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1. Introduction

Given an in�nite, �nitely presented group �, two basic decision problems posed

by Dehn [21] in 1911 are the word and conjugacy problems. In 1927, in solving the
word problem for free groups, Schreier [61] proved that free groups are residual
�nite. That seems to be the �rst connection between decision problems and
residual properties. In 1940, Mal0cev [47] proved that �nitely presented, residually
�nite groups have a solution to the word problem, and noted a similar connection
between the conjugacy problem and conjugacy separability in [48].

Once an algorithm to solve the word or conjugacy problem is given, one can
study the e�ciency of the algorithm. For free groups, it is straightforward to see
that both problems have algorithms that terminate in linear steps as a function
of word length via cyclic reduction. Bou-Rabee [8] introduced a function F�.n/

that quanti�ed the e�ciency of the solution to the word problem on � given by
residual �niteness. We say a group � is residually �nite if for each 
 2 � with

 ¤ 1, there exists a homomorphism 'W� ! Q with jQj < 1 and '.
/ ¤ 1.
The function introduced by Bou-Rabee measures the e�ciency by the size of the
groups Q needed over all the elements of length at most n in the veri�cation of
residual �niteness. Several papers have addressed the growth rate of this function
for various classes of groups; [8], [9], [10], [11], [13], [14], [15], [17], [19], [35], [36],
[37], [38], [51], [52], [59], and [67]. By work of Mal0cev [47], a �nitely generated
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linear group � is residually �nite. In [15], using an e�ective proof of [47], it was
shown that F�.n/ � nd where d depends only on a linear realization of �.

We say that � is conjugacy separable if for any non-conjugate 
; � 2 �,
there exists a homomorphism 'W� ! Q with '.
/; '.�/ not conjugate in Q
and jQj < 1. One of the goals of this article is to extend some of the above
results with conjugacy separability in place of residual �niteness. Unfortunately,
issues arise immediately. Stebe [65] proved that the linear groups SL.n;Z/ are
not conjugacy separable for n > 2. More generally, the groups of integer points
of a semi-simple Q-algebraic group with the congruence subgroup property are
never conjugacy separable; see [54, Chapter 8]. However, free and surface groups
[65, 46] (see also [50] and [69]), virtual polycyclic groups [23, 58], fundamental
groups of compact, orientable 3-manifolds [31], and right-angled Artin groups
[66] are conjugacy separable; see also [20] for more examples.

A faithful linear representation reduces the veri�cation of the non-triviality
of an element to showing some matrix coe�cient is non-zero. We want a similar
solution to the conjugacy problem through representation theory and must replace
the coe�cients of the matrix by conjugacy invariants. We use traces and the
following properties to e�ectively distinguish conjugacy classes.

(A) There exists an integer n and � 2 Hom.�; SL.n;C// such that Tr.�.
// ¤

Tr.�.�// for any non-conjugate 
; � 2 �.

(B) For each 
 2 �, there exists �
 2 Hom.�; SL.n
 ;C// such that Tr.�
 .
// ¤

Tr.�
 .�// for every non-conjugate � 2 �.

(C) For any �nite set S D ¹
iº
s
iD1 of conjugacy classes in �, there exists

�S 2 Hom.�; SL.nS ;C// such that Tr.�S .
i // ¤ Tr.�S .
j // for 
i ; 
j 2 S

and i ¤ j .

(D) For each non-conjugate 
; � 2 �, there exists �
;� 2 Hom.�; SL.n
;�;C//

such that Tr.�
;�.
// ¤ Tr.�
;�.�//.

We have (A) H) (B) H) (D) () (C). All of these implications are im-
mediate from the de�nitions except for the equivalence of (C) and (D), which is
elementary. We thank Greg Kuperberg for pointing that out to us. We say one of
the above (B), (C), or (D) is uniformly satis�ed if n
 ; n
;�, or nS is bounded over
all choices of 
 , ¹
; �º, or S . That is, the dimension of the representations do not
depend on 
 , ¹
; �º, or S . In those cases, we say � uniformly has (B), (C), or (D).
Note, it is less clear if uniform (C) and uniform (D) are equivalent.

Remark 1. Since SLn and consequently Hom.�; SLn/ are Z-schemes, the above
properties (A)–(D) can be restated with C replaced by any algebraically closed
�eld F. When we are not working over C we will refer to these properties
as (A0)–(D0). For example, with respect to a �xed algebraically closed �eld
F, (A0) states there exists an integer n, and � 2 Hom.�; SL.n;F// such that
Tr.�.
// ¤ Tr.�.�// for any non-conjugate 
; � 2 �. Properties (B0)–(D0) are
similarly written.
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Theorem 1.1. If � uniformly has (C), then � has (A). In fact, if � uniformly
has (D) for some n0 and Hom.�; SL.n0;C// is irreducible, then � has (A).

Throughout, by a surface group, we mean the fundamental group of a closed,
orientable surface of genus g � 2. We have the following corollary:

Corollary 1.2. If � is either a �nitely generated free group or a surface group,
then � uniformly has (D) if and only if � has (A). Moreover, for any connected
algebraic subgroup G < SL.n;C/, the following are equivalent for a free group
Fr of rank r :

(a) for each � 2 Hom.Fr ;G/, there exist non-conjugate 
; � 2 Fr with
Tr.�.
// D Tr.�.�//;

(b) there exist non-conjugate 
; � 2 � such that Tr.�.
// D Tr.�.�// for each
� 2 Hom.Fr ;G/.

We also record the following result which �rst appeared in Bass and Lubotzky
[2, Proposition 3.1] where they also prove the converse.

Proposition 1.3 (Bass and Lubotzky). If � satis�es (D), then � is conjugacy
separable.

Similar to the function F�.n/ associated to the word problem using residual
�niteness, we de�ne a function Conj�.n/ for the conjugacy problem using conju-
gacy separability (see §2 for the de�nition).

Theorem 1.4. If � has (A), then Conj�.n/ � nd for some d 2 N. Moreover,
for some n0 2 N, the �nite quotients used in proving conjugacy separability of �
are subgroups of the �nite groups SL.n0;Fp/ where Fp denotes a �eld of prime
order p.

We de�ne a relative version of the function Conj�.n/ by �xing a conjugacy
class Œ
� in � and denote this function by Conj�;
 .n/. The analog of Theorem 1.4
holds with (B) and Conj�;
 .n/ in place of (A) and Conj�.n/.

Theorem 1.5. If � has (B), then for each 
 2 �, there exists d
 2 N such that
Conj�;
 .n/ � nd
 .

Property (A). We now address the likelihood a group satis�es (A) or (B).
We begin with (A). The obvious test case to begin investigating with regard
to property (A) is �nitely generated free groups. For n D 2, Horowitz [32]
proved that there exist non-conjugate 
; � 2 F2 such that for any representation
�WF2 ! SL.2;C/, we have Tr.�.
// D Tr.�.�//. We say such elements are
SL2-trace equivalent. It seems to have been, for some time now, a folklore question
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as to whether or not there exists SLn-trace equivalent elements in F2 for n > 2.
In Section 4, we discuss whether or not the elements constructed by Horowitz
can be SLn-trace equivalent, and see that if they are, an unexpected trace relation
must hold. Ginzburg and Rudnick [25] investigated when a given element has a
SL2-trace companion and gave a conjectural condition on the element to ensure
that it does not have such a companion. Anderson [1] provided a broader context
for the construction of Horowitz and a conjectural picture for what such pairs of
SL2-trace equivalent elements should look like. Additionally, Leininger [43] and
Kapovich, Levitt, Schupp, and Shpilrain [34] gave a more geometric/topological
take (see also [25], [40], [41], [42]). Of course, we have trivially that any SL3-trace
equivalent pair is also an SL2-trace equivalent pair. The failure of Anderson’s
general construction to produce SL3-trace equivalent pairs would provide some
evidence that free groups have (A).

The most compelling evidence against free groups having (A) is Theorem 1.4.
By [67] and [8], the function FFr

.n/ satis�es n.log log.n//9=2=.log.n//2 �

FFr
.n/ � n3. We believe that the growth rate of ConjFr

.n/ should be much greater
since conjugacy separability requires separating a �xed element 
 from an in�nite
set while residual �niteness requires only separating 
 from the trivial element.
It is this reason why many linear groups are not conjugacy separable. However,
if Fr has (A), then by Theorem 1.4, we would have, for some �xed d , the asymp-
totic inequalities ConjFr

.n/ � nd . In particular, ConjFr
.n/ � .FFr

.n//3d . For
any �nitely generated abelian group, these two functions are the same, and the
best setting to hope for a power relationship like Conj�.n/ � .F�.n//

d is the class
of torsion free, �nitely generated nilpotent groups where conjugacy classes are
relatively small. However, by [8] and [53], a torsion free, �nitely generated nilpo-
tent group satis�es such a power relationship if and only if the group is virtually
abelian.

Property (B). Following a construction of Wehrfritz [68] for free groups,
we can prove that �nitely generated free groups and surface groups have (B).

Theorem 1.6. If � is a �nitely generated free group or surface group, then �
has (B).

From Theorem 1.5 and Theorem 1.6, we obtain:

Corollary 1.7. If � is a �nitely generated free group or surface group and 
 2 �,
then there exists d
 2 N such that Conj�;
 .n/ � nd
 . Moreover, one can take

d
 � k
k2 and thus Conj�.n/ � nn2
.
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The degree d
 in Corollary 1.7 is directly related to the smallest index of a �nite
index subgroup � of Fr where 
 2 � is primitive. In the case of surface groups, it
is directly related to the smallest degree of a cover where the curve associated to

 has a lift to a simple closed curve. Patel [51] and Gupta and Kapovich [28] have
given upper bounds in the case of surface groups and free groups, respectively, on
the order of order k
k. Gaster [24], improving on work of Gupta and Kapovich
[28], has shown that there exist 
 that require a cover of degree on the order of
k
k. We conjecture that there is no polynomial upper bound for ConjFr

.n/, and
coupled with Theorem 1.4, that would imply that free groups do not have (A).

Conjecture 1. Finitely generated free groups do not have (A).

Finally, we prove a result that shows that for fully residually free groups,
one can recover the pro�nite topology via the topology generated by the Zariski
topologies for faithful representations into SL.n;C/ as we vary over all n 2 N.
Recall that � is fully residually free if for each �nite subset S � � of non-trivial
elements, there exists rS 2 N and a homomorphism  S W� ! FrS

such that the
restriction of  S to S is injective. Examples of fully residually free groups are
free groups and surface groups.

Theorem 1.8. Let � be a fully residually free group, � a �nite index, normal
subgroup of �, and p 2 N a prime. Then there exists an integral domain R � C,
an idealm � RwithR=m D Fp, and a faithful homomorphism �W� ! SL.n�; R/

such that � D ker.rm ı �/ where rmW SL.n�; R/ ! SL.n�;Fp/ is the reduction
modulo m homomorphism and n� D 2Œ� W ��.

The ring R can be taken to be �nitely generated over Z (see Remark 2), and
when � is a free group, we can take R D Z (see Remark 3). When � is an
arithmetic lattice in a Q-algebraic group G, the congruence subgroup property
asserts that every �nite index subgroup ƒ < � contains ker.rm/ for some inte-
ger m 2 N. Every non-abelian free group Fr can be realized as a �nite index
subgroup of SL.2;Z/ and it is well-known that SL.2;Z/ does not have the con-
gruence subgroup property. The above result provides a weaker property than the
congruence subgroup property when � is a limit group. As we mentioned above,
lattices in semi-simple Lie groups with the congruence subgroup property are not
conjugacy separable and so do not have (D). These groups are super-rigid and the
Zariski topology associated to the standard representation, which is the congru-
ence topology, is too coarse for separating conjugacy classes. That free groups
and surface groups are conjugacy separable is due to their much richer represen-
tation theory. We believe conjugacy separability requires linear representations
of arbitrarily large dimension or �nite quotients with arbitrarily large represen-
tation dimension. If Conjecture 1 is false, then free groups would be conjugacy
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separable via the Zariski topology associated to a �xed �nite dimensional rep-
resentation. In fact, for su�ciently large n and a generic (in the Baire Category
sense) � 2 Hom.Fr ; SL.n;C//, every conjugacy class in Fr would be closed in
the Zariski topology associated to �.
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2. Preliminaries

2.1. Quantitative separability functions. Given f; gW N ! N, we say f � g,
if f .n/ � Cg.Cn/ for some constant C 2 N and for all n 2 N. If f � g and
g � f , we write f � g. Throughout, � will denote an in�nite, �nitely generated
group unless stated otherwise. Given a �nite generating set X of � and 
 2 �,
we denote the word length of 
 with respect to X by k
kX (or simply k
k) and
n-ball with respect to the associated word metric by B�; X.n/. Given �, we de�ne
D� W� � ¹1º ! N [ ¹1º by

D�.
/ D min¹Œ� W ��W 
 … �; � C �º

and F�;X .n/ by
F�;X .n/ D max


2B�; X .n/�¹1º
D�.
/:

For any two �nite generating setsX; Y , we have F�;X � F�;Y (see [8, Lemma 1.1]).
Consequently, we suppress the dependence on X in our notation. For a �nitely
generated group � and 
 2 �, we denote the �-conjugacy class of 
 by Œ
�
and denote the set of �-conjugacy classes by C� . For Œ
� 2 C� , we de�ne
k Œ
� kX D min¹k
 0kX W 
 0 2 Œ
�º, and CD� WC� � C� ! N [ ¹1º by

CD�.Œ
�; Œ��/ D min¹jQjW 'W� �! Q; Œ'.
/�Q ¤ Œ'.�/�Qº:

By de�nition, for 
; � 2 � with Œ
� ¤ Œ��, we have

CD�.Œ
�; Œ��/ � max¹D�.

�1�0/W �0 2 Œ��º:
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We de�ne

BX .C� ; n/ D ¹Œ
�W k Œ
� kX � nº

and

Conj�;X W N �! N [ ¹1º

via

Conj�;X .n/ D max
Œ
�;Œ��2BX .C� ;n/; Œ
�¤Œ��

CD�.Œ
�; Œ��/:

For Œ
� 2 C� , we de�ne

CD�;
 WC� � ¹Œ
�º �! N [ ¹1º

to be

CD�;
 .Œ��/ D CD�.Œ
�; Œ��/

and

Conj�;
;X .n/ D max
Œ��2BX .C� ;n/; Œ
�¤Œ��

CD�;
 .Œ��/:

For any two �nite generating sets X; Y of �, we have Conj�;X.n/ � Conj�;Y .n/

and Conj�;
;X.n/ � Conj�;
;Y .n/. The proof is similar to the proof of the
comparable statement for the function F�.n/; see [8, Lemma 1.1]. As a result,
we suppress the dependence on the generating set X in our notation.

2.2. Representation varieties. We refer the reader to [18, §5], [26, §2],
and [56, Chapter V] for the material in this subsection. If G is a Lie (resp. al-
gebraic) group and � D Fr , then Hom.Fr ; G/ D Gr is an analytic (resp. alge-
braic) variety. More generally, when � is �nitely generated, Hom.�; G/ will be
an analytic (resp. algebraic) subvariety of Hom.Fr ; G/ for some r ; see [18, §5].
For each 
 2 �, we have an analytic (resp. algebraic) function Hom.�; G/ ! G

given by � 7! �.
/. IfG < GL.n;C/, the function Tr
 W Hom.�; G/ ! C given by
Tr
 .�/ D Tr.�.
// is analytic (resp. algebraic). When G is a K-algebraic group
withK a characteristic zero �eld, Hom.�; G/ is aK-algebraic set (not necessarily
irreducible or connected), and so has �nitely many irreducible (and connected)
components. In particular, for G D SL.n;C/, the space Hom.�; SL.n;C// is
a complex algebraic variety with �nitely many irreducible components. For a
connected, reductive algebraic group G, the G-character variety X.�;G/ is the
GIT quotient of Hom.�;G/ by the G-conjugation action, and for � D Fr , we set
Xr .G/ D X.Fr ;G/. Though we do not require it here, we include the following
result on algebraic points of character varieties that we could not �nd explicitly in
the literature (it is implicit in [56, Proposition 6.6]).
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Theorem 2.1. If G is a connected, reductive, a�ne algebraic group, then
Hom.�;G.SQ// is classically dense in Hom.�;G.C//, and X.�;G.SQ// is clas-
sically dense in X.�;G.C//.

Proof. First note that for any d -dimensional a�ne variety V de�ned over Q the
Noether normalization map V ! Ad is surjective and de�nes a �nite cover o�
its branch locus. Since the branch locus is nowhere dense, the SQ-points are both
Zariski and classically dense in the C-points of V . According to [7, p. 220], G.K/

is Zariski dense in G for any in�nite sub�eld K � C. Since G is de�ned over Q

and the relations in � are de�ned over Z, Hom.�;G/ is an a�ne variety de�ned
over Q and

CŒHom.�;G/� D QŒHom.�;G/�˝Q C: (1)

Hence, Hom.�;G.SQ// is both Zariski and classically dense in Hom.�;G.C//. Let
f1; : : : ; fN be a set of generators for CŒHom.�;G/�G, and de�ne

f W Hom.�;G/ �! CN

by
f .g1; : : : ; gr/ D .f1.g1; : : : ; gr/; : : : ; fN .g1; : : : ; gr//:

Since X.�;G/ D Spec.CŒHom.�;G/�G/; we have X.�;G/ D f .Hom.�;G//;
see [62] for example. As CŒHom.�;G/�G � CŒHom.�;G/�, Equation (1) implies
that f1; : : : ; fN may be chosen to have Q-coe�cients. Thus,

f .Hom.�;G.SQ/// � X.�; G.SQ//:

As f is a continuous surjective function, we conclude that f .Hom.�;G.SQ///
is classically dense in X.�;G.C//. Hence, X.�;G.SQ// is classically dense in
X.�;G.C// as it contains f .Hom.�;G.SQ///. �

Corollary 2.2. If G D SL.n;C/, the integral points are in�nite in Xr .G/.

Proof. For G D SL.n;C/, the group schemes and invariant rings in the above
proof are de�ned over ZŒ1=n�. So, the result follows from the above proof noting
that Hom.Fr ;G/ Š Gr . �

From the work of Long and Reid [44], one can infer that Corollary 2.2 is false
for SL.2;C/ when � is a surface group.

3. Property (C): proof of Theorem 1.1 and Proposition 1.3

3.1. Proof of Theorem 1.1 and Corollary 1.2. We now prove that either uni-
form (C), or uniform (D) with the irreducibility of Hom.�; SL.n;C// imply prop-
erty (A).
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Proof of Theorem 1.1. We assume �rst that � uniformly has (C). We enumer-
ate the conjugacy classes of � by ¹Œ
1�; Œ
2�; : : : º and for each j 2 N, set
Sj D ¹Œ
i �º

j
iD1. By assumption, there exists n 2 N and for each r , we have

a representation �r W� ! SL.n;C/ such that Tr.�.
i// ¤ Tr.�.
j // for all
i ¤ j � r . As Hom.�; SL.n;C// has only �nitely many irreducible compo-
nents, there exists a component that contains in�nitely many of the representations
�r , say V0 � Hom.�; SL.n;C//. By selection, the trace functions Tr
 restricted
to V0 are distinct algebraic functions for each conjugacy class Œ
�. In particular,
Tr
i

� Tr
j
¤ 0 is a non-constant algebraic function on V0 for each pair i ¤ j . In

particular, the sets

Zi;j D ¹� 2 V0W Tr
i
.�/ � Tr
j

.�/ D 0º

are proper algebraic subvarieties of V0. By the Baire Category Theorem, V D

V0 �
S

i;j Zi;j is dense and so non-empty. By construction, any � 2 V has
the property that Tr.�.
// D Tr.�.�// if and only if 
; � are conjugate in �. In
particular, � has property (A).

In the case we uniformly have (D) and Hom.�; SL.n;C// is irreducible,
we know that by assumption that for each pair of conjugacy classes 
; � 2

�, we have a representation �W� ! SL.n;C/ with Tr.�.
// ¤ Tr.�.�//.
Since Hom.�; SL.n;C// is irreducible, we can proceed as before with V0 D

Hom.�; SL.n;C//. �

Before we prove Corollary 1.2, we note that in the special case of the genus 1
surface, the fundamental group Z2 has (A). Take any two algebraically indepen-
dent numbers ˛; ˇ 2 R. Fixing a Z-basis v; w, we have the representation

�W Z2 �! GL.2;R/

given by

�.av C bw/ D

�

˛a 0

0 ˇb

�

:

By selection of ˛; ˇ, distinct elements in Z2 will have distinct traces. The groups
Zn also have (A) for any n 2 N.

Proof of Corollary 1.2. The �rst part of Corollary 1.2 follows immediately from
the irreducibility of Hom.Fr ; G/ D Gr for any connected algebraic group over C

in the case of free groups. For a closed, orientable surface †g of genus g � 2,
Hom.�1.†g/; SL.n;C// is irreducible by [57] and [4, Lemma 2.5] (the same holds
for g D 1; see [22, Proposition 5.16]). For the second part, we must prove that the
following two statements are equivalent:
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(a) there exists non-conjugate 
; � 2 Fr that have Tr.�.
// D Tr.�.�// for every
� 2 Hom.Fr ; G/;

(b) for each � 2 Hom.Fr ; G/, there exist non-conjugate 
; � 2 Fr such that
Tr.�.
// D Tr.�.�//.

It is clear that (a) implies (b). To prove that (b) implies (a), we assume that (b)
holds but not (a) and derive a contradiction. Since (a) does not hold, then for
each non-conjugate pair 
; � 2 Fr , the function Tr
 � Tr� on Hom.Fr ; G/ is a
non-constant algebraic function. Since Hom.Fr ; G/ is irreducible,

V
;� D ¹� 2 Hom.Fr ; G/ W Tr
 .�/ � Tr�.�/ D 0º

is nowhere dense. Taking V D
S

Œ
�¤Œ�� V
;�, by the Baire Category Theorem, V
is nowhere dense. Let � 2 Hom.Fr ; G/ � V and note that by construction, no
two non-conjugate elements have the same trace under �. That contradicts our
assumption that (b) holds for every � 2 Hom.Fr ; G/. �

3.2. Proof of Proposition 1.3. The proof of Proposition 1.3 is similar to
Mal0cev’s proof of residual �niteness for linear groups. As we will use some of
the setup later, we give a proof here. A proof can also be found in [2].

Proof of Proposition 1.3. Given non-conjugate 
; � 2 �, we must �nd a ho-
momorphism 'W� ! Q where Q is a �nite group such that '.
/; '.�/ are
not conjugate in Q. By assumption, � has Property (D) and so there exists
� 2 Hom.�; SL.n;C// such that Tr.�.
// ¤ Tr.�.�//. Since � is �nitely gen-
erated, the �eld L generated over Q by the coe�cients of the elements �.�/ as we
vary over all � 2 � has the form L D K.x1; : : : ; xr/, whereK=Q is a �nite exten-
sion and x1; : : : ; xr are indeterminants. It follows that �.�/ < SL.n; R/, where
R D SŒ1=ˇ1; : : : ; 1=ˇt �, S D OK Œx1; : : : ; xr �, and OK is the ring of K-integers.
We see then that Tr.�.�// 2 R for each� 2 �. We know that Tr.�.
//�Tr.�.�// D

F.x1; : : : ; xr 0/ 2 R is a non-zero polynomial in the variables x1; : : : ; xr 0 with
coe�cients in S . Since F is non-zero, we can �nd ˛1; : : : ; ˛r 0 2 S such that
˛ D F.˛1; : : : ; ˛r 0/ ¤ 0 with ˛ 2 S . As there are only �nitely many prime ideals
p in S such that ˛ D 0 mod p, we select a prime p for which ˛ ¤ 0 mod p. For
such a prime, the ring homomorphisms R ! S ! S=p Š Fq induce homomor-
phisms � ! SL.n; R/ ! SL.n; S/ ! SL.n;Fq/. Set 'W� ! SL.n;Fq/ to be
the resulting map. By construction Tr.'.
// ¤ Tr.'.�// and so '.
/; '.�/ are not
conjugate in SL.n;Fq/. �

3.3. Ultraproducts. For a �xed n 2 N, we say that a group � is n-trace dis-
tinguished if for each non-conjugate pair 
; � 2 �, there exists a �nite �eld Fq

and a homomorphism 'W� ! SL.n;Fq/ such that Tr.'.
// ¤ Tr.'.�//. We say
� is fully n-trace distinguished if for any �nite set S D ¹
j ºs

j D1 � � of pair-
wise non-conjugate elements, there exists a �nite �eld Fq and a homomorphism
'W� ! SL.n;Fq/ such that Tr.'.
i // ¤ Tr.'.
j // for all 1 � i < j � s.
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Theorem 3.1. If � is �nitely generated and fully n-trace distinguished for some
n 2 N, then � has (A).

In the proof of Theorem 3.1, we employ ultraproducts. We refer the reader
to [29] for an introduction to these methods.

Proof. To begin, we enumerate the conjugacy classes of � by ¹Œ
1�; Œ
2�; : : : º

and for each j 2 N, set Sj D ¹Œ
i �º
j
iD1. By assumption, for each j 2 N,

there exists a �nite �eld Fqj
and a homomorphism 'j W� ! SL.n;Fqj

/ such
that Tr.'j .
i // ¤ Tr.'j .
i 0// for all 1 � i < i 0 � j . Picking a non-principal
ultra�lter ! on N, the ultraproduct

Q

! Fqj
D K! is a �eld and we have an induced

homomorphism
Q

! 'j D ˆ! , where ˆ! W� ! SL.n;K!/. By selection of the
homomorphisms 'j , it follows that Tr.ˆ!.
i // ¤ Tr.ˆ!.
i 0/ for all i ¤ i 0. Hence,
� has (A). �

The �eld K! may have positive characteristic and so in the de�nition of (A), we
must allow for algebraically closed �elds of positive characteristic (see Remark 1).
Using the methods from the proof of Proposition 1.3, it is straightforward to see
that if � has (A0), then � is fully n-trace distinguished.

We can also consider a relative version of n-trace distinguished. For 
 2 �

and n 2 N, we say 
 is n-trace distinguished in � if for each non-conjugate � 2 �,
there exists a �nite �eld Fq and a homomorphism 'W� ! SL.n;Fq/ such that
Tr.'.
// ¤ Tr.'.�//. We say 
 is fully n-trace distinguished in � if for any �nite
set S D ¹
j ºs

j D1 � �, none of which is conjugate to 
 , there exists a �nite �eld
Fq and a homomorphism 'W� ! SL.n;Fq/ such that Tr.'.
// ¤ Tr.'.
j // for
all 1 � j � s.

Theorem 3.2. If � is �nitely generated and for each 
 2 �, there exists n
 2 N

such that 
 is fully n
 -trace distinguished, then � has (B).

Proof. To begin, we enumerate the conjugacy classes of � by ¹Œ
1� D Œ
�; Œ
2�,
Œ
3�; : : : º and for each j 2 N, set Sj D ¹Œ
i �º

j
iD2. By assumption, for each

j � 2, there exists a �nite �eld Fqj
and a homomorphism 'j W� ! SL.n;Fqj

/

such that Tr.'j .
i // ¤ Tr.'j .
// for all 2 � i � j . Picking a non-principal
ultra�lter ! on N, the ultraproduct

Q

! Fqj
D K! is a �eld and we have an induced

homomorphism
Q

! 'j D ˆ! , where ˆ! W� ! SL.n;K!/. By selection of the
homomorphisms 'j , it follows that Tr.ˆ!.
i // ¤ Tr.ˆ!.
// for all i � 2. Hence,
� has (B). �

As before, allowing for algebraically closed �elds of positive characteristic in
our de�nition of (B), the converse holds assuming (B0).
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3.4. Proof of Theorem 1.4 and Theorem 1.5. We now prove Theorem 1.4.

Proof of Theorem 1.4. We assume that � has (A) for some integer m 2 N, and
so there exists � 2 Hom.�; SL.m;C// such that Tr.�.
// ¤ Tr.�.�// for any
non-conjugate 
; � 2 �. For simplicity, we assume that �.�/ < SL.m;SQ/, as
the alternative �.�/ < SL.m;KŒx1; : : : ; xr �/, where K=Q is a �nite extension,
is handled similarly (see [15]). We must prove that for any non-conjugate pair

; � 2 � with k
k; k�k � n, that CD�.
; �/ � Cnm2�1 for a constant C that
is independent of 
; �. To begin, we can �nd �nite extensions K=Q and S=OK

such that �.�/ < SL.m; S/. With this setup, we know for any non-conjugate 
; �
that Tr.�.
// � Tr.�.�// 2 S and also is non-zero. We need an ideal a of S such
that Tr.�.
// � Tr.�.�// ¤ 0 mod a and with jS=aj small. We achieve this goal
using the methods of [8] (or [15]). First, we control the size of the coe�cients of
�.
/; �.�/ as a function of word length. To that end, it follows (see [8] or [15]) that
there exists constants ˛ and C0 depending only on the generators of � such that

max¹j.�.
//i;j jW i; j 2 ¹1; : : : ; mºº � ˛C0k
k:

In particular, given non-conjugate 
; � 2 � with k
k; k�k � n, we see that

j Tr.�.
//� Tr.�.�//j � j Tr.�.
//j C j Tr.�.�//j � 2m˛C0n:

By [8, Theorem 2.4], we can �nd a prime ideal p with

jS=pj � C1 log.C12m˛
C0n/ � C1C0n log.C12m˛/

such that Tr.�.
// ¤ Tr.�.�// mod p. The constant C1 depends only on the ring
S . Let rpW SL.n; S/ ! SL.n; S=p/ be the reduction modulo p homomorphism and
set �pW� ! SL.n; S=p/ by �p D rp ı�. By selection of p, we see that �p.
/; �p.�/
have distinct traces and hence have non-conjugate images. We also have

j�p.�/j � j SL.n; S=p/j � jS=pjm
2�1 � .C1n log.C12m˛//

m2�1 D Cnm2�1

where C is the constant .C1C0 log.C12m˛//
m2�1. In particular, CD�.Œ
�; Œ��/ �

Cnm2�1 for some constant C depending only on � and �. As this holds for all
Œ
�; Œ�� 2 B.C� ; n/, we see that Conj�.n/ � nm2�1. The assertion that one only
needs subgroups of SL.n0;Fp/ in proving conjugacy separability for � follows
from the Čebotarev Density Theorem. �

Proof of Theorem 1.5. We proceed similarly to the proof of Theorem 1.4.
By assumption, we have � 2 Hom.�; SL.n
 ;C// such that Tr.�.
// ¤ Tr.�.�//
for any � 2 � that is not conjugate to 
 . Using Tr.�.
//�Tr.�.�//, we can employ
the same methods used in the proof of Theorem 1.4 to �nd the desired homomor-
phism to a �nite group where 
; � have non-conjugate images. �
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4. Horowitz’s construction

In this section we show that the cyclically reduced words constructed in Example
8.2 in [32] that do have the same trace over SL.2;C/ are not likely to have the
same trace over SL.n;C/ for n > 2. Since SL.n � 1;C/ embeds into SL.n;C/ it
su�ces to show that this failure occurs for n D 3.

4.1. Reduction to free groups. The following lemma reduces the search for
trace equivalent pairs in non-elementary hyperbolic groups to �nding them in Fr

Lemma 4.1. Let n; r � 2 be integers. If there exists a non-conjugate pair
w1; w2 2 Fr such that w1; w2 are SLn-trace equivalent, then for any non-
elementary hyperbolic group �, there exists non-conjugate ı1; ı2 2 � that are
SLn-trace equivalent.

Proof. By I. Kapovich [33, Theorem C], � has a malnormal subgroup �0 that
is isomorphic to Fr . Fixing any isomorphism  WFr ! �0, we set ıj D  .wj /.
For any representation �W� ! SL.n;C/, it follows that Tr.�.ı1// D Tr.�.ı2//.
As ı1; ı2 are non-conjugate in �0 and �0 is malnormal in �, we see that ı1; ı2

are non-conjugate in �. �

Since free groups are hyperbolic, it follows that for any integers r; s � 2,
Fr has a non-conjugate SLn-trace equivalent pair if and only if Fs has a non-
conjugate SLn-trace equivalent pair. In particular, we need only consider the
existence of trace equivalent pairs in F2. In fact, for any �nitely generated group
� with a malnormal free subgroup, we see that ConjF2

.n/ � Conj�.n/. Moreover,
ConjFr

.n/ � ConjFs
.n/ for any integers r; s � 2. We also note that Lemma 4.1

implies that if F2 does not have (A), then no non-elementary hyperbolic group can
have (A). Indeed, no �nitely generated group with a malnormal free subgroup can
have (A).

4.2. Horowitz’s construction. Let F2 D ha; bi. Horowitz’s words are de�ned
recursively by w0 D a and

wm.�1; : : : ; �m/ WD w
��m

m�1b
2mw

�m

m�1b
2m�1w

��m

m�1b
2mw

�m

m�1

for �i D ˙1. Horowitz shows that for .�1; : : : ; �m/ 6D .��
1 ; : : : ; �

�
m/, the cor-

responding words will not be cyclically equivalent for any m > 0 and they
are all SL2-trace equivalent. Hence, there are arbitrarily large collections of
SL2-trace equivalent non-conjugate words. For w1.1/ D a�1b2aba�1b2a and
w1.�1/ D ab2a�1bab2a�1, one can �nd a representation � D .A; B/ 2 SL.3;C/2

where Tr.�.w1.1///� Tr.�.w1.�1/// ¤ 0. In particular, this pair is not SL3-trace
equivalent. Below, we further elaborate on why it is unlikely that the above
SL2-trace pairs are also SL3-trace pairs. First, we review in more detail why these
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pairs are SL2-trace equivalent. The �rst step in showing SL2-trace equivalence is
a proof that

Tr.wm.�1; : : : ; �j �1;C1; �j C1; : : : ; �m//

D Tr.wm.�1; : : : ; �j �1;�1; �j C1; : : : ; �m//

for 1 � j � m for SL.2;C/. By the recursive de�nition of wm, Horowitz shows
that

wm.�1; : : : ; �j �1;C1; �j C1; : : : ; �m/ D W.u�1bu; b/

whereas
wm.�1; : : : ; �j �1;�1; �j C1; : : : ; �m/ D W.ubu�1; b/

where u D wj �1.�1; : : : ; �j �1/ and W is a word in two letters. What works
for SL.2;C/ is that there exists a polynomial PW in three variable so that
Tr.W.u; v// D PW .Tr.u/;Tr.v/;Tr.uv//. In the case above, these three traces
are identical when evaluated at .ubu�1; b/ and .u�1bu; b/ respectively since the
trace is invariant under cyclic permutations, and hence their polynomials are equal
too. One can argue inductively to establish the general result.

However, this �rst step fails for SL.3;C/. The comparable statement is that
there exists a polynomial PW in nine variables (see [39]) such that

Tr.W.u; v// D PW .Tr.u/;Tr.u�1/;Tr.v/;Tr.v�1/;Tr.uv/;Tr.u�1v�1/;

Tr.uv�1/;Tr.u�1v/;Tr.uvu�1v�1//:

Upon checking, one �nds that the �rst 6 variables are equal. However, the sev-
enth variables become Tr.ubu�1b�1/ and Tr.u�1bub�1/ D Tr.bub�1u�1/ D

Tr..ubu�1b�1/�1/. These traces of words are generically not equal (see [39]); in
fact they are equal if and only if the SL.3;C/ representations are transpose �xed.
Likewise the eighth variables will di�er as well. In fact, we would have an expres-
sion of the formPW .a1; : : : ; a6; a7; a8;Tr.w// D PW .a1; : : : ; a6; a8; a7;Tr.w�1//

since the 7th and 8th variables are in fact permuted (switching the roles of u and v)
and the �rst 6 are identical (just by cyclic permutation), and the 9th is cyclically
equivalent to the trace of its inverse. The 9th word is ubu�1bub�1u�1b�1. Note
also that there is a polynomial P in the 8 algebraically independent variables so
that Tr.w�1/ D P �Tr.w/. If we had equality we would have a non-trivial relation
(symmetric in two variables), which is unlikely for a �xed w.

4.3. Candidate words. By Lemma 6.8 in [32] any SL2-trace equivalent pair in
F2 must have the same number of each generator represented in the word, up to
plus or minus exponents. Thus, the same result holds for words that are SLn-trace
equivalent for any n. It is easy to see that pairs of the form .w; w�1/ are SL2-trace
equivalent. However, by [6] the word map is dominant for non-trivial words, and
so .w; w�1/ are never SLn-trace equivalent for n � 3 since Tr.A/ 6D Tr.A�1/ for
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a generic (in the Baire sense) A 2 SL.3;C/. Along the same lines, we have the
following lemma.

Lemma 4.2. Let r.w/ be the reverse of the word w, and assume r.w/ is not
conjugate to w. Then r.w/ and w are always SLn-trace equivalent if and only
if n D 2.

Proof. Since Tr.w/ D Tr.w�1/ for n D 2, we obtain

Tr.w.a; b// D Tr.w.a; b/�1/ D Tr.r.w.a�1; b�1///:

Therefore, Tr.r.w.a; b/// D Tr.w.a�1; b�1//. By the Fricke–Vogt Theorem
(see for instance [27]), Hom.F2; SL.2;C//==SL.2;C/ Š C3 parametrized by
.Tr.a/;Tr.b/;Tr.ab//. Thus, there exists a unique polynomial P 2 CŒx; y; z� such
that Tr.w.a; b// D P.Tr.a/;Tr.b/;Tr.ab//. We conclude

Tr.r.w.a; b/// D P.Tr.a�1/;Tr.b�1/;Tr.a�1b�1//

D P.Tr.a/;Tr.b/;Tr.ab// D Tr.w.a; b//:

Conversely, Hom.F2; SL.3;C//==SL.3;C/ is a branched double cover of C8

(see [39]). The branch locus is exactly determined by

Tr.aba�1b�1/ D Tr.b�1a�1ba/I

showing that for r D 2 the pairs .w; r.w// are not generally SLn-trace equivalent
for n � 3. �

We expect that non-conjugate reverse pairs are never SL3-trace equivalent.
A more provocative conjecture is the following; in the statement, positive words
have only non-negative powers of the generators:

Conjecture 2. Let n � 2. There exists SLn-trace equivalent pairs .u; v/ if and
only if there exists positive pairs .u0; v0/ that are SLn-trace equivalent.

Before giving a heuristic proof for the above conjecture, we mention two
related conjectures. Ginzburg and Rudnick [25, Conjectuere 1.1] have a conjectural
condition to ensure a word does not have an SL2-trace companion (aside from its
inverse); in their terminology, such a word has stable multiplicity one. Anderson
[1, Conjecture 4.1] gave conjectural picture for all SL2-trace companions.

We now give a heuristic for the validity of the conjecture. As the reverse
implication is obvious, we discuss only the direct implication. For n D 2,
Lemma 4.2 establishes the statement. For n > 2 we describe an algorithm (that
depends on n) that takes a non-conjugate SLn-trace equivalent pair and produces
a pair, that we expect that is positive, SLn-trace equivalent, and not conjugate.
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We have implemented the algorithm for n D 2 and it does produce a positive pair
.u0; v0/ that is SL2-trace equivalent but u0 is conjugate to v0; we expect this to be
a problem only with n D 2.

In what follows, let �.a/ D A be a n by nmatrix. Recall the Cayley–Hamilton
formula gives

0 D

n
X

kD0

.�1/n�kC n
k .A/A

k;

where the coe�cients C n
k
.A/ arise from the characteristic equation det.tI � A/ D

Pn
kD0.�1/

n�kC n
k
.A/tk. We know that C n

n .A/ D 1, C n
n�1.A/ D Tr.A/ and

C n
0 .A/ D det.A/. By Newton’s trace formulas each C n

k
.A/ is a polynomial in

the traces of non-negative powers of the matrix A. Since det.A/ D 1, we can
multiply the Cayley-Hamilton formula by a word UA�1 WD �.ua�1/ on the left
and another word V WD �.v/ on the right. This results in

UAn�1V C

n�1
X

kD1

.�1/n�kC n
k .A/UAk�1V D .�1/nC1UA�1V:

Thus, by taking the trace of both sides, we have:

Tr.UA�1V/ D .�1/nC1 Tr.UAn�1V/C

n�1
X

kD1

.�1/k�1C n
k .A/Tr.UAk�1V/:

That shows that given any wordw with negative exponents, one can iteratively ap-
ply the preceding formula in the coordinate ring CŒHom.F2; SL.n;C//==SL.n;C/�,
which is generated by traces of words by results of Procesi [55], to obtain an ex-
pression for Tr.w/ as a polynomial in traces of positive words.

Now, suppose .u; v/ is SLn-trace equivalent but are not conjugate. After
cyclically reducing u and v, given results of Horowitz ([32]), we can assume that
u and v have the same word length and the same (signed) multiplicity of each
letter. Applying the preceding algorithm to Tr.u/;Tr.v/ results in polynomial
expressions Pu; Pv in terms of traces of only positive words. By inspection of
the replacement formula de�ning the algorithm, one sees that there will be a
monic trace term with a longest word. That is Pu D Tr.u0/ C L, and likewise
Pv D Tr.v0/CL0 where both L;L0 contain terms of products of traces of shorter
positive words. We expect that Tr.u0/ D Tr.v0/ since Tr.u/ D Tr.v/ to begin with.
Also, given that n � 3, we expect that u0 is not conjugate to v0 given that u is not
conjugate to v.

It is not presently clear to us how to complete the above argument, that is, to
prove that the last two lines are valid. We thank Greg Kuperberg for conversations
about the validity of the above sketch.
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We now indicate our interest in this conjecture. For the free group F2 D

F2.a; b/, the smallest positive exponent SL2-trace equivalent pair is ¹babbaa,
abaabbº. To �nd examples of SL.3;C/ words, if the conjecture is true, we need
only check words with the same number of letters in each word having only
positive exponents. Moreover, since by restricting, the trace equivalence must
also hold for SL.2;C/, we need only check words of the above type that work
for SL.2;C/. We expect that non-conjugate reverse pairs will never be SL3-trace
equivalent, and so we further wish to only consider positive non-conjugate pairs
that are not reverse but are SL2-trace equivalent; the �rst examples occurs at length
12 with one explicit pair being ¹aababbaabbab; aababbabaabbº. We end this
section with two questions about such words.

(1) What is a classi�cation of these words, or generating families?

(2) What is the growth rate as a function the length of these words?

As we expect SLn-trace equivalent words exist, our guess is that the above words
are rather plentiful. However, by computer search, there are no SL3-trace equiva-
lent pairs of length up to 20.

5. E�cient solutions to the conjugacy problem

In this section, we provide two di�erent approaches to solving the conjugacy
problem in free groups using �nite quotients, neither of which are originally due
to us.

5.1. Lower central and derived series. Recall, the lower central and derived
series are de�ned inductively by �0 D �, �j D Œ�; �j �1�, and �j D Œ�j �1; �j �1�.
We setNj .�/ D �=�j andSj .�/ D �=�j . By [46, p. 27, Prop. 4.9], we know that

; � 2 Fr are conjugate in Fr if and only if they have conjugate image in Sj .Fr/

(orNj .Fr /) for all j . Since the groups Sj .Fr / andNj .Fr / are conjugacy separable
for all j (see [5], [23], and [58]), we see that Fr is conjugacy separable. In order
to implement these methods e�ectively, we must �rst estimate j
;� as a function
of the word length of 
; � where j
;� is the smallest j 2 N such that 
; � have
non-conjugate images in Nj .Fr / (or Sj .Fr /). Second, we must e�ectively solve
the conjugacy problem in torsion free nilpotent or polycyclic groups. Malestein
and Putman [49] address the �rst problem. Pengitore [53] addresses the second
problem. As our current goal is deciding whether or not the function ConjFr

.n/

has a polynomial bound, we note that it is already known that the above method
cannot work. Speci�cally, neither the lower central or derived series provides a
polynomial upper bound for the function FFr

.n/; see [8] and [9].
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5.2. Proof of Theorem 1.6. In this subsection, we prove Theorem 1.6. The
construction of the representation needed to verify Theorem 1.6 in the case of
free groups follows Wehrfritz [68]. The surface group case is similar.

We now produce the representation for the case of free groups. To begin,
given a conjugacy class Œ
� in Fr , we �rst pass to a �nite index subgroup � where
� D h
i��. That such can be done follows from work of Hall [30]. Since 
 is part
of a free basis, it follows that there exists a representation �0W� ! SL.2;R/where

 has a unique, non-zero trace up to conjugation and inverses. As SL.2;R/ <
SL.3;C/ by the standard inclusion into the upper two by two block, we see that
there exists a representation �1W� ! SL.3;C/ such that �1.
/ has a unique, non-
zero trace up to conjugation and inverses. Since Tr.�.
�1// ¤ Tr.�.
// for a
generic SL.3;C/ representation � (in the Baire Category sense), we can further
assume that �.
/ has a unique, non-zero trace up to conjugation. For any � 2 �

that is not conjugate to 
 in �, we know that Tr.�.
//�Tr.�.�// is a non-constant
function of �. Consequently, by the Baire Category Theorem, we can assume that
k1 Tr.�1.
// ¤ k2 Tr.�1.�// for any pair of integers 1 � k1; k2 � m D ŒFr W ��.
For any such �1 2 Hom.�; SL.3;C//, the induced representation � D IndFr

� .�1/

is the needed representation to verify Theorem 1.6 in the free group case.

Proof of Theorem 1.6: Free Case. If � 2 Fr is not conjugate in Fr into � , then
Tr.�.�// D 0 by the Frobenius formula for traces of induced representations.
If � 2 Fr is conjugate in Fr to some �0 2 �, then Tr.�.�// D k� Tr.�1.�

0//

for some integer 1 � k� � m. As Tr.�.
// D k
 Tr.�1.
// for some 1 � k
 � m,
it follows from our selection of �1 that �.
/ has a unique trace up to conjugation,
as needed for Theorem 1.6. �

We now produce the representation for the case of surface groups. To begin,
given a conjugacy class Œ
� in �1.†g/, we �rst pass to a cover where a lift of
the curve associated to Œ
� is simple. That such can be done follows from work
of Scott [63]. We �x a �nite index subgroup of �1.†g/ associated to this �nite
cover which we denote by �. Since the curve associated to Œ
� has a simple lift,
it follows that there exists a representation �0W� ! SL.2;C/where 
 has a unique,
non-zero trace up to conjugation and inverses. The remainder of the construction
of � is identical to the free case of the proof of Theorem 1.6. Note that to ensure
Tr.�.
// ¤ Tr.�.
�1// for a generic � 2 Hom.�; SL.3;C/ (in the Baire sense),
we can use [12] in place of [6].

In either the free or surface case, we can use the methods from [15] to establish
Corollary 1.7. In particular, the degree of the polynomial in Corollary 1.7 depends
only onm and the coe�cient ring of the representation, both of which are constant
for a �xed 
 . By Patel [51] and Gupta and Kapovich [28], we have m � k
k, and
so when k
k; k�k � n, we see that CD�.
; �/ � CnCn2

.
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6. Proof of Theorem 1.8

Given a fully residually free group � with a �nite index, normal subgroup � and
a prime p 2 Z, we will construct a faithful homomorphism �W� ! SL.n�; R!/

such that � D ker.rm!
ı �/ where n� D 2Œ� W ��, R! is a local domain,

m! < R! is the unique maximal ideal with residue �eld R!=m! D Fp, the �eld
of p elements, and rm!

W SL.n�; R!/ ! SL.n�;Fp/ is the reduction modulo m!

homomorphism. We enumerate the non-trivial elements of � via ¹ı1; ı2; : : : º.
Since subgroups of fully residually free groups are fully residually free, for each
t 2 N, there exists a homomorphism  t W� ! Frt

such that  t is injective
when restricted to the �nite subset ¹ı1; : : : ; ıtº. Recall that the ring of p-adic
integers Zp is a local integral domain with a unique maximal ideal mp. Via the
ping pong lemma, the homomorphism .p/WF2 ! SL.2;Z/ < SL.2;Zp/ induced
by sending a free basis a; b of F2 to the matrices

a; b 7�!

�

1 p

0 1

�

;

�

1 0

p 1

�

is an isomorphism. By the Nielsen–Schreier theorem, we have a faithful homo-
morphism Frt

! F2 for each rt 2 N and �x one such homomorphism for each
rt 2 N. Respectfully, we de�ne �p;t WD  .p/ ı  t and note �p;t .�/ < ker rmp

.

We restrict  .p/ to the image of Frt
< F2 and for notational simplicity de-

note the resulting homomorphism by  . Taking a non-principal ultra�lter !
on N, the ultraproduct R! D

Q

! Zp is a local integral domain with unique
maximal ideal m! D

Q

! mp (see [60, Chapter 1] for instance). The associated
residue �eld R!=m! is given by

Q

! Zp=mp. Since the latter is an ultraproduct
of Fp, it follows that R!=m! is isomorphic to Fp (see [29, p. 184] for instance).
The ultraproduct �! of the representations �t D  ı  t yields a represen-
tation �! W� ! SL.2; R!/. By selection of  t and  , �! is faithful with
�!.�/ < ker rm!

. Setting � D Ind�
�.�1/, we obtain a faithful representation

�W� ! SL.2d; R!/ where d D Œ� W ��. By construction of �! , the de�nition of
Ind, and the normality of � in �, we see that � D ker.rm!

ı �/. �

Remark 2. The ring R! embeds into
Q

! Qp which is a �eld of characteristic
zero. Since fully residually free groups are �nitely presentable ([64, 4.4]), the
ring R generated over Z by the coe�cients of the matrix entries of �.�/ is �nitely
generated. Setting m D R\m! , we obtain a maximal ideal inR with residue �eld
R=m D Fp such that �.�/ < SL.2Œ� W ��; R/ and � D ker.rm ı �/. Moreover, we
have an embedding of R into C; the �eld of fractions of R embeds into C via the
axiom of choice.
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Remark 3. If � is a free group, we can take � D Ind�
�.�0/ where �0 is

the representation given by � ! F2 ! SL.2;Z/. The �rst homomorphism
� ! F2 is given by the Nielsen–Schreier theorem and the second homomor-
phismF2 ! SL.2;Z/ is given by .p/. In total, we obtain a faithful representation
�W� ! SL.2Œ� W ��;Z/ such that � D ker.rp ı �/.

Theorem 1.8 can also be proven by using work of Barlev–Gelander [3], which
followed the work of Breuillard, Gelander, Souto, and Storm [18]. Barlev–
Gelander [3, Theorem 1.2] proved that if G is a compact topological group with
a non-abelian free subgroup, then G contains an isomorphic copy of every non-
abelian limit group. Since Zp is a compact topological ring, SL.2;Zp/ is a com-
pact topological group. Moreover, the �nite index subgroup ker rmp

< SL.2;Zp/

is a compact topological group with F2 < ker rmp
from above. Hence by

[3, Theorem 1.2], ker rmp
contains an isomorphic copy of every non-abelian

limit group. Given a non-abelian limit group � with a �nite index, normal
subgroup �, we can apply this observation to obtain a faithful representation
�0W� ! ker rmp

< SL.2;Zp/. It follows then that � D Ind�
�.�0/ is a faithful

representation into SL.2Œ� W ��;Zp/ with � D ker.rmp
ı �/.
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