Groups Geom. Dyn. 11 (2017), 189[–209](#page-20-0) DOI 10.4171/GGD/394

Minimal exponential growth rates of metabelian Baumslag–Solitar groups and lamplighter groups

Michelle Bucher^{1,2} and Alexey Talambutsa^{3,4}

Abstract. We prove that for any prime $p \geq 3$ the minimal exponential growth rate of the Baumslag–Solitar group BS $(1, p)$ and the lamplighter group $\mathcal{L}_p = (\mathbb{Z}/p\mathbb{Z}) \wr \mathbb{Z}$ are equal. We also show that for $p = 2$ this claim is not true and the growth rate of BS(1, 2) is equal to the positive root of $x^3 - x^2 - 2$, whilst the one of the lamplighter group \mathcal{L}_2 is equal to the golden ratio $(1 + \sqrt{5})/2$. The latter value also serves to show that the lower bound of A.Mann from [\[9\]](#page-19-0) for the growth rates of non-semidirect HNN extensions is optimal.

Mathematics Subject Classification (2010). 20F69, 20F16.

Keywords. Exponential growth rate, actions on trees, lamplighter groups.

1. Introduction

Let G be a finitely generated group. For any finite generating set S of G we can consider the *exponential growth rate* of G with respect to S which is defined as follows. Any element $g \in G$ can be written as a finite product of elements in $S \cup S^{-1}$ and we define the length $\ell_{G,S}(g)$ of g as the minimum number of elements in such a product. The growth function $F_{G,S}(n)$ is the number of elements $g \in G$ for which $\ell_{G,S}(g) \leq n$. Finally the *exponential growth rate* of G with respect to S is the limit

$$
\omega(G, S) = \lim_{n \to \infty} (F_{G,S}(n))^{\frac{1}{n}} \ge 1.
$$

Note that this limit always exists by submultiplicativity of the growth function (see $[7, VI.C.56]$ $[7, VI.C.56]$).

¹ Section [4](#page-10-0) was written by Michelle Bucher.

² Supported by Swiss National Science Foundation project PP00P2-128309/1.

^{[3](#page-6-0)} Sections 3 and [5](#page-17-0) were written by Alexey Talambutsa.

⁴ Supported by Russian Science Foundation, project 14-50-00005.

The exponential growth rate $\omega(G, S)$ clearly depends on the choice of the generating set S and one obtains a group invariant by considering the infimum over all finite generating sets:

$$
\Omega(G) = \inf_{|S| < \infty} \{ \omega(G, S) \}. \tag{1.1}
$$

It is now natural to ask if there exists a generating set S for which the equality $\Omega(G) = \omega(G, S)$ is realized. For the free group \mathbb{F}_n of rank n, Gromov remarked in [\[5,](#page-19-2) Example 5.13] that $\Omega(\mathbb{F}_n)$ is exactly $2n-1$ and is realized on any free generating set (with *n* elements). Except for this example, very few exact values for $\Omega(G)$ have been computed. Known cases include free products $\mathbb{Z}_2 * \mathbb{Z}_{p^k}$ [\[15\]](#page-19-3) (the cases $p^k = 3, 4$ were proven earlier in [\[9\]](#page-19-0)), the free product $\mathbb{Z}_2 * (\mathbb{Z}_2 \times \mathbb{Z}_2)$ and the Coxeter group PGL $(2, \mathbb{Z})$ [\[2\]](#page-19-4) and a few more examples in the references [\[2,](#page-19-4) [9,](#page-19-0) [15\]](#page-19-3). But the question of de la Harpe and Grigorchuk whether $\Omega(\pi_1(\Sigma_g))$ is realized on the canonical generators of the fundamental group of a closed surface Σ_g with $g \ge 2$ is still open (see [\[6,](#page-19-5) p. 55]). While in many cases, the value $\omega(G, S)$ can be computed for some particular generating set S , it is usually much harder to find a generating set S such that $\Omega(G) = \omega(G, S)$ and sometimes even impossible due to the existence of groups for which the infimum in (1.1) is not attained (see $[11, 16]$ $[11, 16]$ $[11, 16]$.

We consider two classes of metabelian groups: Baumslag–Solitar groups BS(1, *n*) and lamplighter groups $\mathcal{L}_n = (\mathbb{Z}/n\mathbb{Z}) \wr \mathbb{Z}$. The growth functions of the Baumslag–Solitar groups

$$
BS(1, n) = \langle a, t \mid tat^{-1} = a^n \rangle \tag{1.2}
$$

with respect to the canonical generating set $S = \{a, t\}$ were computed by Collins, Edjvet and Gill in [\[4\]](#page-19-8). The restricted wreath products $\mathcal{L}_n = (\mathbb{Z}/n\mathbb{Z}) \wr \mathbb{Z}$ can be presented as

$$
\mathcal{L}_n = \langle a, t \mid a^n = 1, [t^k a t^{-k}, a] = 1 \ (k = 1, 2, \ldots) \rangle. \tag{1.3}
$$

To compute the growth function of \mathcal{L}_n with respect to the set $\{a, t\}$ one can use formulas given by Parry in [\[10\]](#page-19-9). Even though the formulas for the growth functions of BS $(1, n)$ and \mathcal{L}_n were obtained by completely different methods and by use of different properties of the groups, we find that remarkably for all odd $n = 2k + 1$

$$
\omega(\text{BS}(1, n), \{a, t\}) = \omega(\mathcal{L}_n, \{a, t\}) = \omega_k,\tag{1.4}
$$

where ω_k is the unique positive root of

$$
T_k(x) = x^{k+1} - x^k - 2x^{k-1} - \dots - 2x - 2,
$$

for $k \geq 1$. This is easily deduced from [\[4\]](#page-19-8) and [\[10\]](#page-19-9) in Lemma [8.](#page-7-0) Interestingly, this equality never holds for even *n*. We will see the case $n = 2$ in more details.

Some inference for the equality (1.4) can be seen in the actions of the groups BS(1, *n*) and \mathcal{L}_n on their corresponding Bass–Serre trees. There is indeed a very strong similarity between these actions, which we exploit to prove the main result of the paper:

Theorem 1. *Let* p *be a prime. The minimal growth rate of the Baumslag–Solitar* group $BS(1, p)$ and lamplighter groups \mathcal{L}_p are realized on the canonical genera*tors* $\{a, t\}$ *:*

$$
\Omega(\mathcal{L}_p) = \Omega(\text{BS}(1, p)) = \omega_k, \quad \text{for } p = 2k + 1,
$$

$$
\Omega(\mathcal{L}_2) = \frac{1+\sqrt{5}}{2} < \Omega(\text{BS}(1,2)) = \beta,
$$

where $\beta \sim 1.69572$ *is the unique positive root of* $z^3 - z^2 - 2$.

The exact computation $\Omega(\mathcal{L}_2) = (1 + \sqrt{5})/2$ gives a positive answer to the question of Mann [\[9\]](#page-19-0) whether the lower bound $\Omega(G) \geq (1 + \sqrt{5})/2$ can be realized on a non-semidirect HNN extension. (The fact that \mathcal{L}_2 is indeed a non-semidirect HNN extension will be shown in Section [2\)](#page-3-0). Note that it follows from Theorem [1](#page-2-0) that this lower bound could never be realized on any of the Baumslag–Solitar groups $\Omega(BS(1, n))$ also for arbitrary integers $n \geq 2$.

The lower bounds for the growth rates in Theorem [1](#page-2-0) are obtained by looking at the actions on the corresponding Bass–Serre trees, finding free submonoids using a local variant of the classical ping-pong lemma (Lemma [6](#page-6-1) here) and computing their growth with Lemma [7.](#page-6-2) Interestingly, all the minimal growth rates are in fact realized as the growth rate of some free submonoid. The Bass–Serre trees of \mathcal{L}_p and BS $(1, p)$ are both $(p + 1)$ -regular trees, but the corresponding actions are of course different. Nevertheless, when p is odd, the same method applies to give the lower bound of Theorem [1,](#page-2-0) which we abstract in the following theorem:

Theorem 2. Let $G = H *_{\theta}$ be an HNN extension relative to an isomorphism $\theta: A \rightarrow B$ with $A = H$ and B a normal subgroup of prime index p in H. Then

$$
\Omega(G) \ge \frac{1+\sqrt{5}}{2}, \quad \text{for } p = 2,
$$

$$
\Omega(G) \ge \omega_k, \qquad \text{for } p = 2k + 1.
$$

Together with the equalities (1.4) proven in Lemma [8](#page-7-0) this immediately implies Theorem [1,](#page-2-0) except in the case of $BS(1, 2)$. For this last group, a finer analysis of its action on its Bass–Serre tree will be needed.

The question of Mann mentioned above was prompted by his proof of the lower bound $\Omega(G) \geq (1 + \sqrt{5})/2$ for any non-semidirect HNN extension G (see [\[9\]](#page-19-0)), using the cute algebraic observation that a hyperbolic element and a nontrivial conjugate of it generate a free monoid with growth rate equal to the golden ratio. Our proof for the case $p = 2$ $p = 2$ of Theorem 2 also holds for any non-semidirect HNN extension and gives an alternative geometric proof to Mann's inequality.

Finally, as an application of Theorem [1,](#page-2-0) we can compute the minimal growth rate of the wreath product $\mathbb{Z} \wr \mathbb{Z}$. Indeed, as was already noted by Shukhov in [\[12\]](#page-19-10), one can deduce from [\[4\]](#page-19-8) that

$$
\lim_{n \to \infty} \omega(\text{BS}(1, n), \{a, t\}) = 1 + \sqrt{2}.
$$
 (1.5)

Since the wreath product $\mathbb{Z} \wr \mathbb{Z}$ can be viewed as an extension of the groups \mathcal{L}_p , combining Theorem [1](#page-2-0) and Parry's computations for $\mathbb{Z} \wr \mathbb{Z}$, we obtain

Corollary 3. *The minimal growth rate of the restricted wreath product*

$$
\mathbb{Z} \wr \mathbb{Z} = \langle a, t \mid [t^k a t^{-k}, a] = 1 \ (k = 1, 2, \ldots) \rangle
$$

is realized on the set $\{a, t\}$ *and*

$$
\Omega(\mathbb{Z}\wr\mathbb{Z})=\omega(\mathbb{Z}\wr\mathbb{Z},\{a,t\})=1+\sqrt{2}.
$$

Acknowledgments. We thank Murray Elder for helpful discussions in the preparation of this work and Tatiana Smirnova-Nagnibeda for pointing out some useful references. We are grateful to the referee for a careful reading and useful suggestions about the reorganization of our paper.

2. Bass–Serre tree for an HNN extension

Let $G = H *_{\theta}$ be the HNN extension of H relative to the isomorphism $\theta: A \rightarrow B$ between the two subgroups A, B of H. Following [\[9\]](#page-19-0) we call $H*_\theta$ a *nonsemidirect* HNN extension if at least one of the subgroups A or B is a proper subgroup in H. If $H = \langle S_H | R_H \rangle$ is a presentation of H, then G admits the presentation

$$
G = \langle S_H, t \mid R_H, tat^{-1} = \theta(a) \text{ for all } a \in A \rangle.
$$

There is a natural surjection $\varphi: G \to \mathbb{Z}$ defined by sending the generators S_H to 0 and t to 1.

The vertices of the associated Bass–Serre tree T of G are the right cosets of G by H and the edges are the right cosets of G by B ,

$$
T^0 = G/H, \quad T^1 = G/B.
$$

The edge $gB \in T^1$ has vertices gH and gtH . This is a tree of valency $[H : A] +$ $[H : B]$. The group G acts on T by left multiplication.

Since the natural surjection $\varphi: G \to \mathbb{Z}$ is trivial on H, it induces a map $\bar{\varphi}$: $T^0 \to \mathbb{Z}$ which sends vertices v, w of an edge of T^1 to images satisfying $|\bar{\varphi}(v) - \bar{\varphi}(w)| = 1$. This allows us to define an orientation on the edges by giving an edge from v to w with $\bar{\varphi}(w) - \bar{\varphi}(v) = 1$ the positive orientation. This allows us to distinguish between two types of neighbors to any vertex v: the $[H : A]$ vertices w such that $\bar{\varphi}(w) = \bar{\varphi}(v) - 1$ which we call the *direct ascendants* of v, and the [H : B] vertices w such that $\bar{\varphi}(w) = \bar{\varphi}(v) + 1$, which we call the *direct descendants* of v. We further call a vertex z an *ascendant*, respectively a *descendant*, of v if there is a sequence $v = w_0, w_1, \ldots, w_\ell = z$ such that w_i is a direct ascendant, resp. direct descendant, of w_{i-1} for $1 \le i \le \ell$. In our examples, $[H : A] = 1$, which means that there is only one direct ascendant to any vertex. We will also use the terminology that a vertex v is *above*, respectively *below*, a vertex w if v is an ascendant, resp. descendant, of w .

Since the action of G on T preserves the orientation on the edges defined above, it is immediate that G acts on T without inversions. Thus there are two types of elements: elliptic and hyperbolic. Elliptic elements $g \in G$ have a fixed point on T and are thus conjugated to H. Hyperbolic elements $g \in G$ have no fixed point and possess a unique invariant geodesic L_g , called the axis of g, on which g acts by translation. Note that any element $g \in G$ which is not in the kernel of $\varphi: G \to \mathbb{Z}$ necessarily is hyperbolic, so in particular, any generating set of G contains a hyperbolic element. Such hyperbolic elements will be called positive, respectively negative according to their image acting as a positive or negative translation on Z.

Let us look at the first of our two main examples: the Baumslag-Solitar group $BS(1, n)$. The Baumslag–Solitar group $BS(1, n)$ is an HNN extension for $H = A = \mathbb{Z}, B = n\mathbb{Z}$ and $\varphi: \mathbb{Z} \to n\mathbb{Z}$ given by multiplication by n,

$$
BS(1, n) = \langle a, t \mid tat^{-1} = a^n \rangle.
$$

Its Bass–Serre tree is depicted in Figure [2.1.](#page-5-0)

First we note that the standard presentation for a restricted wreath product $G \wr \mathbb{Z}$ provides an HNN extension, but the subgroups A, B are both equal to G , so the corresponding Bass–Serre tree is a line, and the corresponding action of G on a line is not useful for our goals. Still, it is possible to find yet another HNN decomposition. It was shown in $[3,$ Theorem 2.5] that a finitely generated group G is a non-semidirect HNN extension, once there exists a homomorphism $G \to \mathbb{Z}$ with infinitely generated kernel. Even earlier in $[14]$, it has been pointed out that for any wreath product $G \wr \mathbb{Z}$ there exists an HNN extension presentation with indices $|G|$ and 1 so that the corresponding Bass–Serre tree is a regular tree of valency $|G| + 1$. For completeness, we include a proof of this fact for $\mathcal{L}_n = (\mathbb{Z}/n\mathbb{Z}) \wr \mathbb{Z}$.

Figure 2.1. Bass–Serre tree of $BS(1, n)$

Lemma 4. *The lamplighter group* $\mathcal{L}_n = (\mathbb{Z}/n\mathbb{Z}) \wr \mathbb{Z}$ *can be decomposed as an HNN extension* $D*_\theta$ *with indices of the subgroups* $[D : A] = 1$, $[D : B] = n$.

Proof. We will show that \mathcal{L}_n is a non-semidirect HNN extension of an abelian $\bigoplus_{\mathbb{N}_0} (\mathbb{Z}/p\mathbb{Z})$ canonically generated by the set of elements $\{a_0, a_1, a_2, \dots\}$. Obvigroup with countable generating set. Consider the infinite direct sum $D =$ ously,

$$
D = \langle a_0, a_1, a_2, \dots \mid a_i^n = 1, [a_i, a_j] = 1, i, j \in \mathbb{N}_0 \rangle.
$$
 (2.1)

Take the HNN extension $D*_f$ given by the subgroups $A = D$ and $B =$ $\langle a_1, a_2, \ldots \rangle$ and the isomorphism $f(a_i) = a_{i+1}$. Then the group $D * f$ can be presented as

$$
D *_{f} = \langle t, a_{0}, a_{1}, a_{2} \cdots | a_{i}^{n} = 1, [a_{i}, a_{j}] = 1, t a_{i} t^{-1} = a_{i+1}, i, j \in \mathbb{N}_{0} \rangle.
$$
\n(2.2)

The relations $a_{i+1} = t a_i t^{-1}$ imply that

$$
a_i = t^i a_0 t^{-i} \quad \text{for } i \ge 1.
$$

The relations $a_i^n = 1$ with $i \ge 1$ are redundant in [\(2.2\)](#page-5-1) because they follow from the relation $a_0^n = 1$ and the relations [\(2.3\)](#page-5-2). Moreover, using the equalities (2.3) we can exclude the generators a_i with $i \ge 1$ from the presentation [\(2.2\)](#page-5-1) to obtain

$$
D *_{f} = \langle t, a_{0} \mid a_{0}^{n} = 1, [t^{i} a_{0} t^{-i}, t^{j} a_{0} t^{-j}] = 1, i, j \in \mathbb{N}_{0} \rangle. \tag{2.4}
$$

Since each relation $[t^i a_0 t^{-i}, t^j a_0 t^{-j}] = 1$ follows from $[a_0, t^{j-i} a_0 t^{i-j}] = 1$ and $[a_0, t^k a_0 t^{-k}]$ follows from $[a_0, t^{-k} a_0 t^k]$, we can reduce the presentation [\(2.4\)](#page-5-3) to

$$
D*_f = \langle t, a_0 \mid a_0^n = 1, [a_0, t^k a_0 t^{-k}] = 1, k \in \mathbb{N} \rangle,
$$

which is the presentation of the lamplighter group \mathcal{L}_n .

Lemma 5. Let G be an HNN extension such that $A = H$ and B is a normal *subgroup of H of odd prime index* $p = 2k + 1$ *. Let* $g \in G$ *be an elliptic element. For any vertex* v of the Bass–Serre tree T either $g(v) = v$ or the $p = 2k + 1$ *vertices*

$$
g^{-k}(v), \ldots, g^{-1}(v), v, g(v), \ldots, g^{k}(v)
$$

are distinct.

Proof. Let $a \in A = H$ be any element not in the kernel of the natural surjection $A \to A/B \cong \mathbb{Z}_p$. Then $A = \bigsqcup_{j=-k}^{k} a^j B$. In the Bass–Serre tree of G, the p direct descendants of the vertex A are the vertices $a^{-k} t A, \ldots, t A, \ldots, a^{k} t A$ and are joined to A through the edges $a^{-k}B, \ldots, B, \ldots, a^{k}B$ respectively. Observe that since B is normal in A, any element $b \in B$ acts trivially on the direct descendants of the vertex A. Furthermore, a and any of its powers a^j where p does not divide j obviously acts cyclically on the first descendants of A .

By conjugation, we can suppose that our elliptic element is in fact $h = a^j b \in$ $H = A$, with $b \in B$ and $-k \le j \le k$. If $j = 0$ then h acts trivially on the direct descendants of A, while if $j \neq 0$ then h acts as a cyclic permutation of order p.
This implies the lemma This implies the lemma.

The following lemma is an immediate application of the classical ping-pong lemma for semigroups [\[7,](#page-19-1) Proposition VII.2] taking as ping-pong sets, the descendants of $x_i v$, for every *i*:

Lemma 6 (ping pong lemma). Let $x_1, x_2, \ldots, x_r \in BS(1, p)$ *act as positive hyperbolic automorphisms on the corresponding Bass–Serre tree* T *. Suppose that there exists a vertex* $v \in T^0$ *such that* $\{x_1v, x_2v, \ldots, x_rv\}$ *are descendant leaves of a tree rooted at v. Then the set* $\{x_1, \ldots, x_r\}$ *freely generates a free monoid.*

3. Growth rates computations and estimates

We collect in this section some explicit computations and estimates on growth rates. Lemma [7,](#page-6-2) which is proved in [\[2,](#page-19-4) Lemma 6], will be used extensively in the proofs of Theorems [1](#page-2-0) and [2](#page-2-1) in combination with our ping pong lemma [6.](#page-6-1) The exact growth rates of some Baumslag–Solitar groups and lamplighters groups are computed in Lemma [8](#page-7-0) and the last Lemma [10](#page-9-0) allows us to compare some particular roots.

Lemma 7. Let G be a group generated by a finite set S. Suppose that there exists *a set* $\{x_1, \ldots, x_k\} \subset G$ *generating a free monoid inside G. Set* $\ell_i = \ell_{G,S}(x_i)$ *, for* $i = 1, \ldots, k$, and $m = \max\{\ell_1, \ldots, \ell_k\}$. Then $\omega(G, S)$ is greater or equal to the *unique positive root of the polynomial*

$$
Q(z) = z^{m} - \sum_{i=1}^{k} z^{m-\ell_i}.
$$
 (3.1)

As mentioned in the introduction we can easily compute the growth rate of the lamplighters and Baumslag–Solitar group with respect to the canonical generators from the growth functions found by Parry [\[10\]](#page-19-9) and Collins, Edjvet and Gill [\[4\]](#page-19-8) respectively. Recall that for any integer $k > 1$ we consider the polynomial

$$
T_k(x) = x^{k+1} - x^k - 2x^{k-1} - \dots - 2x - 2.
$$

Due to Descartes rule of signs, T_k has a single positive root, which we denote by ω_k .

Lemma 8. (a) *The growth rate* $\omega(\mathcal{L}_2, \{a, t\})$ *is equal to* $\varphi = \frac{1 + \sqrt{5}}{2}$ $\frac{\sqrt{5}}{2}$. (b) *For any* $k \geq 1$ *we have that*

$$
\omega(\text{BS}(1, 2k + 1), \{a, t\}) = \omega(\mathcal{L}_{2k+1}, \{a, t\}) = \omega_k,
$$

(c) The growth rate $\omega(\text{BS}(1, 2), \{a, t\})$ is equal to the positive root of $x^3 - x^2 - 2$.

The equality $\omega(\mathcal{L}_2, \{a, t\}) = \varphi$ was also mentioned in [\[8,](#page-19-13) p.1997] by Lyons-Pemantle-Peres, and follows from the observation that there is a subtree in the Cayley graph of \mathcal{L}_2 which is a Fibonacci tree.

Proof. (a) For the wreath product $G \wr \mathbb{Z}$ one can compute the exact growth series using the following formula of Parry from [[10,](#page-19-9) Corollary 3.3]. Let $\Sigma_{G,S}(x) = \nabla^{\infty}$ $\sum_{m=0}^{\infty} f_{G,S}(m)x^m$ be the growth series of the group G with respect to the finite generating set S. Then the growth series of $G \wr \mathbb{Z}$ with respect to the set $S \cup \{t\}$ can be obtained as

$$
\Sigma_{G\{Z,S\cup\{t\}}}(x) = \frac{\Sigma_{G,S}(x)(1-x^2)^2(1+x\Sigma_{G,S}(x))}{(1-x^2\Sigma_{G,S}(x))^2(1-x\Sigma_{G,S}(x))}.
$$
(3.2)

We use this formula to compute the growth series for \mathcal{L}_2 .

$$
\Sigma_{\mathcal{L}_2,\{a,t\}}(x) = \frac{(1+x)(1-x^2)^2(1+x(1+x))}{(1-x^2(1+x))^2(1-x(1+x))}
$$

$$
= \frac{(1+x)(1-x^2)^2(1+x+x^2)}{(1-x^2-x^3)^2(1-x-x^2)}.
$$

The factors in the numerator have roots on the unit circle, whilst the factors of the denominator give two roots inside the unit circle, whose reciprocals are the golden ratio $\varphi = (1 + \sqrt{5})/2$ and $\psi \approx 1.325$ (which is the so-called "plastic number"). Since $\varphi > \psi$, we get $\omega(\mathcal{L}_2, \{a, t\}) = \varphi$.

(b) Another elegant formula by Parry (see [\[10,](#page-19-9) Theorem 4.1]) allows to compute the growth rate of the wreath product $G \wr \mathbb{Z}$. If S is a finite generating set for the group G then $\omega(G \wr \mathbb{Z}, S \cup \{t\}) = 1/\kappa$, where κ is the smallest positive zero of the function $1 - x \Sigma_{G,S}(x)$. Taking $\Sigma_{\mathbb{Z}/(2k+1)\mathbb{Z},\{a\}}(x) = 1 + 2x + 2x^2 + \cdots + 2x^{k-1}$ we get that $\omega(\mathcal{L}_{2k+1}, \{a, t\}) = 1/\kappa_k$, where κ_k is the smallest positive root of the polynomial $R_k(x) = 1 - x - 2x^2 - \cdots - 2x^{k+1}$. The polynomials R_k and T_k are reciprocal, so indeed we get that $\omega(\mathcal{L}_{2k+1}, \{a, t\}) = 1/\omega_k$.

To prove that $\omega(BS(1, 2k + 1), \{a, t\}) = \omega_k$ we use the following explicit formula from [\[4\]](#page-19-8), which gives a power series $\Sigma_n(x) = \sum_{m=0}^{\infty} f(m)x^m$ for the growth function $f(m) = f_{BS(1,n),\{a,t\}}(m)$. For the case $n = 2k + 1$ they obtain

$$
\Sigma_n(x) = \frac{(1+x^2 - 2x^{k+2})(1+x-2x^{k+2})(1+x)^2(1-x)^3}{(1-x-x^2-x^3+2x^{k+3})^2(1-2x-x^2+2x^{k+2})}.
$$
(3.3)

Then the growth rate $\omega(BS(1, 2k + 1), \{a, t\})$ is equal to $1/\alpha$, where α is the smallest positive pole of the function $\Sigma_n(x)$. Since $1 < \omega(BS(1, 2k + 1), \{a, t\})$, we obtain $\alpha \in (0, 1)$. We will first prove that $\alpha = \gamma_2$, where γ_2 is the smallest positive root of the second factor

$$
Q_2(x) = 1 - 2x - x^2 + 2x^{k+2}
$$

of the denominator in [\(3.3\)](#page-8-0). Let γ_1 be the smallest positive root of the first factor $Q_1(x) = 1 - x - x^2 - x^3 + 2x^{k+3}$. Note that $Q_1(0) = Q_2(0) = 1$ and $Q_1(1) = Q_2(1) = 0$, so the numbers γ_1, γ_2 are well defined and $0 < \gamma_1, \gamma_2 \le 1$. Since the difference function

$$
Q_1(x) - Q_2(x) = x - x^3 + 2x^{k+2} - 2x^{k+3} = x(1 - x^2) + 2x^{k+1}(1 - x)
$$

is non-negative on [0, 1], we obtain that $y_1 > y_2$.

To show that $\alpha = \gamma_2$ we are left to prove that γ_2 is not a root of the numerator. Since $Q_2(1/2) = 1/2^{k+1} - 1/4 \le 0$, we obtain that $\gamma_2 \in (0, 1/2)$. The factors $(1 + x)^2$ and $(1 - x)^3$ do not have roots on the interval $I = (0, 1/2)$, and we will check that $P_1(x) = 1 + x^2 - 2x^{k+2}$ and $P_2(x) = 1 + x - 2x^{k+2}$ have no common roots with $Q_2(x)$ on I. This is true, since otherwise either $Q_2(x) + P_1(x) = 2-2x$. or $Q_2(x) + P_2(x) = (2 + x)(1 - x)$ would have a root on $(0, 1/2)$, which is false.

We can factorize $Q_2(x)$ as $(1 - x)Z(x)$ with

$$
Z(x) = 1 - x - 2x^2 - \dots - 2x^{k+1}.
$$

Since the polynomial $Z(x)$ is reciprocal to the polynomial $T(x)$ from the statement, the part (b) of the lemma is proved.

198 M. Bucher and A. Talambutsa

(c) Here we use another formula from [\[4\]](#page-19-8) that is

$$
\Sigma_2(x) = \frac{(1-x)^2(1+x)^2H(x)}{(1-x-2x^3)(1-x^2-2x^5)^2},
$$

where

$$
H(x) = 1 + 3x + 8x2 + 12x3 + 16x4 + 20x5 + 22x6 + 16x7 + 14x8 + 12x9 + 4x10.
$$

We follow the same strategy as in the part (b), and first make sure that the positive root of the polynomial $Q_1(x) = 1 - x - 2x^3$ is smaller than the one of $Q_2(x) = 1 - x^2 - 2x^5$, because $Q_2(x) - Q_1(x) = x(1-x) + 2x^3(1-x^2) > 0$ on $(0, 1)$. Then, making tedious computations or using a computer, one gets that $GCD(H(x), Q_1(x)) = 1$, so the smallest pole of $\Sigma_2(x)$ indeed comes from $Q_1(x)$. Again, $Q_1(x)$ is reciprocal to $x^3 - x^2 - 2$, and the part (c) is also proved. \square

Now we can show that the classic lamplighter \mathcal{L}_2 gives the answer to Mann's question about growth of non-semidirect HNN extensions (see [\[9,](#page-19-0) Problem 1]), proving a part of the Theorem 1. Indeed, as \mathcal{L}_2 is a non-semidirect HNN extension due to Lemma [4,](#page-5-4) we may apply the Theorem 1 from [\[9\]](#page-19-0) to get the lower bound $\Omega(\mathcal{L}_2) \geq \varphi$ and finally conclude that $\Omega(\mathcal{L}_2) = \varphi$.

Remark 9. The constant ψ is quite notable. It is the smallest Pisot number and is sometimes called the "plastic number". It is shown in [\[2\]](#page-19-4) that $\psi = \Omega(GL(2, \mathbb{Z}))$ = $\Omega(PGL(2, \mathbb{Z}))$. It may be interesting to find a natural (maybe geometric) reason for the group \mathcal{L}_2 to have ψ as "the second growth rate."

The next lemma will allow us to compare ω_k with the growth rate of some free monoid in the proof of Theorem [2.](#page-2-1)

Lemma 10. Let $k \geq 1$ be an integer and δ_k be the unique positive root of the *polynomial* $D_k(x) = x^{2k+1} - 2x^{2k} - 2x^{2k-2} - \cdots - 2x^2 - 2$. Then

$$
\frac{1+\sqrt{5}}{2} \le \omega_k \le \delta_k < 1+\sqrt{2}.
$$

Proof. The inequality $\left(1 + \sqrt{5}\right)/2 \le \omega_k$ may be proven directly, but actually we already know that $\omega(BS(1, 2k + 1), \{a, t\}) = \omega_k$ and $\Omega(BS(1, 2k + 1)) \ge$ $(1 + \sqrt{5})/2$ as proved by Mann.

Since $T_k(1)$, $D_k(1) < 0$ and $T_k(+\infty) = D_k(+\infty) = +\infty$ we get $\delta_k, \omega_k > 1$. Consider the polynomials $D(x) = (x^2 - 1)D_k(x)$ and

$$
T(x) = (x2 - 1)Tk = (x + 1)(x – 1)T(x).
$$

After a simple calculation we get

$$
D(x) = x^{2k+3} - 2x^{2k+2} - x^{2k+1} + 2,
$$

\n
$$
T(x) = x^{k+3} - x^{k+2} - 3x^{k+1} - x^k + 2x + 2.
$$

As $(x^2-1) > 0$ on $(1, +\infty)$ and $D(1+\sqrt{2}) = 2 > 0$, we get that $\delta_k \in (1, 1+\sqrt{2})$.

Since $T(1) = D(1) = 0$ and $T(1 + \varepsilon)$, $D(1 + \varepsilon) > 0$ for small ε , in order to show the inequality $\omega_k < \delta_k$ it suffices to show that $T(x) > D(x)$ on the interval $(1, 1 + \sqrt{2}).$

Consider the difference function

$$
D(x) - T(x) = x^{2k+3} - 2x^{2k+2} - x^{2k+1} - x^{k+3} + x^{k+2} + 3x^{k+1} + x^k - 2x
$$

= $(x^k - 1)(x^{k+1} - 1)(x^2 - 2x - 1) - (x^2 - 1).$

Since the polynomials $x^k - 1$ and $x^{k+1} - 1$ are positive on $(1, +\infty)$ and $x^2 - 2x - 1$ is negative on $(1, 1 + \sqrt{2})$, we indeed have that $D(x) - T(x) < 0$ on $(1, 1 + \sqrt{2})$, which proves the lemma. \Box

4. Proofs of Theorems [1](#page-2-0) and [2](#page-2-1)

Proof of theorem [2](#page-2-1). Let $G = H *_{\theta}$ be an HNN extension relative to an isomorphism $\theta: A \to B$ with $A = H$ and B a normal subgroup of prime index p in H. Let S be any generating set for G. We need to show that $\omega(G, S) \geq (1 + \sqrt{5})/2$ for $p = 2$ and $\omega(G, S) > \omega_k$ for $p = 2k + 1$.

As explained above (see Section [2\)](#page-3-0), the natural surjection $\varphi: G \to \mathbb{Z}$ ensures the existence of a hyperbolic element in S. Furthermore, upon replacing x by x^{-1} we can suppose that x is a positive element. Since the action of G is transitive on its $(p + 1)$ -regular Bass–Serre tree, there exists an element in S not preserving the axis L_x of x. We distinguish two cases according to this element being elliptic or hyperbolic.

CASE 1 (ELLIPTIC). There exists an elliptic element $z \in S$ such that $z(L_x) \neq L_x$. For $p = 2$, we consider the set

$$
M = \{x, zx\},\
$$

while for odd primes $p = 2k + 1$,

$$
M = \{x, zx, z^2x, \dots, z^kx, z^{-1}x, z^{-2}x, \dots, z^{-k}x\}.
$$

In either cases, we will show that M freely generates a free monoid.

Since any vertex has only one direct ascendant, if a vertex is in the fixed point set of z , then all its ascendants are. For the same reason, any two ascending rays meet, so there exists a vertex of the axis of x which is fixed by z. Let v be the lowest vertex on $L_x \cap Fix(z)$. Then $x(v)$ is a descendant of v, which is not in the set $Fix(z)$, hence the vertices

$$
x(v), \, zx(v), \quad \text{for } p=2,
$$

and by Lemma [5,](#page-6-3) the vertices

$$
x(v), \ zx(v), \ldots, z^{k}x(v), \ z^{-1}x(v), \ldots, z^{-k}x(v), \text{ for odd } p = 2k + 1,
$$

are all distinct leaves of a tree rooted at v , so M freely generates a free monoid due to the ping pong Lemma [6.](#page-6-1) Lemma [7](#page-6-2) now implies that $\omega(G, S)$ is greater or equal to the unique positive root of

$$
z^2 - z - 1, \quad \text{for } p = 2,
$$

which is precisely the golden ratio $(1 + \sqrt{5})/2$, while for $p = 2k + 1$, it is greater or equal to the unique positive root of

$$
T_k(z) = z^{k+1} - z^k - 2z^{k-1} - \dots - 2z - 2,
$$

which is ω_k by definition.

CASE 2 (HYPERBOLIC). There exists a hyperbolic element $y \in S$ such that $y(L_x) \neq L_x$. Upon replacing y by its inverse, we can suppose that y is positive hyperbolic. Since y preserves its axis L_v , this implies that the axes L_x and L_v are different. This already implies that

$$
\omega(\mathsf{BS}(1,p), S) \ge 2
$$

(see [\[1,](#page-19-14) Lemma] or Lemma [7](#page-6-2) with $\ell_1 = \ell_2 = 1$). Since for $p = 2$, 3 we have

$$
\omega(\text{BS}(1,2), \{a, t\}) < \omega(\text{BS}(1,3), \{a, t\}) = 2,
$$

we can suppose that $p \ge 5$, and again $p = 2k + 1$.

We consider four subcases, according to the situations when

- A. $\ell(x) = \ell(y)$.
- $B. 2\ell(y) < \ell(x),$
- c. $\ell(x) = 2\ell(y)$, and
- D. $\ell(y) < \ell(x) < 2\ell(y)$.

CASE 2A: $\ell(x) = \ell(y)$. Note that the element yx^{-1} is elliptic and $yx^{-1}(L_x) \neq L_x$. We can apply the claim of Case 1 to x and $z = yx^{-1}$ to conclude that the set

$$
\{x, y, yx^{-1}y, \dots, (yx^{-1})^{k-1}y, xy^{-1}x, \dots, (xy^{-1})^kx\}
$$

is a basis of a free monoid. Then Lemma [7](#page-6-2) shows that

$$
\omega(\mathsf{BS}(1, 2k+1), S) \ge \delta_k,
$$

where δ_k is the single positive root of the polynomial

$$
D_k(x) = x^{2k+1} - 2 \sum_{m=0}^{k} x^{2m}.
$$

Finally, Lemma [10](#page-9-0) gives the desired inequality

$$
\omega(\text{BS}(1, 2k+1)) \ge \delta_k \ge \omega_k.
$$

We can now suppose that $\ell(y) < \ell(x)$ and distinguish three further subcases.

CASE 2B: $2\ell(y) < \ell(x)$. We will show that the infinite family

$$
\{y^{-2}x, y^{-1}x, x, yx, y^{2}x, \dots, y^{s}x, \dots, y^{s-1}yx, y^{2}x^{-1}yx, \dots, y^{s}x^{-1}xy, \dots\}
$$

which is maybe better described as

$$
\{y^s x \mid s \ge -2\} \cup \{y^s x^{-1} y x \mid s \ge 1\}
$$

freely generates a free monoid. Then, taking as free generators only the $2k + 1$ elements

$$
x, yx, y^2x, \ldots, y^kx, y^{-1}x, y^{-2}x, yx^{-1}yx, y^2x^{-1}yx, \ldots, y^{k-2}x^{-1}xy
$$

we get that $\omega(G, S)$ is by Lemma [7](#page-6-2) greater or equal to the unique positive root of

$$
T_k(z) = z^{k+1} - z^k - 2z^{k-1} - \dots - 2z - 2,
$$

which is ω_k by definition.

To prove that the above infinite family freely generates a monoid, let v_0 be the lowest vertex on $L_x \cap L_y$ and let $v_x \in L_x$ and $v_y \in L_y$ be the corresponding direct descendants of v_0 . We aim at applying the ping pong Lemma [6](#page-6-1) to the vertex $w = x^{-1}(v_x)$, see Figure [4.1.](#page-13-0)

First notice that since $v_x \notin L_y$, the translates $y^s x(w) = y^s(v_x)$ are all distinct, branching from L_y at $y^s(v_0)$. Furthermore, for $-2 \leq s$, the highest such translate is $y^{-2}x(w) = y^{-2}(v_x)$ which is strictly below $y^{-2}(v_0)$ by construction. Now $w = x^{-1}(v_x)$ is equal or above $y^{-2}(v_0)$ since $2\ell(y) < \ell(x)$. This already implies that the infinite subfamily $\{y^s x \mid -2 \leq s\}$ freely generates a free monoid.

Second consider the vertex $y(v_x)$. It is branching from L_x at v and the first vertex from $L_x \cap L_y$ to $y(v_x)$ is v_y . It follows that $x^{-1}y(v_x)$ does not belong to L_x either and is branching at $x^{-1}(v)$ from L_x and hence also from L_y . It follows that all the translates $y^s x^{-1} y x (w) = y^s x^{-1} y (v_x)$ belong to different branches of L_y , branching at $y^s x^{-1}(v_0)$. Since $\ell(y) \ge 1$, for $1 \le s$ the branch points are below or equal to $w = x^{-1}(v_x)$.

Figure 4.1. Case $2\ell(y) < \ell(x)$.

If $\ell(x)$ is not a multiple of $\ell(y)$ the two families of branching points are different and we are done. If $\ell(x) = m\ell(y)$ for some $m > 2$ we need to check that $y^{n+m}x^{-1}(y_y) \neq y^{n}y_x$ and it is enough to check it for $n = 0$. Consider the elliptic element $y^m x^{-1}$. It fixes v_0 , sends v_x to v_y and v_y to $y^m x^{-1} (v_x)$ which cannot be equal to v_x otherwise the action on the direct descendants of v_0 of the elliptic element $y^m x^{-1}$ would not be transitive, contradicting Lemma [5.](#page-6-3)

Case 2c: $\ell(x) = 2\ell(y)$. It is enough to show that the set

$$
\{x, y, xy^{-1}x, xy^{-2}x, xy^{-1}xy^{-1}x, y^2x^{-1}y, xyx^{-1}y\}
$$

is a basis of a free monoid. Then, using Lemma [7](#page-6-2) we get that $\omega(BS(1, k))$ is at least γ , where γ is the root of the polynomial $F(x) = x^5 - 2x^4 - x^2 - 3x - 1$. Since $F(x) = (x^2 - 2x - 1)(x^3 + x + 1)$, we get that $\gamma = 1 + \sqrt{2}$, and again Lemma [10](#page-9-0) gives the desired inequality $\omega(G, S) \ge \omega_k$.

Let as above v be the lowest vertex on $L_x \cap L_y$. We aim at applying the ping pong Lemma [6](#page-6-1) to the vertex v. Let $v_x \in L_x$ and $v_y \in L_y$ be the corresponding direct descendants of v_0 .

The elliptic transformation $b = y^2 x^{-1}$ fixes v and takes v_x to v_y . Thus its action on the direct descendants of v is nontrivial and hence transitive. Since we assume $p \ge 4$, it follows by Lemma [5](#page-6-3) that the image $v_{+} = y^2 x^{-1}(v_y)$ of v_y and the preimage $v_- := xy^{-2}(v_x)$ of v_x give four distinct direct descendants of v_0 as depicted in Figure [4.2.](#page-14-0)

Figure 4.2. Case $\ell(x) = 2\ell(y)$: the action of the elliptic element $b = y^2 x^{-1}$.

Observe that $y^2x^{-1}y(v)$ is on the branch through v and v_+ , while $xy^{-2}x(v)$ is on the branch through v_0 and $v_$. Thus the four elements $xv, yv, xy^{-2}x(v)$ and $y^2x^{-1}y(v)$ have distinct geodesics to v.

We now forget about $xy^{-2}x(v)$ and look at the image of the tree rooted at v of the three remaining elements through the hyperbolic transformation xy^{-1} . The root v is mapped on the segment from v to $x(v)$. The vertex $y(v)$ is mapped to $x(v)$, and the two remaining leaves are sent to vertices branching from L_x at $xy^{-1}(v)$.

Iterating this procedure but only on $xy^{-1}(v)$, $x(v)$ and $xy^{-1}x(v)$ shows that $xy^{-1}xy^{-1}x(v)$ is branching from the segment between $xy^{-1}(v)$ and $xy^{-1}x(v)$. We have thus proven that the seven vertices are leaves of a tree rooted at v , as illustrated in Figure 4.3 , which finishes the proof of this case.

Figure 4.3. Case $\ell(x) = 2\ell(y)$: The subtree to which we apply the ping pong Lemma [6.](#page-6-1)

Case 2D: $\ell(y) < \ell(x) < 2\ell(y)$. We will show that the set

$$
\{x, y, xy^{-1}x, xy^{-2}x, yx^{-1}y\}
$$

is a basis of a free monoid. Since the corresponding polynomial $x^4 - 2x^3 - 2x - 1 =$ $x(x^2+1)(x^2-2x-1)$ has only one positive root $1+\sqrt{2}$, this will prove this case.

Set $a = \ell(x)$ and $b = \ell(y)$. The proof decomposes in the two cases $b < a < (3/2)b$ and $(3/2)b < a < 2b$ with an additional small argument needed in the equality case.

In case $b < a \leq (3/2)b$ we aim at applying the ping pong Lemma [6](#page-6-1) to the vertex $w = xy^{-2}(v)$. (See Figure [4.4.](#page-16-0)) This vertex is on the intersection of the axes $L_x \cap L_y$ at distance $2b - a$ above v. Of the five images of w, only $x(w)$ is on the axis L_x , at distance a below w and hence $2(a - b)$ below v. The four other images are not in L_x and we will determine their projection on L_x .

The image $y(w)$ is on the axis L_v at distance b below w and hence at distance $a - b$ from its projection $v \in L_x$. Since the axis of the hyperbolic transformation xy^{-2} contains $L_x \cap L_y$ and at least the vertex $v_y \in L_y$, the segment $[v, x(w)]$, which intersects $L_{xy^{-2}}$ only at v is mapped by xy^{-2} to the segment $[w, xy^{-2}x(w)]$ which intersect $L_{xy^{-2}}$ and hence L_x only in w. Similarly, the axis of xy^{-1} contains $L_x \cap L_y$ and at least the vertex $v_x \in L_x$, so that the hyperbolic transformation xy^{-1} takes the segment $[v, x(v)]$ to the segment $[xy^{-1}(v), xy^{-1}x(v)]$ which intersects $L_{xy^{-1}}$ and hence L_x precisely in $xy^{-1}(v)$ which is at distance $a - b$ from both v and $x(v)$. Finally, the axis of yx^{-1} contains $L_x \cap L_y$ and at least the vertex $v_y \in L_y$, so that applying yx^{-1} to the segment $[v, y(w)]$ we obtain the segment $[yx^{-1}(v), yx^{-1}y(w)]$ which intersects L_x in $yx^{-1}(v)$ which is at distance $a - b$ above v and hence at distance $3b - 2a > 0$ below w. If the inequality is strict, the claim immediately follows from the ping pong Lemma [6.](#page-6-1) If $3b - 2a = 0$, we will see below how to show that the segments $[yx^{-1}(v), yx^{-1}y(w)]$ and $[w, xy^{-2}x(w)]$ only intersect at $w = yx^{-1}(v)$.

If $(3/2)b \le a < 2b$ the argument is completely analogous, except that the vertex $yx^{-1}(v)$ is above or equal to $w = xy^{-2}(v)$. Thus we want to replace w by $w' := yx^{-1}(v)$ and apply the ping pong Lemma [6](#page-6-1) to this vertex w'. (See Figure [4.5.](#page-16-1)) This vertex is on the intersection of the axes $L_x \cap L_y$ at distance $a - b$ above v. Of the five images of w', only $x(w')$ is on the axis L_x , at distance a below w and hence b below v. The four other images are not in L_x and we will determine their projection on L_x .

The image $y(w')$ is on the axis L_y at distance b below w and hence at distance $2b - a$ from its projection $v \in L_x$. For the three other image points, the proof is identical to the above case, replacing w by w' .

Figure 4.4. Case $b < a < 3/2b$.

Figure 4.5. Case $3/2b < a < 2b$.

206 M. Bucher and A. Talambutsa

In the equality case the two vertices $w = w'$ agree. Let v_1 , respectively v_2 be the first vertex after w on the geodesic to $xy^{-2}(w)$, respectively $yx^{-1}y(w)$. We need to show that $v_1 \neq v_2$. Let v_a be the direct descendant of w on the geodesic to v. The ordered pair (v_1, v_a) is mapped to (v_x, v_y) by y^2x^{-1} , which are further mapped to (v_a, v_2) by yx^{-1} . Thus the elliptic element $yx^{-1}y^2x^{-1}$ sends the ordered pair (v_1, v_a) to (v_a, v_2) and since $p > 3$ and elliptic elements act either trivially or transitively on direct descendants of a fixed point by Lemma [5](#page-6-3) it follows that $v_1 \neq v_2$, which finishes the proof of this case and of the theorem. \Box

Proof of Theorem [1](#page-2-0)*.* In view of Lemma [8,](#page-7-0) Theorem [1](#page-2-0) follows immediately from Theorem [2](#page-2-1) except in the case of $BS(1, 2)$ where we need a better understanding of its action on the Bass–Serre tree to obtain the accurate lower bound of

$$
\omega(\text{BS}(1,2), \{a, t\}) = \beta,
$$

where β is the unique real root of $x^3 - x^2 - 2$.

Let S be a generating set for $BS(1, 2)$. As in the proof of Theorem [2,](#page-2-1) the case where S contains two hyperbolic elements with different axis immediately gives the lower bound of $\omega(BS(1, 2), S) \geq 2 > \beta$. We thus only have to treat the corresponding elliptic case, that is, there exists a positive hyperbolic element $x \in S$ with axis L_x and an elliptic element $z \in S$ such that $z(L_x) \neq L_x$.

As observed in the elliptic case of the proof of Theorem [2](#page-2-1) the intersection of L_x with the fixed point set of z is nonempty. Upon conjugating the generating set S, we can suppose that the lowest vertex on L_x fixed by z is A, which implies that z belongs to A. Since z does not fix the direct descendants tA and atA it must be an odd power of A.

Consider the action of a on the second generation of descendants of A , that is $t^2 A$, tat A, at ²A and atat A. The action has order four, mapping $t^2 A \mapsto a t^2 A \mapsto a t^2 A$ $a^2t^2A = \tau \alpha tA \mapsto \alpha tA \mapsto a^2 \tau \alpha tA = t^2A$. The action of z, as an odd power of A is thus necessarily equal to the action of a or a^{-1} on these second generation descendants. It follows that xA , zx^2A and $z^{-1}x^2A$ are leaves of a tree rooted at A, and hence $x, zx^2, z^{-1}x^2$ generate a free monoid by the ping pong Lemma [6.](#page-6-1) Since these elements have lengths 1, 3 and 3 respectively, we can invoke Lemma [7](#page-6-2) to conclude that the grow rate of $BS(1, 2)$ with respect to S is greater or equal to the greatest and unique real root of $x^3 - x^2 - 2$. Finally, Lemma [8](#page-7-0) gives

$$
\omega(\text{BS}(1,2), S) \ge \omega(\text{BS}(1,2), \{a,t\}),
$$

which finishes the proof of the theorem. \Box

5. The lamplighter group $\mathbb{Z} \wr \mathbb{Z}$

The groups $\mathcal{L}_n = (\mathbb{Z}/n\mathbb{Z}) \wr \mathbb{Z}$ are factor groups of the wreath product $\mathbb{Z} \wr \mathbb{Z}$. Actually, the following nice fact is also true.

Proposition 11. *The groups* $BS(1, n)$ *are factor groups of the group* $\mathbb{Z} \wr \mathbb{Z}$ *.*

Proof. As seen above, the groups $\mathbb{Z} \wr \mathbb{Z}$ and BS $(1, n)$ can be presented as

$$
\mathbb{Z} \wr \mathbb{Z} = \langle a, t \mid [a, t^k a t^{-k}] = 1, k \in \mathbb{N} \rangle,
$$
 (5.1)

$$
BS(1, n) = \langle a, t \mid tat^{-1} = a^n \rangle.
$$
 (5.2)

According to [\(5.2\)](#page-18-0), for every positive k the element $t^k a t^{-k}$ is a power of a, hence it commutes with a, so the corresponding relation in (5.1) holds true. \Box

We will see below that $\lim_{k\to\infty} (\omega(\text{BS}(1, 2k + 1), \{a, t\})) = 1 + \sqrt{2}$ $\omega(\mathbb{Z} \wr \mathbb{Z}, \{a, t\})$, which is some further evidence for the fact that $\mathbb{Z} \wr \mathbb{Z}$ is a limit of the groups $BS(1, n)$ in the marked groups space topology (see [[13](#page-19-15), Theorem 2]).

The next lemma will be needed to prove Corollary [3.](#page-3-1)

Lemma 12. *The limit* lim $\lim_{k\to\infty} \omega_k$ *exists, and it is equal to* $1 + \sqrt{2}$.

Proof. From Lemma [10](#page-9-0) and the definition of ω_k we know that ω_k is a single positive root of the polynomial $T_k(x)$, and $(1 + \sqrt{5})/2 < \omega_k < 1 + \sqrt{2}$ for every $k \ge 1$. Then the reciprocal polynomial $R_k(x) = 1 - x - 2x^2 - \cdots - 2x^k - 2x^{k+1}$ has a single positive root $1/\omega_k$ which belongs to the interval $I = (1/3, 2/3)$. Consequently the polynomial

$$
R'_k(x) = (1-x)R_k = (1-x)^2 - 2x^2(1-x^k) = 1 - 2x - x^2 + 2x^{k+2}
$$

also has two positive roots: 1 and $1/\omega_k$. Obviously, for $k \to \infty$ the polynomials $2x^{k+2}$ uniformly converge to the zero function on the enlarged interval $I' =$ $(1/4, 3/4)$. For this reason the roots $1/\omega_k$ of $R'_k(x)$ on I converge to the root of the polynomial $1 - 2x - x^2$ on *I*, and the latter root is equal to $\sqrt{2} - 1 = 1/(1 + \sqrt{2})$, which proves the lemma. \Box

Proof of Corollary [3](#page-3-1). We use Parry's formula [\(3.2\)](#page-7-1) to compute the series $\Sigma(x)$ for the growth function $\mathbb{Z} \wr \mathbb{Z}$ with respect to the generating set $\{a, t\}$:

$$
\Sigma(x) = \frac{(1-x^2)^3(1+x^2)}{(1-x-x^2-x^3)^2(1-2x-x^2)}.
$$

All the roots of the numerator lie on the unit circle, while the denominator has only the discrete state manufacture in the unit circle, whose reciprocals are $\alpha = 1 + \sqrt{2}$ and $\beta \approx 1.839$. Hence, $\omega(\mathbb{Z} \wr \mathbb{Z}, \{a, t\}) = 1 + \sqrt{2}$.

Now we will show that $\Omega(\mathbb{Z} \wr \mathbb{Z}) = 1 + \sqrt{2}$. We already know that $\Omega(\mathbb{Z} \wr \mathbb{Z}) \leq$ $1 + \sqrt{2}$. Suppose that $\Omega(\mathbb{Z}/\mathbb{Z}) = 1 + \sqrt{2} - \varepsilon$, where $\varepsilon > 0$. As any group \mathcal{L}_p is a factor group of the group $\mathbb{Z} \wr \mathbb{Z}$, then for any prime p we have $\Omega(\mathcal{L}_p) \leq 1 + \sqrt{2} - \varepsilon$ which contradicts the equality $\lim_{p \to \infty} \Omega(\mathcal{L}_p) = \lim_{k \to \infty} \omega_k = 1 + \sqrt{2}$ proven in Lemma [12.](#page-18-2) \Box

References

- [1] M. Bucher and P. de la Harpe, Free products with amalgamation and HNN extensions of uniformly exponential growth. *Mat. Zametki* **67** (2000), no. 6, 811–815. In Russian. English translation, *Math. Notes* **67** (2000), no. 5-6, 686–689. [Zbl 0998.20025](http://zbmath.org/?q=an:0998.20025) [MR 1820635](http://www.ams.org/mathscinet-getitem?mr=1820635)
- [2] M. Bucher and A. Talambutsa Exponential growth rates of free and amalgamated products. *Israel J. Math.* **212** (2016), no. 2, 521–546. [Zbl 1350.20020](http://zbmath.org/?q=an:1350.20020) [MR 3505396](http://www.ams.org/mathscinet-getitem?mr=3505396)
- [3] J. Button, Non proper HNN extensions and uniform uniform exponential growth. Preprint 2009. [arXiv:0909.2841](http://arxiv.org/abs/0909.2841) [math.GR]
- [4] D. J. Collins, M. Edjvet, and C. P. Gill, Growth series for the group $\langle x, y | x^{-1} y x =$ y l i. *Arch. Math. (Basel)* **62** (1994), no. 1, 1–11. [Zbl 0820.20036](http://zbmath.org/?q=an:0820.20036) [MR 1249578](http://www.ams.org/mathscinet-getitem?mr=1249578)
- [5] M. Gromov, *Structures métriques pour les variétés riemanniennes.* Edited by J. Lafontaine and P. Pansu. Textes Mathématiques, 1. CEDIC, Paris, 1981. [Zbl 0509.53034](http://zbmath.org/?q=an:0509.53034) [MR 0682063](http://www.ams.org/mathscinet-getitem?mr=0682063)
- [6] R. Grigorchuk and P. de la Harpe, On problems related to growth, entropy and spectrum in group theory. *J. Dynam. Control Systems* **3** (1997), no. 1, 51–89. [Zbl 0949.20033](http://zbmath.org/?q=an:0949.20033) [MR 1436550](http://www.ams.org/mathscinet-getitem?mr=1436550)
- [7] P. de la Harpe, *Topics in geometric group theory.* Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. [Zbl 0965.20025](http://zbmath.org/?q=an:0965.20025) [MR 1786869](http://www.ams.org/mathscinet-getitem?mr=1786869)
- [8] R. Lyons, R. Pemantle, and Y. Peres, *Random walks on the lamplighter group Ann. Probab.* **24** (1996), no. 4, 1993–2006. [Zbl 0879.60004](http://zbmath.org/?q=an:0879.60004) [MR 1415237](http://www.ams.org/mathscinet-getitem?mr=1415237)
- [9] A. Mann, The growth of free products. *J. Algebra* **326** (2011), no. 1, 208–217. [Zbl 1231.20027](http://zbmath.org/?q=an:1231.20027) [MR 2746061](http://www.ams.org/mathscinet-getitem?mr=2746061)
- [10] W. Parry, Growth series of some wreath products. *Trans. Amer. Math. Soc.* **331** (1992), no. 2, 751–759. [Zbl 0793.20034](http://zbmath.org/?q=an:0793.20034) [MR 1062874](http://www.ams.org/mathscinet-getitem?mr=1062874)
- [11] A. Sambusetti, Growth tightness of free and amalgamated products. *Ann. Sci. École Norm. Sup.* (4) **35** (2002), no. 4, 477–488. [Zbl 1018.20036](http://zbmath.org/?q=an:1018.20036) [MR 1981169](http://www.ams.org/mathscinet-getitem?mr=1981169)
- [12] A. G. Shukhov, On the dependence of the growth rate on the length of the defining relator. *Mat. Zametki* **65** (1999), no. 4, 612–618. In Russian. English translation, *Math. Notes* **65** (1999), no. 3-4, 510–515. [Zbl 0979.20033](http://zbmath.org/?q=an:0979.20033) [MR 1715061](http://www.ams.org/mathscinet-getitem?mr=1715061)
- [13] Y. Stalder, Convergence of Baumslag–Solitar groups. *Bull. Belg. Math. Soc. Simon Stevin* **13** (2006), no. 2, 221–233. [Zbl 1148.20018](http://zbmath.org/?q=an:1148.20018) [MR 2259902](http://www.ams.org/mathscinet-getitem?mr=2259902)
- [14] Y. Stalder and A. Valette, Wreath products with the integers, proper actions and Hilbert space compression. *Geom. Dedicata* **124** (2007), 199–211. [Zbl 1178.20039](http://zbmath.org/?q=an:1178.20039) [MR 2318545](http://www.ams.org/mathscinet-getitem?mr=2318545)
- [15] A. Talambutsa, Attainability of the minimal exponential growth rate for free products of nite cyclic groups. *Tr. Mat. Inst. Steklova* **274** (2011), Algoritmicheskie Voprosy Algebry i Logiki, 314–328. In Russian. English translation, *Proc. Steklov Inst. Math.* **274** (2011), no. 1, 289–302. [Zbl 1297.20024](http://zbmath.org/?q=an:1297.20024) [MR 2962948](http://www.ams.org/mathscinet-getitem?mr=2962948)
- [16] J. S. Wilson, On exponential growth and uniformly exponential growth for groups. *Invent. Math.* **155** (2004), no. 2, 287–303. [Zbl 1065.20054](http://zbmath.org/?q=an:1065.20054) [MR 2031429](http://www.ams.org/mathscinet-getitem?mr=2031429)

Exponential growth rates of Baumslag–Solitar groups 209

Received October 18, 2015

Michelle Bucher, Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case postale 64, 1211 Genève 4, Switzerland

e-mail: michelle.bucher-karlsson@unige.ch

Alexey Talambutsa, Department of Mathematical Logic, Steklov Mathematical Institute of RAS, Gubkina 8, 119991 Moscow, Russia

e-mail: altal@mi.ras.ru