{-1} \lt_G g \lt_G gg_{\text{min}}$ for all $g \in G$.

Let us consider the situation in Theorem [1.3.](#page-2-0) Let G and H be groups admitting discrete left orderings \lt_G and \lt_H , and A be a common subgroup of G and H, such that the restriction of \lt_G and \lt_H yield the same left ordering \lt_A .

The assumption that A is a stepping (assumption (b)) implies the following.

Lemma 2.1. *For a subgroup* A *of a left-orderable group* G*, if* A *is a stepping with respect to a left-ordering* \lt_G *, then the restriction of* \lt_G *on A is discrete.*

Proof. From the definition of stepping,

$$
a_{\min} = \min_{\leq A} \{ a \in A : 1 <_{A} a \} = \min_{\leq G} \{ a \in A : 1 <_{G} a \} = a_{+}(1)
$$

exists. \Box

Thus \leq_A is also discrete. We denote the minimal positive elements of \leq_A , \lt_G and \lt_H by a_{min} , g_{min} and h_{min} , respectively. We put $g_M = a_{\text{min}} g_{\text{min}}^{-1}$ and $h_M = a_{\text{min}} h_{\text{min}}^{-1}$, so $g_M \prec_G a_{\text{min}}$ and $h_M \prec_H a_{\text{min}}$.

We start to construct an isolated ordering on a group $X = G *_{A} H$. We mainly explain the construction of the isolated ordering $\lt_{X}^{(1)}$ $X⁽¹⁾$, which we simply denote by $\langle x \rangle$. Although the hypothesis on G and H are not symmetric, as we will discuss at the end of the proof of Theorem [1.3,](#page-2-0) the construction of $\langle x \rangle$ $\chi^{(2)}$ is similar: the ordering $\lt_X^{(2)}$ X^2 is obtained by interchanging the role of G and H.

The amalgamated free product structure of X induces a filtration

$$
\mathcal{F}_{-1}(X) \subset \mathcal{F}_{-0.5}(X) \subset \mathcal{F}_0(X) \subset \mathcal{F}_{0.5}(X)
$$

$$
\subset \mathcal{F}_1(X) \subset \mathcal{F}_2(X) \subset \cdots \subset \mathcal{F}_i(X) \subset \cdots
$$

defined by

$$
\begin{cases}\n\mathcal{F}_{-1}(X) = \emptyset, \\
\mathcal{F}_{-0.5}(X) = A, \\
\mathcal{F}_0(X) = H, \\
\mathcal{F}_{0.5}(X) = G \cup H, \\
\mathcal{F}_{2i+1}(X) = G\mathcal{F}_{2i}, \\
\mathcal{F}_{2i}(X) = H\mathcal{F}_{2i-1}.\n\end{cases}
$$

The non-integer parts of the filtrations are exceptional, and the filtration $\mathcal{F}_{0.5}(X)$ is the most important because it is the restriction on $\mathcal{F}_{0.5}(X)$ that eventually characterizes the isolated ordering <*^X* .

Starting from \lt_G and \lt_H , we inductively construct a total ordering \lt_i on $\mathcal{F}_i(X)$. To be able to extend \lt_i to a left ordering of X, we need the following obvious property.

Definition 2.2. We say a total ordering \lt_i on $\mathcal{F}_i(X)$ is *compatible* if for any $x \in X$ and $s, t \in \mathcal{F}_i(X)$, $xs \leq_i xt$ whenever $s \leq_i t$ and $xs, xt \in \mathcal{F}_i(X)$.

By definition, if \lt_i is a restriction of a left ordering of X on $\mathcal{F}_i(X)$, then \lt_i is compatible. Conversely, Bludov-Glass proved that a compatible ordering \lt_i on $\mathcal{F}_i(X)$ can be extended to a compatible ordering \lt_{i+1} of $\mathcal{F}_{i+1}(X)$ under some conditions [\[1\]](#page-16-15). This is a crucial ingredient of the proof of Bludov-Glass' theorem on necessary and sufficient conditions for an amalgamated free product to be leftorderable [\[1,](#page-16-15) Theorem A].

From the point of view of the topology of $LO(G *_{A} H)$, it is suggestive to note that Bludov-Glass' extension of \lt_i to \lt_{i+1} is far from unique. This illustrates and explains the intuitively obvious fact that "most" left orderings of $G *_{A} H$ are not isolated. Our isolated ordering is constructed by specifying a situation in which Bludov-Glass' extension procedure must be unique.

As the first step of construction, we define an ordering \lt_{base} on $\mathcal{F}_{0.5}(X)$. Since we have assumed that A is a stepping with respect to both \lt_G and \lt_H , we have the function

$$
a\colon \mathcal{F}_{0.5}(X)\to A
$$

defined by

$$
a(x) = \begin{cases} \max_{\leq G} \{a \in A : a \leq G x\} & (x \in G), \\ \max_{\leq H} \{a \in A : a \leq H x\} & (x \in H). \end{cases}
$$
(2.1)

Using the function a , we define the total ordering \lt_{base} as follows:

$$
\begin{cases}\ng <_{\text{base}} g' & \text{if } g, g' \in G \text{ and } g <_G g', \\
h <_{\text{base}} h' & \text{if } h, h' \in H \text{ and } h <_H h', \\
h <_{\text{base}} g & \text{if } h \in H - A, g \in G - A \text{ and } a(h) \leq_A a(g), \\
g <_{\text{base}} h & \text{if } h \in H - A, g \in G - A \text{ and } a(g) <_A a(h).\n\end{cases}\n\tag{2.2}
$$

The ordering \lt_{base} can be schematically understood by Figure [1.](#page-5-0)

Figure 1. Ordering \lt_{base} on $\mathcal{F}_{0.5}(X)$.

Lemma 2.3. The ordering \leq_{base} is the unique compatible ordering of $\mathcal{F}_{0.5}(X)$ *such that*

B1 the restriction of \leq_{base} on G and H agrees with \leq_G and \leq_H , respectively; $B2$ $h_{\mathsf{M}} = a_{\mathsf{min}} h_{\mathsf{min}}^{-1} <$ base g_{min} .

Proof. By definition, \lt_{base} is a compatible ordering with B1 and B2. Assume that \langle is another compatible total ordering on $\mathcal{F}_{0.5}(X)$ with the same properties. To see the uniqueness, it is sufficient to show that for $g \in G - A$ and $h \in H - A$, $h _{base} g$ implies $h < g$.

By definition of \lt_{base} , $a(h) \leq_A a(g)$. If $a(h) \lt_A a(g)$, then $h \lt' a(h)a_{\min} \leq h$ $a(g) <' g$ so $h <' g$. Assume that $a(h) = a(g)$ and put $a = a(g) = a(h)$. By B1, $1 < a^{-1}h < a_{\min}$ hence $1 < a^{-1}h \le h_M = a_{\min}h_{\min}^{-1}$. Similarly, $1 < a^{-1}g$ so $g_{\text{min}} \leq' a^{-1}g$. By B2,

$$
a^{-1}h \leq h_{\mathsf{M}} <' g_{\mathsf{min}} \leq' a^{-1}g,
$$

hence $a^{-1}h < a^{-1}g$. Since \lt' is compatible, $h < g$.

Lemma [2.3,](#page-6-0) combined with our assumption (c) of Theorem [1.3,](#page-2-0) shows the following.

Proposition 2.4. *The compatible ordering* \lt_{base} *is characterized by finitely many inequalities. Let* $\{g_1, \ldots, g_m\}$ *be a characteristic positive set of* \lt_G *and* $\{h_1, \ldots, h_n\}$ be a characteristic positive set of \lt_H relative to A. Then \lt_{base} is the *unique compatible ordering on* $\mathcal{F}_{0.5}(X)$ *that satisfies the inequalities*

$$
\begin{cases}\n1 <_{\text{base}} g_i & (i = 1, \dots, m), \\
1 <_{\text{base}} h_j & (j = 1, \dots, n), \\
a_{\min} h_{\min}^{-1} <_{\text{base}} g_{\min}.\n\end{cases} \tag{2.3}
$$

Proof. The set of inequalities $\{1 \leq_{\text{base}} g_i\}$ uniquely determine the restriction of \leq_{base} on G so in particular, determine the restriction of \leq_{base} on A. Since \lt_H is relatively isolated with respect to A, the additional inequalities $\{1 \lt_{base}\}$ h_i uniquely determine the restriction of \lt_{base} on H. Therefore the family of inequalities (2.3) implies B1 and B2 in Lemma [2.3.](#page-6-0)

The next step is to extend the ordering \lt_{base} to a compatible ordering \lt_1 of $\mathcal{F}_1(X) = GH$. For $a \in A$, let

$$
\Delta_a = \{ h \in H - A : a(h) = a \}
$$

=
$$
\{ h \in H - A : a <_H h <_H a a_{\min} \}
$$

=
$$
\{ h \in H - A : a h_{\min} \leq_H h \leq_H a h_{\mathsf{M}} \}.
$$

First we observe the following property which plays a crucial role in proving the uniqueness.

128 T. Ito

Lemma 2.5. *For* $g, g' \in G$ *and* $h, h' \in H$ *, if* $ga(h) = g'a(h')$ *then* $g\Delta_{a(h)} = g(a)$ $g' \Delta_{a(h')}$.

Proof. $ga(h) = g'a(h')$ implies that $g^{-1}g' = a(h)a(h')^{-1} \in A$. This shows $(g^{-1}g')\Delta_{a(h')} = a(h)a(h')^{-1}\Delta_{a(h')} = \Delta_{a(h)}$ hence $g\Delta_{a(h)} = g'\Delta_{a(h')}$.

Proposition 2.6. *There exists a unique compatible total ordering* \lt_1 *on* $\mathcal{F}_1(X)$ *that extends* \lt_{base} .

Proof. For each $a \in A$ and $g \in G - A$, we regard $g\Delta_a$ as a totally ordered set equipped with an ordering \lt_1 defined by $gh \lt_1 gh' (h, h' \in \Delta_a)$ if and only if $h <_H h'$.

First we check that this ordering \lt_1 is well-defined on each $g\Delta_a$. Assume that $g\Delta_a = g'\Delta_{a'}$ as a subset of $\mathcal{F}_1(X)$. Let $gh_0 = g'h'_0, gh_1 = g'h'_1$ be elements of $g\Delta_a = g'\Delta_{a'}$, where $h_0, h_1 \in \Delta_a$ and $h'_0, h'_1 \in \Delta_{a'}$. Note that $g\Delta_a = g'\Delta_{a'}$ implies that $g^{-1}g' \in A$. Therefore,

$$
gh_0 <_1 gh_1 \iff h_0 <_H h_1
$$
\n
$$
\iff (g^{-1}g')h'_0 <_H (g^{-1}g')h'_1
$$
\n
$$
\iff h'_0 <_H h'_1
$$
\n
$$
\iff g'h'_0 <_1 g'h'_1.
$$

This shows that \lt_1 is a well-defined total ordering on $g\Delta_a$.

Since $\mathcal{F}_1(X) = \mathcal{F}_0(X) \cup (\bigcup g \Delta_a)$, we construct the desired ordering \lt_1 by inserting the ordered sets $g\Delta_a$ into $\mathcal{F}_0(X)$. We show that the way to inserting $g\Delta_a$ is unique.

Since $a _{base} h _{base} a g_{min}$ for $h \in \Delta_a$, a compatible ordering \lt_1 must satisfy

$$
ga <_1 gh <_1 gag_{\min} \quad (g \in G - A).
$$

By definition of \lt_{base} , ga \lt_{base} gag_{min}, that is, there are no elements of $\mathcal{F}_{0.5}(X)$ that lies between ga and gag_{min}. This says that to get a compatible ordering, we must insert the ordered set $g\Delta_a$ between ga and gag_{min}. Moreover, by Lemma [2.5,](#page-6-2) $ga(h) = g'a(h')$ implies $g\Delta_{a(h)} = g'\Delta_{a(h')}$. This means that the ordered set $g\Delta_a$ inserted between ga and gag_{min} must be unique.

Therefore there is the unique way of inserting $g\Delta_a$ into $\mathcal{F}_0(X)$ to get a compatible ordering on $\mathcal{F}_1(X)$. The process of inserting $g\Delta_a$ is schematically explained in Figure [2.](#page-8-0)

Figure 2. Ordering \lt_1 : inserting $g\Delta_a$ between ga and gag_{min}.

The resulting ordering \lt_1 is written as follows. For $x = gh$ and $x' = g'h'$ $(g \in G, h \in H)$, we have

$$
x <_1 x' \iff \text{ either (1) } ga(h) <_{\text{base}} g'a(h')
$$
 (2.4)
or (2) $ga(h) = g'a(h')$ and $h <_{\text{base}} (g^{-1}g')h'$.

Note that by the proof of Lemma [2.5,](#page-6-2) $ga(h) = g'a(h')$ implies $g^{-1}g' \in A$, hence $(g^{-1}g')h' \in \mathcal{F}_{0.5}(X)$. Hence the inequality $h _{base} (g^{-1}g')h'$ makes sense. \Box

In a similar manner, we extend the ordering \lt_1 of $\mathcal{F}_1(X)$ to a compatible ordering \lt_2 of $\mathcal{F}_2(X)$. We define the map $c_0: \mathcal{F}_1(X) - \mathcal{F}_0(X) \to \mathcal{F}_0(X)$ by

$$
c_0(x) = \max_{\leq_1} \{ y \in \mathcal{F}_0(X) : y <_1 x \},
$$

and for $y \in \mathcal{F}_0(X)$, we put

$$
\Delta_y = \{ x \in \mathcal{F}_1(X) - \mathcal{F}_0(X); c_0(x) = y \}
$$

= $\{ x \in \mathcal{F}_1(X); y <_1 x <_1 y h_{\text{min}} \}.$

Note that Δ_{ν} might be empty.

Lemma 2.7. *The map* c_0 *and the set* Δ_v *have the following properties.*

- (1) *For* $x = gh \in \mathcal{F}_1(X) \mathcal{F}_0(X)$ ($g \in G A, h \in H$), $c_0(gh) = a(ga(h))h_M$. *Here* $a: \mathcal{F}_{0.5}(X) \to A$ *is the map defined by ([2.1](#page-5-1)).*
- (2) *For* $x, x' \in \mathcal{F}_1(X) \mathcal{F}_0(X)$ *and* $h, h' \in H$ *, if* $hc_0(x) = h'c_0(x')$ *then* $h \Delta_{c_0(x)} = h' \Delta_{c_0(x')}$.

Proof. Note that $a(ga(h)) \leq_1 ga(h) \leq_1 gh$. By definition of \leq_1 given in [\(2.4\)](#page-8-1), there are no elements of $\mathcal{F}_0(X) = H$ between ga(h) and gh. Moreover, for $g \in G$ $c_0(g) = a(g)h$ _M (see Figure [2](#page-8-0) again). This proves $c_0(gh) = c_0(ga(h))$ = $a(ga(h))h_M$.

To see (2), write $x = gy$ and $x = g'y'$ ($g, g' \in G$, $y, y' \in \mathcal{F}_0$). Then by (1), $hc_0(x) = h'c_0(x')$ implies that $h^{-1}h' = c_0(x)c_0(x')^{-1} = a(ga(y))a(g'a(y'))^{-1} \in$ A. This shows $(h^{-1}h')\Delta_{c_0(x')} = \Delta_{c_0(x)}$ hence $h\Delta_{c_0(x)} = h'\Delta_{c_0(x')}$. — П

Proposition 2.8. *There exists a unique compatible total ordering* \lt_2 *on* $\mathcal{F}_2(X)$ *that extends* \lt_1 *.*

Proof. For $h \in H$ and $y \in \mathcal{F}_1(X)$, we regard $h \Delta_y$ as a totally ordered set equipped with a total ordering \lt_2 defined by $hx \lt_2 hx'$ $(x, x' \in \Delta_y)$ if and only if $x \lt_1 x'$. By the same argument as Proposition 2.6 , this ordering is well-defined on each subset $h\Delta_v$.

 $\mathcal{F}_2(X) = \mathcal{F}_1(X) \cup (\bigcup h \Delta_y)$ so we construct the desired ordering \lt_2 by inserting the ordered sets $h\Delta_y$ into $\mathcal{F}_1(X)$, as we have done in Proposition [2.6.](#page-7-0)

By the compatibility requirement, for $x \in \Delta_y$ and $h \in H$, a desired extension <*²* must satisfy

$$
hy <_2 hx <_2 hyh_{\min}
$$

so we need to insert $h\Delta_v$ between $hc_0(x)$ and $hc_0(x)h_{\text{min}}$. By Lemma [2.7](#page-8-2)(1), Δ_{γ} is empty unless $y = ah_M$ for some $a \in A$, and that if Δ_{γ} is non-empty then $hy \prec_1 hyh_{\text{min}}$ for $h \in H - A$. That is, there are no elements of $\mathcal{F}_1(X)$ between hy and hyh_{min}. Moreover, Lemma [2.7](#page-8-2) (2) shows that an ordered set $h\Delta_y$ inserted between hy and $h y h_{\text{min}}$ must be unique.

Thus, the process of inserting $h\Delta_v$ to $\mathcal{F}_1(X)$ is unique, and we get a welldefined compatible ordering \lt_2 . Figure [3](#page-9-0) gives schematic illustration of the inserting process.

Figure 3. Ordering $\langle 2 \rangle$: inserting $h \Delta_v$ between $hy = hah_M$ and $hyh_{\text{min}} = ha a_{\text{min}}$.

As a consequence, the ordering \lt_2 is given as follows. For $x = hy$ and $x' = h'y'$ ($h \in H$, $y \in \mathcal{F}_1(X)$), we have

$$
x <_2 x' \iff \text{ either (1)} \quad hc_0(y) <_1 h'c_0(y')
$$

or (2) \quad hc_0(y) = h'c_0(y') \text{ and } y <_1 (h^{-1}h')y'. (2.5)

Note that $hc_0(y) = h'c_0(y')$ implies $h^{-1}h' \in A$ as we have seen in the proof of Lemma [2.7](#page-8-2)(2), so the inequality $y <_1 (h^{-1}h')y' \in \mathcal{F}_1(X)$ makes sense. \square

Now we inductively extend compatible orderings. Assume that we have de fined a compatible ordering \lt_i of \mathcal{F}_{i+1} . We define the map $c_{i-1} \colon \mathcal{F}_i(X)$ – $\mathcal{F}_{i-1}(X) \to \mathcal{F}_{i-1}(X)$ by

$$
c_{i-1}(x) = \max_{\leq i} \{ y \in \mathcal{F}_{i-1}(X) \mid y <_i x \}
$$

and for $y \in \mathcal{F}_{i-1}(X)$, we put

$$
\Delta_y = \{ x \in \mathcal{F}_i(X) - \mathcal{F}_{i-1}(X) \mid c_{i-1}(x) = y \}.
$$

Here we have assumed that c_{i-1} is well-defined, that is, the maximal exists.

We will say that \lt_i satisfies the *ping pong property* if the ordering \lt_i satisfies the following three properties.

P1. The maps c_{i-1} and c_{i-2} satisfy the equality

$$
c_{i-1}(x) = \begin{cases} gc_{i-2}(y) & (x = gy, g \in G - A, y \in \mathcal{F}_{i-1}(X), \text{ if } i \text{ is odd}), \\ hc_{i-2}(y) & (x = hy, h \in H - A, y \in \mathcal{F}_{i-1}(X), \text{ if } i \text{ is even}). \end{cases}
$$

Moreover, $c_{i-1}(x) \in \mathcal{F}_{i-2}(X) - \mathcal{F}_{i-3}(X)$.

P2. $c_{i-1}(x) \prec_{i-1} c_{i-1}(x)h_{\min}$.

P3. If $x \in \mathcal{F}_i(X) - \mathcal{F}_{i-2}(X)$, $x \prec_i xh_{\text{min}}$.

The reason why we call these properties "ping pong" will be explained in Remark [2.12.](#page-13-1) Note that ping pong property P2 shows that

$$
\Delta_y = \{ x \in \mathcal{F}_i(X) - \mathcal{F}_{i-1}(X) \mid y <_i x <_i y h_{\min} \}. \tag{2.6}
$$

Lemma 2.9. *The ordering* \lt_2 *satisfies the ping pong property.*

Proof. This is easily seen from the description (2.5) of \lt_2 (see Figure [3](#page-9-0) again).

For $x = hy \in \mathcal{F}_2(X) - \mathcal{F}_1(X)$ (h $\in H - A$, $y \in \mathcal{F}_1(X) - \mathcal{F}_0(X)$), $hc_0(y) \leq h(y)$. There are no elements of $\mathcal{F}_1(X) - \mathcal{F}_0(X)$ that lie between $hc_0(y)$. and hy so $c_1(x) = hc_0(y)$. In particular, $c_1(x) \in \mathcal{F}_0(X) = H$ hence by definition of \lt_1 given in [\(2.4\)](#page-8-1) (see Figure [2](#page-8-0) again), $c_1(x) \lt_1 c_1(x)h_{\text{min}}$. Moreover, the description (2.5) of \leq_2 shows

$$
\begin{cases} x \prec_2 xh_{\min} & \text{if } x \notin H, \\ x \prec_2 xh_{\min}^{-1}g_{\min} & \text{if } x \in H. \end{cases}
$$

 \Box

The ping pong property shows the counterparts of Lemma [2.5](#page-6-2) and [2.7.](#page-8-2)

Lemma 2.10. Assume that \lt_i satisfies the ping pong property and let $x, x' \in$ $\mathcal{F}_i(X) - \mathcal{F}_{i-1}(X)$.

- If *i is odd, then* $gc_{i-1}(x) = g'c_{i-1}(x')$ $(g, g' \in G)$ *implies* $g\Delta_{c_{i-1}(x)} =$ $g' \Delta_{c_{i-1}(x')}$.
- If *i* is even, then $hc_{i-1}(x) = h'c_{i-1}(x')$ $(h, h' \in H)$ implies $h \Delta_{c_{i-1}(x)} =$ $h' \Delta_{c_{i-1}(x')}$.

Proof. We show the case *i* is odd. The case *i* is even is similar. Put $y = c_{i-1}(x)$ and $y' = c_{i-1}(x')$, respectively. We show $g' \Delta_{y'} \subset g \Delta_y$. The converse inclusion is proved similarly. By [\(2.6\)](#page-10-1), $z' \in \Delta_{y'}$ if and only if $y' \leq_{i-1} z' \leq_{i-1} y' h_{\text{min}}$. By compatibility,

$$
y = g^{-1}g'y' \leq_{i-1} (g^{-1}g')z' \leq_{i-1} g^{-1}g'y'h_{\min} = yh_{\min}
$$

so $(g^{-1}g')z' \in \Delta_y$. This proves $g'z' \in g\Delta_y$.

The following proposition completes the construction of isolated ordering \lt_{χ} .

Proposition 2.11. If \lt_i (i > 1) is a compatible ordering with the ping pong *property, then there exists a unique compatible ordering* \lt_{i+1} *on* $\mathcal{F}_{i+1}(X)$ *that* $extends *i*$. Moreover, this compatible ordering *also satisfies the ping pong property.*

Proof. The construction of \lt_{i+1} is almost the same as the construction of \lt_2 . We treat the case i is even. The case i is odd is similar.

We regard each $g\Delta_y$ $(y \in \mathcal{F}_{i-1}(X), g \in G - A)$ as a totally ordered set, by equipping a total ordering \lt_{i+1} defined by $gx \lt_{i+1} gx'(x, x' \in \Delta_y)$ if and only if $x \leq i$ x'. By the same argument as Proposition [2.6,](#page-7-0) the ordering $\langle\epsilon_{i+1}\rangle$ is well-defined on each g Δ_y . The desired compatible ordering $\langle\epsilon_{i+1}\rangle$ on $\mathcal{F}_{i+1}(X) = \mathcal{F}_i(X) \cup (\bigcup g \Delta_y)$ is obtained by inserting $g \Delta_y$ into $\mathcal{F}_i(X)$.

By the ping pong property P2, for $y \in \mathcal{F}_{i-1}(X)$ if Δ_y is non-empty, then $y \prec_{i-1} yh_{\text{min}}$. Thus we need to insert $g\Delta_y$ between gy and gyh_{min}. By the ping pong property P3, $gy \prec_i gyh_{\text{min}}$, so there are no elements of $\mathcal{F}_i(X)$ between gy and $g y h_{\text{min}}$. Moreover, Lemma [2.10](#page-11-0) shows that there are exactly one ordered set

$$
\overline{}
$$

of the form $g\Delta_v$ that should be inserted between gy and gyh_{min}. Therefore the process of insertions is unique, and the resulting ordering \lt_{i+1} is given as follows. For $x = gy$ and $x' = g'y'$, $(g, g' \in G$ and $y, y' \in \mathcal{F}_i(X)$), we define

$$
x <_{i+1} x' \iff \text{ either (1) } gc_{i-1}(y) <_i g'c_{i-1}(y')
$$

or (2) $gc_{i-1}(y) = g'c_{i-1}(y')$ and $y <_i (g^{-1}g')y'$. (2.7)

Next we show that \lt_{i+1} also satisfies the ping pong property. We have inserted $x = gy \in \mathcal{F}_{i+1}(X) - \mathcal{F}_i(X)$ ($g \in G - A$, $y \in \mathcal{F}_i(X)$) between $gc_{i-1}(y)$ and $gc_{i-1}(y)h_{\text{min}}$. By definition of \lt_{i+1} , there are no elements of $\mathcal{F}_i(X)$ that lie between x and $gc_{i-1}(x)$, hence $c_i(x) = gc_{i-1}(y)$. By P1 for \lt_i , $c_{i-1}(y) \in \mathcal{F}_{i-2}(X) - \mathcal{F}_{i-3}(X)$. Hence $c_i(x) = gc_{i-1}(y) \in \mathcal{F}_{i-1}(X) - \mathcal{F}_{i-2}(X)$ so \lt_{i+1} satisfies P1. Moreover by P3 for \lt_i , $c_i(x) \in \mathcal{F}_{i-1}(X) - \mathcal{F}_{i-2}(X)$ implies that $c_i(x) \prec_i c_i(x)h_{\text{min}}$ hence \prec_{i+1} satisfies P2.

Finally we show that \lt_{i+1} satisfies P3. Assume that $x \in \mathcal{F}_{i+1}(X) - \mathcal{F}_i(X)$, and put $x = gy$ ($g \in G - A$, $y \in \mathcal{F}_i(X) - \mathcal{F}_{i-1}(X)$). By P3 for \lt_i , we have $y \prec_i yh_{\text{min}}$. Hence by definition of \prec_{i+1} we have $x = gy \prec_{i+1} gyh_{\text{min}} = xh_{\text{min}}$.

If $x \in \mathcal{F}_i(X) - \mathcal{F}_{i-1}(X) \subset \mathcal{F}_i - \mathcal{F}_{i-2}(X)$, then by P3 for \lt_i we have $x \prec_i x h_{\text{min}}$. No elements of $\mathcal{F}_{i+1}(X) - \mathcal{F}_i(X)$ are inserted between x and $x h_{\text{min}}$, hence $x \prec_{i+1} xh_{\text{min}}$.

Proof of Theorem [1.3](#page-2-0). For $x, x' \in X$, we define the isolated ordering $\lt x = \lt^{\{1\}}_X$ $\chi^{\left(1\right)}$ by

$$
x\prec_X x'\iff x\prec_N x'
$$

where N is chosen to be sufficiently large so that $x, x' \in \mathcal{F}_N(X)$. Proposition [2.11](#page-11-1) shows that $\langle x \rangle$ is a well-defined left ordering of X. By Proposition [2.4,](#page-6-3) $\langle x \rangle$ is isolated with characteristic positive set

$$
\{g_1,\ldots,g_m,h_1,\ldots,h_n,h_{\min}a_{\min}^{-1}g_{\min}\},\,
$$

if $\{g_1, \ldots, g_m\}$ is a characteristic positive set of $\langle G \rangle$ and $\{h_1, \ldots, h_n\}$ is a characteristic positive set of \leq_H relative to A.

It remains to show that A is a stepping with respect to \lt_X . To see this, for $x \in X$, define

$$
a(x) = a \circ \cdots \circ c_{N-2} \circ c_N(x)
$$

where N is taken so that $x \in \mathcal{F}_N(X)$. By definition of c_i , $a(x) = \max_{\leq X} \{a \in X\}$ $A: a \leq_X x$.

A construction of isolated orderings $\langle x \rangle$ $\chi^{(2)}$ is similar. Note that in the construction of $\lt^{(1)}_Y$ $X^{(1)}$, we only used the assumption (b), and that we used the assumption (c), where the role of G and H are the not the same, only at Proposition $2.\overline{4}$. Hence by interchanging the role of G and H, we get another left ordering $\lt_{X}^{(2)}$ $\chi^{(2)}$ of X.

As in the case $\lt_X^{(1)}$ $_X^{(1)}$, the ordering $\lt_X^{(2)}$ $X^{\left(2\right)}$ is uniquely determined by the restriction on $G \cup H$, which we denote by \lt'_{base} . By the same argument as Proposition [2.4,](#page-6-3) the ordering \lt_{base} , hence $\lt_{X}^{(2)}$ $X^{(2)}$, is characterized by finitely many inequalities

$$
\begin{cases}\n1 <_{\text{base}} g_i & (i = 1, \dots, m), \\
1 <_{\text{base}} h_j & (j = 1, \dots, n), \\
a_{\min} g_{\min}^{-1} <_{\text{base}} h_{\min}.\n\end{cases} \quad \Box
$$

Remark 2.12. Here we explain why we call the properties PI–P3 the ping pong property. This may help to understand the isolated ordering \lt_X we constructed.

Let us divide $X - A$ into two disjoint subsets $\mathcal E$ and $\mathcal O$ as follows:

$$
\begin{cases} \mathcal{E} = \bigcup_{a \in A} \{ x \in X : a < x \leq x \ a h_\mathsf{M} \}, \\ \mathcal{O} = \bigcup_{a \in A} \{ x \in X : a g_\mathsf{min} < x \leq x \ a a_\mathsf{min} \}. \end{cases}
$$

By definition of \lt_{base} , $\mathcal{F}_0(X) - A = H - A \subset \mathcal{E}$, and by definition of \lt_1 , $\mathcal{F}_1(X) - \mathcal{F}_0(X) = GH - H \subset \mathcal{O}$. Now the ping pong property P1 says that

$$
\begin{cases} g(\mathcal{F}_{2i}(X) - \mathcal{F}_{2i-1}(X)) \subset \mathcal{E} & (g \in G - A), \\ h(\mathcal{F}_{2i+1}(X) - \mathcal{F}_{2i-1}(X)) \subset \mathcal{O} & (h \in H - A). \end{cases}
$$

Thus, we conclude

$$
\begin{cases} \mathcal{E} = \{\text{even part}\} = \bigcup_i (\mathcal{F}_{2i}(X) - \mathcal{F}_{2i-1}(X)), \\ \mathcal{O} = \{\text{odd part}\} = \bigcup_i (\mathcal{F}_{2i+1}(X) - \mathcal{F}_{2i}(X)), \end{cases}
$$

and for $g \in G - A$ and $h \in H - A$, we have

$$
g(\mathcal{O})\subset \mathcal{E}, \quad h(\mathcal{E})\subset \mathcal{O}.
$$

Therefore the subsets $\mathcal O$ and $\mathcal E$ provides the setting of a famous ping pong argument. The rest of the ping pong properties P2 and P3, as we have seen in the proof of Proposition [2.11,](#page-11-1) rather follows from P1. This explains why we call the properties P1–P3 the ping pong property.

Remark 2.13. Here we briefly explain the computability of the resulting isolated ordering $\lt x$.

By [\(2.7\)](#page-12-0), for $x \in \mathcal{F}_{i+1}(X) - \mathcal{F}_i(X)$, determining whether $1 \lt_X x$ (which is equivalent to $1 \leq_{i+1} x$) is reduced to the computation of $c_i(x)$ and the ordering $\langle i, By \rangle$ ping pong property P1, $c_i(x)$ is computed from the function c_{i-1} . Thus, eventually one can reduce to the computations of the base orderings \lt_G and \lt_H and the map $a: \mathcal{F}_{0.5}(X) \to A$. That is,

the ordering $\langle x \rangle$ *is algorithmically computable if and only if the orderings* \leq_G , \leq_H *and the map* $a : \mathcal{F}_{0.5}(X) \to A$ *are algorithmically computable.*

The problem may occur when we want to compute the map a . Even if we have a nice algorithm to compute \lt_G and \lt_H , this does not guarantee an algorithm to compute the map a, in general because it involves the maximum.

Finally we study convex subgroups. A subset C of a totally ordered set (S, \leq_S) is *convex* if $c \leq_S s \leq_S c'$ $(c, c' \in C, s \in S)$ implies $s \in C$. For a subset T of $(S, \langle s \rangle)$, the *convex hull* Conv_S (T) of T in S is the minimum convex subset that contains T. Namely,

$$
\text{Conv}_{S}(T) = \bigcap_{\{C \supset T : \text{convex}\}} C = \{s \in S : \exists t, t' \in T, t \leq_{S} s \leq_{S} t'\}.
$$

Let (G, \lt_G) be a left-ordered group and let A be a subgroup of G. We denote the restriction of \leq_G on A by \leq_A . We say a convex subgroup B of (A, \leq_A) is a $(G, <_G)$ -strongly convex if its convex hull Conv_G (B) is a subgroup of G.

Proposition 2.14. Let \lt_{χ} be an isolated ordering on $X = G *_{A} H$ as in The*orem* [1.3](#page-2-0)*.* If a convex subgroup B of A is both (G, \leq_G) - and (H, \leq_H) -strongly *convex, then* B *is* (X, \leq_X) -strongly convex. In particular, if B and B' are dif*ferent convex subgroups, then* $Conv_X(B)$ *and* $Conv_X(B')$ yield different convex *subgroups of* (X, \leq_X) *.*

Proof. The case $B = \{1\}$ is trivial so we assume that $B \neq \{1\}$. By induction on N, we prove that if $x \in \text{Conv}_X(B) \cap \mathcal{F}_N(X)$ then $xx' \in \text{Conv}_X(B)$ for any $x' \in \text{Conv}_X(B)$.

First assume that $x \in \mathcal{F}_{0.5}(X) = G \cup H$. For $x' \in \text{Conv}_X(B)$, take $b \in B$ so that $b^{-1} \leq x \leq x' \leq x b$. Then $xb^{-1} \leq x \leq x' \leq x \leq x b$. Since B is (G, \leq_G) and (H, \leq_H) -strongly convex, $xb, xb^{-1} \in Conv_G(B) \cup Conv_H(B) \subset Conv_X(B)$, hence $xx' \in Conv_X(B)$.

To show general case, assume that $x \in \mathcal{F}_N(X) - \mathcal{F}_{N-1}(X)$ and put $x = gy$ $(g \in G - A, y \in \mathcal{F}_{N-1}(X))$. We consider the case N is odd, since the case N is even is similar.

By Theorem $1.3(3)$ $1.3(3)$, A is a stepping so

$$
a(y) = \max_{\leq X} \{ a \in A : a \leq_X y \}
$$

exists. On the other hand, $x \in Conv_X(B)$ so there exists $b \in B \subset A$ such that $b^{-1} _X x _X b$. By definition of $a(y)$,

$$
b^{-1} \leq_X g a(y) <_X x <_X b
$$

hence $ga(y) \in Conv_X(B)$. We have assumed that B is a non-trivial convex subgroup of A, so $a_{\text{min}} \in B$. Since $1 \leq_X a(y)^{-1}y \leq_X a_{\text{min}}$, $a(y)^{-1}y \in \text{Conv}_X(B)$. By induction, $(a(y)^{-1}y)x' \in Conv_X(B)$ if $x' \in Conv_X(B)$. This shows that

$$
xx' = (ga(y))(a(y)^{-1}y)x' \in Conv_X(B)
$$

as desired. \Box

We close the paper by giving new examples of isolated orderings obtained by Theorem [1.3.](#page-2-0)

Example 2.15. Let B_3 be the 3-strand braid group

$$
B_3 = \mathbb{Z} *_{\mathbb{Z}} \mathbb{Z} = \langle x, y \colon x^2 = y^3 \rangle = \langle \sigma_1, \sigma_2; \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle.
$$

By Theorem [1.3,](#page-2-0) B_3 admits an isolated ordering $\langle p_D,$ which is known as the Duborvina-Dubrovin ordering [\[3,](#page-16-13) [6\]](#page-16-14). The Dubrovina-Dubrovin ordering is discrete with minimum positive element σ_2 . For $p > 1$, let $A = A_p$ be the kernel of the mod p abelianization map $e: B_n \to \mathbb{Z}/p\mathbb{Z}$. Since for $x \in B_3$

$$
\cdots \prec_{DD} x\sigma_2^{-1} \prec_{DD} x \prec_{DD} x\sigma_2 \prec_{DD} x\sigma_2^2 \prec_{DD} \cdots,
$$

A is a stepping with respect to $\langle D_D$. The maximum and minimum functions are given by

$$
a(x) = x\sigma_2^{-e(x)}
$$
, $a_+(x) = x\sigma_2^{p-e(x)}$ $(e(x) \in \{0, 1, ..., p-1\})$.

By Theorem [1.3,](#page-2-0)

$$
X = X_p
$$

= $\langle \sigma_1, \sigma_2; \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle *_{A_p} \langle s_1, s_2; s_1 s_2 s_1 = s_2 s_1 s_2 \rangle$
= $B_3 *_{A_p} B_3$

admits an isolated ordering $\lt x$. (One can apply the same construction for the Dubrovina-Dubrovin ordering on B_n for $n > 3$ to get more examples of groups admitting isolated orderings.)

The convex subgroup *B* of *A* generated by $\sigma_2^p = s_2^p$ $_2^p$, which is the minimal positive element of \langle *_{DD}* $|$ *A*, is $(B_3, \langle$ _{*DD*} $)$ -strongly convex. Hence by Proposi-tion [2.14,](#page-14-0) Conv_{*X*}(*B*) is a non-trivial proper convex subgroup of (X, \leq_X) .

On the other hand, By Theorem $1.3(3)$ $1.3(3)$, the $\lt x$ -minimum positive element is s_2^{1-p} $2^{1-p}\sigma_2$ hence (X, \leq_X) contains another non-trivial proper convex subgroup generated by s_2^{1-p} $2^{1-p} \sigma_2$. Thus (X, \leq_X) has at least two non-trivial proper convex subgroup.

Iterating this kind of construction, starting from Z we are able to construct isolated ordering with arbitrary many proper non-trivial convex subgroups.

References

- [1] V. Bludov and A. Glass, Word problems, embeddings, and free products of rightordered groups with amalgamated subgroup. *Proc. Lond. Math. Soc.* (3) **99** (2009), no. 3, 585–608. [Zbl 1185.06016](http://zbmath.org/?q=an:1185.06016) [MR 2551464](http://www.ams.org/mathscinet-getitem?mr=2551464)
- [2] H. H. Brungs and G. Törner, Ideal theory of right cones and associated rings. *J. Algebra* **210** (1998), no. 1, 145–164. [Zbl 0918.20048](http://zbmath.org/?q=an:0918.20048) [MR 1656418](http://www.ams.org/mathscinet-getitem?mr=1656418)
- [3] P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest, *Ordering braids.* Mathematical Surveys and Monographs, 148. American Mathematical Society, Providence, R.I., 2008. [Zbl 1163.20024](http://zbmath.org/?q=an:1163.20024) [MR 2463428](http://www.ams.org/mathscinet-getitem?mr=2463428)
- [4] P. Dehornoy, Monoids of O-type, subword reversing, and ordered groups. *J. Group Theory* **17** (2014), no. 3, 465–524. [Zbl 1329.20067](http://zbmath.org/?q=an:1329.20067) [MR 3200370](http://www.ams.org/mathscinet-getitem?mr=3200370)
- [5] N. Dubrovin, Rational closures of group rings of left-ordered groups. *Mat. Sb.* **184** (1993), no. 7, 3–48. In Russian. English translation, *Russian Acad. Sci. Sb. Math.* **79** (1994), no. 2, 231–263. [Zbl 0828.16028](http://zbmath.org/?q=an:0828.16028) [MR 1235288](http://www.ams.org/mathscinet-getitem?mr=1235288)
- [6] T. Dubrovina and T. Dubrovin, On braid groups. *Mat. Sb.* **192** (2001), no. 5, 53–64. In Russian. English translation, *Sb. Math.* **192** (2001), no. 5-6, 693–703. [Zbl 1037.20036](http://zbmath.org/?q=an:1037.20036) [MR 1859702](http://www.ams.org/mathscinet-getitem?mr=1859702)
- [7] N. Halimi and T. Ito, Cones of certain isolated left orderings and chain domains. *Forum Math.* **27** (2015), no. 5, 3027–3051. [Zbl 1341.06019](http://zbmath.org/?q=an:1341.06019) [MR 3393388](http://www.ams.org/mathscinet-getitem?mr=3393388)
- [8] T. Ito, Dehornoy-like left orderings and isolated left orderings. *J. Algebra* **374** (2013), 42–58. [Zbl 1319.06012](http://zbmath.org/?q=an:1319.06012) [MR 2998793](http://www.ams.org/mathscinet-getitem?mr=2998793)
- [9] T. Ito, Construction of isolated left orderings via partially central cyclic amalgamation. *Tohoku Math. J.* (2) **68** (2016), no. 1, 49–71. [Zbl 1339.06018](http://zbmath.org/?q=an:1339.06018) [MR 3476136](http://www.ams.org/mathscinet-getitem?mr=3476136)
- [10] V. Kopytov and N. Medvedev, *Right-ordered groups.* Siberian School of Algebra and Logic. Consultants Bureau, 1996. [Zbl 0852.06005](http://zbmath.org/?q=an:0852.06005) [MR 1393199](http://www.ams.org/mathscinet-getitem?mr=1393199)
- [11] S. McCleary, Free lattice-ordered groups represented as 2-2-transitive 1-permutation groups. *Trans. Amer. Math. Soc.* **290** (1985), no. 1, 69–79. [Zbl 0546.06013](http://zbmath.org/?q=an:0546.06013) [MR 0787955](http://www.ams.org/mathscinet-getitem?mr=0787955)
- [12] A. Navas, On the dynamics of (left) orderable groups. *Ann. Inst. Fourier (Grenoble)* **60** (2010), no. 5, 1685–1740. [Zbl 1316.06018](http://zbmath.org/?q=an:1316.06018) [MR 2766228](http://www.ams.org/mathscinet-getitem?mr=2766228)
- [13] A. Navas, A remarkable family of left-ordered groups: central extensions of Hecke groups. *J. Algebra* **328** (2011), no. 1, 31–42. [Zbl 1215.06010](http://zbmath.org/?q=an:1215.06010) [MR 2745552](http://www.ams.org/mathscinet-getitem?mr=2745552)
- [14] C. Rivas, Left-orderings on free products of groups. *J. Algebra* **350** (2012), no. 1, 318–329. [Zbl 1261.06021](http://zbmath.org/?q=an:1261.06021) [MR 2859890](http://www.ams.org/mathscinet-getitem?mr=2859890)
- [15] C. Rivas and R. Tessera, On the space of left-orderings of virtually solvable groups. *Groups Geom. Dyn.* **10** (2016), no. 1, 65–90. [Zbl 06558479](http://zbmath.org/?q=an:06558479) [MR 3460331](http://www.ams.org/mathscinet-getitem?mr=3460331)
- [16] A. Sikora, Topology on the spaces of orderings of groups. *Bull. London Math. Soc.* **36** (2004), no. 4, 519–526. [Zbl 1057.06006](http://zbmath.org/?q=an:1057.06006) [MR 2069015](http://www.ams.org/mathscinet-getitem?mr=2069015)

138 T. Ito

Received November 19, 2014

Tetsuya Ito, Department of Mathematics, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043, Japan

home page: <http://www.math.sci.osaka-u.ac.jp/~tetito/>

e-mail: tetito@math.sci.osaka-u.ac.jp

