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Abstract. We prove that for any prime p � 3 the minimal exponential growth rate of the

Baumslag–Solitar group BS.1; p/ and the lamplighter group Lp D .Z=pZ/ o Z are equal.

We also show that for p D 2 this claim is not true and the growth rate of BS.1; 2/ is equal

to the positive root of x3 � x2 � 2, whilst the one of the lamplighter group L2 is equal to

the golden ratio .1C
p
5/=2. The latter value also serves to show that the lower bound of

A.Mann from [9] for the growth rates of non-semidirect HNN extensions is optimal.
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1. Introduction

Let G be a �nitely generated group. For any �nite generating set S of G we

can consider the exponential growth rate of G with respect to S which is de�ned

as follows. Any element g 2 G can be written as a �nite product of elements in

S[S�1 and we de�ne the length `G;S .g/ of g as the minimum number of elements

in such a product. The growth function FG;S .n/ is the number of elements g 2 G
for which `G;S .g/ 6 n. Finally the exponential growth rate of G with respect to

S is the limit

!.G; S/ D lim
n!1

.FG;S .n//
1
n � 1:

Note that this limit always exists by submultiplicativity of the growth function (see

[7, VI.C.56]).
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The exponential growth rate !.G; S/ clearly depends on the choice of the

generating set S and one obtains a group invariant by considering the in�mum

over all �nite generating sets:

�.G/ D inf
jS j<1

¹!.G; S/º: (1.1)

It is now natural to ask if there exists a generating set S for which the equality

�.G/ D !.G; S/ is realized. For the free groupFn of rank n, Gromov remarked in

[5, Example 5.13] that�.Fn/ is exactly 2n�1 and is realized on any free generating

set (with n elements). Except for this example, very few exact values for �.G/

have been computed. Known cases include free products Z2 �Zpk [15] (the cases

pk D 3; 4 were proven earlier in [9]), the free product Z2 � .Z2 � Z2/ and the

Coxeter group PGL.2;Z/ [2] and a few more examples in the references [2, 9, 15].

But the question of de la Harpe and Grigorchuk whether �.�1.†g// is realized

on the canonical generators of the fundamental group of a closed surface†g with

g � 2 is still open (see [6, p. 55]). While in many cases, the value !.G; S/ can be

computed for some particular generating set S , it is usually much harder to �nd

a generating set S such that �.G/ D !.G; S/ and sometimes even impossible

due to the existence of groups for which the in�mum in (1.1) is not attained (see

[11, 16]).

We consider two classes of metabelian groups: Baumslag–Solitar groups

BS.1; n/ and lamplighter groups Ln D .Z=nZ/ o Z. The growth functions of

the Baumslag–Solitar groups

BS.1; n/ D ha; t j tat�1 D ani (1.2)

with respect to the canonical generating set S D ¹a; tº were computed by Collins,

Edjvet and Gill in [4]. The restricted wreath products Ln D .Z=nZ/ o Z can be

presented as

Ln D ha; t j an D 1; Œtkat�k; a� D 1 .k D 1; 2; : : : /i: (1.3)

To compute the growth function of Ln with respect to the set ¹a; tº one can use

formulas given by Parry in [10]. Even though the formulas for the growth functions

of BS.1; n/ and Ln were obtained by completely di�erent methods and by use of

di�erent properties of the groups, we �nd that remarkably for all odd n D 2kC 1

!.BS.1; n/; ¹a; tº/D !.Ln; ¹a; tº/ D !k; (1.4)

where !k is the unique positive root of

Tk.x/ D xkC1 � xk � 2xk�1 � � � � � 2x � 2;

for k � 1. This is easily deduced from [4] and [10] in Lemma 8. Interestingly, this

equality never holds for even n. We will see the case n D 2 in more details.
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Some inference for the equality (1.4) can be seen in the actions of the groups

BS.1; n/ and Ln on their corresponding Bass–Serre trees. There is indeed a very

strong similarity between these actions, which we exploit to prove the main result

of the paper:

Theorem 1. Let p be a prime. The minimal growth rate of the Baumslag–Solitar
group BS.1; p/ and lamplighter groups Lp are realized on the canonical genera-
tors ¹a; tº:

�.Lp/ D �.BS.1; p// D !k ; for p D 2k C 1;

�.L2/ D 1C
p
5

2
< �.BS.1; 2// D ˇ;

where ˇ � 1:69572 is the unique positive root of z3 � z2 � 2.

The exact computation �.L2/ D .1 C
p
5/=2 gives a positive answer to the

question of Mann [9] whether the lower bound�.G/ � .1C
p
5/=2 can be realized

on a non-semidirect HNN extension. (The fact that L2 is indeed a non-semidirect

HNN extension will be shown in Section 2). Note that it follows from Theorem 1

that this lower bound could never be realized on any of the Baumslag–Solitar

groups �.BS.1; n// also for arbitrary integers n � 2.

The lower bounds for the growth rates in Theorem 1 are obtained by looking at

the actions on the corresponding Bass–Serre trees, �nding free submonoids using

a local variant of the classical ping-pong lemma (Lemma 6 here) and computing

their growth with Lemma 7. Interestingly, all the minimal growth rates are in fact

realized as the growth rate of some free submonoid. The Bass–Serre trees of Lp

and BS.1; p/ are both .p C 1/-regular trees, but the corresponding actions are of

course di�erent. Nevertheless, when p is odd, the same method applies to give

the lower bound of Theorem 1, which we abstract in the following theorem:

Theorem 2. Let G D H�� be an HNN extension relative to an isomorphism
� WA ! B with A D H and B a normal subgroup of prime index p in H . Then

�.G/ � 1C
p
5

2
; for p D 2;

�.G/ � !k ; for p D 2k C 1:

Together with the equalities (1.4) proven in Lemma 8 this immediately implies

Theorem 1, except in the case of BS.1; 2/. For this last group, a �ner analysis of

its action on its Bass–Serre tree will be needed.



192 M. Bucher and A. Talambutsa

The question of Mann mentioned above was prompted by his proof of the lower

bound �.G/ � .1 C
p
5/=2 for any non-semidirect HNN extension G (see [9]),

using the cute algebraic observation that a hyperbolic element and a nontrivial

conjugate of it generate a free monoid with growth rate equal to the golden ratio.

Our proof for the case p D 2 of Theorem 2 also holds for any non-semidirect

HNN extension and gives an alternative geometric proof to Mann’s inequality.

Finally, as an application of Theorem 1, we can compute the minimal growth

rate of the wreath product Z oZ. Indeed, as was already noted by Shukhov in [12],

one can deduce from [4] that

lim
n!1

!.BS.1; n/; ¹a; tº/ D 1C
p
2: (1.5)

Since the wreath product Z o Z can be viewed as an extension of the groups Lp,

combining Theorem 1 and Parry’s computations for Z o Z, we obtain

Corollary 3. The minimal growth rate of the restricted wreath product

Z o Z D ha; t j Œtkat�k; a� D 1 .k D 1; 2; : : : /i

is realized on the set ¹a; tº and

�.Z o Z/ D !.Z o Z; ¹a; tº/D 1C
p
2:

Acknowledgments. We thank Murray Elder for helpful discussions in the prepa-

ration of this work and Tatiana Smirnova-Nagnibeda for pointing out some useful

references. We are grateful to the referee for a careful reading and useful sugges-

tions about the reorganization of our paper.

2. Bass–Serre tree for an HNN extension

Let G D H�� be the HNN extension ofH relative to the isomorphism � WA ! B

between the two subgroups A;B of H . Following [9] we call H�� a non-
semidirect HNN extension if at least one of the subgroups A or B is a proper

subgroup in H . If H D hSH j RH i is a presentation of H , then G admits the

presentation

G D hSH ; t j RH ; tat
�1 D �.a/ for all a 2 Ai:

There is a natural surjection 'WG ! Z de�ned by sending the generators SH to 0

and t to 1.
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The vertices of the associated Bass–Serre tree T ofG are the right cosets ofG

by H and the edges are the right cosets of G by B ,

T 0 D G=H; T 1 D G=B:

The edge gB 2 T 1 has vertices gH and gtH . This is a tree of valency ŒH W A�C
ŒH W B�. The group G acts on T by left multiplication.

Since the natural surjection 'WG ! Z is trivial on H , it induces a map

N'WT 0 ! Z which sends vertices v; w of an edge of T 1 to images satisfying

j N'.v/� N'.w/j D 1. This allows us to de�ne an orientation on the edges by giving

an edge from v to w with N'.w/ � N'.v/ D 1 the positive orientation. This allows

us to distinguish between two types of neighbors to any vertex v: the ŒH W A�
vertices w such that N'.w/ D N'.v/ � 1 which we call the direct ascendants of

v, and the ŒH W B� vertices w such that N'.w/ D N'.v/ C 1, which we call the

direct descendants of v. We further call a vertex z an ascendant, respectively a

descendant, of v if there is a sequence v D w0; w1; : : : ; w` D z such that wi is a

direct ascendant, resp. direct descendant, of wi�1 for 1 � i � `. In our examples,

ŒH W A� D 1, which means that there is only one direct ascendant to any vertex.

We will also use the terminology that a vertex v is above, respectively below, a

vertex w if v is an ascendant, resp. descendant, of w.

Since the action of G on T preserves the orientation on the edges de�ned

above, it is immediate that G acts on T without inversions. Thus there are two

types of elements: elliptic and hyperbolic. Elliptic elements g 2 G have a �xed

point on T and are thus conjugated to H . Hyperbolic elements g 2 G have no

�xed point and possess a unique invariant geodesic Lg , called the axis of g, on

which g acts by translation. Note that any element g 2 G which is not in the

kernel of 'WG ! Z necessarily is hyperbolic, so in particular, any generating

set of G contains a hyperbolic element. Such hyperbolic elements will be called

positive, respectively negative according to their image acting as a positive or

negative translation on Z.

Let us look at the �rst of our two main examples: the Baumslag–Solitar

group BS.1; n/. The Baumslag–Solitar group BS.1; n/ is an HNN extension for

H D A D Z, B D nZ and 'WZ ! nZ given by multiplication by n,

BS.1; n/ D ha; t j tat�1 D ani:

Its Bass–Serre tree is depicted in Figure 2.1.

First we note that the standard presentation for a restricted wreath productG oZ
provides an HNN extension, but the subgroups A;B are both equal to G, so the

corresponding Bass–Serre tree is a line, and the corresponding action of G on

a line is not useful for our goals. Still, it is possible to �nd yet another HNN

decomposition. It was shown in [3, Theorem 2.5] that a �nitely generated group

G is a non-semidirect HNN extension, once there exists a homomorphismG ! Z

with in�nitely generated kernel. Even earlier in [14], it has been pointed out that for
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any wreath productG oZ there exists an HNN extension presentation with indices

jGj and 1 so that the corresponding Bass–Serre tree is a regular tree of valency

jGj C 1. For completeness, we include a proof of this fact for Ln D .Z=nZ/ o Z.

Figure 2.1. Bass–Serre tree of BS.1; n/

Lemma 4. The lamplighter group Ln D .Z=nZ/ o Z can be decomposed as an
HNN extensionD�� with indices of the subgroups ŒD W A� D 1; ŒD W B� D n.

Proof. We will show that Ln is a non-semidirect HNN extension of an abelian

group with countable generating set. Consider the in�nite direct sum D DL
N0
.Z=pZ/ canonically generated by the set of elements ¹a0; a1; a2; : : : º. Obvi-

ously,

D D ha0; a1; a2; � � � j an
i D 1; Œai ; aj � D 1; i; j 2 N0i: (2.1)

Take the HNN extension D�f given by the subgroups A D D and B D
ha1; a2; : : : i and the isomorphism f .ai / D aiC1. Then the group D�f can be

presented as

D�f D ht; a0; a1; a2 � � � j an
i D 1; Œai ; aj � D 1; tai t

�1 D aiC1; i; j 2 N0i:
(2.2)

The relations aiC1 D tai t
�1 imply that

ai D t ia0t
�i for i � 1: (2.3)

The relations an
i D 1 with i � 1 are redundant in (2.2) because they follow from

the relation an
0 D 1 and the relations (2.3). Moreover, using the equalities (2.3)

we can exclude the generators ai with i � 1 from the presentation (2.2) to obtain

D�f D ht; a0 j an
0 D 1; Œt ia0t

�i ; t ja0t
�j � D 1; i; j 2 N0i: (2.4)
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Since each relation Œt ia0t
�i ; t ja0t

�j � D 1 follows from Œa0; t
j �ia0t

i�j � D 1 and

Œa0; t
ka0t

�k� follows from Œa0; t
�ka0t

k�, we can reduce the presentation (2.4) to

D�f D ht; a0 j an
0 D 1; Œa0; t

ka0t
�k� D 1; k 2 Ni;

which is the presentation of the lamplighter group Ln. �

Lemma 5. Let G be an HNN extension such that A D H and B is a normal
subgroup ofH of odd prime index p D 2k C 1. Let g 2 G be an elliptic element.
For any vertex v of the Bass–Serre tree T either g.v/ D v or the p D 2k C 1

vertices
g�k.v/; : : : ; g�1.v/; v; g.v/; : : : ; gk.v/

are distinct.

Proof. Let a 2 A D H be any element not in the kernel of the natural surjection

A ! A=B Š Zp. Then A D tk
j D�k

ajB . In the Bass–Serre tree of G, the p

direct descendants of the vertex A are the vertices a�ktA; : : : ; tA; : : : ; aktA and

are joined to A through the edges a�kB; : : : ; B; : : : ; akB respectively. Observe

that since B is normal in A, any element b 2 B acts trivially on the direct

descendants of the vertex A. Furthermore, a and any of its powers aj where p

does not divide j obviously acts cyclically on the �rst descendants of A.

By conjugation, we can suppose that our elliptic element is in fact h D aj b 2
H D A, with b 2 B and �k � j � k. If j D 0 then h acts trivially on the direct

descendants of A, while if j ¤ 0 then h acts as a cyclic permutation of order p.

This implies the lemma. �

The following lemma is an immediate application of the classical ping-pong

lemma for semigroups [7, Proposition VII.2] taking as ping-pong sets, the descen-

dants of xiv, for every i :

Lemma 6 (ping pong lemma). Let x1; x2; : : : ; xr 2 BS.1; p/ act as positive
hyperbolic automorphisms on the corresponding Bass–Serre tree T . Suppose that
there exists a vertex v 2 T 0 such that ¹x1v; x2v; : : : ; xrvº are descendant leaves
of a tree rooted at v. Then the set ¹x1; : : : ; xrº freely generates a free monoid.

3. Growth rates computations and estimates

We collect in this section some explicit computations and estimates on growth

rates. Lemma 7, which is proved in [2, Lemma 6], will be used extensively in

the proofs of Theorems 1 and 2 in combination with our ping pong lemma 6. The

exact growth rates of some Baumslag–Solitar groups and lamplighters groups are

computed in Lemma 8 and the last Lemma 10 allows us to compare some particular

roots.
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Lemma 7. LetG be a group generated by a �nite set S . Suppose that there exists
a set ¹x1; : : : ; xkº � G generating a free monoid inside G. Set `i D `G;S .xi /, for
i D 1; : : : ; k, and m D max¹`1; : : : ; `kº. Then !.G; S/ is greater or equal to the
unique positive root of the polynomial

Q.z/ D zm �
kX

iD1

zm�`i : (3.1)

As mentioned in the introduction we can easily compute the growth rate of the

lamplighters and Baumslag–Solitar group with respect to the canonical generators

from the growth functions found by Parry [10] and Collins, Edjvet and Gill [4]

respectively. Recall that for any integer k � 1 we consider the polynomial

Tk.x/ D xkC1 � xk � 2xk�1 � � � � � 2x � 2:

Due to Descartes rule of signs, Tk has a single positive root, which we denote

by !k.

Lemma 8. (a) The growth rate !.L2; ¹a; tº/ is equal to ' D 1C
p

5
2

.

(b) For any k � 1 we have that

!.BS.1; 2k C 1/; ¹a; tº/D !.L2kC1; ¹a; tº/ D !k;

(c) The growth rate !.BS.1; 2/; ¹a; tº/ is equal to the positive root of x3 �x2 � 2.

The equality !.L2; ¹a; tº/ D ' was also mentioned in [8, p.1997] by Lyons-

Pemantle-Peres, and follows from the observation that there is a subtree in the

Cayley graph of L2 which is a Fibonacci tree.

Proof. (a) For the wreath product G o Z one can compute the exact growth series

using the following formula of Parry from [10, Corollary 3.3]. Let †G;S .x/ DP1
mD0 fG;S .m/x

m be the growth series of the group G with respect to the �nite

generating set S . Then the growth series of G o Z with respect to the set S [ ¹tº
can be obtained as

†GoZ;S[¹tº.x/ D †G;S .x/.1� x2/2.1C x†G;S .x//

.1� x2†G;S .x//2.1 � x†G;S .x//
: (3.2)

We use this formula to compute the growth series for L2.

†L2;¹a;tº.x/ D .1C x/.1 � x2/2.1C x.1C x//

.1� x2.1C x//2.1� x.1C x//

D .1C x/.1 � x2/2.1C x C x2/

.1 � x2 � x3/2.1 � x � x2/
:
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The factors in the numerator have roots on the unit circle, whilst the factors

of the denominator give two roots inside the unit circle, whose reciprocals are the

golden ratio ' D .1 C
p
5/=2 and  � 1:325 (which is the so-called “plastic

number”). Since ' >  , we get !.L2; ¹a; tº/D '.

(b) Another elegant formula by Parry (see [10, Theorem 4.1]) allows to compute

the growth rate of the wreath product G o Z. If S is a �nite generating set for the

group G then !.G oZ; S [¹tº/ D 1=�, where � is the smallest positive zero of the

function 1� x†G;S .x/. Taking †Z=.2kC1/Z;¹aº.x/ D 1C 2xC 2x2 C � � � C 2xk�1

we get that !.L2kC1; ¹a; tº/ D 1=�k , where �k is the smallest positive root of the

polynomial Rk.x/ D 1� x � 2x2 � � � � � 2xkC1. The polynomials Rk and Tk are

reciprocal, so indeed we get that !.L2kC1; ¹a; tº/D 1=!k .

To prove that !.BS.1; 2k C 1/; ¹a; tº/ D !k we use the following explicit

formula from [4], which gives a power series †n.x/ D
P1

mD0 f .m/x
m for the

growth function f .m/ D fBS.1;n/;¹a;tº.m/. For the case n D 2k C 1 they obtain

†n.x/ D .1C x2 � 2xkC2/.1C x � 2xkC2/.1C x/2.1� x/3

.1 � x � x2 � x3 C 2xkC3/2.1� 2x � x2 C 2xkC2/
: (3.3)

Then the growth rate !.BS.1; 2k C 1/; ¹a; tº/ is equal to 1=˛, where ˛ is the

smallest positive pole of the function †n.x/. Since 1 < !.BS.1; 2k C 1/; ¹a; tº/,
we obtain ˛ 2 .0; 1/. We will �rst prove that ˛ D 2, where 2 is the smallest

positive root of the second factor

Q2.x/ D 1 � 2x � x2 C 2xkC2

of the denominator in (3.3). Let 1 be the smallest positive root of the �rst factor

Q1.x/ D 1 � x � x2 � x3 C 2xkC3. Note that Q1.0/ D Q2.0/ D 1 and

Q1.1/ D Q2.1/ D 0, so the numbers 1; 2 are well de�ned and 0 < 1; 2 � 1.

Since the di�erence function

Q1.x/ �Q2.x/ D x � x3 C 2xkC2 � 2xkC3 D x.1 � x2/C 2xkC1.1 � x/

is non-negative on Œ0; 1�, we obtain that 1 � 2.

To show that ˛ D 2 we are left to prove that 2 is not a root of the numerator.

Since Q2.1=2/ D 1=2kC1 � 1=4 � 0, we obtain that 2 2 .0; 1=2/. The factors

.1C x/2 and .1� x/3 do not have roots on the interval I D .0; 1=2/, and we will

check that P1.x/ D 1Cx2 �2xkC2 and P2.x/ D 1Cx�2xkC2 have no common

roots withQ2.x/ on I . This is true, since otherwise eitherQ2.x/CP1.x/ D 2�2x
orQ2.x/CP2.x/ D .2C x/.1� x/ would have a root on .0; 1=2/, which is false.

We can factorize Q2.x/ as .1 � x/Z.x/ with

Z.x/ D 1 � x � 2x2 � � � � � 2xkC1:

Since the polynomial Z.x/ is reciprocal to the polynomial T .x/ from the state-

ment, the part (b) of the lemma is proved.
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(c) Here we use another formula from [4] that is

†2.x/ D .1� x/2.1C x/2H.x/

.1� x � 2x3/.1 � x2 � 2x5/2
;

where

H.x/ D 1C 3x C 8x2 C 12x3 C 16x4 C 20x5

C 22x6 C 16x7 C 14x8 C 12x9 C 4x10:

We follow the same strategy as in the part (b), and �rst make sure that the

positive root of the polynomial Q1.x/ D 1 � x � 2x3 is smaller than the one of

Q2.x/ D 1 � x2 � 2x5, because Q2.x/ �Q1.x/ D x.1 � x/C 2x3.1 � x2/ > 0

on .0; 1/. Then, making tedious computations or using a computer, one gets that

GCD.H.x/;Q1.x// D 1, so the smallest pole of†2.x/ indeed comes fromQ1.x/.

Again, Q1.x/ is reciprocal to x3 � x2 � 2, and the part (c) is also proved. �

Now we can show that the classic lamplighter L2 gives the answer to Mann’s

question about growth of non-semidirect HNN extensions (see [9, Problem 1]),

proving a part of the Theorem 1. Indeed, as L2 is a non-semidirect HNN extension

due to Lemma 4, we may apply the Theorem 1 from [9] to get the lower bound

�.L2/ > ' and �nally conclude that �.L2/ D '.

Remark 9. The constant is quite notable. It is the smallest Pisot number and is

sometimes called the “plastic number”. It is shown in [2] that D �.GL.2;Z// D
�.PGL.2;Z//. It may be interesting to �nd a natural (maybe geometric) reason

for the group L2 to have  as “the second growth rate.”

The next lemma will allow us to compare !k with the growth rate of some free

monoid in the proof of Theorem 2.

Lemma 10. Let k � 1 be an integer and ık be the unique positive root of the
polynomial Dk.x/ D x2kC1 � 2x2k � 2x2k�2 � � � � � 2x2 � 2. Then

1C
p
5

2
� !k � ık < 1C

p
2:

Proof. The inequality .1 C
p
5/=2 � !k may be proven directly, but actually

we already know that !.BS.1; 2k C 1/; ¹a; tº/ D !k and �.BS.1; 2k C 1// �
.1C

p
5/=2 as proved by Mann.
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Since Tk.1/;Dk.1/ < 0 and Tk.C1/ D Dk.C1/ D C1 we get ık; !k > 1.

Consider the polynomials D.x/ D .x2 � 1/Dk.x/ and

T .x/ D .x2 � 1/Tk D .x C 1/.x � 1/T .x/:
After a simple calculation we get

D.x/ D x2kC3 � 2x2kC2 � x2kC1 C 2;

T .x/ D xkC3 � xkC2 � 3xkC1 � xk C 2x C 2:

As .x2 �1/ > 0 on .1;C1/ andD.1C
p
2/ D 2 > 0, we get that ık 2 .1; 1C

p
2/.

Since T .1/ D D.1/ D 0 and T .1C "/;D.1C "/ > 0 for small ", in order to

show the inequality !k � ık it su�ces to show that T .x/ � D.x/ on the interval

.1; 1C
p
2/.

Consider the di�erence function

D.x/ � T .x/ D x2kC3 � 2x2kC2 � x2kC1 � xkC3 C xkC2 C 3xkC1 C xk � 2x
D .xk � 1/.xkC1 � 1/.x2 � 2x � 1/ � .x2 � 1/:

Since the polynomials xk �1 and xkC1 �1 are positive on .1;C1/ and x2 �2x�1
is negative on .1; 1C

p
2/, we indeed have thatD.x/� T .x/ < 0 on .1; 1C

p
2/,

which proves the lemma. �

4. Proofs of Theorems 1 and 2

Proof of theorem 2. Let G D H�� be an HNN extension relative to an isomor-

phism � WA ! B with A D H and B a normal subgroup of prime index p in H .

Let S be any generating set for G. We need to show that !.G; S/ � .1C
p
5/=2

for p D 2 and !.G; S/ � !k for p D 2k C 1.

As explained above (see Section 2), the natural surjection 'WG ! Z ensures

the existence of a hyperbolic element in S . Furthermore, upon replacing x by x�1

we can suppose that x is a positive element. Since the action of G is transitive on

its .pC1/-regular Bass–Serre tree, there exists an element in S not preserving the

axis Lx of x. We distinguish two cases according to this element being elliptic or

hyperbolic.

Case 1 (elliptic). There exists an elliptic element z2S such that z.Lx/¤Lx.

For p D 2, we consider the set

M D ¹x; zxº;
while for odd primes p D 2k C 1,

M D ¹x; zx; z2x; : : : ; zkx; z�1x; z�2x; : : : ; z�kxº:
In either cases, we will show that M freely generates a free monoid.
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Since any vertex has only one direct ascendant, if a vertex is in the �xed point

set of z, then all its ascendants are. For the same reason, any two ascending rays

meet, so there exists a vertex of the axis of x which is �xed by z. Let v be the

lowest vertex on Lx \ Fix.z/. Then x.v/ is a descendant of v, which is not in the

set Fix.z/, hence the vertices

x.v/; zx.v/; for p D 2;

and by Lemma 5, the vertices

x.v/; zx.v/; : : : ; zkx.v/; z�1x.v/; : : : ; z�kx.v/; for odd p D 2k C 1;

are all distinct leaves of a tree rooted at v, so M freely generates a free monoid

due to the ping pong Lemma 6. Lemma 7 now implies that !.G; S/ is greater or

equal to the unique positive root of

z2 � z � 1; for p D 2;

which is precisely the golden ratio .1C
p
5/=2, while for p D 2kC 1, it is greater

or equal to the unique positive root of

Tk.z/ D zkC1 � zk � 2zk�1 � � � � � 2z � 2;

which is !k by de�nition.

Case 2 (hyperbolic). There exists a hyperbolic element y 2 S such that

y.Lx/ ¤ Lx . Upon replacing y by its inverse, we can suppose that y is positive

hyperbolic. Since y preserves its axis Ly , this implies that the axesLx and Ly are

di�erent. This already implies that

!.BS.1; p/; S/ � 2

(see [1, Lemma] or Lemma 7 with `1 D `2 D 1). Since for p D 2; 3 we have

!.BS.1; 2/; ¹a; tº/ < !.BS.1; 3/; ¹a; tº/D 2;

we can suppose that p � 5, and again p D 2k C 1.

We consider four subcases, according to the situations when

a. `.x/ D `.y/,

b. 2`.y/ < `.x/,

c. `.x/ D 2`.y/, and

d. `.y/ < `.x/ < 2`.y/.
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Case 2a: `.x/D`.y/. Note that the elementyx�1 is elliptic and yx�1.Lx/¤Lx.

We can apply the claim of Case 1 to x and z D yx�1 to conclude that the set

¹x; y; yx�1y; : : : ; .yx�1/k�1y; xy�1x; : : : ; .xy�1/kxº

is a basis of a free monoid. Then Lemma 7 shows that

!.BS.1; 2k C 1/; S/ � ık;

where ık is the single positive root of the polynomial

Dk.x/ D x2kC1 � 2
kX

mD0

x2m:

Finally, Lemma 10 gives the desired inequality

!.BS.1; 2k C 1// � ık � !k:

We can now suppose that `.y/ < `.x/ and distinguish three further subcases.

Case 2b: 2`.y/ < `.x/. We will show that the in�nite family

¹y�2x; y�1x; x; yx; y2x; : : : ; ysx; : : : ;

yx�1yx; y2x�1yx; : : : ; ysx�1xy; : : : º

which is maybe better described as

¹ysx j s � �2º [ ¹ysx�1yx j s � 1º

freely generates a free monoid. Then, taking as free generators only the 2k C 1

elements

x; yx; y2x; : : : ; ykx; y�1x; y�2x; yx�1yx; y2x�1yx; : : : ; yk�2x�1xy

we get that !.G; S/ is by Lemma 7 greater or equal to the unique positive root of

Tk.z/ D zkC1 � zk � 2zk�1 � � � � � 2z � 2;

which is !k by de�nition.

To prove that the above in�nite family freely generates a monoid, let v0 be

the lowest vertex on Lx \ Ly and let vx 2 Lx and vy 2 Ly be the corresponding

direct descendants of v0. We aim at applying the ping pong Lemma 6 to the vertex

w D x�1.vx/, see Figure 4.1.
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First notice that since vx … Ly , the translates ysx.w/ D ys.vx/ are all distinct,

branching from Ly at ys.v0/. Furthermore, for �2 � s, the highest such translate

is y�2x.w/ D y�2.vx/ which is strictly below y�2.v0/ by construction. Now

w D x�1.vx/ is equal or above y�2.v0/ since 2`.y/ < `.x/. This already implies

that the in�nite subfamily ¹ysx j �2 � sº freely generates a free monoid.

Second consider the vertex y.vx/. It is branching from Lx at v and the �rst

vertex fromLx \Ly to y.vx/ is vy . It follows that x�1y.vx/ does not belong toLx

either and is branching at x�1.v/ from Lx and hence also from Ly . It follows that

all the translates ysx�1yx.w/ D ysx�1y.vx/ belong to di�erent branches of Ly ,

branching at ysx�1.v0/. Since `.y/ � 1, for 1 � s the branch points are below or

equal to w D x�1.vx/.

Figure 4.1. Case 2`.y/ < `.x/.

If `.x/ is not a multiple of `.y/ the two families of branching points are

di�erent and we are done. If `.x/ D m`.y/ for somem > 2 we need to check that

ynCmx�1.vy/ ¤ ynvx and it is enough to check it for n D 0. Consider the elliptic

element ymx�1. It �xes v0, sends vx to vy and vy to ymx�1.vx/ which cannot

be equal to vx otherwise the action on the direct descendants of v0 of the elliptic

element ymx�1 would not be transitive, contradicting Lemma 5.

Case 2c: `.x/ D 2`.y/. It is enough to show that the set

¹x; y; xy�1x; xy�2x; xy�1xy�1x; y2x�1y; xyx�1yº

is a basis of a free monoid. Then, using Lemma 7 we get that !.BS.1; k// is at

least  , where  is the root of the polynomial F.x/ D x5 � 2x4 � x2 � 3x � 1.

Since F.x/ D .x2 � 2x � 1/.x3 C x C 1/, we get that  D 1 C
p
2, and again

Lemma 10 gives the desired inequality !.G; S/ � !k.

Let as above v be the lowest vertex on Lx \ Ly . We aim at applying the ping

pong Lemma 6 to the vertex v. Let vx 2 Lx and vy 2 Ly be the corresponding

direct descendants of v0.
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The elliptic transformation b D y2x�1 �xes v and takes vx to vy . Thus its

action on the direct descendants of v is nontrivial and hence transitive. Since we

assume p � 4, it follows by Lemma 5 that the image vC D y2x�1.vy/ of vy and

the preimage v� WD xy�2.vx/ of vx give four distinct direct descendants of v0 as

depicted in Figure 4.2.

Figure 4.2. Case `.x/ D 2`.y/: the action of the elliptic element b D y2x�1.

Observe that y2x�1y.v/ is on the branch through v and vC, while xy�2x.v/

is on the branch through v0 and v�. Thus the four elements xv; yv; xy�2x.v/ and

y2x�1y.v/ have distinct geodesics to v.

We now forget about xy�2x.v/ and look at the image of the tree rooted at

v of the three remaining elements through the hyperbolic transformation xy�1.

The root v is mapped on the segment from v to x.v/. The vertex y.v/ is mapped

to x.v/, and the two remaining leaves are sent to vertices branching from Lx at

xy�1.v/.

Iterating this procedure but only on xy�1.v/; x.v/ and xy�1x.v/ shows that

xy�1xy�1x.v/ is branching from the segment between xy�1.v/ and xy�1x.v/.

We have thus proven that the seven vertices are leaves of a tree rooted at v, as

illustrated in Figure 4.3, which �nishes the proof of this case.

y.v/ y2x 1y.v/

Figure 4.3. Case `.x/ D 2`.y/: The subtree to which we apply the ping pong Lemma 6.
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Case 2d: `.y/ < `.x/ < 2`.y/. We will show that the set

¹x; y; xy�1x; xy�2x; yx�1yº

is a basis of a free monoid. Since the corresponding polynomial x4�2x3�2x�1 D
x.x2 C1/.x2 �2x�1/ has only one positive root 1C

p
2, this will prove this case.

Set a D `.x/ and b D `.y/. The proof decomposes in the two cases

b < a � .3=2/b and .3=2/b � a < 2b with an additional small argument needed

in the equality case.

In case b < a � .3=2/b we aim at applying the ping pong Lemma 6 to the

vertex w D xy�2.v/. (See Figure 4.4.) This vertex is on the intersection of the

axes Lx \ Ly at distance 2b � a above v. Of the �ve images of w, only x.w/ is

on the axis Lx , at distance a below w and hence 2.a� b/ below v. The four other

images are not in Lx and we will determine their projection on Lx .

The image y.w/ is on the axis Ly at distance b below w and hence at distance

a � b from its projection v 2 Lx . Since the axis of the hyperbolic transformation

xy�2 contains Lx \ Ly and at least the vertex vy 2 Ly , the segment Œv; x.w/�,

which intersectsLxy�2 only at v is mapped by xy�2 to the segment Œw; xy�2x.w/�

which intersectLxy�2 and henceLx only inw. Similarly, the axis of xy�1 contains

Lx\Ly and at least the vertex vx 2 Lx , so that the hyperbolic transformation xy�1

takes the segment Œv; x.v/� to the segment Œxy�1.v/; xy�1x.v/� which intersects

Lxy�1 and hence Lx precisely in xy�1.v/ which is at distance a � b from both

v and x.v/. Finally, the axis of yx�1 contains Lx \ Ly and at least the vertex

vy 2 Ly , so that applying yx�1 to the segment Œv; y.w/� we obtain the segment

Œyx�1.v/; yx�1y.w/� which intersects Lx in yx�1.v/ which is at distance a � b

above v and hence at distance 3b � 2a � 0 below w. If the inequality is strict, the

claim immediately follows from the ping pong Lemma 6. If 3b � 2a D 0, we will

see below how to show that the segments Œyx�1.v/; yx�1y.w/� and Œw; xy�2x.w/�

only intersect at w D yx�1.v/.

If .3=2/b � a < 2b the argument is completely analogous, except that the

vertex yx�1.v/ is above or equal to w D xy�2.v/. Thus we want to replace

w by w0 WD yx�1.v/ and apply the ping pong Lemma 6 to this vertex w0.
(See Figure 4.5.) This vertex is on the intersection of the axes Lx \Ly at distance

a � b above v. Of the �ve images of w0, only x.w0/ is on the axis Lx, at distance

a below w and hence b below v. The four other images are not in Lx and we will

determine their projection on Lx .

The image y.w0/ is on the axis Ly at distance b below w and hence at distance

2b � a from its projection v 2 Lx. For the three other image points, the proof is

identical to the above case, replacing w by w0.
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Figure 4.4. Case b < a < 3=2b.

Figure 4.5. Case 3=2b < a < 2b.
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In the equality case the two vertices w D w0 agree. Let v1, respectively v2

be the �rst vertex after w on the geodesic to xy�2.w/, respectively yx�1y.w/.

We need to show that v1 ¤ v2. Let va be the direct descendant of w on the

geodesic to v. The ordered pair .v1; va/ is mapped to .vx; vy/ by y2x�1, which

are further mapped to .va; v2/ by yx�1. Thus the elliptic element yx�1y2x�1

sends the ordered pair .v1; va/ to .va; v2/ and since p � 3 and elliptic elements act

either trivially or transitively on direct descendants of a �xed point by Lemma 5 it

follows that v1 ¤ v2, which �nishes the proof of this case and of the theorem. �

Proof of Theorem 1. In view of Lemma 8, Theorem 1 follows immediately from

Theorem 2 except in the case of BS.1; 2/ where we need a better understanding

of its action on the Bass–Serre tree to obtain the accurate lower bound of

!.BS.1; 2/; ¹a; tº/D ˇ;

where ˇ is the unique real root of x3 � x2 � 2.
Let S be a generating set for BS.1; 2/. As in the proof of Theorem 2, the

case where S contains two hyperbolic elements with di�erent axis immediately

gives the lower bound of !.BS.1; 2/; S/ � 2 > ˇ. We thus only have to treat

the corresponding elliptic case, that is, there exists a positive hyperbolic element

x 2 S with axis Lx and an elliptic element z 2 S such that z.Lx/ ¤ Lx .

As observed in the elliptic case of the proof of Theorem 2 the intersection of

Lx with the �xed point set of z is nonempty. Upon conjugating the generating set

S , we can suppose that the lowest vertex on Lx �xed by z is A, which implies that

z belongs to A. Since z does not �x the direct descendants tA and atA it must be

an odd power of A.

Consider the action of a on the second generation of descendants of A, that is

t2A; tatA; at2A and atatA. The action has order four, mapping t2A 7! at2A 7!
a2t2A D tatA 7! atatA 7! a2tatA D t2A. The action of z, as an odd power of

A is thus necessarily equal to the action of a or a�1 on these second generation

descendants. It follows that xA; zx2A and z�1x2A are leaves of a tree rooted at

A, and hence x; zx2; z�1x2 generate a free monoid by the ping pong Lemma 6.

Since these elements have lengths 1; 3 and 3 respectively, we can invoke Lemma 7

to conclude that the grow rate of BS.1; 2/ with respect to S is greater or equal to

the greatest and unique real root of x3 � x2 � 2. Finally, Lemma 8 gives

!.BS.1; 2/; S/ � !.BS.1; 2/; ¹a; tº/;

which �nishes the proof of the theorem. �

5. The lamplighter group Z o Z

The groups Ln D .Z=nZ/ o Z are factor groups of the wreath product Z o Z.

Actually, the following nice fact is also true.
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Proposition 11. The groups BS.1; n/ are factor groups of the group Z o Z.

Proof. As seen above, the groups Z o Z and BS.1; n/ can be presented as

Z o Z D ha; t j Œa; tkat�k� D 1; k 2 Ni; (5.1)

BS.1; n/ D ha; t j tat�1 D ani: (5.2)

According to (5.2), for every positive k the element tkat�k is a power of a,

hence it commutes with a, so the corresponding relation in (5.1) holds true. �

We will see below that limk!1.!.BS.1; 2k C 1/; ¹a; tº// D 1 C
p
2 D

!.Z oZ; ¹a; tº/, which is some further evidence for the fact that Z oZ is a limit of

the groups BS.1; n/ in the marked groups space topology (see [13, Theorem 2]).

The next lemma will be needed to prove Corollary 3.

Lemma 12. The limit lim
k!1

!k exists, and it is equal to 1C
p
2 .

Proof. From Lemma 10 and the de�nition of !k we know that !k is a single

positive root of the polynomial Tk.x/, and .1C
p
5/=2 < !k < 1C

p
2 for every

k � 1. Then the reciprocal polynomial Rk.x/ D 1� x � 2x2 � � � � � 2xk � 2xkC1

has a single positive root 1=!k which belongs to the interval I D .1=3; 2=3/.

Consequently the polynomial

R0
k.x/ D .1� x/Rk D .1 � x/2 � 2x2.1 � xk/ D 1 � 2x � x2 C 2xkC2

also has two positive roots: 1 and 1=!k . Obviously, for k ! 1 the polynomials

2xkC2 uniformly converge to the zero function on the enlarged interval I 0 D
.1=4; 3=4/. For this reason the roots 1=!k ofR0

k
.x/ on I converge to the root of the

polynomial 1� 2x�x2 on I , and the latter root is equal to
p
2� 1 D 1=.1C

p
2/,

which proves the lemma. �

Proof of Corollary 3. We use Parry’s formula (3.2) to compute the series †.x/

for the growth function Z o Z with respect to the generating set ¹a; tº:

†.x/ D .1 � x2/3.1C x2/

.1 � x � x2 � x3/2.1� 2x � x2/
:

All the roots of the numerator lie on the unit circle, while the denominator has only

two roots inside the unit circle, whose reciprocals are ˛ D 1C
p
2 and ˇ � 1:839.

Hence, !.Z o Z; ¹a; tº/ D 1C
p
2.

Now we will show that�.Z oZ/ D 1C
p
2. We already know that�.Z oZ/ �

1C
p
2. Suppose that�.Z oZ/ D 1C

p
2� ", where " > 0. As any group Lp is a

factor group of the group Z oZ, then for any prime p we have�.Lp/ � 1C
p
2�"

which contradicts the equality lim
p!1

�.Lp/ D lim
k!1

!k D 1 C
p
2 proven in

Lemma 12. �
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