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Independence tuples and Deninger’s problem

Ben Hayes

Abstract. We de�ne modi�ed versions of the independence tuples for so�c entropy

developed in [22]. Our �rst modi�cation uses an `q-distance instead of an `1-distance.

It turns out this produces the same version of independence tuples (but for nontrivial

reasons), and this allows one added �exibility. Our second modi�cation considers the

“action” a so�c approximation gives on ¹1; : : : ; diº; and forces our independence sets

Ji � ¹1; : : : ; diº to be such that �Ji
� udi

.Ji / (i.e. the projection of �Ji
onto mean zero

functions) spans a representation of � weakly contained in the left regular representation.

This modi�cation is motivated by the results in [17]. Using both of these modi�ed versions

of independence tuples we prove that if � is so�c, and f 2 Mn.Z.�// \ GLn.L.�// is

not invertible in Mn.Z.�//; then detL.�/.f / > 1: This extends a consequence of the work

in [15] and [22] where one needed f 2 Mn.Z.�//\GLn.`1.�//: As a consequence of our

work, we show that if f 2 Mn.Z.�// \ GLn.L.�// is not invertible in Mn.Z.�// then

� Õ .Z.�/˚n=Z.�/˚nf /� has completely positive topological entropy with respect to

any so�c approximation.

Mathematics Subject Classi�cation (2010). 37B40, 47A67, 22D25.

Keywords. So�c groups, independence tuples, completely positive entropy, Fuglede–

Kadison determinants.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

2 `p-versions of independence tuples . . . . . . . . . . . . . . . . . . . . 252

3 Independence tuples with a weak containment condition . . . . . . . . . 259

4 A generalization of Deninger’s problem for so�c groups . . . . . . . . . 270

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288



246

1. Introduction

This paper is concerned with a modi�cation of independence tuples in the case

of so�c topological entropy due to Kerr and Li in [22]. We remark that the de�-

nition of so�c topological entropy is due to Kerr and Li in [21], following on the

seminal work of Bowen on so�c measure-theoretic entropy in [2]. Independence

tuples were �rst developed in [20] for actions of amenable groups. Positivity of

topological entropy is equivalent to having a nondiagonal independence pair, and

this can be viewed as a topological version of the fact that a measure-preserving

action of an amenable group must have a weakly mixing factor. Using indepen-

dence tuples, Kerr and Li showed that if a topological action has positive en-

tropy, then the action must exhibit some chaotic behavior (see e.g. [22], Theorem

8.1). Let us brie�y mention the combinatorial version of independence. We say

that a tuple .Ai;1; : : : ; Ai;k/i2J of subsets of a set A are independent if for every

cW J ! ¹1; : : : ; kº
\

i2J

Ai;c.i/ ¤ ¿:

The name coming from the case when .Ai;1; : : : ; Ai;k/i2J are (probabilistically)

independent partitions in a probability space. If � is a countable discrete group

acting on a set X; and .A1; : : : ; Ak/ are subsets of X; we call a �nite J � �

an independence set for .A1; : : : ; Ak/ if ¹.s�1A1; : : : ; s�1Ak/ºs2J is independent.

When � is amenable and F � � is �nite, we let �A.F / is the maximal cardinality

of a subset of F which is an independent set for A: We can then de�ne the

independence density of A D .A1; : : : ; Ak/; denoted I.A/; to be the limit of
�A.Fn/

jFnj
where Fn is a Følner sequence. In the case X is compact and the action

is by homeomorphisms, we say that a tuple x D .x1; : : : ; xk/ is an independence

tuple if every tuple U D .U1; : : : ; Uk/ where Uj is a neighborhood of xj we have

I.U / > 0: This de�nition is due to Kerr and Li in [20].

To generalize to the case of so�c groups (de�ned in the next section), Kerr and

Li considered a so�c approximation (again we de�ne this in the next section)

�i W � �! Sdi

and abstracted the internal independent subsets of � considered in the amenable

case to external independent subsets of ¹1; : : : ; diº in the so�c case. In this manner

they de�ned what it means for a tuple .x1; � � � ; xk/ 2 Xk to be an independence

tuple for the action � Õ X with respect to some �xed so�c approximation

�i W � ! Sdi
: Moreover, they showed that � Õ X has positive entropy with respect

to �i W � ! Sdi
if and only if there is a nondiagonal independence pair in X2:

This can be viewed as a topological version of the fact that a probability measure-

preserving action with positive entropy must have a weakly mixing factor.
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We give two alternate versions of an independence tuple for actions of so�c

groups. For the �rst it is useful to rephrase the de�nition in terms of metrics. Let

� be a compatible metric on X: The condition

\

g2J

g�1Uc.g/ ¤ ¿

can be replaced by the similar condition that there is a x 2 X so that

max
g2J

�.gx; gxc.s// < ":

Equivalently, for 1 � p � 1; let us de�ne �p on XJ by

�p;J .x; y/p D
1

jJ j

X

g2J

�.x.g/; y.g//p if p < 1,

�1;J .x; y/ D sup
j 2J

�.x.j /; y.j //:

Then we are considering the condition that

�1;J .O.x/; xc.�// < "

where OW X ! XJ is de�ned by O.x/.g/ D gx: One can rephrase the so�c

version of independence sets in terms of a similar `1-product metric. We de�ne

an a priori di�erent version of independent set using an `p-product metric. This

is a priori weaker than the `1-product version, however by an application of the

Sauer–Shelah lemma we can show that they are equivalent. While it appears that

we have thus accomplished nothing, this actually gives us an added degree of

�exibility as the `2-product metric will be more useful to us. The technique of

using `p-metrics instead of `1-metrics was �rst used by Li in [23]. We believe

this is a very important technique, which often gives one added �exibility needed

to prove results in entropy theory. We mention that we have already exploited this

in [16], [15], and [17]. It is quite useful when one wishes to apply Hilbert space

techniques as these are phrased better in terms of the `2-product metric. This

is precisely the purpose of their use in [16], [15], and [17] and we believe this is

crucial for those results, as well as the results in this paper.

The second version of independence tuples is one in which we control the

translates of an independence set J by the left regular representation (in a sense

to be made more precise in Section 3), and moreover only consider partitions

cW J �! ¹1; : : : ; kº

where each of the pieces c�1.¹lº/; 1 � l � k also has its translates controlled

by the left regular representation (again this will be made more precise later).
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To brie�y describe the idea, consider a measure-preserving action � Õ .X; �/.

Given a set A � X we can consider the subspace of L2.X; �/ given by

HA D Span¹g.�A � �.A/1/W g 2 �º
k�k2

:

One can then ask for sets where

� Õ HA

is related to representations one is more familiar with, and this provides interesting

restrictions of the translates of A by �: For example, one could consider A where

� Õ HA extends to the reduced group C �-algebra (this is the completion of the

group algebra in the left regular representation). Equivalently, for all f 2 cc.�/

we have





X

g2�

f .g/.�gA � �.A/1/





2
�





X

g2�

f .g/�.g/



k�A � �.A/1k2;

where � is the left regular representation. This says nothing in the amenable case,

but in the non-amenable case implies some mixing behavior of A: For example,

if every measurable A � X has this property and � is non-amenable then the

action is strongly ergodic. Based on this idea, we give a version of independence

tuples, called independence tuples satisfying the weak containment condition,

where the “representation” (via the so�c approximation) on the independence sets

in question is weakly contained in the left regular representation. Since the so�c

approximation is not actually a representation, we mention for clarity that we will

require our independence sets to be sequences .Ji /i�1 of subsets of ¹1; : : : ; diº so

that for all f 2 C.�/; � > 0 we have

k�i .f /.�Ji
� udi

.J1/1/k2 � k�.f /kk�Ji
� udi

.Ji /1k2 C �

for all large i: Moreover, we require that the partitions

cW Ji �! ¹1; : : : ; diº

are such that the pieces c�1.¹lº/ also exhibit similarly controlled behavior by

the left regular representation (albeit in a more �nitary sense). Theorem 1.1 and

Corollary 1.4 in [17] indicate that the left regular representation plays a crucial

role in entropy theory, and from this our strengthening of independence tuples is

natural.

A priori, this di�erent version of an independence tuple bears no relation to

independence tuples developed by Kerr and Li, as we are requiring a stronger

condition on the structure of the independent set but also considering less general

partitions. However, using a probabilistic argument and the Sauer–Shelah lemma

we show that every independence tuple satisfying the weak containment condi-

tion is an independence tuple. It turns out (not surprisingly) that in the amenable
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case, independence tuples are independence tuples satisfying the weak contain-

ment condition. It is possible that independence tuples are independence tuples

satisfying the weak containment condition for so�c groups, but it is not clear how

one would prove this. However, we strongly believe that positivity of topological

entropy is equivalent to the existence of a nondiagonal independence pair satis-

fying the weak containment condition. This would be not only an analogue of

Proposition 4.16 (3) of [22], but an analogue of our recent results in [17], where it

is shown (see Theorem 1.1 of [17]) that the Koopman representation of a probability

measure-preserving action with positive entropy must contain a nonzero subrepre-

sentation of the left regular representation. The major application in our paper of

independence tuples is the following question of Deninger (see [8], Question 26).

Question 1. If � is a countable discrete group and f 2 Mn.Z.�// \ GLn.`1.�//

which is not invertible in Mn.Z.�//; is it true that detL.�/.f / > 1?

Here L.�/ denotes the group von Neumann algebra, which is the strong

operator topology closure of C.�/ in the left regular representation on `2.�/ given

by

.g�/.h/ D �.g�1h/; g; h 2 �:

Also detL.�/.f / is the Fuglede–Kadison determinant of f; a generalization of the

usual determinant in linear algebra to the in�nite-dimensional setting of operators

in Mn.L.�// see [27] Chapter 3.2 for the precise de�nition. Chung and Li

answered this a�rmatively in Corollary 7.9 of [5] for all amenable groups using

independence tuples. Following on the techniques in [5], David Kerr and Hanfeng

Li in [22] were able to answer this in the a�rmative when � is residually �nite.

Both of these proofs use independence tuples and their previous calculations of

topological entropy for algebraic actions of residually �nite groups or amenable

groups. This was further exploited by Chung-Li in [5] to describe algebraic actions

of amenable groups with completely positive entropy. Using the main result

of [15], and Theorem 6.8 in [22] one immediately a�rmatively answers Deninger’s

Problem for so�c groups. However, we will be interested in generalizing this result

to a larger class of f: We will weaken the assumption that f 2 GLn.`1.�//:

To motivate our generalization, let us consider the case � D Z; and f 2 Z.Z/;

and view f as a Laurent polynomial. By Jensen’s Formula, one can show that

detL.Z/.f / > 1 if and only if f has a leading coe�cient of modulus one and does

not have all of its roots on the unit circle. Using Fourier analysis, we see that f

is invertible in `1 if and only if f never vanishes on the unit circle. In particular,

if f is invertible in `1 then detL.Z/.f / > 1: This analysis also generalizes to any

abelian group.

We note here that the Gelfand transforms on `1.Z/ and C �
�

.Z/ of f are both

the Fourier transform, so f is invertible in `1.Z/ if and only if f is invertible in

C �
�

.Z/ (equivalently L.Z/). Consideration of the abelian case leads us to believe
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that it is reasonable to expect that if f 2 Mn.Z.�//\GLn.L.�// is not invertible

in Mn.Z.�//; then detL.�/.f / > 1: We prove this is true in the so�c case.

Theorem 1.1. Let � be a countable discrete so�c group, and f 2 Mn.Z.�// \

GLn.L.�//: If f is not invertible in Mn.Z.�//; then detL.�/.f / > 1:

For readers unfamiliar with operator algebras, we note that f 2 GLn.L.�// is

the same as saying that f is invertible as a left convolution operator

`2.�/˚n �! `2.�/˚n:

We also mention in Section 4 a wide class of examples of f 2 Z.�/ \ L.�/�

as to illustrate that the above Theorem is a signi�cant generalization of the case

f 2 Z.�/ \ `1.�/�: We actually prove the above Theorem by using our results

in [15]. For notation, if f 2 Mn.L.�// we de�ne

r.f /W `2.�/˚n �! `2.�/˚n

by

.r.f /�/.l/ D

nX

mD1

X

g2�

�.l/.g/bflm.g/

if flm D
P

g2�
bflm.g/g for 1 � l; m � n: We then set

Xf D .Z.�/˚n=r.f /Z.�/˚n//�:

Where the hat indicates that we are taking the Pontryagin dual, i.e we look at the

compact, abelian group of al continuous homomorphisms

Z.�/˚n=r.f /Z.�/˚n �! T D R=Z:

Here we are identifying Z.�/ inside of `2.�/ via

X

g2�

yf .g/g 7�!
X

g2�

yf .g/�¹gº:

The compact, abelian group Xf inherits a natural action of � by

.g�/.a/ D �.g�1a/; for � 2 Xf ; a 2 Z.�/˚n=r.f /Z.�/˚n; g 2 �:

The proof of Theorem 1.1 then follows from the main result of [15], the following

Theorem and the results of [22].

Theorem 1.2. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
; and let f 2 Mn.Z.�// \ GLn.L.�//: Then every k-tuple of points

in Xf is a ..�i/i � IE �k/-tuple.
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By Theorem 1.1 of [15] as well as Theorem 6.8 in [22] the above Theorem

implies Theorem 1.1. Crucial in the proof of this theorem is both the reduction to

`2-independence tuples and independence tuples satisfying the weak containment

condition. If Ji � ¹1; : : : ; diº is our candidate independent set and

Ji D J
.1/
i [ � � � [ J

.k/
i

is our candidate partition, we will need to control

k�i .˛/.�
J

.s/

i

� udi
.J

.s/
i /1/k2

for ˛ 2 C.�/; 1 � s � k: In particular, since we only assume that f 2 GLn.L.�//

we need to control by the norm of ˛ in the left regular representation. Because

of this, our modi�ed notion of independence will be the key to proving the above

theorem. Thus, we will actually show the more general fact that every k-tuple of

points in Xf is a independence tuple satisfying the weak containment condition.

As a consequence of our work we have the following application to completely

positive entropy. Recall that if � is a so�c group, with so�c approximation

�i W � ! Sdi
; then � Õ X where X is a compact metrizable space, and � acts by

homeomorphisms is said to have completely positive entropy if every nontrivial

factor has positive entropy. Similarly, a probability measure-preserving action is

said to have completely positive entropy if every nontrivial (measure-theoretic)

factor has positive entropy.

Corollary 1.3. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Let f 2 Mn.Z.�// \ GLn.L.�// be not invertible in Mn.Z.�//:

Then � Õ Xf has completely positive topological entropy with respect to any

so�c approximation. If � is amenable and �Xf
is the Haar measure on Xf ; then

� Õ .Xf ; �Xf
/ has completely positive entropy as well.

The amenable case uses important results from [5]. For f 2 Mn.Z.�// \

GLn.`1.�//; the case of topological entropy is a consequenceof the results in [22].

The case of amenable groups and measure-theoretic entropy is contained in the

results of [5], again in the situation in which f 2 Mn.Z.�// \ GLn.`1.�//:

In Section 4, we will list examples of f 2 Z.�/ \ L.�/� which are not `1.�/�

when � is amenable. For example, if � is elementary amenable then a result

of Chou in [4] implies that Z.�/ \ L.�/� � `1.�/� if and only if � is virtually

nilpotent. This examples reveal that, even in the amenable case, the generalization

from invertibility in `1.�/ to invertibility in L.�/ is signi�cant.

Acknowledgment. I thank the anonymous referee for their comments, which

vastly improved the understandability of the paper.
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2. `
p-versions of independence tuples

Let us �rst recall the de�nition of a so�c group. For an n 2 N; we let un be

the uniform measure on ¹1; : : : ; nº: In general, if A is a �nite set, we use uA for

the uniform probability measure on A: We use Sn for the symmetric group on n

letters.

De�nition 2.1. Let � be a countable discrete group. A so�c approximation is a

sequence of functions (not assumed to be homomorphisms)

�i W � �! Sdi

so that

udi
.¹1 � j � di W �i .gh/.j / D �i .g/�i .h/.j /º/ �! 1; for all g; h 2 �,

udi
.¹1 � j � di W �i.g/.j / ¤ j º/ �! 1; for all g 2 � n ¹eº.

We say that � is so�c if it has a so�c approximation.

It is known that all amenable groups and residually �nite groups are so�c.

Also, it is known that so�city is closed under free products with amalgamation

over amenable subgroups (see [13], [29], [11], [10], and [30]). In fact, it is shown

in [6] that graph products of so�c groups are so�c. Additionally, residually so�c

groups and locally so�c groups are so�c. By Malcev’s Theorem, this implies all

linear groups are so�c. Finally, if ƒ is a subgroup of � and � Õ �=ƒ is amenable

(i.e. there is a � invariant mean on �=ƒ), then � is so�c. For a pseudometric space

.X; �/ and A a �nite set, and 1 � p � 1 we de�ne

�p;A.x; y/p D
1

jAj

X

a2A

�.x.a/; y.a//p if p < 1,

�1;A.x; y/ D max
a2A

�.x.a/; y.a//:

If A D ¹1; : : : ; nº we shall typically use

�p;n

instead of

�p;¹1;:::;nº:

We recall the de�nition of so�c entropy.

De�nition 2.2. Let � be a countable discrete group and � Õ X by homeomor-

phisms. We say that a continuous pseudometric � on X is dynamically generating

if for all x ¤ y; there is a g 2 � so that �.gx; gy/ > 0.
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For a pseudometric space .X; �/; subsets A; B of X and " > 0 we say that A

is "-contained in B and write A �" B if for all a 2 A; there is a b 2 B with

�.a; b/ � ": We say that A � X is "-dense if X �" A: We use S".X; �/ for the

smallest cardinality of an "-dense subset of X:

De�nition 2.3. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Fix a continuous dynamically generating pseudometric � on X: For

a �nite F � �; and ı > 0; we let Map.�; F; ı; �i/ be all � 2 Xdi so that

max
g2F

�2;di
.� ı �i .g/; g�/ < ı:

De�nition 2.4. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Let X be a compact metrizable space with � Õ X by homeomor-

phisms. Fix a continuous dynamically generating pseudometric � on X: De�ne

the entropy of � Õ X with respect to �i by

h.�i /i
.�; F; ı; "/ D lim sup

i!1

1

di

log S".Map.�; F; ı; �i/; �2;di
/;

h.�i /i
.�; "/ D inf

F;ı
h.�i /i

.�; F; ı; "/;

h.�i /i
.X; �/ D sup

">0

h.�i /i
.�; "/:

In [21] Theorem 4.5 and [19] Proposition 2.4, it is shown that this does not

depend upon the choice of continuous dynamically generating pseudometric.

In [22], Kerr and Li de�ned independence tuples as a topological measure of

randomness of the action, and connected it with positivity of topological entropy.

One of the main results of [22] of relevance for us is Proposition 4.16 (3), which

shows that positivity of entropy is equivalent to the existence of a nondiagonal

independence pair. For our purposes, it will be convenient to consider `q-versions

of independence tuples.

De�nition 2.5. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Let X be a compact metrizable space with � Õ X by homeomor-

phisms, and �x a continuous dynamically generating pseudometric � on X; and

1 � q � 1: Let x D .x1; : : : ; xk/ 2 Xk : For �nite F; K � � and ı; " > 0 we say

that a subset J � ¹1; : : : ; diº is a .`q � .�; F; ı; �iI "; K//-independence set for x

if for every cW J ! ¹1; : : : ; kº there is a � 2 Map.�; F; ı; �i/ so that

max
g2K

�q;J .g�.�/; gxc.�// < ":
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We let Iq.x; �; F; ı; �iI "; K/ be the maximum of udi
.J / where J is a .`q �

.�; F; ı; �iI "; K//-independence set for x. Additionally, we let

Iq.x; �; F; ı; .�i/i I "; K/ D lim sup
i!1

Iq.x; �; F; ı; �iI "; K/

Iq.x; �; .�i/i I "; K/ D inf
�nite F ��;

ı>0

Iq.x; �; F; ı; .�i/i I "; K/:

We say that x is a .`q � IE/-tuple with respect to � if for all " > 0; and �nite

K � �,

Iq.x; �; .�i/i I "; K/ > 0:

We let IEk
.�i /i ;�.X; �; q/ be the set of all .`q � IE/-tuples with respect to �:

We shall typically denote IEk
.�i /i ;�.X; �; q/ by IEk

.�i /i ;�.q/ if X; � are clear from

the context. Our goal in this section is to show that IEk
.�i /i ;�.q/ is independent of

the choice of �; q; and that in fact IEk
.�i /i ;�.q/ is the set of independence k-tuples

as de�ned by Kerr and Li in [22]. We will �rst show that IEk
.�i /i ;�.q/ does not

depend upon �:

Lemma 2.6. Let � be a countable discrete so�c group and X a compact metriz-

able space with � Õ X by homeomorphisms. Let �; �0 be two continuous dynam-

ically generating pseudometrics on X . Then for any 1 � q � 1;

IEk
.�i /i ;�.q/ D IEk

.�i /i ;�0.q/:

Proof. Let M; M 0 be the diameters of �; �0. Let x 2 IEk
.�i /i ;�0.q/. Let " > 0 and a

�nite K � � be given. Choose a �nite K 0 � � and an "0 > 0 so that

max
g2K

�.gx; gy/ < "

whenever

max
g2K0

�0.gx; gy/ < "0:

Let �0 > 0 depend upon " in a manner to be determined later. Let ˛0 > 0 be such

that

Iq.x; �0; .�i/i I �0; K 0/ � ˛0:
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Suppose we are given a �nite F � �; and a ı > 0: By Lemma 2.3 in [22],

we may choose a �nite F 0 � � and a ı0 > 0 so that

Map.�0; F 0; ı0; �i/ � Map.�; F; ı; �i/:

Let J 0
i be a .`q � .�0; F 0; ı0; �i I �0; K 0//-independence set of maximal cardinality.

Suppose we are given

cW J 0
i �! ¹1; : : : ; kº;

choose a � 2 Map.�0; F 0; ı0; �i/ so that

max
g2K0

�0
q;J 0

i

.g�.�/; gxc.�// < �0:

Let

Ci D
\

g2K0

¹j 2 J 0
i W �0.g�.j /; gxc.j // < "0º:

If q < 1; then

uJi
.J 0

i n Ci / � jK 0j
��0

"0

�q

:

If q D 1; we force �0 < "0 so that Ci D J 0
i : For j 2 Ci we have by our choice of

"0; K 0 that

�.g�.j /; gxc.j // < "

for all g 2 K: Thus for all g 2 K; and q < 1;

�q;J 0
i
.g�.�/; gxc.�//

q < "q C M q jK 0j
��0

"0

�q

and if q D 1; then

�1;J 0
i
.g�.�/; gxc.�// < "0:

Choosing �0 > 0 su�ciently small (depending upon K; q) , we see that we have

that J 0
i is a .�; F; ı; �iI 2"; K/-independence set. Thus

Iq.�; F; ı; .�i/I 2"; K/ � ˛0:

As F; ı; " are arbitrary this completes the proof. �

Thus for 1 � q � 1 we will use IEk
.�i /i

.q/ for IEk
.�i /i ;�.q/ for any continuous

dynamically generating pseudometric �: If X; � are not clear from the context we

will use

IEk
.�i /i

.X; �; q/

instead of IEk
.�i /i

.q/: It is not hard to relate our notion of combinatorial indepen-

dence to that developed by Kerr and Li in [22]. We use IEk
.�i /i

for the set of

..�i /i � IE �k/-tuples as de�ned by Kerr and Li in [22] (again we should really

use IEk
.�i /i

.X; �/ but in most cases � Õ X will be clear from the context).
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Corollary 2.7. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Let X be a compact metrizable space with � Õ X by homeomor-

phisms. Then IEk
.�i /i

.1/ D IEk
.�i /i

.

Proof. It is easily seen that

IEk
.�i /i

D IEk
.�i /;�.1/

when � is a compatible metric. Now apply the preceding lemma. �

We now show that in fact IEk
.�i /i

.q/ does not depend upon q: We remark that

the proof is closely modeled on the proof of Proposition 4.6 in [22]. We will need

Karpovsky and Milman’s generalization of the Sauer–Shelah lemma (see [18], [31],

and [33]). For convenience we state the Lemma below.

Lemma 2.8. For any integer k � 2 and any real number � 2 .k � 1; k/ there is a

constant ˇ.�/ > 0 so that for all n 2 N if S � ¹1; 2; : : : ; kºn has jS j1=n � �; then

there is an I � ¹1; : : : ; nº with jI j � ˇ.�/n and

S
ˇ̌
I

D ¹1; 2; : : : ; kºI :

Lemma 2.9. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Let X be a compact metrizable space with � Õ X by homeomor-

phisms. For any 1 � q1; q2 � 1 we have

IEk
.�i /i

.q1/ D IEk
.�i /i

.q2/:

Proof. It is clear that if q1 < q2; then

IEk
.�i /i

.q1/ � IEk
.�i /i

.q2/:

It thus su�ces to prove that

IEk
.�i /i

.1/ � IEk
.�i /i

.1/:

Fix k � 1 < � < k; and let ˇ be the function de�ned in Lemma 2.8. Then we may

�nd a n0 so that if J is a �nite set with jJ j � n0 and E � ¹1; : : : ; kºJ has

jEj � �jJ j;

then there is a J 0 � J with

jJ 0j � ˇ.�/jJ j

so that

E
ˇ̌
J 0 D ¹1; : : : ; kºJ 0

:
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Let � be a continuous dynamically generating pseudometric on X: Let

x D .x1; : : : ; xk/ 2 IEk
.�i /i

.1/:

Let " > 0 and a �nite K � � be given. Let "0 > 0 depend upon " in manner to be

determined later. Set

˛ D I1.x; �; .�i/i I "0; K/:

Suppose we are given a �nite F � � and ı > 0: Choose Ji � ¹1; : : : ; diº a

.`1 � .�; F; ı; �iI "0; K//-independence set for x with

udi
.Ji / D I1.�; F; ı; �iI "0; K; x/:

For every cW Ji ! ¹1; : : : ; kº choose a �c 2 Map.�; F; ı; �i/ so that

max
g2K

�1;Ji
.g�c.�/; gxc.�// < "0:

Let

„c D
\

g2K

¹j 2 Ji W �.g�c.j /; gxc.�// < "º:

Then

uJi
.Ji n „c/ � jKj

�"0

"

�
:

Let

H.t/ D �t log.t / � .1 � t / log.1 � t /:

By Stirling’s formula there is a A > 0 so that the number of subsets of Ji of

cardinality at most jKj. "0

"
/jJi j is at most

A exp
�
H

�
jKj

�"0

"

��
jJi j

�
jKj

�"0

"

�
jJi j:

Thus there is subset �i � ¹1; : : : ; kºdi with

j�i j �
kjJi j exp

�
H

�
jKj

�"0

"

���jJi j

AjKj
�"0

"

�
jJi j

;

so that „c is the same, say equal to ‚i ; for all c 2 �i : If we choose "0 > 0

su�ciently small then

j�i j � �jJi j

for all large i: So by our choice of ˇ for all large i; we can �nd a J 0
i � Ji with

jJ 0
i j � ˇ.�/jJi j
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and

�i

ˇ̌
J 0

i

D ¹1; : : : ; kºJ 0
i :

Thus

lim sup
i!1

udi
.J 0

i / � ˇ.�/ lim sup
i!1

udi
.Ji / � ˇ.�/˛:

Choose "0 > 0 su�ciently small so that

jKj
�"0

"

�
�

ˇ.�/

2
:

As

uJi
.Ji n ‚i / �

�"0

"

�
jKj;

we �nd that

lim inf
i!1

uJi
.J 0

i \ ‚i/ �
ˇ.�/

2
;

so

lim sup
i!1

udi
.J 0

i \ ‚i / D lim sup
i!1

jJi j

di

uJi
.J 0

i \ ‚i/ � ˛
ˇ.�/

2
:

We claim that J 0
i \ ‚i is a .`1 � .�; F; ı; �iI "; K//-independence set for x for

in�nitely many i: Let

c0W J 0
i \ ‚i �! ¹1; : : : ; kº:

Since

�i

ˇ̌
J 0

i

D ¹1; : : : ; kºJ 0
i ;

we have

�i

ˇ̌
J 0

i
\‚i

D ¹1; : : : ; kºJ 0
i
\‚i :

So we may �nd a c 2 �i so that c
ˇ̌
Ji \‚i

D c0: Since ‚i D „c we have that

max
g2K

�.g�c.j /; gxc.j // < "

for all j 2 J 0
i \ ‚i : As

lim sup
i!1

udi
.J 0

i \ ‚i / �
ˇ.�/

2
˛;

we �nd that

lim sup
i!1

I1.�; F; ıI "; K/ �
ˇ.�/

2
˛:

Thus

x 2 IEk
.�i /i

.1/: �
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3. Independence tuples with a weak containment condition

We now proceed to give our strengthening of independence tuples. The basic

idea is instead of considering our sequence of independence sets .Ji /i�1 to be

arbitrary subsets of ¹1; : : : ; diº we require that in the “representation” � has on

`2.di / we have that the “subrepresentation” generated by .�Ji
�udi

.Ji /1/ is weakly

contained in the left regular representation. Moreover, instead of considering

arbitrary partitions

cW Ji �! ¹1; : : : ; kº

we only consider one so that the pieces Ji;l D c�1.¹lº/ also have the property that

the “subrepresentation” generated by .�Ji;l
�udi

.Ji;l/1/ is weakly contained in the

left regular representation. The results in [17] indicate that positivity of entropy is

related in an essential way to the left regular representation. Our modi�ed version

of independence tuple is more natural from that perspective. An essential di�culty

here is that since �i is not an honest homomorphism, we do not get an honest

representation this way. As we shall see shortly, one can get around this using

ultraproducts. For now, we simply give a direct de�nition.

First let us introduce some notation. For a countable discrete group �; de�ne

the left regular representation

�W � �! U.`2.�//

by

.�.g/�/.h/ D �.g�1h/:

Extend � to a map

�WC.�/ �! B.`2.�//

by

�
� X

g2�

˛gg
�

D
X

g2�

˛g�.g/:

For ˛ 2 C.�/; g 2 � set

y̨.g/ D h�.˛/ıe; ıgi:

Then

˛ D
X

g2�

y̨.g/g:

If � is a so�c group with so�c approximation �i W � ! Sdi
; we de�ne

�i WC.�/ ! Mdi
.C/ by

�i .f / D
X

g2�

yf .g/�i .g/:

Here we are viewing �i .g/ as a permutation matrix.
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De�nition 3.1. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: For a �nite F � C.�/; and a ı > 0 we let ƒ.F; ı; �i/ be all

J � ¹1; : : : ; diº so that

max
f 2F

k�i .f /.�J � udi
.J /1/k2 � k�.f /kk�J � udi

.J /1k2 C ı:

We let ƒ.�i /i
be the set of all sequences .Ji /i�1 with Ji � ¹1; : : : ; diº so that

for every �nite F � C.�/; and for every ı > 0 it is true that for all large i;

Ji 2 ƒ.F; ı; �i/:

We now mention the formalization via ultra�lters. Fix a free ultra�lter ! 2
ˇN n N: Let

A D

¹.fi /
1
iD1W fi 2 `1.di /; sup

i

kfik1 < 1º

¹.fi/
1
iD1W fi 2 `1.di /; sup

i

kfik1 < 1; lim
i�!!

kfik`2.di ;udi
/ D 0º

:

For a sequence fi 2 `1.di ; udi
/ we use .fi/i!! for the image in A of .fi /i�1

under the quotient map. There is a well-de�ned inner product on A given by

h.fi /i!!; .gi/i!!i D lim
i!!

1

di

diX

j D1

fi .j /gi .j /:

Let L2.A; u!/ be the completion of A under this inner-product. Then we have a

well-de�ned unitary representation

�! W � �! U.L2.A; u!//

de�ned densely by

�!.g/.fi /i!! D .fi ı �i .g//i!!

if fi 2 `1.di ; udi
/ and

sup
i

kfik1 < 1:

We then see that ƒ.�i /i
can be regarded as all sequences Ji of subsets of ¹1; : : : ; diº

so that if ! 2 ˇN n N is any free ultra�lter and we set

�o
J!

D .�Ji
� udi

.Ji /1/i!!;

K D Span¹�!.g/�o
J!

W g 2 �º;

then the representation � Õ K is weakly contained in the left regular representa-

tion (see [1] Appendix F for the relevant facts about weak containment of repre-

sentations).
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De�nition 3.2. Let � be a countable discrete so�c group and �i W � ! Sdi
a

so�c approximation. Let X be a compact metrizable space with � Õ X by

homeomorphisms. Let � be a continuous dynamically generating pseudometric on

X: Let 1 � q � 1; and x 2 Xk : Fix �nite K; F � �; E � C.�/ and "; ı; � > 0:

We say that a sequence .Ji /i is a .ƒ � `q � .�; F; ı; E; �I "; K//-independence

sequence for x if .Ji /i 2 ƒ.�i /i
; and for all i; for all cW Ji ! ¹1; : : : ; kº with

c�1.¹lº/ 2 ƒ.E; �; �i/; there is a � 2 Map.�; F; ı; �i/ with

max
g2K

�q;Ji
.g�.�/; gxc.�// < ":

We let Iƒ;q.x; �; F; ı; E; �; .�i/i I "; K/ be the supremum of

lim sup
i!1

udi
.Ji /

over all sequences .Ji / which are .ƒ � `q � .�; F; ı; E; �I "; K//-independence

sequences. We then set

Iƒ;q.x; �; F; ı; .�i/i I "; K/ D sup
�nite E�C.�/;

�>0

Iƒ;q.x; �; F; ı; E; �I "; K/;

Iƒ;q.x; �; .�i/i I "; K/ D inf
�niteF ��;

ı>0

Iƒ;q.x; �; F; ıI "; K/:

De�nition 3.3. Let � be a countable discrete group and �i W � ! Sdi
a so�c

approximation. Let X be a compact metrizable space with � Õ X by homeomor-

phisms. Let � be a continuous dynamically generating pseudometric on X; and

1 � q < 1: We say that x D .x1; : : : ; xk/ is a .`q � .�i/ � IE �k/-tuple satisfying

the weak containment condition (or a .ƒ.�i /i
� IE �k/-tuple) if for every " > 0

and K � � �nite

Iƒ;q.x; �; .�i/i I "; K/ > 0:

We use IE
ƒ;k

.�i /;�
.X; �; q/ for the set of .`q � .�i/ � IE � k/-tuples satisfying the

weak containment condition. If X; � are clear from context we will simply use

IE
ƒ;k

.�i /;�
.q/:

In fact, following the proof of Lemma 2.6, one shows that IE
ƒ;k

.�i /;�
.q/ is inde-

pendent of �; so we simply use IE
ƒ;k

.�i /i
.q/: However, we do not know if IE

ƒ;k

.�i /i
.q/ is

independent of q: Note that if M is the diameter of .X; �/ then by standard Hölder

estimates we have for any �nite set A and 1 � q1 < q2 < 1:

�q1;A.x; y/ � �q2;A.x; y/ � M
1�

q1
q2 �q1;A.x; y/

q1
q2 ; for any x; y 2 XA:

From this it is not hard to see that

IE
ƒ;k
.�i /i

.q1/ D IE
ƒ;k
.�i /i

.q2/

for all 1 � q1; q2 < 1:
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The de�nition may seem a little ad hoc. The following proposition will

hopefully make it seem more natural. Essentially, this proposition will tell us

two things: �rst if we �x a ˛ > 0; and choose a subset Ji � ¹1; : : : ; diº of size

roughly ˛di uniformly at random, then .Ji /i will be in ƒ.�i / with high probability.

Secondly, suppose we are given a sequence .Ji /i in ƒ.�i / a �nite E � � and a

� > 0; and a probability measure � on ¹1; : : : ; kº: If we choose a partition of .Ji /i

into sets of size �.¹1º/udi
.Ji /; : : : ; �.¹kº/udi

.Ji / uniformly at random, then with

high probability, each of the pieces of the partition will be in ƒ.E; �; �i /: Thus

we may view independence tuples satisfying the weak containment condition as

simply a randomization of independence tuples as de�ned by Kerr and Li in [22].

The proof is a simple adaption of Bowen’s argument for the computation of so�c

entropy of Bernoulli shifts in [2].

Proposition 3.4. Let � be a countable discrete so�c group, with so�c approxima-

tion �i W � ! Sdi
: Let � be a probability measure on ¹1; : : : ; kº: Fix a sequence

.Ji /i 2 ƒ.�i /i
: Then, for any E � C.�/ �nite, and any � > 0 and any 1 � l � k

we have

�˝Ji .¹p 2 ¹1; : : : ; kºJi W p�1.¹lº/ 2 ƒ.E; �; �i/º/ �! 1;

�˝Ji .¹p 2 ¹1; : : : ; kºJi W judi
.p�1.¹lº// � �.¹lº/udi

.Ji /j > �º/ �! 0:

Proof. As our claim is probabilistic, we may assume E D ¹f º: We make the

following two claims.

Claim 1. For all F � � n ¹eº �nite, for every 1 � l � k; for every ı > 0;

�˝Ji .¹p 2 ¹1; : : : ; kºJi W

judi
.�i .g/p�1.¹lº/ \ p�1.¹lº// � udi

.Ji \ �i .g/Ji /�.¹lº/2j > ı

for some g 2 F º/ �! 0:

Claim 2. For every 1 � l � k; for every ı > 0;

�˝Ji .¹p 2 ¹1; : : : ; kºJi W judi
.p�1.¹lº// � �.¹lº/udi

.Ji /j > ıº/ �! 0:

Suppose we accept the two claims. Then, we may �nd Pi � ¹1; : : : ; kºJi so

that for every sequence pi 2 Pi ;

udi
.p�1

i .¹lº// � �.¹lº/udi
.Ji / �! 0;

judi
.�i .g/p�1

i .¹lº/ \ p�1
i .¹lº// � �.¹lº/2udi

.Ji \ �i .g/Ji /j �! 0;

for every g 2 � n ¹eº, and

�˝Ji .Pi / �! 1:
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Fix a sequence pi 2 Pi : Let

�l D �p�1
i

.¹lº/ � udi
.p�1

i .¹lº//1;

and

� D �Ji
� udi

.Ji /1:

We use o.1/ for any expression which goes to zero as i ! 1: Then for any

f 2 C.�/ and i 2 N

k�i .f /�lk
2
2 D

X

g;h2�

yf .g/ yf .h/h�i .h/�1�i .g/�l ; �li

D o.1/ C
X

g;h2�

yf .g/ yf .h/h�i .h
�1g/�l ; �li

D o.1/ C
X

g2�

1f �f .g/h�i .g/�l ; �li:

(1)

We have that

h�i .e/�l ; �li D o.1/ C k�lk
2
2 D o.1/ C udi

.p�1
i .¹lº// � udi

.p�1
i .¹lº//2

D o.1/ C �.¹lº/udi
.Ji / � �.¹lº/2udi

.Ji /
2:

(2)

and for g ¤ e we have

h�i .g/�l ; �li D udi
.�i.g/p�1

i .¹lº/ \ p�1
i .¹lº// � udi

.p�1
i .¹lº//2

D o.1/ C �.¹lº/2udi
.Ji \ �i .g/Ji / � �.¹lº/2udi

.Ji /
2

D o.1/ C �.¹lº/2h�i .g/�; �i:

Additionally

k�k2
2 D udi

.Ji / � udi
.Ji /

2: (3)

Combining (1), (2), and (3) we see that

k�i .f /�lk
2
2 D o.1/ C 1f �f .e/.�.¹lº/udi

.Ji / � �.¹lº/2udi
.Ji /

2/

C �.¹lº/2
X

g2�n¹eº

1f �f .g/h�i .g/�; �i

D o.1/ C 1f �f .e/.�.¹lº/ � �.¹lº/2/udi
.Ji /

C �.¹lº/2
X

g2�

1f �f .g/h�i .g/�; �i:
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By the same logic,

k�i .f /�k2
2 D o.1/ C

X

g2�

1f �f .g/h�i .g/�; �i:

Thus

k�i .f /�l k
2
2 D o.1/ C 1f �f .e/.�.¹lº/ � �.¹lº/2/udi

.Ji / C �.¹lº/2k�i .f /�k2
2:

Since Ji 2 ƒ.�i /i
;

k�i .f /�k2
2 � k�.f /k2.udi

.Ji / � udi
.Ji /

2/ C �

for all large i: Thus for all large i;

k�i .f /�lk
2
2 � o.1/ C � C �.¹lº/2k�.f /k2.udi

.Ji / � udi
.Ji /

2/

C k�.f /k2.�.¹lº/ � �.¹lº/2/udi
.Ji /

D o.1/ C � C k�.f /k2.�.¹lº/udi
.Ji / � �.¹lº/2udi

.Ji /
2/:

Since

jk�lk
2
2 � .�.¹lº/udi

.Ji / � �.¹lº/2udi
.Ji /

2/j �! 0;

and � is arbitrary this proves the proposition.

We thus turn to the proof of Claim 1 and Claim 2. For Claim 1, it su�ces to

assume F D ¹gº: We have
Z

udi
.�i .g/p�1.¹lº/ \ p�1.¹lº// d�˝Ji .p/

D
1

di

diX

j D1

Z
�p�1.¹lº/.j /�p�1.¹lº/.�i.g/�1.j // d�˝Ji .p/:

Note that �p�1.¹lº/.j /�p�1.¹lº/.�i .g/�1.j // can only be positive if j 2�i .g/Ji \Ji :

Thus the above sum is

1

di

X

j 2�i .g/Ji \Ji

Z
�¹lº.p.j //�¹lº.p.�i .g/�1.j /// d�˝Ji .p/:

Since

udi
.¹1 � j � di W �i.g/.j / ¤ j º/ �! 1;

we have that

1

di

X

j 2�i .g/Ji \Ji

Z
�¹lº.p.j //�¹lº.p.�i.g/�1.j /// d�˝Ji .p/

D udi
.�i .g/Ji \ Ji /�.¹lº/2 C o.1/:
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By Chebyshev’s inequality, it thus su�ces to show that

Z
udi

.�i .g/p�1.¹lº/\p�1.¹lº//2 d�˝Ji .p/ D udi
.�i .g/Ji \Ji /

2�.¹lº/4Co.1/:

For this, we have

Z
udi

.�i .g/p�1.¹lº/ \ p�1.¹lº//2 d�˝Ji .p/

D
1

d 2
i

X

j;k2�i .g/Ji \Ji

Z
�¹lº.p.j //�¹lº.p.�i.g/�1.j ///

�¹lº.p.k//�¹lº.p.�i .g/�1.k/// d�˝Ji .p/:

We claim that

udi
˝ udi

.¹.j; k/W j¹j; k; �i.g/�1.j /; �i.g/�1.k/ºj D 4º/ �! 1; as i ! 1:

(4)

We already know that

udi
˝udi

.¹.j; k/W j¹j; k; �i.g/�1.j / ¤ j; �i.g/�1.k/ ¤ kºjº/ �! 1; as i ! 1:

Additionally,

udi
˝ udi

.¹.j; k/W j ¤ kº/ �! 1; as i ! 1:

Thus it su�ces to show that

udi
˝ udi

.¹.j; k/W j ¤ k; �i.g/�1.j / ¤ �i .g/�1.k/;

j¹j; k; �i.g/�1.j /; �i.g/�1.k/ºj < 4º/ �! 0:

Suppose then that j ¤ k; �i.g/�1.j / ¤ j; �i.g/�1.k/ ¤ k: Then, �i .g/�1.j / ¤
�i .g/�1.k/: So

j¹j; k; �i.g/�1.j /; �i.g/�1.k/ºj < 4

if and only if j D �i .g/�1.k/ or k D �i .g/�1.j /: However the union of

¹.j; k/W �i.g/�1.k/ D j º; ¹.j; k/W k D �i .g/�1.j /º has cardinality at most 2di :

This proves (4). So

Z
udi

.�i .g/p�1.¹lº/\p�1.¹lº//2 d�˝Ji .p/ D o.1/Cudi
.�i .g/Ji \Ji /

2�.¹lº/4:

This proves Claim 1.

The proof of Claim 2 is similar, and in fact has already been done by Bowen

in [2] Theorem 8.1, it can also be seen as a consequence of the law of large

numbers. �
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We now show that the set of `q-independence tuples satisfying the weak

containment condition is contained in the set of `q-independence tuples.

Proposition 3.5. Let � be a countable discrete group with so�c approximation

�i W � ! Sdi
: Let X be a compact metrizable space with � Õ X by homeomor-

phisms. Then for any 1 � q � 1;

IE
ƒ;k
.�i /i

.q/ � IEk
.�i /i

.q/:

Proof. Fix a compatible metric � on X: Let x D .x1; : : : ; xk/ 2 IE
ƒ;k
.�i /i

.q/.

Let " > 0; and K � � �nite be given. Set

˛ D Iƒ;q.x; �; .�i/i I "; K/:

Fix k � 1 < � < k and let ˇ.�/ be as in the Sauer–Shelah lemma.

Suppose we are given a �nite F � �; and ı > 0: Choose a �nite E � C.�/;

and a � > 0 so that

Iƒ.x; �; F; ı; E; �; .�i/i I "; K/ �
�

k
˛:

Let .Ji /
1
iD1 2 ƒ.�i / be a .`q � .�; F; ı; E; �//-independence sequence for x with

lim sup
i�!1

udi
.Ji / �

�

k
˛:

Let ƒk.E; �; Ji/ be the set of all cW Ji ! ¹1; : : : ; kº so that c�1.¹lº/ 2 ƒ.E; �; �i/

for 1 � l � k: By Proposition 3.4 we have

lim
i�!1

jƒk.E; �; Ji/j

kjJi j
D 1:

So by Lemma 2.8, for all large i we can �nd J 0
i � Ji with

ƒk.E; �; Ji/
ˇ̌
J 0

i

D ¹1; : : : ; kºJ 0
i

and

udi
.J 0

i / � ˇ.�/udi
.Ji /:

We claim that J 0
i is a .`q � .�; F; ı; �i//-independence set for x for all large i:

For this, let c0W J 0
i ! ¹1; : : : ; kº: Then, there is a c 2 ƒk.E; �; Ji/ so that

c
ˇ̌
J 0

i

D c0:

By the de�nition of .�; F; ı; E; �; .�i/i /-independence, we know that there is a

� 2 Map.�; F; ı; �i/ so that

max
g2K

�q;Ji
.g�.�/; gxc.�// < ":
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As c
ˇ̌
J 0

i

D c0; we �nd that

max
g2K

�q;J 0
i
.g�.�/; gxc0.�// <

"

ˇ.�/
:

As

lim sup
i!1

udi
.J 0

i / � ˇ.�/˛;

we see that

Iq

�
�; F; ı; .�i/I

"

ˇ.�/
; K

�
� ˇ.�/˛:

Taking the in�mum over all F; ı completes the proof. �

We now discuss the analogue of Proposition 4.16 from [22] for independence

tuples with a weak containment condition. Recall that if X; Y are compact metriz-

able spaces and � Õ X; � Õ Y by homeomorphisms, then a continuous, �-equi-

variant, surjection � W X ! Y is called a factor map. If there is a factor map

� W X ! Y; we call Y a factor of X:

Proposition 3.6. Let � be a countable discrete so�c group with so�c approxima-

tion �i W � ! Sdi
: Fix 1 � q � 1: Let X be a compact metrizable space with

� Õ X by homeomorphisms.

(1) If IE
ƒ;2
.�i /i

.q/ n ¹.x; x/W x 2 Xº is nonempty, then h.�/i
.X; �/ > 0:

(2) We have that IE
ƒ;k

.�i /i
.q/ is a closed �-invariant subset of Xk ; where � ÕXk

is the product action.

(3) Let Y be a compact metrizable space with � Õ Y by homeomorphisms and

� W X ! Y a factor map. Then

�k.IE
ƒ;k

.�i /i
.q; X; �// � IE

ƒ;k

.�i /i
.q; Y; �/:

(4) Suppose that Z is a closed �-invariant subset of X; then IE
ƒ;k
.�i /i

.Z; �/ �

IE
ƒ;k
.�i /i

.X; �/:

Proof. (1) This is a consequence of the preceding proposition and Proposi-

tion 4.16 (3) in [22].

(2) Fix a compatible metric � on X and g 2 �: Let ˛g.x/ D gx: Then for any

�nite F � �; for any ı > 0; there is a ı0 > 0 so that if

� 2 Map.�; ¹g�1º [ .g�1F / [ ¹gº; ı0; �i/;



268

then

˛g ı � ı �i .g/�1 2 Map.�; F; ı; �i/;

for all large i: Thus,

IE
ƒ;k
.�i /i

is �-invariant. The fact that it is closed is a trivial consequence of the de�nitions.

(3) Let �; �0 be compatible metrics on X; Y: Let M; M 0 be the diameter of �; �0:

Suppose we are given a "0 > 0; and let �0 > 0 depend upon " to be determined

shortly. Choose a " > 0 so that

�.x; y/ < "

implies

�0.�.x/; �.y// < �0:

Let � > 0 depend upon " in a manner to be determined later. Given a �nite F 0 � �

�nite and a ı0 > 0 we can �nd a �nite F � � and a ı > 0 so that

�di .Map.�; F; ı; �i// � Map.�0; F 0; ı0; �i /;

(this follows by the same argument in Lemma 2.3 of [22]). Let x 2 Xk ; and let Ji

be a .x; �; F; ıI �; ¹eº/-independence set, and suppose we are given

cW Ji �! ¹1; : : : ; kº:

Choose � 2 Map.�; F; ı; �i/ so that

�q;Ji
.�; xc.�// < �:

Then

uJi
.¹j 2 Ji W �.�.j /; xc.j // < "º/ �

�
1 �

�q

"q

�
:

By our choice of ";

�q.� ı �; �.xc.�///
q � .�0/q C M

��q

"q

�
:

Choosing �; �0 appropriately we have that Ji is a .�.x/; �; F 0; ı0I "0; ¹eº/-indepen-

dence set.

(4) This is trivial. �

We now proceed to show that `q�ƒ.�i /-tuples are the same as `q-independence

tuples in the amenable case. For this, we will need the following general fact: if �

is an amenable group and � W � ! U.H/ is a unitary representation, � is weakly

contained in �: See [1] Theorem G.3.2 for a proof.
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Proposition 3.7. Let � be a countable discrete amenable group. Let �i W � ! Sdi

be a so�c approximation. Then every sequence of subsets of ¹1; : : : ; diº is in ƒ.�i /i
:

Proof. Automatic from the remarks about ultraproducts and weak containment

following De�nition 3.1. �

Proposition 3.8. Let � be a countable discrete amenable group. Let �i W � ! Sdi

be a so�c approximation. Let X be a compact metrizable space with � Õ X by

homeomorphisms. Then for any 1 � q � 1;

IEk
.�i /i

.q/ D IE
ƒ;k
.�i /i

.q/:

Proof. Fix a compatible metric � on X: By Proposition 3.7 we have

IEk
.�i /i

.q/ � IE
ƒ;k

.�i /i
.q/:

Conversely, let .x1; : : : ; xk/ be in IEk
.�i /i

but not in IE
ƒ;k
.�i /i

: Choose a " > 0 and a

�nite K � � so that

Iƒ;q.x; �; .�i/i I "; K/ D 0:

Since

Iq.x; �; .�i/i I "; K/ > 0;

we can �nd a �nite F � � and a ı > 0 so that

Iƒ;q.x; �; F; ı; .�i/i I "; K/ < Iq.x; �; F; ı; .�/iI "; K/:

Choose a �nite E � �; and a � > 0 so that

Iƒ;q.x; �; F; ı; E; �; .�i/i I "; K/ < Iq.x; �; F; ı; .�i/i I "; K/:

Choose .Ji /i�1 2 ƒ.�i /i
so that .Ji /i�1 is a .ƒ � `q � .�; F; ı; E; �I "; K//-inde-

pendence sequence with

lim sup
i!1

udi
.Ji / D Iƒ.x; �; F; ı; �iI "; K/:

Since

Iƒ;q.x; �; F; ı; E; �; .�i/i I "; K/ < Iq.x; �; F; ı; .�i/i I "; K/ D lim sup
i!1

udi
.Ji /

we can �nd a subsequence il ; and a partition

Jil D J
.1/
il

[ � � � [ J
.k/
il

so that there is a 1 � pl � k with J
.pl /
il

… ƒ.E; �; �il /: Passing to a further

subsequence, we may assume that pl D p is constant. Thus,

.J
.p/
il

/l�1 … ƒ.�il
/l

;

contradicting Proposition 3.7. �
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4. A generalization of Deninger’s problem for so�c groups

Let � be a countable discrete group. An algebraic action of � is an action

� Õ X by automorphisms, where X is a compact, metrizable, abelian group.

An equivalent way to describe this family of actions is to start with a countable

Z.�/ module A; and let yA D Hom.A;T/ where T D R=Z and yA is given the

topology of pointwise convergence. We then have the algebraic action � Õ yA by

.g�/.a/ D �.g�1a/:

By Pontryagin duality, all algebraic actions arise in this manner. We will mainly

be interested in the case A D Z.�/˚n=r.f /.Z.�/˚m/; where f 2 Mm;n.Z.�//;

in this case yA is denoted Xf : An interesting aspect of the subject, which has

seen great mileage in recent years, (see e.g. Lemma 1.2 and Theorem 1.6 in [32],

Theorem 3.1 in [5], [7], [9], [26], [25], [24], [16], and [15]) is that dynamical

properties of algebraic actions (i.e. those which only depend upon � Õ yA as an

action on a compact metrizable space or probability space) such as entropy and

independence tuples of � Õ yA are related to functional analytic objects associated

to �: One relevant object is the group von Neumann algebra.

The group von Neumann algebra L.�/ is de�ned to be �.C.�//
WOT

; where

WOT is the weak-operator topology. De�ne � W L.�/ ! C by �.x/ D hxıe; ıei:
For A 2 Mn.L.�// de�ne

Tr ˝�.A/ D

nX

j D1

�.Ajj /:

Since L.�/ � B.`2.�//; we can identify Mm;n.L.�// � B.`2.�/˚n; `2.�/˚m/

in the natural way. For x 2 Mm;n.L.�//; we use kxk1 for the operator norm of x

(as an operator `2.�/˚n ! `2.�/˚m). We also use

kxk2
2 D Tr ˝�.x�x/:

Since we identify C.�/ � L.�/; we will us the same notation for elements of

Mm;n.C.�//: We shall also identify C.�/˚n Š M1;n.C.�// and use the same

notation. For f 2 GLn.L.�//; the Fuglede–Kadison determinant is de�ned by

exp Tr ˝�.log jf j/ (here the notation is as in [15]). A particular case of Theo-

rem 4.4 in [15] shows that if � is so�c, then

h.�i /i
.Xf ; �/ D log detL.�/.f /; for f 2 GLn.L.�//

(in fact this is true when f is injective as an operator on `2.�/˚n). When �

is so�c, it is known by [12] that for f 2 Mn.Z.�// we have detL.�/.f / � 1:
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By multiplicativity of Fuglede–Kadison determinants (see [27], Theorem 3.14 (1))

it follows that if f 2 GLn.Z.�//; then detL.�/.f / D 1: In [8] (see Question 26),

Deninger asked a partial converse to this result. Namely, if f 2 Mn.Z.�// is

invertible in GLn.`1.�// but not invertible in Mn.Z.�// is detL.�/.f / > 1‹

From Theorem 4.4 of [15], as well as Theorem 6.7 and Proposition 4.16 (3)

in [22] we can automatically answer Deninger’s problem a�rmatively for so�c

groups. Thus, we automatically have the following.

Theorem 4.1. Let � be a countable discrete so�c group and f 2 Mn.Z.�// \
GLn.`1.�//: If f is not in GLn.Z.�//; then

detL.�/.f / > 1:

In this section, we show how one can use .ƒ.�i / � IE/-tuples to generalize

Deninger’s conjecture in the case of so�c groups. In particular, in this section we

show the following.

Theorem 4.2. Let � be a countable discrete so�c group. If f 2 Mn.Z.�// \
GLn.L.�//; but is not in GLn.Z.�//; then detL.�/.f / > 1:

To illustrate the signi�cance of our generalization, we should mention exam-

ples of elements in Mn.Z.�// which are in GLn.L.�// but are not in GLn.`1.�//:

Let E � �; and let

�E D 1 �
1

jEj

X

g2E

g 2 Q.�/:

Note that �E is never invertible in `1.�/: To see this, consider the homomorphism

t W `1.�/ �! C

given by

t .f / D
X

g2�

f .g/:

Since t .�E/ D 0; we know that �E is not invertible in `1.�/:

First suppose that � is a nonamenable group. Let E � � be �nite and

symmetric, i.e. E D E�1. By nonamenability of �; we may choose E so that

1

jEj

X

g2E

�.g/ � 1 � "

for some " > 0 (see e.g. [3] Theorem 2.6.8 (8)). Thus �.�E / � " as an operator

on `2.�/ and thus is invertible. So jEj�E 2 Z.�/ \ L.�/� but is not in `1.�/�

and thus we always have examples of elements in Z.�/ \ L.�/� which are not

invertible in `1.�/ if � is nonamenable. So Theorem 4.2 applies to these elements

whereas Theorem 4.1 does not.
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Theorem 4.2 is also new in the amenable case. Thus we wish to mention

examples when � is amenable of elements f 2 Z.�/ \ L.�/� which are not

in `1.�/�: We say that � has subexponential growth if for any �nite E � � we

have that

j¹g1 : : : gnW g1; : : : ; gn 2 Eºj1=n ����!
n!1

1:

If � has subexponential growth then ˛ 2 C.�/ is invertible in L.�/ if and only if it

is invertible in `1.�/ by a result of Nica (see [28], page 3309). Recall that a group

is virtually nilpotent if it has a �nite index subgroup which is nilpotent. Every

virtually nilpotent group has polynomial, and hence subexponential, growth. So

if � is virtually nilpotent then ˛ 2 C.�/ is invertible in L.�/ if and only if

it is invertible in `1.�/: The situation is very di�erent when � does not have

subexponential growth. For example, if � contains a free subsemigroup on two

letters, then there are elements ˛ 2 Z.�/ which are invertible in L.�/; but not in

`1.�/: For example, if g; h generate a free subsemigroup in �; then

˙3e � .e C g C g2/h

is such an element (see Appendix A of [23] for a detailed argument). If � is

a �nitely-generated, elementary amenable, not virtually nilpotent group, then a

result of Chou say that � contains a nonabelian free subsemigroup (see [4]).

Additionally Frey in [14] showed that if � is an amenable group which contains

a nonamenable subsemigroup, then it contains a nonabelian free group. For a

concrete instance of Chou’s result consider the group R Ì .R n ¹0º/ which is

R � .R n ¹0º/ as set but with operation

.a; b/.c; d/ D .a C bc; bd/:

If 0 � a � 1=2; the subsemigroup generated by .1; a/; .1 � a/ is a free nonabelian

semigroup.

For our purposes, it will be important to use .`2 � ƒ.�i / � IE �k/-tuples.

Following the methods in our proof of Theorem 4.4 of [15], given an inclusion

B � A of Z.�/-modules, we will want a notion of .ƒ � .�i /i � IE/-tuples

corresponding to the inclusion bA=B � yA: The use of ƒ.�i /i
-independence tuples

for inclusions will ease extending Theorem 4.1 to the case when f is only invertible

in Mn.L.�//:

We will need to recall some notation from [15], as the perturbative techniques

there will remain to be important here. For x 2 R; we use

jx C Zj D inf
l2Z

jx � l j:

Thus j� j makes sense for any � 2 R=Z: Let us recall a de�nition from [16].
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De�nition 4.3. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Let B � A be countable Z.�/-modules, and let � be a continuous

dynamically generating pseudometric on yA: For �nite F � �; D � B and ı > 0

we let Map.�jD; F; ı; �i/ be all � 2 Map.�; F; ı; �i/ so that

max
b2D

1

di

diX

j D1

j�.j /.b/j2 < ı2:

The main point of this de�nition is that it is shown in Proposition 4.3 of [16]

that an element of � 2 Map.�jD; F; ı; �i/ is close to a map

Q�W ¹1; : : : ; diº �! bA=B

which is in Map.�; F 0; ı0; �i / with ı0 ! 0 and F 0 increasing to � as ı ! 0; and F

increases to �; and D increases to B: So Map.�
ˇ̌
bA=B

; : : : / and Map.�jD; : : : / are

asymptotically the same notion. A crucial defect of the argument in [16] is that the

proof of existence of Q� is nonconstructive, using a compactness argument in an

essential way. However, due to its nonconstructive nature it allows one to create

more elements in Map.�; F; ı; �i/ than one would initially believe exist. This will

be precisely the use here.

We need a similar perturbative idea speci�cally related to the case of Xf for

f 2 Mm;n.Z.�//: Fix a countable discrete so�c group � with so�c approximation

�i W � ! Sdi
: For x 2 `2

R
.di ; udi

/˚n; de�ne

kxk2;.Zdi /˚n D inf
l2.Zdi /˚n

� nX

j D1

kx.j / � l.j /k2
`2.di ;udi

/

�1=2

:

For f 2 Mm;n.Z.�//; we let

„ı.�i .f // D ¹� 2 .Rdi /˚nW k�i.f /�k2;.Zdi /˚m < ıº:

De�nition 4.4. Let � be a countable discrete so�c group with so�c approxima-

tion �i W � ! Sdi
: Let B � A be countable Z.�/-modules. Let � be a continuous

dynamically generating pseudometric for � Õ yA; and 1 � p � 1: Fix x 2 bA=Bk

and 1 � q � 1: For �nite K; F � �; D � B; E � C.�/ and �; ı > 0 we say

that a sequence Ji � ¹1; : : : ; diº is a .`q � ƒ � .x; �jD; F; ı; E; �; .�i/i I "; K//-in-

dependence sequence if .Ji /i�1 2 ƒ.�i / and for all cW Ji ! ¹1; : : : ; kº so that

c�1.¹lº/ 2 ƒ.E; �; �i/ there is a � 2 Map.�jD; F; ı; �i/ so that

max
g2K

�q;Ji
.g�.�/; gxc.�// < ":
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We let Iƒ;q.x; �jD; F; ı; E; �; .�i/I "; K; B � A/ be the supremum of

lim sup
i!1

udi
.Ji /

over all .`q�ƒ�.x; �jD; F; ı; E; �; .�i/i I "; K//-independencesequences .Ji /i�1:

Set

Iƒ;q.x; �jD; F; ı; .�i/i I "; K; B � A/

D sup
�niteE�C.�/;

�>0

Iƒ;q.x; �jD; F; ı; E; �; .�i/i I "; K/;

Iƒ;q.x; �; .�i/i I "; K; B � A/

D inf
�niteD�B;
�niteF ��;

ı>0

Iƒ;q.x; �jD; F; ı.�i/I "; K; B � A/:

We say that x is a .`q � ƒ.�i / � IE �k/-tuple for B � A if for all " > 0 and for all

K � � �nite

Iq.x; �; .�i/i I "; K; B � A/ > 0:

We let IE
ƒ;k

.�i /i
.�; q; B � A/ be the set of all .`q �ƒ.�i /i

�IE �k/-tuples for B � A.

De�nition 4.5. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
; let f 2 Mm;n.Z.�//: Fix x 2 Xk

f
and 1 � q � 1: For �nite

K � �; E � C.�/; and ı; �; " > 0 we say that a sequence Ji � ¹1; : : : ; diº is a

.`q � ƒ.�i / � .x; ı; E; �; .�i/I "; K//-independence sequence for f if .Ji /i�1 2
ƒ.�i /i

and for all cW Ji ! ¹1; : : : ; kº with c�1.¹lº/ 2 ƒ.E; �; �i / there is a

� 2 „ı.�i .f // so that

max
g2K

1

jJi j

X

j 2Ji

nX

lD1

j�.�i .g/�1.j //.l/ � xc.j /.l/.g/j2 < "2:

We let I
f
ƒ;q.x; ı; E; �; .�i/I "; K/ be the supremum of

lim sup
i�!1

udi
.Ji /;

where Ji is a .`q � ƒ.�i /i
� .x; ı; E; �; .�i/I "; K//-independence sequence.

We set

I
f
ƒ;q.x; ı; .�i/i I "; K/ D sup

�niteE�C.�/;
�>0

I
f
ƒ;q.x; ı; E; �; .�i/i I "; K/

I
f
ƒ;q.x; .�i/i I "; K/ D inf

ı>0
I

f
ƒ;q.x; ı; .�i/i I "; K/:
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We say that x is a .`q � ƒ.�i /i
� IE �k/-tuple for f if for all " > 0 and K � �

�nite

I
f
ƒ;q.x; .�i /i I "; K/ > 0:

We use IE
ƒ;k
.�i /

.q; f / for the set of all .`q � ƒ.�i /i
� IE �k/-tuples for f:

Proposition 4.6. Let � be a countable discrete so�c group with so�c approxima-

tion †.

(a) Let B � A be countable Z.�/-modules. Then for 1 � q < 1; the set of

.q�ƒ.�i /�IE/-tuples for B � A; is the same as the set of .`q�ƒ.�i /i
�IE/-tuples

for � Õ bA=B:

(b) If f 2 Mm;n.Z.�// then the set of .ƒ.�i /i
� IE/-tuples for � Õ Xf ; is the

same as the set of .ƒ.�i /i
� IE/-tuples for f .

Proof. (a) Fix k 2 N; and a continuous dynamically generating pseudometric �

on yA: Use the pseudometric �
ˇ̌
bA=B�bA=B

on bA=B: It is clear that

IE
ƒ;k

.�i /
.�; q; B � A/ � IE

ƒ;k

.�i /
.q; bA=B; �/:

For the reserve inclusion let

x 2 IE
ƒ;k
.�i /i

.�; q; B � A/:

Fix �nite K; F � �; E � C.�/ and ı; �; " > 0: Set

˛ D Iƒ;q.x; �; .�i/i I "; K; B � A/:

Choose �nite F 0 � �; D0 � B; ı0 > 0 in a manner depending upon F; ı; � to be

determined later. Let .Ji /i�1 be a .`q �ƒ.�i /i
�.x; �jD; E; �; F; ı; .�i/i I "; K//-in-

dependence set with

lim sup
i�!1

udi
.Ji / �

˛

2
:

Suppose we are given

cW Ji �! ¹1; : : : ; kº

with

c�1.¹lº/ 2 ƒ.E; �; �i/:

Choose a � 2 Map.�jD0; F 0; ı0; �i / with

max
g2K

�q;Ji
.g�.�/; gxc.�// < ":
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Arguing as in Proposition 4.3 in [16], we may �nd a Q�W ¹1; : : : ; diº ! bA=B so that

max
g2K[F

max.�q;di
.g�.�/; g Q�.�//; �2;di

.g�.�/; g Q�.�/// � �q.D0; F 0; ı0/;

with

lim
.D0;F 0;ı0/

�q.D0; F 0; ı0/ D 0:

Here .D1; F1; ı1/ � .D2; F2; ı2/ if D1 � D2; F1 � F2 and ı1 � ı2: Thus

Q� 2 Map.�
ˇ̌
bA=B�bA=B

; F; ı0 C �q.D0; F 0; ı0/; �i/

and

max
g2K[F

�q;Ji
.g Q�.�/; gxc.�// < " C udi

.Ji /
�1�q.D0; F 0; ı0/:

Choose D0; F 0; ı0 so that

�q.D0; F 0; ı0/ C ı0 < ı;

�q.D0; F 0; ı0/
1

˛
< ":

Since ˛ does not depend upon D0; F 0; ı0 this is possible. We then see that

Q� 2 Map.�
ˇ̌
bA=B�bA=B

; F; ı; �i/

and since

lim sup
i!1

udi
.Ji / � ˛=2

we have

max
g2K

�q;Ji
.g Q�.�/; gxc.�// < 5"

for all large i .

(b) View Xf � .T�/˚n; and let � be the dynamically generating pseudometric

on .T�/˚n de�ned by

�.�1; �2/2 D

nX

lD1

j�1.l/.e/ � �2.l/.e/j2;

where j � j on T is in the sense de�ned in the remarks preceding De�nition 4.3:

Given � 2 .Tdi /˚n we can de�ne

�� W ¹1; : : : ; diº �! .T�/˚n

by

��.j /.l/.g/ D �.�i .g/�1.j //.l/:
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Note that for any ı0 > 0 and �nite F 0 � � we have

�� 2 Map.�; F 0; ı0; �i /

for all large i: Indeed for any h 2 �

�.h��.�/; �� ı �i .h//2

D
1

di

nX

lD1

diX

j D1

j�.�i .h
�1/�1.j //.l/ � �.�i .e/�1�i .h/.j //.l/j2

� nudi
.¹j W �i.h

�1/�1.j / ¤ �i .e/�1�i .h/.j /º/ �! 0;

the passage to the limit following as .�i /i is a so�c approximation. Given D0 �
Z.�/˚mf; and � 2 „ı.�i .f // by the proof of Proposition 3.6 in [15], we have that

max
b2D

1

di

diX

j D1

jh��C.Zdi /˚n.j /; bij2 < �.ı/

with

lim
ı�!0

�.ı/ D 0:

Thus ��C.Zdi /˚n 2 Map.�jD0; F 0; ı0; �i / if ı is su�ciently small and i is su�-

ciently large. From this it is not hard to argue as in (a) that

IE
ƒ;k

.�i /
.q; f / � IE

ƒ;k

.�i /i
.q;Z.�/˚mf � Z.�/˚n/:

Conversely, suppose we have a �nite F 0 � �; a ı0 > 0; and a �nite D0 � �:

Given � 2 Map.�jD0; F 0; ı0; �i/ we may de�ne

�� 2 .Tdi /˚n

by

��.l/.j / D �.j /.l/.e/:

Let �� 2 .Rdi /˚n be any element such that

�� C .Zdi /˚n D �� :

Then by the proof of Proposition 3.6 in [15],

�� 2 „�.D0;F 0;ı0/.�i .f //

with

lim
.D0;F 0;ı0/

�.D0; F 0; ı0/ D 0:

Here the triples .D0; F 0; ı0/ are ordered as in part (a). Again we can use this to

argue as in (a) that

IE
ƒ;k

.�i /i
.q;Z.�/˚mf � Z.�/˚n/ � IE

ƒ;k

.�i /i
.q; f /: �
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We will use the above Lemma to show that

IE
ƒ;k

.�i /i
.2; Xf ; �/ D Xk

f ;

when f 2 Mn.Z.�// \ GLn.L.�//: By Proposition 3.5, this will prove that every

k-tuples of points in Xf is a ..�i /i � IE/-tuple. We �rst need a way of constructing

elements of ƒ.�i / whose translates by a given �nite subset of � are disjoint.

For this we use the following Lemma.

Lemma 4.7. Let � be a countable discrete so�c group with so�c approximation

�i W � ! Sdi
: Fix a �nite symmetric subset E � � containing the identity. Then,

there is a sequence .Ji /i�1 2 ƒ.�i /i
so that

�i .x/Ji \ Ji D ¿ for all x 2 E n ¹eº

and

lim
i�!1

udi
.Ji / D

� 1

jEj

�jE j

:

Proof. Consider the Bernoulli shift action � Õ .E; uE /� : Let

J D ¹x 2 E� W x.g/ D g for all g 2 Eº:

Suppose

x 2 J

and g 2 E n ¹eº; then

.g�1x/.e/ D x.g/ D g ¤ e

so x … gJ \J: Thus gJ; J are disjoint for all g 2 E n¹eº: We now use the fact that

Bernoulli shifts have positive so�c entropy to model this behavior on ¹1; : : : ; diº:

First note that for every " > 0; there is a ı > 0 so that if Ei � ¹1; : : : ; diº has

udi
.�i .x/Ei \ Ei / � ı for all x 2 E n ¹eº;

then there is a E 0
i � Ei with

udi
.Ei n E 0

i / � "

and

�i .x/E 0
i \ E 0

i D ¿; x 2 E n ¹eº:

Indeed, this is simply proved by setting

E 0
i D

\

x2En¹eº

Ei n �i .x/�1.Ei /:
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Using the fact that h
.�i /;u

˝�
E

.E� ; �/ � 0; we may �nd a sequence Ai;g �

¹1; : : : ; diº; g 2 E so that

udi
.�i .g1/˛1Ai;h1

\ � � �\ �i.gk/˛k Ai;hk
/ �! u˝�

E

� k\

lD1

¹x 2 E� W x.g
�˛l

l
/ D hkº

�

(5)

for all k 2 N; h1; : : : ; hk 2 E; g1; : : : ; gk 2 � and ˛1; : : : ; ˛k 2 ¹1; �1º (see e.g.

Bowen’s original de�nition of so�c entropy in [2]). Set

J 0
i D

\

g2E

�i .g/�1Ai;g ;

then by (5),

udi
.�i .g/J 0

i \ J 0
i / �! 0

for all g 2 E n ¹eº and

udi
.�i .x/J 0

i \ J 0
i / �! u˝�

E .xJ \ J /

for all x 2 �: Applying our previous observation we �nd Ji � J 0
i so that

udi
.J 0

i n Ji / �! 0

and

�i .g/Ji \ Ji D ¿ for g 2 E n ¹eº:

Since udi
.J 0

i n Ji / ! 0; we have

udi
.�i .g/Ji \ Ji / � udi

.Ji /
2 �! u˝�

E .gJ \ J / � u˝�
E .J /2 (6)

for all g 2 �: It is well-known that � Õ .L2..E; uE /�/	C1/ can be equivariantly,

isometrically embedded in � Õ `2.N� �/ where the action of � Õ `2.N� �/ is

given by

.g�/.n; h/ D �.n; g�1h/:

We will use this to show that .Ji /i�1 2 ƒ.�i /i
: We again use o.1/ for any

expression which goes to zero as i ! 1: Let

˛W � �! U.L2..E; uE /�/ 	 C1/

be the representation

.˛.g/�/.!/ D �.g�1!/; ! 2 E� ; g 2 �:
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Extend by linearity to a �-representation

˛WC.�/ �! B.L2.E; uE /� 	 C1/:

Then for any f 2 C.�/ and i 2 N we have

k�i .f /.�Ji
� udi

.Ji /1/k2
2

D
X

g;h2�

Of .g/ Of .h/h�i .g/.�Ji
� udi

.Ji /1/; �i.h/.�Ji
� udi

.Ji /1/i

D o.1/ C
X

g;h2�

Of .g/ Of .h/h�i .h
�1g/.�Ji

� udi
.Ji /1/; �Ji

� udi
.Ji /1i

D o.1/ C
X

g2�

1f �f .g/h�i .g/.�Ji
� udi

.Ji /1/; �Ji
� udi

.Ji /1i

D o.1/ C
X

g2�

1f �f .g/.udi
.�i .g/Ji \ Ji / � udi

.Ji /
2/

D o.1/ C
X

g2�

1f �f .g/.u˝�
E .gJ \ J / � u˝�

E .J /2/

D o.1/ C
X

g2�

1f �f .g/h˛.g/.�J � u˝�
E .J /1/; �E � u˝�

E .J /1i

D o.1/ C k˛.f /.�J � u˝�
E .J /1/k2

2:

(7)

Since ˛ can be embedded into the in�nite direct sum of the left regular represen-

tation, we have that

k˛.f /.�J � u˝�
E .J /1/k2 � k�.f /kk�J � u˝�

E .J /1k2

D k�.f /k.u˝�
E .J / � u˝�

E .J /2/1=2

D o.1/ C k�.f /k.udi
.Ji / � udi

.Ji /
2/1=2

D o.1/ C k�.f /kk�Ji
� udi

.Ji /1k2:

(8)

By (7) and (8) we have that .Ji /i 2 ƒ.�i /i
: From our construction it also follows

that

udi
.Ji / �! u˝�

E .J / D
� 1

jEj

�jE j

: �
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For the next Lemma, we need some notation. We use T D R=Z: De�ne

t WC.�/ �! C

by

t .˛/ D
X

g2�

Ǫ .g/:

Lemma 4.8. Let � be a countable discrete group and let f 2 Mn.Z.�// \
GLn.L.�//: Let � be the inverse of f in Mn.L.�//: De�ne

QW `2
R.�/˚n �! .T�/˚n

by

Q.�/.l/.g/ D �.l/.g/ C Z:

Then Q.¹˛��W ˛ 2 Z.�/˚n; t .˛.j // D 0; 1 � j � nº/ is dense in Xf .

Proof. As usual, we view Z.�/˚n � `2.�/˚n: For ˛; ˇ 2 Z.�/˚n we have

h˛; ˇi D

nX

lD1

�.ˇ.l/�˛.l//

where � is the trace on L.�/: For � 2 .T�/˚n; ˛ 2 Z.�/˚n we set

h�; ˛iT D

nX

lD1

X

g2�

�.l/.g/b̨.l/.g/ 2 T:

Then the pairing h�; �iT allows us to identify .T�/˚n Š .Z.�/˚n//�:

By Pontryagin duality, it su�ces to show that if ˇ 2 Z.�/˚n has

hˇ; ˛��i 2 Z

for all ˛ 2 Z.�/˚n with t .˛.l// D 0; 1 � l � n; then ˇ 2 Z.�/˚nf .

For x 2 L.�/; and 1 � l � n we use x ˝ el 2 L.�/˚n which is x in the

l th coordinate and 0 in every other coordinate. Fix 1 � l � n and consider

˛ D .g � 1/ ˝ el : Then

hˇ; ˛��i D hˇ�; ˛i D 2.ˇ�/.l/.g/ � 2.ˇ�/.l/.e/:

So
2.ˇ�/.l/.g/ � 2.ˇ�/.l/.e/ 2 Z

for all g 2 �: Letting g ! 1; and using that 2.ˇ�/.l/ 2 `2 we �nd that

2.ˇ�/.l/.e/ 2 Z:
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As
2.ˇ�/.l/.g/ � 2.ˇ�/.l/.e/ 2 Z

for all g 2 �; 1 � l � n we �nd that ˇ� 2 Z.�/˚n: Thus

ˇ D .ˇ�/f 2 Z.�/˚nf: �

We are now ready to prove our Theorem, but we �rst recall the notation we

introduced at the beginning of this section. From the identi�cations

Mm;n.C.�// � Mm;n.L.�// � B.`2.�/˚n; `2.�/˚m/

we may think of elements of Mm;n.C.�// as bounded, linear operators

`2.�/˚n �! `2.�/˚m:

For a �xed x 2 Mm;n.C.�// we let kxk1 be the norm of x as an operator

`2.�/˚n ! `2.�/˚m under the above identi�cation. We also identify C.�/˚n Š
M1;n.C.�// and use the notation above. We thus caution the reader that for

A 2 Mm;n.C.�//

kAk1 ¤ sup
g2�;

1�i�m;1�j �n

j cAij .g/j;

with similar remarks for elements of C.�/˚n:

Theorem 4.9. Let � be a countable discrete group with so�c approximation

�i W � ! Sdi
be a so�c approximation. Let f 2 Mn.Z.�// \ GLn.L.�//; then

every k-tuple of points in Xf is a .`2 � ƒ.�i /i
� IE �k/-tuple.

Proof. Let � be the inverse of f in Mn.L.�//: By the preceding lemma and

Proposition 3.6, it su�ces to prove the theorem when

.x1; : : : ; xk/ D .Q.˛1��/; : : : ; Q.˛k��//;

where t . j̨ / D 0: For t > 0; let �t 2 Mn.R.�// be such that

k�t � �k1 < t:

Fix " > 0; and a A � � �nite. Suppose we are given a �nite F � �; and a

ı > 0: Let E � C.�/ be �nite and � > 0 to depend upon F; ı in a manner to be

determined later. Let

L1 D .supp.�"/ [ ¹eº [ supp.�"/
�1/;

L2;s D .supp.˛s/ [ ¹eº [ supp.˛s/
�1/ for 1 � s � k;
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K1 D
h [

1�s�k

L2;s.supp.f / [ ¹eº [ supp.f /�1/L1

i.2015/Š

;

K2 D
h [

1�s�k

..A [ ¹eº [ A�1/.supp.�"/ [ ¹eº [ supp.�"/
�1/.supp.˛s/

[ ¹eº [ supp.˛s/�1//
i.2015/Š

;

K D K1 [ K2:

Apply Lemma 4.7 to �nd a sequence Ji � ¹1; : : : ; diº so that ¹�i.x/Ji ºx2K are a

disjoint family, and .Ji /i 2 ƒ.�i / and

lim
i�!1

jJi j

di

D
� 1

jKj

�jKj

:

Note that if J 0
i � Ji satis�es

udi
.Ji n J 0

i / �! 0;

then J 0
i enjoys the conclusions of Lemma 4.7 as well. So by so�city, we may

assume

�i .x/.j / ¤ �i .y/.j /

for x ¤ y 2 K; j 2 Ji and that

�i .x1 : : : xl /.j / D �i .x1/ : : : �i .xl/.j /

for x1; : : : ; xl 2 K and 1 � l � .2015/Š: Let cW Ji ! ¹1; : : : ; kº be such that

c�1.¹sº/ 2 ƒ.E; �; �i /: Set

J
.s/
i D c�1.¹sº/:

For t 2 .0; 1/ let

�t D
X

1�s�k

�i .�t ˛
�
s /�

J
.s/

i

:

Note that

�i .f /�ı �
X

1�s�k

�i .˛
�
s /�

J
.s/

i

D
X

1�s�k

.�i .f /�i .�ı˛�
s / � �i .˛

�
s //�

J
.s/

i

:

For ˇ 2 C.�/ we have

�i .ˇ/1 D t .ˇ/1:

Because t .˛s/ D 0 for 1 � s � k;

�i .f /�ı �
X

1�s�k

�i .˛
�
s /�

J
.s/

i

D
X

1�s�k

.�i .f /�i .�ı˛�
s / � �i .˛

�
s //.�

J
.s/

i

� udi
.�

J
.s/

i

/1/:
(9)
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Since

k�
J

.s/

i

� udi
.J

.s/
i /1k1 � 2;

we have

k�i .f /�i .�ı˛�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/ � �i .f �ı˛�

s /.�
J

.s/

i

� udi
.J

.s/
i /1/k2 ����!

i!1
0:

Thus





X

1�s�k

.�i .f /�i .�ı˛�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/

� �i .f �ı˛�
s //.�

J
.s/

i

� udi
.J

.s/
i /1//





2

����!
i!1

0:
(10)

We have

k�i .f �ı˛�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/ � �i .˛

�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/k2

D
� nX

lD1





nX

pD1

.�i ..f �ı˛�
s � ˛�

s /lp/.�
J

.s/

i

� udi
.J

.s/
i /1/





2

2

�1=2

:

If

E � ¹.f �ı˛�
s � ˛�

s /lpW 1 � l; p � nº

then as

kf �ı˛�
s � ˛�

s k1 � ıkf k1k˛sk1;

we have

k�i.f �ı˛�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/ � �i .˛

�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/k2

�
� nX

lD1

.k˛sk1kf k1nık�
J

.s/

i

� udi
.J

.s/
i 1/k2 C n�/2

�1=2

� k˛sk1kf k1n2ık�
J

.s/

i

k2 C n2�:

Set

M D .kf k1 C 1/
� X

1�s�k

k˛sk
2
1

�1=2

;

then





X

1�s�k

�i .f �ı˛�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/ � �i .˛

�
s /.�

J
.s/

i

� udi
.J

.s/
i /1/





2

� kn2� C n2ıkf k1

X

1�s�k

k˛sk1k�
J

.s/

i

k2

� kn2� C Mn2ıudi
.Ji /

1=2;

(11)
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where in the last step we use the Cauchy–Schwartz inequality and the fact that
X

1�s�k

k�
J

.s/

i

k2
2 D udi

.Ji /:

If we force � su�ciently small then by (9), (10), and (11) we have for all large i;

�ı 2 „ı.n2C1/M .�i .f //: (12)

We will want to force � to be even smaller later.

If E � ¹.�"˛
�
s � �ı˛�

s /pl W 1 � l; p � nº; then for all 1 � s � k; for all

1 � p; l � n

k�i..�"˛
�
s � �ı˛�

s /pl /.�J
.s/

i

� udi
.J

.s/
i /1/k2

� 2"k˛sk1k�
J

.s/

i

� udi
.J

.s/
i /1/k2 C �

� 2"k˛sk1udi
.J

.s/
i /1=2 C �:

Note that in our de�nition of .`2 � ƒ.�i /i
/-tuples we are allowed to have E; �

depend upon ı: By the same arguments as before

k�" � �ık2;Ji
� n2� C 2"n2

X

1�s�k

k˛sk1udi
.J

.s/
i /1=2

� n2� C 2"Mudi
.Ji /

1=2

where again we have used the Cauchy–Schwartz inequality and the fact that
X

1�s�k

k�
J

.s/

i

k2
2 D udi

.Ji /:

Thus

1

jJi j

X

j 2Ji

j�".j / � �ı.j /j2

D udi
.Ji /

�1 1

di

X

j 2Ji

j�".j / � �ı.j /j2

� .udi
.Ji /

�1n4�2 C 2"Mn2�udi
.Ji /

�1=2 C 4"2M 2/:

For all large i;

udi
.Ji / �

1

2

� 1

jKj

�jKj

:

So we can choose � su�ciently small (depending only upon K) so that

k�ı � �"k2;Ji
< ".2M C 1/:
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Then

� 1

jJi j

X

j 2Ji

jŒ�i .g/�ı �.j / � Œ�i .g/�"�.j / C Zj2
�1=2

� k�i .g/�ı � �i .g/�"k2;Ji

< ".2M C 1/:

(13)

Additionally, for j 2 J
.s/
i and g 2 A

�i .g/�".j / D
X

x2�

X

1�s�k

1�"˛
�
s .x/�

�i .g/�i .x/J
.s/

i

.j /

D
X

x2K\g�1K

X

1�s�k

1�"˛
�
s .x/�

�i .g/�i .x/J
.s/

i

.j /;

here we use our choice of Ji as well as the fact that K \ g�1K � supp.�"˛
�
s /:

As ¹�i.k/Jiºk2K are a disjoint family, we have for x 2 K \ g�1K that

�
�i .gx/J

.s/

i

.j / D 1 if and only if gx D e; and thus when x D g�1: Since

K \ g�1K � supp.�"˛
�
s /; the above sum is

1�"˛
�
s .g�1/ D 1̨

s�
�
" .g/:

As

j1̨s��
" .g/ � 1̨

s�
�.g/j � k˛s�

�
" � ˛s��k2 � "k˛sk2 � "k˛sk1:

We �nd that

max
g2A

� 1

jJi j

X

j 2Ji

j.�i .g/�"/.j / C Z � 2˛c.j /�
�.g/j2

�1=2

< "M:

Combining with (13)

max
g2A

� 1

jJi j

X

j 2Ji

j.�i .g/�ı/.j / C Z � 2˛c.j /�
�.g/j2

�1=2

< ".3M C 1/:

As " > 0 is arbitrary, the Theorem is now proved using Proposition 4.6. �
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Corollary 4.10. Let � be a countable discrete so�c group with so�c approxima-

tion �i W � ! Sdi
: Let f 2 Mn.Z.�// \ GLn.L.�//: Then every k-tuple of points

in Xf is a ..�i/i � IE �k/-tuple.

Proof. Automatic from the preceding Theorem and Proposition 3.5. �

Corollary 4.11. Let � be a countable discrete so�c group and f 2 Mn.Z.�// \

GLn.L.�//: If f is not in GLn.Z.�//; then detL.�/.f / > 1:

Proof. Observe that Xf is not a single point if and only if f … GLn.Z.�//:

The corollary is then automatic from the preceding Corollary, Proposition 4.16

(3) in [22] and Theorem 4.4 in [15]. �

In fact, we have the following more general result. Recall that if � is so�c, if

�i W � ! Sdi
is a so�c approximation, an action � Õ X on a compact metrizable

space is said to have completely positive topological entropy with respect to

.�i /i if whenever � Õ Y is a nontrivial (i.e. not a one-point space) topological

factor of X; we have h.�i /i
.Y; �/ > 0: The following Corollary was known for

f 2 Mn.Z.�//\GLn.`1.�//; by Proposition 4.16 (3),(5) and Theorem 6.7 of [22].

Corollary 4.12. Let � be a countable discrete so�c group and f 2 Mn.Z.�// \
GLn.L.�//: Suppose that f is not in GLn.Z.�//: Then for any so�c approxima-

tion �i W � ! Sdi
; the action � Õ Xf has completely positive topological entropy

with respect to .�i /i :

Proof. Automatic from Theorem 4.9, Proposition 3.5, Proposition 4.16 (3) in [22]

and Proposition 3.6. �

Combining with results of Chung-Li we have the following result in the

amenable case, which previously only known for f 2 GLn.`1.�// (see Corol-

lary 8.4, Theorem 7.8, and Lemma 5.4 of [5]).

Corollary 4.13. Let � be a countable amenable group, and f 2 Mn.Z.�// \

GLn.L.�//: Suppose that f is not in GLn.Z.�//: Then the action � Õ Xf has

completely positive measure-theoretic entropy (with respect to the Haar measure

on Xf ).

Proof. This follows from Corollary 8.4 of [5] and Corollary 4.10. �

Corollary 4.13 was known in the amenable case when f 2 Mn.Z.�// \

GLn.`1.�// by combining Proposition 4.16 (3), (5) and Theorem 6.7 of [22] with

Corollary 8.4 of [5]. As we mentioned, at the beginning of this section there are

interesting examples in the amenable case of f 2 Z.�/ \ L.�/� but f … `1.�/�:

When � is so�c, it would be interesting to decide if � Õ Xf has completely

positive measure-theoretic entropy with respect to every so�c approximation if

f 2 Mn.Z.�// \ GLn.L.�// is not invertible in Mn.Z.�//:
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