
Groups Geom. Dyn. 11 (2017), 105–120

DOI 10.4171/GGD/390

Groups, Geometry, and Dynamics

© European Mathematical Society

Gradings on Lie algebras

with applications to infra-nilmanifolds

Jonas Deré1

Abstract. In this paper, we study positive as well as non-negative and non-trivial gradings

on �nite dimensional Lie algebras. The existence of such a grading on a Lie algebra is

invariant under taking �eld extensions, a result very recently obtained by Y. Cornulier and

we give a di�erent proof of this fact. Similarly, we prove that given a grading of one of

these types and a �nite group of automorphisms, there always exist a grading of the same

type which is preserved by this group. From these results we conclude that the existence

of an expanding map or a non-trivial self-cover on an infra-nilmanifold depends only on

the covering Lie group. Another application is the construction of a nilmanifold admitting

an Anosov di�eomorphism but no non-trivial self-covers and in particular no expanding

maps, which is the �rst known example of this type.

Mathematics Subject Classi�cation (2010). Primary: 17B70; Secondary: 20F18, 22E25,

37F15.

Keywords. Infra-nilmanifolds, nilpotent Lie algebras, expanding maps, Anosov di�eomor-

phisms.

Let E � C be a sub�eld of the complex numbers and n a �nite dimensional Lie

algebra over E. A grading of the Lie algebra n is a decomposition of n as a direct

sum

n D
M

i2Z

ni

of subspaces ni � n such that Œni ; nj � � niCj for all i; j 2 Z. We call the grading

positive if ni D 0 for all i � 0 and non-negative if ni D 0 for all i < 0. Every Lie

algebra has a non-negative grading given by n D n0 and we call this the trivial

grading of n. An automorphism ' 2 Aut.n/ preserves the grading if '.ni / D ni

for all i 2 Z.

1 The author is supported by a Ph.D. fellowship of the Research Foundation – Flanders
(FWO). Research supported by the research Fund of the KU Leuven.
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There is a strong relation between positive gradings and expanding automor-

phisms of Lie algebras. An automorphism ' 2 Aut.n/ is called expanding if

j�j > 1 for all eigenvalues � of '. Let n be a Lie algebra over E with a positive

grading n D
L

i2Z ni . Given a � 2 E with j�j > 1, there exists an expanding

automorphism ' of n which maps an element x 2 ni to �ix. Moreover, if  is an

automorphism of n which preserves the grading, then  will commute with the

expanding automorphism '.

In [5, Theorem 3.4] it is shown that this construction also works the other way

around. Given an expanding automorphism ' we �nd a positive grading such that

every automorphism  commuting with ' preserves the positive grading. The

result in [5] was only stated in the case where E D Q but in fact the proof works

for any �eld E.

There is a similar relation between non-trivial and non-negative gradings and

partially expanding automorphisms. We call an automorphism partially expand-

ing if for every eigenvalue � of ' we have � D 1 or j�j > 1 and there is at least one

eigenvalue � ¤ 1. Therefore, the study of these two types of gradings on Lie al-

gebras preserved by a given automorphism is equivalent to the study of (partially)

expanding automorphisms which commute with this automorphism.

In this paper, we use several notations and results about linear algebraic groups.

We refer the reader to [1, 10, 11] for more background about these groups. Note that

the automorphism group of a Lie algebra is an example of a linear algebraic group.

In the �rst section, we show that the existence of a positive grading on a Lie algebra

is invariant under taking �eld extensions, see Theorem 1.2. The second main

result, namely Theorem 3.1, shows that given a �nite group of automorphisms,

there always exists a grading preserved by this group. The same results also hold

for non-trivial and non-negative gradings on Lie algebras. In the third section, we

combine these main results about Lie algebras with [5, Theorem 4.2.] to get the

following classi�cation of infra-nilmanifolds admitting an expanding map.

Theorem 3.1. Let �nG be an infra-nilmanifold modeled on a Lie group G with
corresponding Lie algebra g. Then the following are equivalent:

.1/ the infra-nilmanifold �nG admits an expanding map;

.2/ the Lie algebra g has a positive grading;

.3/ the Lie algebra g has an expanding automorphism.

Again, there is a similar classi�cation for non-trivial self-covers of �nG,

corresponding to non-trivial and non-negative gradings. As a consequence of this

theorem we construct a nilmanifold admitting an Anosov di�eomorphism but no

expanding map in the last section.

Some of these results were proved independently and by di�erent methods

in [2] by Y. Cornulier. More detailed references to the work of Y. Cornulier are

given throughout paper.
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1. Gradings under �eld extensions

From now on,K will always denote a sub�eld of the complex numbers C. If G �

GL.n;C/ is a linear algebraic K-group, we denote by G.K/ D G \ GL.n;K/

the subgroup of K-rational points in G. An element x 2 G is expanding if for

all the eigenvalues � of x, we have j�j > 1. We call an automorphism partially

expanding if for every eigenvalue � of x we have � D 1 or j�j > 1 and x has at

least one eigenvalue ¤ 1.

In this section we show that the existence of a positive grading is invariant

under �eld extensions. First, we give a proof in the more general case of linear

algebraic groups.

Theorem 1.1. Let K � L � C be �eld extensions and G a linear algebraic K-
group. ThenG.K/ has an expanding element if and only ifG.L/ has an expanding
element.

Proof. We have a natural inclusion G.K/ � G.L/, so if G.K/ has an expanding

element, also G.L/ has an expanding element. For the other implication, it is

su�cient to prove it in the case where L D C. Since every power of an expanding

element is again expanding, we can also assume that the group G is connected.

Let x 2 G.C/ D G be an expanding element. By the multiplicative Jordan

decomposition, we can assume that x is semisimple. Every semisimple element

ofG lies in a maximal torus, so the existence of an expanding element is equivalent

to the existence of an expanding element in a maximal torus. Since all maximal

tori are conjugate and G also contains a maximal torus de�ned over K, we can

assume that G is a K-torus.

From [1, Section 8.15] it follows that every K-torus G can be written as

G D GaGd where Ga is an anisotropic subtorus and Gd is a K-split subtorus.

Since every K-split torus is conjugated over GL.n;K/ to a K-closed subgroup

of D.n;C/, we can assume that Gd is a subgroup of D.n;C/. Let x 2 G be an

expanding element and write x D yz with y 2 Ga and z 2 Gd . We show that

z is also expanding and hence that the K-split torus Gd contains an expanding

element. If not, we can write z up to permutation of the eigenvalues and thus up

to conjugation by an element of GL.n;Q/ � GL.n;K/ as

z D

�

Z1 0

0 Z2

�

where Z1 is a diagonal matrix with only eigenvalues � 1 in absolute value and

Z2 a diagonal matrix with only eigenvalues> 1 in absolute value. Since the torus

Ga commutes with z, every element t 2 Ga can be written as

t D

�

At 0

0 Bt

�
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for some invertible matrices At and Bt . Consider the character �WGa ! C� with

�.t/ D det.At /. This morphism is clearly de�ned over K and hence must be

trivial. In particular, for the element y we have det.Ay/ D 1. This would imply

that x is not expanding, a contradiction, and we conclude that Gd contains an

expanding element.

So we are left to prove the theorem in the case where G is a K-split torus,

or equivalently, in the case of a K-closed subgroup of D.n;C/. Note that the

expanding elements form an open subset of G.R/ and G.C/ for the Euclidean

topology. The case K 6� R is then immediate since G.K/ forms a dense subset

of G for the Euclidean topology. In the case K � R, we only have that G.K/ is a

dense subset of G.R/ for the Euclidean topology and therefore it su�ces to show

that G.R/ has an expanding element.

From [1, Section 8.2] it follows that G is de�ned by character equations, so as

the intersection of kernels of characters. Every character D.n;C/ ! C� is of the

form
0

B

B

B

@

�1 0 : : : 0

0 �2 : : : 0
:::

:::
: : :

:::

0 0 : : : �n

1

C

C

C

A

7�! �
k1

1 �
k2

2 : : : �kn
n

for some ki 2 Z. This implies that if an element

0

B

B

B

@

�1 0 : : : 0

0 �2 : : : 0
:::

:::
: : :

:::

0 0 : : : �n

1

C

C

C

A

2 G;

then also
0

B

B

B

@

j�1j 0 : : : 0

0 j�2j : : : 0
:::

:::
: : :

:::

0 0 : : : j�nj

1

C

C

C

A

2 G;

since the latter will also satisfy the same character equations. By applying this to

an expanding element ofG, we get an expanding element ofG.R/ and this �nishes

the proof. �

LetE � C be any �eld and n a nilpotent Lie algebra over the �eldE. IfE � F

is a �eld extension ofE, then we can construct the Lie algebra nF D F ˝E n over

the �eld F . The standard example will be the case where F D C and we call nC

the complexi�cation of the Lie algebra n. The automorphism groupG D Aut.nC/

is a linear algebraic E-group and we have that Aut.n/ D G.E/.

By applying Theorem 1.1 to the automorphism group of a Lie algebra, we have

the following consequence.
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Theorem 1.2. Let E � F � C be �eld extensions and n a Lie algebra over
the �eld E. Then n admits an expanding automorphism if and only if nF admits
an expanding automorphism. Equivalently, the Lie algebra n admits a positive
grading if and only if the Lie algebra nF admits a positive grading.

At this point, we want to remark here that Yves Cornulier presented the �rst

proof of this theorem and this over all �elds of characteristic 0 in [2, Theorem 1.4].

The approach we present here was developed independently from [2, Theorem 1.4]

and uses di�erent methods.

More or less the same proof also works for partially expanding elements

instead of expanding elements. One di�erence in the case of partially expanding

elements is that the set of all partially expanding elements does not form an open

subset of G.R/ or G.C/ for the Euclidean topology. If G is a K-closed subgroup

of D.n;C/ containing a partially expanding element with the �rst k eigenvalues

equal to 1, then we restrict to the subtorus

zG D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0

B

B

B

@

�1 0 : : : 0

0 �2 : : : 0
:::

:::
: : :

:::

0 0 : : : �n

1

C

C

C

A

2 G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1 D � � � D �k D 1

9

>

>

>

=

>

>

>

;

< G

and the proof works for this subtorus zG.

If we write a partially expanding automorphism of zG as x D yz with y 2 Ga

and z 2 Gd for an anisotropic torus Ga and a K-split torus Gd , we can show just

as in Theorem 1.1 that z has no eigenvalues of absolute value < 1. This implies

that the K-split torus Gd has a partially expanding element. In particular we get

the following result.

Theorem 1.3. Let n be a Lie algebra over a �eld E � C and E � F � C a �eld
extension. Then n admits a partially expanding automorphism if and only if nF

admits a partially expanding automorphism. Equivalently, n admits a non-trivial
and non-negative grading if and only if nF admits a non-trivial and non-negative
grading.

2. Gradings preserved by automorphisms

In this section, we study gradings preserved by automorphisms which lie in a

reductive subgroup of the automorphism group. Note that all �nite subgroups

and diagonalizable groups of automorphisms satisfy this property, since they only

contain semisimple elements. Again, we �rst consider the more general case of

linear algebraic groups.
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Theorem 2.1. Let G be a linear algebraic K-group with an expanding element
and H � G.K/ a subgroup contained in a reductive subgroup of G. Then there
exists an expanding element of G.K/ which commutes with every element of H .

Proof. The elements of G which commute with every element of H form a

K-closed subgroup of G, so because of Theorem 1.1 it su�ces to show that G

contains an expanding element which commutes with every element of H .

Since H is a subgroup of a reductive subgroup of G, it follows from From

[10, Chapter VIII] that there exists a Levi factor L of G such that H � L. Every

expanding semisimple element of G also lies in a Levi factor. Because all Levi

factors ofG are conjugate, we know that if the groupG has an expanding element,

the Levi factor L (and therefore also L0) has an expanding element.

The group L0 is by de�nition reductive and thus L0 can be written as

L0 D Z � DL0

where Z D Z.L/0 is the identity component of the center of L and DL0 D

ŒL0; L0� is the commutator subgroup, see [1, Section 14.2]. Take x an expanding

element of L0, then we can write it as x D zy with y 2 DL0 and z 2 Z. Just

as above in Theorem 1.1, we claim that z is an expanding element. If z is not

expanding, we can write z up to conjugation in GL.n;C/ as

z D

�

Z1 0

0 Z2

�

where Z1 is an invertible matrix with only eigenvalues � 1 in absolute value and

Z2 an invertible matrix with only eigenvalues > 1 in absolute value. Since z lies

in the center of L0, every element t 2 L0 is of the form

t D

�

At 0

0 Bt

�

for some invertible matrices At and Bt . Consider now the character �WL0 ! C�

given by �.t/ D det.At /. Since y 2 DL0, we have �.y/ D 1 and this is a

contradiction since x D zy is expanding. We deduce that the connected center of

L0 contains an expanding element.

The group L0 has �nite index in L, hence there exist elements l1; : : : ; lk 2 L

such that L D l1L
0 t � � � t lkL

0. The subgroup Z is a characteristic subgroup in

L, so we have liZl
�1
i D Z for all 1 � i � k. Fix an expanding element z 2 Z,

then the element

z0 D
Y

1�i�k

lizl
�1
i 2 Z

commutes with every element li with 1 � i � k and therefore also with every

element of L. The group H is a subgroup of L and thus z0 commutes with every

element of H . Since all the elements lizl
�1
i 2 Z are expanding and commute,

it follows that z0 is expanding. This �nishes the proof. �
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By applying this theorem to the linear algebraic group Aut.nC/ of a rational

Lie algebra n and taking H a �nite subgroup, we get the following result.

Theorem 2.2. Let n be a rational Lie algebra which admits an expanding au-
tomorphism and H � Aut.n/ a �nite subgroup. Then there exists an expanding
automorphism of n which commutes with every element of H . Equivalently, if n
admits a positive grading, it also admits a positive grading which is preserved
by H .

The same result holds for partially expanding maps with the same proof.

Theorem 2.3. Let n be a rational Lie algebra which admits a partially expand-
ing automorphism and H � Aut.n/ a �nite subgroup. Then there exists a par-
tially expanding automorphism of n which commutes with every element of H .
Equivalently, if n admits a non-negative and non-trivial grading, it also admits a
non-negative and non-trivial grading which is preserved by H .

These results were proved independently and by di�erent methods in [2, Corol-

lary 3.26].

3. Applications to infra-nilmanifolds

In this section we apply the main results to expanding maps and non-trivial self-

covers on infra-nilmanifolds. First we �x some notation about infra-nilmanifolds,

more background can be found in [3, 13].

Let G be a connected and simply connected nilpotent Lie group and Aut.G/

the group of continuous automorphisms of G. De�ne the a�ne group A�.G/ as

the semi-direct productG Ì Aut.G/ which acts on G in a natural way. An almost-

Bieberbach group � � G Ì H , where H is any �nite subgroup of Aut.G/, is a

discrete, torsion-free subgroup such that the quotient �nG is compact. We will

always assume thatH is the projection of � on its second component and we call

H the holonomy group of �. The quotient space �nG is a closed manifold and we

call�nG an infra-nilmanifold modeled on the Lie groupG. If the holonomy group

is trivial, we call �nG a nilmanifold. Every almost-Bieberbach group gives rise

to a rational Mal’cev completion NQ which corresponds to a rational Lie algebra

n, equipped with a natural representation H ! Aut.NQ/.

Let ˛ 2 A�.G/ be an a�ne transformation satisfying ˛�˛�1 � �. Then ˛

induces a di�erentiable map N̨ on the infra-nilmanifold �nG, given by

N̨ .�g/ D � ˛g:

The induced map N̨ is called an a�ne infra-nilmanifold endomorphism. The

eigenvalues of ˛ are de�ned as the eigenvalues of the linear part of ˛, where
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eigenvalues of an automorphism ofG are the eigenvalues of the corresponding Lie

algebra automorphism on the Lie algebra ofG. If ˛�˛�1 D �, then the map N̨ will

be a di�eomorphism and we call N̨ an a�ne infra-nilmanifold automorphism. We

call N̨ expanding if ˛ only has eigenvalues > 1 in absolute value and hyperbolic

if it has no eigenvalue of absolute value 1.

An expanding map f WM ! M on a closed Riemannian manifold M is

a di�erentiable map such that there exists constants c > 0 and � > 1 with

kDf n.v/k � c�nkvk for all v 2 TM and all n � 1. By a result of Gromov, see [8],

we know that every expanding map is topologically conjugate to an expanding

a�ne infra-nilmanifold endomorphism. So up to homeomorphism, the infra-

nilmanifolds are the only manifolds admitting an expanding map.

Anosov di�eomorphisms are de�ned in a similar way, see [14] and every

hyperbolic a�ne infra-nilmanifold automorphism is an Anosov di�eomorphism.

It follows from [4, Corollary 3.5] that the existence of an Anosov di�eomorphism

on a nilmanifold NnG depends only on the rational Mal’cev completion NQ. If

NnG admits an Anosov di�eomorphism, we call the Lie algebra n corresponding

to NQ Anosov.

In [5] is is showed that the existence of an expanding map depends only on

the rational Mal’cev completion NQ and the representation H ! Aut.NQ/.

By combining Theorem 1.2 and Theorem 2.2, we have a complete algebraic

description of the infra-nilmanifolds admitting an expanding map.

Theorem 3.1. Let �nG be an infra-nilmanifold modeled on a Lie group G with
corresponding Lie algebra g. Then the following are equivalent:

.1/ the infra-nilmanifold �nG admits an expanding map;

.2/ the Lie algebra g has a positive grading;

.3/ the Lie algebra g has an expanding automorphism.

As a corollary, we see that the existence of an expanding map depends only on

the covering Lie group G.

Corollary 3.2. LetM1 andM2 be two infra-nilmanifolds modeled on the same Lie
group. ThenM1 admits an expanding map if and only ifM2 admits an expanding
map.

This is very di�erent from the situation for Anosov di�eomorphisms, where

the existence depends on the rational form n and not only on the covering Lie

group G.
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Example. LetR be any commutative ring with unity and consider the Heisenberg

group

H3.R/ D

8

<

:

0

@

1 x z

0 1 y

0 0 1

1

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x; y; z 2 R

9

=

;

over the ring R. Take the lattice � D H3.Z/ ˚ H3.Z/ in the Lie group

G D H3.R/˚H3.R/. Then the nilmanifold �nG does not admit an Anosov dif-

feomorphism, but there are nilmanifolds modeled onG which do admit an Anosov

di�eomorphism, see [12].

Similarly as for expanding maps, we can combine Theorem 1.3 and Theo-

rem 2.3 with the result [5, Theorem 5.4.] to �nd a complete algebraic characteri-

zation of the infra-nilmanifolds admitting a non-trivial self-cover, i.e. a self-cover

which is not a homeomorphism.

Theorem 3.3. Let �nG be an infra-nilmanifold modeled on a Lie group G with
corresponding Lie algebra g. Then the following are equivalent:

(1) �nG admits a non-trivial self-cover;

(2) g has a non-negative and non-trivial grading;

(3) g has a partially expanding automorphism.

So also the existence of a non-trivial self-cover depends only on the covering

Lie group G.

Another application of Theorem 2.1 is the following result.

Theorem 3.4. Let �nG be an infra-nilmanifold admitting an expanding map and
an Anosov di�eomorphism. Then there exists an expanding map and an Anosov
di�eomorphism on �nG which commute.

Proof. If �nG admits an Anosov di�eomorphism, then [6, Theorem A] implies

that there exists a hyperbolic automorphism ' of n, i.e. with no eigenvalues of

absolute value 1, such that ' has characteristic polynomial in ZŒX�, j det.'/j D 1

and ' commutes with every element of H � Aut.n/. We can also assume that

' is semisimple because of the multiplicative Jordan decomposition. Take T the

smallest linear algebraic subgroup of Aut.nC/ which contains '. The group T

will also commute with every element ofH and the groupHT forms a reductive

subgroup of Aut.nC/. By Theorem 2.1, we conclude that there exists a positive

grading n D
L

i>0 ni on Aut.n/ which is preserved by ' and every element ofH .

From the proof of [6, Theorem A], it follows that some power 'k of ' satis�es

'k�'�k D � and thus induces a hyperbolic a�ne infra-nilmanifold automor-

phism on �nG. Let p be any prime and consider the expanding automorphisms
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 p W n ! n which are given by p.x/ D pix for all x 2 ni . By the proof of [5, The-

orem 4.2.] we know that there exists a prime p and l > 0 such that  l
p� 

�l
p � �.

The expanding a�ne infra-nilmanifold endomorphism induced by  l
p commutes

with the Anosov di�eomorphisms induced by 'k and this ends the proof. �

Theorem 3.4 is also true for non-trivial self-covers on infra-nilmanifolds by

replacing positive grading by non-trivial and non-negative grading in the proof.

4. New type of example

As another application of Theorem 2.1, we construct a nilmanifold which admits

an Anosov di�eomorphism but no non-trivial self-cover and so also no expanding

map. This is the �rst example of a nilmanifold satisfying these properties. On

the other hand, it is easy to give examples of nilmanifolds admitting an expanding

map but no Anosov di�eomorphism, e.g. the nilmanifold H3.Z/nH3.R/.

First, we will construct a rational Lie algebra n as a quotient of a free nilpotent

Lie algebra g by using the Hall basis of such a Lie algebra. Next, we give a general

way of constructing automorphisms on this Lie algebra n. In this way, we give

a �nite group of automorphisms H such that there exist no partially expanding

automorphism of n commuting with H . By Theorem 1.1 and Theorem 2.1 this

shows that there are no partially expanding automorphisms on this Lie algebra nor

on any rational form of the Lie algebra nR. Finally, we use the techniques of [7]

to prove that the Lie algebra nR has a rational form which is Anosov. So every

nilmanifold corresponding to this rational form then has the desired properties.

Hall basis. Let g be the free 6-step nilpotent Lie algebra over Q on 4 generators.

Denote by X1; X2; X3; X4 a set of generators for the Lie algebra g. Consider the

natural grading g1 ˚ � � � ˚ g6 for g, where g1 is the vector space spanned by

X1; : : : ; X4. We say that the vector a has degree i if a 2 gi and we denote this as

deg.a/ D i . We will use the shorthand notation Œa; b; c� with a; b; c 2 g for the

Lie bracket Œa; Œb; c�� and similarly for longer brackets. If Y and Z are subsets of

g, then we write ŒY; Z� for the Lie algebra generated by all elements Œy; z� with

y 2 Y; z 2 Z. The Lie algebra n we construct will be a double quotient of this

free Lie algebra g.

A explicit basis for the Lie algebra g as vector space over Q is the Hall basis.

The elements of this basis are constructed inductively: given the basis for gi with

1 � i � k, we build the basis for gkC1. We �x an order relation on the basis vectors

of g1; : : : ; gk, assuming that a < b if deg.a/ < deg.b/. The basis vectors for gkC1

are then given by Lie brackets Œa; b� 2 gkC1 with deg.a/ C deg.b/ D k C 1 and

a < b with the extra condition that if b D Œb1; b2� then a � b1. For more details
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and a proof that these vectors indeed form a basis, we refer to [9]. In our case we

will always assume that the order relation satis�es X1 < X2 < X3 < X4 on g1, so

Xi1 < Xi2 if and only if i1 < i2. From now on we will �x a Hall basis for g and

an order relation on the basis vectors.

Denote by

g0 D Œg; g� D g2 ˚ � � � ˚ g6

the derived subalgebra of g and take the subalgebra m D Œg0; g0� � g4 ˚ g5 ˚ g6

which is an ideal of g. It is well known that the elements ŒXi1 ; : : : ; Xik � with

i1 � � � � � ik�1 < ik of the Hall basis for g project to a basis for the quotient gām.

Therefore all the other elements of the Hall basis form a basis for m as a vector

space.

Lemma 4.1. Let ˇ, 
 and ı be the Hall bases of g2, g3 and g4 respectively. Then
the Hall basis of g6 \ m is given by the set B D B1 [ B2 where

B1 D
®

Œb; d � j b 2 ˇ; d 2 ı; d ¤ Œb1; b2� with bi 2 ˇ; b1 > bº;

B2 D¹Œc1; c2� j ci 2 
; c1 < c2º:

Note that if b < b1 < b2, then the Jacobi identity gives us

Œb; b1; b2� D Œb1; b; b2�� Œb2; b; b1�

and the last two vectors are elements of the Hall basis. This implies that every

element of Œg2; g4� can be written as a linear combination of elements in B1.

Similarly every element of Œg3; g3� can be written as a linear combination of

elements in B2.

Proof. The only other possibility for basis vectors in g6 \m is ŒXi ; e�with e in the

Hall basis for g5. Note that e is not given by the Lie bracket between two vectors

of degree 2 and 3, since ŒXi ; e� is in the Hall basis. So e is of the form ŒXj ; d � with

d 2 ı. Again, the vector d is not equal to the Lie bracket of two vectors of degree

2 since ŒXj ; d � is in the Hall basis. So d is of the form d D ŒXk ; c� with c 2 
 .

But this implies that ŒXi ; e� D ŒXi ; Xj ; Xk ; c� … m. �

Construction of the Lie algebra n. Let g be the free nilpotent Lie algebra on

4 generators over Q as in the previous paragraph. Every permutation s 2 S4

determines an automorphism 's of g which is given by the relations 's.Xi / D

Xs.i/ on the generators. Consider the automorphism ˛ 2 Aut.g/ of order 4 which

is induced by the permutation .1234/ 2 S4.

Let I be the smallest ideal of g such that

ŒXi ; X1; X3�; ŒXi ; X2; X4� and ŒXi1 ; Xi2 ; Xi3; Xi4 � 2 I
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for all i; ij 2 ¹1; : : : ; 4º with the indices ij distinct. From the Jacobi identity it

follows that also

ŒŒXi1 ; Xi2 �; Xi3; Xi4 � D �ŒXi3 ; Xi4; Xi1 ; Xi2�C ŒXi4 ; Xi3; Xi1 ; Xi2� 2 I

for all distinct ij 2 ¹1; : : : ; 4º. The ideal I is a graded ideal, meaning that I is the

direct sum of the vector spaces Ik D I \gk . Let Qn be the quotient Lie algebra gāI
and denote by QpW g ! Qn the natural projection map. The ideal I is invariant under

˛, i.e. ˛.I / D I and hence ˛ induces a map Q̨ W Qn ! Qn.

Consider the vector v D ŒŒX4; X3; X4�; X2; X1; X2� 2 g6 and write Qp.v/ D w.

The vector space spanned by Qp .v � ŒX2; X4�/ D w � Qp.ŒX2; X4�/ 2 Qn is an ideal

by de�nition of the Lie algebra Qn. Let J be the smallest ideal of Qn containing this

vector and which is invariant under Q̨ . Since Q̨ 2.v/ D �v the dimension of J is

equal to 2. Consider the Lie algebra n D QnāJ with projection map pW g ! n. The

automorphism Q̨ induces an automorphism N̨ 2 Aut.n/ of order 4.

We start by showing that Qp.v/ D w ¤ 0.

Lemma 4.2. The vector v satis�es Qp.v/ ¤ 0 for QpW g ! Qn the projection map as
above.

Proof. Since v 2 m \ g6, it su�ces to show that v … I6 \ m. We express the

generators of I6 \m in terms of the Hall basisB D B1 [B2 of g6 \m as explained

in Lemma 4.1. Note that v or �v is an element of B2.

From the Jacobi identity, it follows that the vector space I6 \ m satis�es

I6 \ m D Œg2; I4�C Œg3; I3�C Œg1; g1; I4 \ m�:

The elements of Œg2; I4� are linear combinations of elements in B1. Let 
 be the

Hall basis for g3, then the vector space Œg3; I3� is spanned by vectors of the form

Œc; ŒXi ; X1; X3�� and Œc; ŒXi ; X2; X4�� for c 2 
 and 1 � i � 4. These vectors

can easily be expressed in terms of the elements of B2. This already implies that

v … Œg3; I3�.

To describe the generators of Œg1; g1; I4 \ m� in the Hall basis, note that

ŒXj ; b1; b2� D Œb1; Xj ; b2� � Œb2; Xj ; b1�

and thus

ŒXi ; Xj ; b1; b2� D Œb1; Xi ; Xj ; b2�C ŒŒXi ; b1�; ŒXj ; b2��

� ŒŒXi ; b2�; ŒXj ; b1��� Œb2; Xi ; Xj ; b1�

for all Œb1; b2� 2 I4. By expressing the vectors Œb1; Xi ; Xj ; b2� and Œb2; Xi ; Xj ; b1�

in the Hall basis, we only get elements ofB1 by using the remark under Lemma 4.1.

On the other hand, the vector ŒŒXi ; b1�; ŒXj ; b2�� � ŒŒXi ; b2�; ŒXj ; b1�� is expressed

only in terms of vectors in X2. The only way of getting the vector ˙v in this
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expression is in the case where i D 4; j D 2; b1 D ˙ŒX3; X4� and b2 D ˙ŒX1; X2�

or in the situation with i; j and b1; b2 interchanged. In both cases, the other vector

is up to sign equal to

ŒŒX2; X3; X4�; X4; X1; X2� D ŒŒX3; X2; X4�; X4; X1; X2�

� ŒŒX4; X2; X3�; X4; X1; X2�;

where these last two vectors are up to sign in X2. The �rst vector lies in Œg3; I3�,

but the second vector ŒŒX4; X2; X3�; X4; X1; X2� is not an element of Œg3; I3�. This

last statement can be checked by using the expression of the generators of Œg3; I3�

in terms of the basis B2. We conclude that v … I . �

From Lemma 4.2 it follows that p.v/ ¤ 0.

Lemma 4.3. Let v D ŒŒX4; X3; X4�; X2; X1; X2� 2 g and n the Lie algebra as
above with projection map pW g ! n. Then p.v/ ¤ 0.

Proof. The vector Qp.v/ ¤ 0 by Lemma 4.2. Therefore Qp.v/; Qp.ŒX1; X3�/, and

Qp.ŒX2; X4�/ are linearly independent in Qn since I is a graded ideal and I2 D

I \ g2 D 0. Assume that p.v/ D 0, then the ideal J contains the vectors

Qp.v/; Qp.ŒX1; X3�/ and Qp.ŒX2; X4�/. This is impossible since the dimension of J is

equal to 2. �

Automorphisms on n. By the explicit construction of the Lie algebra n as a

quotient of the free Lie algebra g we can give a general way of constructing

automorphisms on nE for any �eld extensionE � Q. Consider the linear subspace

gE
1 of gE spanned by X1; : : : ; X4. Take �1; : : : ; �4 2 E such that �1�2�3�4 D 1

and consider the linear map gE
1 ! gE

1 given by

Xi 7�! �iXi :

This map uniquely extends to an automorphism

'W gE �! gE

and it is easy to see that it also induces an automorphism N' on the Lie algebra nE .

Take the basis xX1; : : : ; xX4 for the vector space nE=ŒnE ; nE �. Under the natural

projection map

� W Aut.nE / �! Aut.nE=ŒnE ; nE �/ Š GL.4; E/;

the automorphism N' is mapped to the diagonal matrix with eigenvalues �1; �2; �3

and �4. This will be an important construction of automorphisms on the Lie

algebra nE .

As a consequence of this construction for automorphisms, we have the follow-

ing proposition.
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Proposition 4.4. The Lie algebra n has no partially expanding automorphisms.

Proof. Let H be the subgroup of GL.4;Q/ generated by the matrices
0

B

B

@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

A

and

0

B

B

@

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

1

C

C

A

:

This subgroup is isomorphic to Z2 ˚ Z2 and the centralizer of H in GL.4;Q/

is given by the diagonal matrices D.n;Q/. As described just above this theorem,

each of the generators of H above induces an automorphism of the Lie algebra n

and thus we get a faithful representation i WH ! Aut.n/.

Assume that n does have a partially expanding automorphism '. By Theo-

rem 2.1, we can assume that ' commutes with every element of the �nite group

i.H/. Consider the vector space n=Œn; n� with basis xX1; : : : ; xX4 and the natural

projection map

� W Aut.n/ �! Aut.n=Œn; n�/ Š GL.4;Q/:

Since �.'/ lies in the centralizer of H , we know that

�.'/ D

0

B

B

@

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

1

C

C

A

:

The vector p.v/, with v as in the de�nition of n above, is then an eigenvector of '

with eigenvalue �1�
2
2�3�

2
4 and p.ŒX2; X4�/ is an eigenvector of eigenvalue �2�4.

Since p.v/ D p.ŒX2; X4�/ ¤ 0 by Lemma 4.3, it must hold that �1�2�3�4 D 1.

This is a contradiction since ' is a partially expanding automorphism. �

Anosov Lie algebra. A rational form of a real Lie algebra n is a rational subal-

gebra m � n such that mR D R ˝ m D n. The paper [7] gives a general way of

constructing rational forms of real Lie algebras which are Anosov. In particular,

we will use [7, Corollary 2.7] to show that the real Lie algebra n has a rational

form which is Anosov.

Proposition 4.5. The Lie algebra nR has a rational form which is Anosov.

Proof. Take Q � E � R a �eld extension with Galois group Gal.E;Q/ Š Z4 and

denote by � a generator of Gal.E;Q/. Let � be a unit Pisot number inE and write

�i D � i�1.�/. By squaring � if necessary, we can assume that �1�2�3�4 D 1:

Take 'W n ! n the automorphism induced by the linear map that maps

Xi �! �iXi ;
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as explained above Proposition 4.4.

All eigenvalues of the automorphism ' are products of the algebraic units �i

of length at most 6. Note that � satis�es the full rank condition (see [7]), meaning

that if
4

Y

j D1

�
dj

j D ˙1;

it holds that d1 D d2 D d3 D d4. Therefore, the only possibility to get an

eigenvalue of absolute value 1 is �1�2�3�4. By construction of the Lie algebra
Qn, all the eigenvectors with eigenvalue �1�2�3�4 lie in I , so this eigenvalue does

not occur. Hence, ' has no eigenvalues of absolute value 1.

Consider the representation �W Gal.E;Q/ ! Aut.n/ given by �.�/ D N̨ . The

maps � and ' satisfy the conditions of [7, Corollary 2.7], where the subspaces V�

are the eigenspaces of the map ' and the map f of the theorem is equal to '. This

implies that nE (and therefore also nR) has a rational form which is Anosov. �
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