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Abstract. We prove that every non-amenable Cayley graph admits a factor of IID perfect

matching. We also show that any connected d -regular vertex transitive graph admits

a perfect matching. The two results together imply that every Cayley graph admits an

invariant random perfect matching.

A key step in the proof is a result on graphings that also applies to �nite graphs. The

�nite version says that for any partial matching of a �nite regular graph that is a good

expander, one can always �nd an augmenting path whose length is poly-logarithmic in one

over the ratio of unmatched vertices.
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1. Introduction

Let � be a �nitely generated group, and G a locally �nite Cayley graph of �.

An invariant random subgraph on G is a probability distribution on the set of

subgraphs of G that is invariant under the natural action of � on G. In particular,

an invariant random perfect matching is a distribution concentrated on perfect

matchings with probability one. In this paper we show that such a distribution

always exists. For amenable groups it is su�cient to show the existence of a

single perfect matching. On the other hand for non-amenable groups we prove
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the existence of a speci�c kind of invariant distribution, a so-called factor of IID

perfect matching. This second result is the main contribution of the paper.

A factor of IID is a particular way of de�ning an invariant random subgraph.

For the precise de�nition see Section 1.1 and in particular De�nition 1.9. Here

we give a only a brief sketch: �rst each vertex gets a random number in Œ0; 1�,

independently and uniformly. Then each vertex makes a deterministic decision on

how the subgraph looks like in its neighborhood, based on what it sees from itself

as center. Since each vertex uses the same rule, the distribution of the resulting

subgraph is automatically invariant under the action of �.

Instead of subgraphs, one can also de�ne vertex colorings, or more general

structures on G. The general name for such a random process is a factor of IID

process. An important feature is that such a process can always be imitated on any

good �nite model of G. For instance, any factor of IID process on a regular tree

can be used to get randomized local approximation algorithms on �nite regular

graphs of large girth.

Invariant random processes, and in particular factor of IIDs on Cayley graphs

have received considerable attention recently. Standard percolations are well-

known instances factor of IID processes, as well as the free and the wired minimal

spanning forests. Another example is the recent solution of the measurable von

Neumann problem by Gaboriau and Lyons (see [3]). They show that every non-

amenable Cayley graph admits a factor of IID 4-regular forest.

It has been a long standing open problem to determine the maximum density

i.G/ of a factor of IID independent subset of a regular tree (mentioned e.g. on the

webpage of David Aldous 1). The exact value is unknown, though it is known to

be less than 0:46. Note that trees are bipartite and thus have independent sets of

density 1=2, but the resulting process can not be a factor of IID. The related open

question is to determine the limit of the ratio i.G.n; d// of the largest independent

subset in n vertex d -regular random �nite graphs, as n goes to in�nity. Bayati,

Gamarnik, and Tetali [1] have shown that the limit exists, and the above mentioned

modeling phenomenon shows that its value is at least i.Td / where Td is the

d -regular in�nite tree. It was conjectured by Balazs Szegedy (see Conjecture 7.13

in [5]) that this limit is in fact equal to i.Td /. This has recently been refuted by

Gamarnik and Sudan [4].

The analogous question for the maximum density of independent edge sets in

non-amenable bipartite Cayley graphs has been studied by Lyons and Nazarov [7].

An independent edge set in a graph is usually referred to as a matching. An obvious

upper bound on the density of a matching is that of the perfect matching, i.e. where

every vertex is covered by an edge. Lyons and Nazarov show that in the case of

a bipartite non-amenable Cayley graph one can actually achieve the maximum

possible density, that is, one can construct a perfect matching as a factor of IID.

In this paper we extend this result to arbitrary non-amenable Cayley graphs.

1 http://www.stat.berkeley.edu/~aldous/Research/OP/inv-tree.html

http://www.stat.berkeley.edu/~aldous/Research/OP/inv-tree.html
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Theorem 1.1. Let � be a �nitely generated non-amenable group with �nite sym-

metric generating set S . Let G D Cay.�; S/ denote the associated Cayley graph.

Then there is a factor of IID on G that is almost surely a perfect matching.

In particular, every non-amenable Cayley graph admits an invariant random

perfect matching. On the there hand, jointly with Abért and Terpai, the authors

showed the following theorem.

Theorem 1.2. Every connected, in�nite, locally �nite vertex transitive graph G

has a perfect matching.

Abért and Terpai kindly suggested to include the result in this paper. Since

the space of perfect matchings is compact, this immediately implies that every

amenable Cayley graph admits an invariant random perfect matching. Thus,

together with Theorem 1.1 we get the following.

Corollary 1.3. Every Cayley graph admits an invariant random perfect matching.

The basic strategy of the proof of Theorem 1.1 is similar to what Lyons and

Nazarov use to prove the bipartite case, and what has been used by Elek and

Lippner [2] to construct almost-maximal matchings. We de�ne a sequence of

partial matchings, each of which is obtained from the previous one by �ipping a

sequence of augmenting paths. To show that this sequence “converges” to a limit

perfect matching, one has to show that edges do not change roles too often. The

crucial step is to bound the length of the shortest augmenting path in terms of the

ratio of unmatched vertices.

Our main contribution is establishing this bound for non-bipartite graphs. Our

methods also work the on �nite graphs, where we get the following theorem, that

is of independent interest in computer science.

Theorem 1.4. For any c0 > 0 and d � 3 integer, there is a constant c D c.c0; d /

that satis�es the following statement. If a partial matching in a c0-expander

d -regular graph leaves at least " ratio of all vertices unmatched, there is an

augmenting path of length at most c log3.1="/, or there is a small edge cut, more

precisely there is set of vertices H � G such that 1 < jH j < jGj � 1, jH j is odd,

and the number of edges leaving H is at most d .

Remark 1.5. The theorem remains true even if there are only two unmatched

vertices. This may be surprising at �rst, but in fact for �nite graphs even size

the condition that any odd set H has at least d edges leaving it easily implies the

conditions of Tutte’s theorem, so such graphs always have perfect matchings.
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In the bipartite case, such a bound has actually already been observed in [6]

by Jerrum and Vazirani, who used it to give a sub-exponential approximation

scheme for the permanent. They remark in the same paper that a similar bound for

general graphs would be desirable, as it would lead to an approximation scheme

for the number of perfect matchings for arbitrary graphs. In a subsequent paper

we shall work out the details of this application, together with a generalization of

Theorem 1.4 to non-regular graphs.

The outline of the paper is as follows. In Section 2 we show the existence of

perfect matchings in vertex transitive graphs. In Section 3 we prove that in a non-

amenable Cayley graph there is a factor of IID that is a perfect matching, modulo

a variant of Theorem 1.4, whose proof we postpone to Section 4.

Acknowledgements. We are indebted to Miklós Abért for introducing the prob-

lem to us and for his constant encouragement. We would also like to thank

him and Tamás Terpai for valuable discussions and their kind permission to in-

clude the proof of Theorem 1.2 in this paper. Endre Csóka was supported by

Marie Skłodowska-Curie grant 750857, ERC grants 306493 and 648017. Both

authors were supported by the MTA Rényi “Lendület” Groups and Graphs Re-

search Group.

1.1. Notation and de�nitions. Let G be a simple graph, either �nite or in�nite.

The vertex and edge set of G will be denoted by V.G/ and E.G/ respectively.

De�nition 1.6. A matching in G is a subset M � E.G/ such that any vertex x is

adjacent to at most one edge e 2 M . We will denote by V.M/ the set of vertices

that are matched, i.e. that are adjacent to an edge in M . A matching is perfect if

V.M/ D V.G/.

De�nition 1.7. Given a graph G with a matching M , an alternating path is a path

x0x1 : : : xk in G such that every second edge belongs to M . An alternating path

is called an augmenting path if its �rst and last vertices are not matched.

If x; y 2 V.G/ are unmatched vertices and p is an augmenting path connecting

x and y, then we can de�ne a new matching M 0 D M.p/ D M ı E.p/ as the

symmetric di�erence of the old matching M and the set of edges of p. The new

matching will then satisfy V.M 0/ D V.M/ [ ¹x; yº.

Let .X; �/ be a standard Borel probability measure space with a non-atomic

probability measure �.

De�nition 1.8. A graphing on X is a graph G such that V.G/ D X , and where

G.E/ � X � X is a symmetric measurable subset, such that if A; B � X

are measurable subsets and f W A ! B a measurable bijection whose graph

¹.x; f .x//W x 2 Aº is a subset of E.G/, then �.A/ D �.B/.
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There is a natural way to measure the size of edge sets in a graphing. If an

edge set is given by a measurable bijection f W A ! B as before, then the size of

this edge set is de�ned to be �.A/. This extends to a measure on all measurable

edge sets. In particular this implies that if H is a sub graphing of G then the size

of the edge set of H can be computed by the formula

jE.H/j D
1

2

Z

X

deg
H

.x/d�.x/: (1)

A measurable matching (or matching for short) in G is a measurable subset

M � E.G/ such that every vertex is adjacent to at most one edge in M . A matching

is almost everywhere perfect if �.V.G/ n V.M// D 0. In this paper we will only

be interested in almost everywhere perfect matchings, and will refer to them as

perfect matchings for short.

A graphing G is a c0-expander if for every measurable set H � V.G/ we have

jE.H; V .G/ n H/j � c0jH jjV.G/ n H j, where E.A; B/ denotes the set of edges

having one endpoint in A and one endpoint in B .

Let � be a �nitely generated group, and S � � a �nite symmetric generating

set, and G D Cay.�; S/ the associated Cayley graph, that is g 2 � is connected

to gs for every s 2 S . � acts on itself by left multiplication, and this naturally

extends to a left action on X D Œ0; 1�V.G/ D Œ0; 1�� by gx./ D x.g�1/. The

latter action is called the Bernoulli shift of �. We can equip X with a probability

measure � which is the product of the Lebesgue measure in each coordinate. It is

easy to see that the Bernoulli shift action is measure preserving.

� also naturally acts from the left on Y D ¹0; 1ºE.G/ whose elements can be

considered as subsets of E.G/. We can also equip Y with the product of uniform

measures on the coordinates.

De�nition 1.9. In our context a factor of IID (or factor for short) is a measurable,

� equivariant map �W X ! Y .

De�nition 1.10. The graphing G associated to the Bernoulli shift and S is given

by G.V / D X and G.E/ D ¹.x; y/ 2 X � X W there exists s 2 S; s�1.x/ D yº.

The connected component of almost any point x 2 X is isomorphic to the Cayley

graph G.

Claim 1.11. There is a one-to-one correspondence between measurable subsets

F � E.G/ and factors �W X ! Y .

Proof. Let F � E.G/ be a measurable subset and f W E.G/ ! ¹0; 1º its charac-

teristic function. De�ne �F W X ! Y by the formula

�F .x/.g; gs/ D f .s�1g�1x; g�1x/I
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then

.h�F .x//.g; gs/ D �F .x/.h�1g; h�1gs/

D f .s�1g�1hx; g�1hx/

D �F .hx/.g; gs/;

so we do get a factor.

Conversely, given a factor � one can de�ne a subset F� � E.G/ by choosing

the edge s�1x; x to be part of F� if and only if �.x/.id; s/ D 1. �

Remark 1.12. From this construction it is clear that F is an almost everywhere

perfect matching if and only if � is a factor of IID perfect matching.

There is an entirely analogous correspondence between measurable subsets of

V.G/ and factors �W X ! ¹0; 1º� . In Lemma 2.3 of [7] then translates into the fact

that if the Cayley graph G is non-amenable then there is a c0 > 0 depending only

on the expansion of G, such that the graphing G associated to the Bernoulli shift

is a c0-expander.

2. Perfect matchings in vertex transitive graphs

Let G.V; E/ be an in�nite, connected, d -regular, vertex transitive graph. In this

section we show that G has a perfect matching. Even though the proof uses only

standard arguments, we are not aware of any references to the result.

De�nition 2.1. A cut is a partition of V into a nonempty �nite set A and its

complement Ac D V n A. The size of the cut is the number of edges between

A and its complement. A best cut is a cut with minimum size.

Lemma 2.2. Suppose A; B � V are di�erent �nite subsets de�ning best cuts.

Then each of the sets A n B , B n A, A [ B , and A \ B is either empty or de�nes

a best cut.

Proof. Let X D A n B; Y D B n A; Z D A \ B; W D V n .A [ B/. Then

jE.X; Xc/j C jE.Y; Y c/j

D 2jE.X; Y /j C jE.X; Z/j C jE.X; W /j C jE.Y; Z/j C jE.Y; W /j

� 2jE.X; Y /j C jE.X; Z/j C jE.X; W /j

C jE.Y; Z/j C jE.Y; W /j C 2jE.Z; W /j

D jE.X [ Z; Y [ W /j C jE.Y [ Z; X [ W /j

D jE.A; Ac/j C jE.B; Bc/j:
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This shows that the cuts de�ned by X and Y are together at most twice the size

of the best cut, hence they must be best cuts as well. (Or empty sets.) A similar

argument works for Z and W (or rather X [ Y [ Z, since that is the �nite set) as

well. �

Lemma 2.3. The size of the best cut in G is d .

Proof. Let X be a minimum cardinality �nite set that de�nes a best cut. For any

pair of vertices x; y 2 X there is an automorphism of G that takes x to y. Let Y be

the image of X under this automorphism. Then clearly Y also de�nes a best cut,

hence X nY is also a best cut. But jX nY j < jX j contradicting the minimality of X ,

unless X D Y . Hence the graph spanned by X is vertex transitive. If jX j < d , then

the number of edges leaving X is at least jX j.d � jX j C 1/ � d and we are done.

If jX j � d , then since G is connected, there is an edge between a vertex x 2 X

and V n X . But then by vertex transitivity of X , there is such an edge from every

single vertex of X , giving the desired lower bound jE.X; Xc/j � jX j � d . �

Corollary 2.4. Since the number of edges leaving any �nite set Y is at most d jY j,

and the number of edges entering any �nite set X is at least d , we get that the

number of �nite of components of G n Y is at most jY j.

Theorem 1.2 now follows from the locally �nite version of Tutte’s theorem

(Theorem XVII in [8]).

Theorem 2.5 (Tutte). Let G be a locally �nite graph. Then G admits a perfect

matching if and only if for any �nite set T � V.G/ the number of �nite, odd

components of G n T is at most jT j.

Later we will need a slight strengthening of Lemma 2.3. We say that a real

cut is a cut where the �nite set has at least 2 elements. Here we will assume that

d � 3. For d D 2 the result we are aiming to prove in this section is obvious.

Lemma 2.6. The size of any real cut is bigger than d , unless every vertex of G is

in a unique d -clique.

Proof. Suppose there is a real cut whose size is d , and let X be a minimum

cardinality �nite set that de�nes such a real cut. It is clear that jX j > 2 since

a set of size 2 de�nes a cut of size at least 2d �2 > d . As before, let x; y 2 X and

let Y be the image of X under an automorphism taking x to y. We are going to

distinguish between three cases according to the size of X n Y , which is the same

as the size of Y n X .
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If they have more than 1 element each, then they also real cuts and hence by

Lemma 2.3 they are also real cuts of size d , contradicting the minimality of X .

If they are both of size 1, then jX \ Y j and jX [ Y j both have to be bigger than

1, hence they are also real cuts of size d , again contradicting the minimality of X .

Thus jX n Y j D 0, hence X D Y , so just like in the proof of Lemma 2.3 we

get that X itself is vertex transitive. Thus, by connectivity, each vertex of X has

an edge leaving X . Thus if jX j � d C 1 then we are done. So jX j � d and thus

the number of edges leaving X is at least jX j.d � jX j C 1/. This is strictly greater

than d , unless jX j D 1 or X is a clique of size d . The �rst is clearly not the case

since X is a real cut. Thus X is a d -clique. Then, of course, by transitivity every

vertex of G is in a d -clique.

Finally, it is not possible that a vertex is contained in more than one d -clique.

If two di�erent d -cliques A and B intersect then by degree of the vertices in the

intersection we see that jA \ Bj D d � 1. Let ¹aº D A n B and ¹bº D B n A. If a

and b would be neighbors then the graph would not be connected. Thus a has to

have one neighbor c outside of B . But c cannot be connected to vertices in A \B ,

so A is the only d -clique that contains a. But by transitivity each vertex has to

be contained in the same number of d -cliques, contradicting our setup. Thus two

di�erent d -cliques cannot intersect. �

Corollary 2.7. If there is a real cut in G whose size is exactly d then there is a

perfect matching in G that is invariant under the automorphism group of G. This

matching is given by choosing the unique edge from each vertex that leaves the

d -clique the vertex is contained in.

3. Factor of IID perfect matchings via Borel graphs

– the proof of Theorem 1.1

Let � be a �nitely generated non-amenable group, S a �nite symmetric generating

set of size jS j D d , and G the associated Cayley graph. We want to construct a

factor of IID perfect matching in G.

If there is a real cut in G whose size is equal to d , then by Corollary 2.7 there is

a �xed perfect matching in G that is invariant under the action of the automorphism

group, and each vertex can decide which edge to choose by observing its own 1-

neighborhood, so this is clearly a factor of IID matching and we are done.

De�nition 3.1. We say that G is admissible if it is a c0-expander, and any real cut

of an odd set has size at least d C 1 (in the sense of Lemma 2.6).
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Thus we can assume that any real cut in G is at least of size d C 1. Let G be

the graphing associated to the Bernoulli shift, as in De�nition 1.10. By Claim 1.11

and Remark 1.12 it follows that G is a c0-expander for some c0 > 0 depending only

on G. Hence G is admissible in the above sense.

By Remark 1.12 it is now su�cient to prove that G has an almost everywhere

perfect matching. Proposition 1.1 in [2] shows that there exists a sequence of

matchings M0; M1; M2; : : : � G such that a) there are no augmenting paths of

length 2k C 1 in Mk and b) each Mk is obtained from Mk�1 by a sequence of

�ipping augmenting paths of length at most 2k C 1. We would like to construct

an almost everywhere perfect matching as a limit of the Mks. In order to do this,

we have to show that, except for a measure zero set, the status of any edge changes

only �nitely many times during the process, so we can take a “pointwise” limit of

the sequence to obtain a matching that covers but a zero measure subset of X .

Let us denote by Uk the set of unmatched vertices in Mk . Then in the process

of getting MkC1 from Mk we are �ipping augmenting paths starting and ending

in Uk . Furthermore each vertex of Uk can be only used once as an endpoint of

an augmenting path, since after that it becomes a matched vertex. Any edge that

changes status between Mk and MkC1 has to be part of an augmenting path at

least once. Thus the total measure of status changing edges in this step is at most

.2kC3/jUk j. If we can show that
P

k.2kC3/jUk j < 1 then by the Borel-Cantelli

lemma the measure of edges that change status in�nitely many times is zero, and

we are done.

We have seen that G is admissible. Let " D jUk j. Then by Theorem 4.1 there

is a constant c D c.c0; d / depending only on the expansion of G and the degree

d , such that there is an augmenting path of length at most c log3.1="/ in Mk .

But by de�nition we know that this has to be longer than 2k C 1. Thus we get

2k C 1 � c log3.1="/ or equivalently

jUk j D " < exp
�

�
�2k C 1

c

�1=3�

:

This is clearly small enough to guarantee that
P

k.2k C 3/jUk j < 1 and thus

complete the proof of Theorem 1.1. �

Corollary 3.2. Every d -regular in�nite Cayley graph has an invariant random

perfect matching.

Proof. On one hand, the space of perfect matchings is compact, and non-empty

by Theorem 1.2. If the group acting on this space is amenable then by de�nition

this action admits an invariant probability measure.

On the other hand, since a factor of IID perfect matching is automatically

an invariant random perfect matching, Theorem 1.1 completes the non-amenable

case. �
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4. Short alternating paths in expanders

Let G.X; E/ be a d -regular graphing, or a connected, d -regular graph that can

either be �nite or in�nite. We are going to treat these three cases at the same

time. When it is necessary to point out di�erences, we will refer to them as the

measurable/�nite/countable case respectively.

The following theorem includes the statement of Theorem 1.4 and the variant

about graphings that is needed for the proof of Theorem 1.1. (The existence of a set

H as in the statement of Theorem 1.4 is ruled out by the admissibility condition.)

Theorem 4.1. For any c0 > 0 and d � 3 integer, there is a constant c D c.c0; d /

that satis�es the following statement. Given any admissible measurable (or large

�nite) graph, and a partial matching with at least " measure (or fraction) of

unmatched vertices, there is an augmenting path of length at most c log3.1="/.

Though our main goal is to prove theorems about measurable graphs and �nite

graphs, we are going to need auxiliary results about in�nite, connected d -regular

graphs as well. Since the three cases can be handled the same way, we are going to

present the proofs at the same time, pointing out di�erences when necessary. In the

measurable case, everything will be assumed to be measurable, unless explicitly

stated otherwise. If A; B � X then E.A; B/ will denote the set of edges that have

one endpoint in A and the other in B . In the measurable case the measure of the

set A will be denoted by jAj. In the �nite case jAj is going to denote the size of

A divided by the total number of vertices in the graph. So in both of these cases

0 � jAj � 1. In fact, a �nite graph can be considered as a graphing with an atomic

probability measure. However in the countable case jAj is going to simply denote

the size of A. Similarly with edge sets, in the �nite and the measurable cases

jE.A; B/j will denote the measure of the edge set as de�ned by the integral (1) in

De�nition 1.8. In the countable case jE.A; B/j will just denote the size of the set

E.A; B/. If we really want to talk about the actual size of sets in the �nite case,

we will denote it by kAk and kE.A; B/k respectively.

Let M � E be a matching. Then V.M/ � X shall denote the set of matched

vertices. Let S � X n V.M/ denote a �xed subset of the unmatched vertices and

let F D X n .V .M/ [ S/ denote the remaining unmatched vertices. We are going

to construct alternating paths starting from S in the hope of �nding an alternating

path connecting two unmatched vertices. Such an alternating path is called an

augmenting path.

4.1. Sketch of the proof. First we give an outline, pointing out the main ideas

without introducing the technical de�nitions. We encourage the reader to read

the whole outline before reading the proof, and also to refer back to it whenever

necessary. Without understanding the basic outline, many technical de�nitions

will likely be rather unmotivated.
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(1) We start from a set of unmatched vertices S . Assuming there are no short

augmenting paths, we would like to show that the set of vertices (Xn) accessi-

ble via n-step or shorter alternating paths grows rapidly, eventually exceeding

the size of the whole graph, leading to a contradiction.

(2) It will be necessary to keep track of matched vertices accessible via odd

paths (head vertices), even paths (tail vertices), or both. In notation Xn D

S [ Hn [ Tn [ Bn.

(3) If there are plenty of edges leaving Xn from Tn or Bn, then the other ends

of these edges will be part of XnC1, fueling the desired growth. The �rst

observation is that if this is not the case, then there has to be many tail-tail or

tail-both edges.

(4) A tail vertex that has another tail- or both-type neighbor will normally be-

come a both-type vertex in the next step. In this case even though Xn does

not grow, the set Bn grows within Xn, still maintaining the desired expansion

that eventually leads to a contradiction.

(5) The problem is that certain tail-vertices will not become both-type even

though they possess a both-type neighbor. These will be called the tough

vertices. The bulk of the proof is about bounding the number of tough

vertices. The key idea here is that we can associate to each tough vertex x a

distinct subset of Bn called the family of x. Families associated to di�erent

vertices are pairwise disjoint. (This is done in Section 4.3.)

(6) There can not be too many tough vertices with large families. On the other

hand if a vertex stays tough for an extended amount of time, its family has to

grow. These two observation together should be enough to bound the number

of tough vertices.

(7) The proof proceeds in two rounds from this point. First, if Xn is smaller

than half of the graph, then already families larger than 4d.d C 1/=c0 are

too large, and indeed vertices can’t be tough too long before they reach this

critical family size. Then all the previous observations are valid and Xn grows

exponentially as desired. (This is the contents of Theorem 4.4 and the proof

is done in Section 4.4.)

(8) In the second round, when Xn is already quite big, this unfortunately does

not work anymore. The bound after which families can be deemed too large

grows as jX n Xnj shrinks, and thus vertices can be tough longer and longer

before their families become big enough. At this point it becomes necessary

to show that the families of tough vertices also grow exponentially fast.
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(9) In Section 4.5 we demonstrate that the dynamics of how a family grows is

almost identical to how the sets Xn are growing. In fact families are more or

less what can be reached from the tough vertex by an alternating path. But a

family lives within an in�nite countable graph, hence it is never bigger than

“half of the graph,” so only the �rst round is needed to show exponential

growth. Hence Theorem 4.4 has a double gain. It proves the �rst round for

Xn, but at the same time it is used to prove fast family growth in the second

round.

(10) Once we have established exponential family growth, an approach very

similar to the proof of the �rst round is used to complete Theorem 4.1 in

Section 4.6. The proofs of both rounds employ a method of de�ning an

invariant whose growth is controlled. But the hidden motivation behind the

invariant is what we have outlined in this sketch: if Xn doesn’t grow then Bn

grows. If Bn doesn’t grow either then there have to be many tough vertices.

If there are many tough vertices then they have to be tough for a long time.

But then their families have to become too big. Finally there is no space for

all these big families.

(11) Unfortunately there is a �nal twist. When analyzing family growth in Sec-

tion 4.5, we have to introduce certain forbidden edges in each step, through

which alternating paths are not allowed to pass momentarily. Hence, to be

able to use Theorem 4.4 in this more general scenario, we need to state it in

a rather awkward way. Instead of saying that Xn is just what can be reached

by alternating paths of length at most n, we need to use a recursive de�ni-

tion of Xn taking into account the forbidden edges in each step. But as it is

pointed out in Remark 4.3, if one chooses to have no forbidden edges, Xn

just becomes what it was in this sketch.

The proof is organized as follows. In Section 4.2 we introduce the basic

recursive construction of the Xk sets using the notion of forbidden edges. We

state the key Theorem 4.4 that on one hand provides the proof of the �rst round,

and on the other hand will be used to show exponential family growth.

Tough vertices and families are introduced in Section 4.3 together with proofs

of their basic properties. Then Theorem 4.4 and the �rst round is proved in

Section 4.4, using the invariant-technique.

In Section 4.5 we show how the growth of a family can be modeled using the

forbidden edge construction, and prove exponential growth of families. Finally

in Section 4.6 we �nish the proof of the second round, again using the invariant-

technique.
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4.2. Forbidden edges. We are going to use the following terminology. All

alternating paths will start with an unmatched edge, but may end with either kind

of edges. If p D .p0; p1; : : : ; pl/ is an alternating path of length jpj D l , then the

vertices with odd index will be referred to as the “head” vertices of p and the even

index vertices (except for p0) will be called “tail” vertices. p will be called even

if l is even, and odd if l is odd. The last vertex will be denoted by end.p/ D pl .

When this doesn’t cause confusion, we will also use p to denote just the set of

vertices of the path.

De�nition 4.2. Assume that for every k we are given a subset of “forbidden”

edges Ek � E. Using this as input data, we shall recursively construct a sequence

of vertex sets

S D X0 � X1 � X2 � : : : :

Suppose we have already de�ned Xk . Then XkC1 is de�ned as follows. Take a

matched edge vw outside of Xk . We are going to include these two vertices in

XkC1 if and only if there is an even alternating path starting in S whose length is

at most 2k C 2, whose last two vertices are v and w in some order while all the

previous vertices are in Xk , and, most importantly, the edge on which it leaves Xk

does not belong to Ek .

Remark 4.3. This de�nition implies that each Xk n S consists of matched pairs,

and for any vertex v 2 Xk nS there is an alternating path p � Xk such that p0 2 S ,

jpj � 2k, and end.p/ D v. If the Ek are all empty, then Xk consists of all vertices

accessible from S via an alternating path of length at most 2k. First we will show

that the size of Xk grows fast.

Theorem 4.4. Suppose that

(1) jXnj � jX n Xnj,

(2) there are no augmenting paths of length at most 2n � 1 starting in S , and

(3) jEk j � d jS j for all 0 � k < n,

(4) the number of non-forbidden edges leaving Xk is at least 1=.d C 1/ portion

of all edges leaving Xk for all k < n.

Then

jXnj �
c2

0 jS j

16d 2.d C 1/2

�

1 C
c3

0

128d 3.d C 1/3

�n

:

Note that the �rst condition is always satis�ed in the countable case, since Xn

is always �nite.
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We will need a more re�ned classi�cation of the vertices in Xn. First of all let

Ao denote the set of all odd alternating paths starting from S , and Ae the set of all

even alternating paths. For every n � 1 let us de�ne the following subsets of Xn.

Let

zHn D ¹x 2 XnW there exists p 2 Ao.1 � jpj � 2n; p � XnI end.p/ D x/º;

zTn D ¹x 2 XnW there exists p 2 Ae.2 � jpj � 2n; p � XnI end.p/ D x/º;

Hn D zHn n zTn;

Tn D zTn n zHn;

Bn D zHn \ zTn:

It is important that in these de�nitions we are not insisting that the paths avoid

forbidden edges at any time. The forbidden edges only limit the de�nition of Xn,

but then we want to consider all possible alternating paths within the set.

The last three are the set of head vertices, the set of tail vertices, and those that

can be both heads or tails. It is clear that S and Tn are disjoint. As long as there

are no augmenting paths of length at most 2n � 1, then S is also disjoint from zHn,

and thus Xn is a disjoint union of S; Hn; Bn, and Tn. It follows from the de�nition

that B1 � B2 � : : : , furthermore M gives a perfect matching between Tn and Hn,

and also within Bn. (Note that this implies jHnj D jTnj.)

The rough idea of why Xn should grow fast is this. By expansion, even in

the presence of forbidden edges, there are plenty of edges leaving Xn. Any edge

leaving Xn from zTn adds to the size of XnC1 directly. Only edges leaving from Hn

cause problems. But since Hn and Tn have the same total degree, any surplus of

edges leaving Hn have to be compensated by edges within Tn or between Bn and

Tn. Such edges will contribute to the growth of Bn within Xn, and thus implicitly

to the growth of Xn.

4.3. Combinatorics of alternating paths. In this section we will be mainly

concerned about how edges within Tn [ S and between Bn and Tn [ S contribute

to the growth of Bn.

Lemma 4.5. If x; y 2 Tn [ S and xy 2 E then either x 2 BnC1 or y 2 BnC1 or

there is an augmenting path of length at most 2n C 1.

Proof. It is su�cient to prove that either x or y would be in zHnC1. If either x

or y is in S , then this is obvious from the de�nition of zHnC1. Otherwise let p,

respectively q be shortest alternating paths that witness x and y 2 Tn respectively.

We may assume without loss of generality that jpj � jqj. Then y cannot lie on p,



Invariant random perfect matchings in Cayley graphs 225

otherwise there is either a shorter alternating path witnessing y 2 Tn, or we have

y 2 zHn and not in Tn [S . Hence adding the xy edge to p we obtain an alternating

path of length at most 2n C 1 that witnesses that y 2 zHnC1. �

Edges running between Tn [ S and Bn are more complicated to handle. If

b 2 Bn and t 2 Tn [ S , but all paths witnessing b 2 zTn run through t , then we

can’t simply exhibit t 2 zHnC1 by adding the bt edge to the end of such a path since

it would become self-intersecting. The following de�nition captures this behavior.

De�nition 4.6. A vertex x 2 Tn [ S is “tough” if it is adjacent to one or more

vertices in Bn, but x 62 zHnC1.

An edge xy 2 E is “tough” if x 2 Tn [ S; y 2 Bn and x is a tough vertex.

T Tn will denote the set of vertices that are tough at time n.

We would like to somehow bound the number of tough vertices. In order to

do so, we will associate certain subsets of Xn to each tough vertex in a way that

subsets belonging to di�erent tough vertices do not intersect. Then we will show

that these subsets become large quickly.

Remark 4.7. We think of n as some sort of time variable, and all the sets evolve

as n changes. Usually n will denote the “current” moment in this process. In

the following de�nitions of age, descendent, and family, there will be a hidden

dependence on n. When talking about the age or the family of a vertex, we always

implicitly understand that it is taken at the current moment.

De�nition 4.8. The “age” of a vertex x 2 T Tn is a.x/ D n � min¹kW x 2 Tk [ Sº.

De�nition 4.9. Fix a vertex x 2 T Tn. A set D � Xn has the “descendent

property” with respect to x if the following is true. For every y 2 D there are

two alternating paths p and q starting in x and ending in y, such that

� both start with an unmatched edge, but p is odd while q is even,

� p; q � D [ ¹xº,

� jpj C jqj � 2a.x/ C 1.

Sets satisfying the descendent property with respect to x are closed under

union.

De�nition 4.10. The “family” of a vertex x 2 T Tn is the largest set D � Xn

that satis�es the descendent property. In other words it is the union of all sets that

satisfy the descendent property. The family of x is denoted by Fn.x/.
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Claim 4.11. If x 2 T Tn and xy is a tough edge then y is in the family of x.

In particular every tough vertex has a nonempty family.

Proof. Let p be a path that witnesses y 2 zTn. Now if p appended by the edge yx

would be a path then it would witness x 2 zHnC1. Since this is not the case, x has

to lie on p. Let D denote the set of vertices p visits after leaving x. For any point

z 2 D there are two alternating paths from x to z. One is given by p and the other

by going from x to y and then walking backwards on p. Suppose x D p2l and

y D p2k . The total length of these two paths is 2k � 2l C 1. Since the age of x by

De�nition 4.8 is at least k � l we see that 2k � 2l C 1 � 2a.x/ C 1. Hence the two

paths satisfy all conditions of De�nition 4.9 so D has the descendent property with

respect to x. Hence by De�nition 4.10, x has a non-empty family, in particular y

is in the family. �

Claim 4.12. The family of any tough vertex is a subset of Bn.

Proof. Let x 2 T Tn be a tough vertex and let s be a shortest path witnessing

x 2 Tn [ S . Let us denote jsj D 2k. It is enough to show that the family of

x is disjoint from s. Indeed, then for any point y in the family we can take the

two types of paths p; q as in De�nition 4.9 from x to y. By the age requirement

in De�nition 4.9 we get that jpj C jqj � 2a.x/ C 1 D 2n � 2k C 1. Hence

jsjC jpjC jqj � 2nC1 and thus jsjC jpj � 2n�1 and jsjC jqj � 2n. Since these

paths run within the family which is disjoint from s, we can append s with p and

q respectively to get alternating paths witnessing y 2 zHn and y 2 zTn respectively.

Now suppose the family of x is not disjoint from s. It is clear that any family

consists of pairs of matched vertices. Let i be the smallest index such that the

pair s2i�1; s2i is in the family. Then from x there is an odd alternating path

p to s2i by De�nition 4.9 that runs within the family and its length is at most

2a.x/ C 1 � 2n � 2k C 1. Since i was the smallest such index, the path p is

disjoint from s0; s1; : : : s2i�1. Thus by appending s0; s1; : : : ; s2i by the reverse of

p we get an alternating path from an unmatched point to x ending in an unmatched

edge, whose length is at most 2n � 2k C 1 C 2i � 2n C 1. This path witnesses

x 2 zHnC1, contradicting the toughness of x. �

Next we will prove that any vertex can belong to at most one family. We start

with a simple lemma about concatenating alternating paths.

Lemma 4.13. Let p be an even alternating path from x to y and q an odd

alternating path from y to z. Then there is an odd alternating path from x to

either y or z whose length is at most jpj C jqj.
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Proof. If the concatenation of p and q is a path, then we are done. Otherwise let

i be the smallest index such that pi 2 q. Let pi D qj . Then p0; p1; : : : ; pi D

qj ; qj C1; : : : ; end.q/ is a path from x to z and p0; p1; : : : ; pi D qj ; qj �1; : : : q0 is

a path from x to y. Both have length at most jpj C jqj, both of them end with

non-matched edges and one of them is clearly alternating. �

Claim 4.14. Two families cannot intersect.

Proof. Let x; y 2 T Tn be two tough vertices. Assume their families F and G do

intersect. Let p; q be shortest alternating paths witnessing x; y 2 Tn [ S . Let us

choose the shortest among all alternating paths from x to F \ G that runs within

F . Let this path be p0 and its endpoint x0 2 F \ G. Do the same thing with y to

get a path q0 from y to y0 2 F \ G lying within G. By symmetry we may assume

that jpj C jp0j � jqj C jq0j.

By the choice of p0 we see that the only point on p0 that is in G is its endpoint

x0. From x0 there are two paths, s and t , leading to y within G by De�nition 4.9

one of which, say s, can be appended to p0 to get an alternating path from x to y.

This path p0 [ s clearly starts and ends with a non-matching edge.

Now we are in a situation to apply the previous lemma. p leads from p0 to

x and ends with a matching edge, and p0 [ s leads from x to y and starts and

ends with non-matching edges. Thus by the lemma, there is an alternating path

from p0 to either x or y which ends with a non-matching edge. The length of this

alternating path is at most jpj C jp0j C jsj. But by the choice of p0, the choice of

q0, and by the age requirement in De�nition 4.9 we have

jpj C jp0j C jsj � jqj C jq0j C jsj

� jqj C jt j C jsj

� jqj C 2a.y/ C 1

D 2n C 1:

Thus the alternating path we have found from p0 to x or y has length at most

2n C 1 so it witnesses x 2 zHnC1 or y 2 zHnC1. But neither is possible since both

x and y are tough, which is a contradiction. �

Corollary 4.15. There is exactly one tough vertex adjacent to any family.

Proof. Let x; y 2 T Tn and z 2 Fn.x/. Suppose there is an edge between y and

z.Then z is in Bn, hence yz is a tough edge, hence z is in the family of y, but then

the two families would not be disjoint, which is a contradiction. �
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Let c1 D c1.c0; d / be a constant to be determined later.

Claim 4.16. Suppose jFn.x/j < c1, v 2 Fn.x/, and there is an edge vw such that

w 2 Bn n Fn.x/. Then either w 2 FnCc1
.x/ or x 2 zHnCc1

. In other words, if a

vertex remains tough for an extended period of time, then its family consumes its

neighbors.

Proof. We can assume that x 62 zHnCc1
since otherwise we are done. Thus x is

still tough at the moment n C c1.

First suppose there is a path p 2 Ae; jpj � 2n that ends in w and does not

pass through x. Let w0 2 p be the �rst even vertex on the path that is adjacent

to some vertex v0 2 Fn.x/. Then the initial segment of p up until w0 has to be

disjoint from Fn.x/. By de�nition, in Fn.x/ there has to be an alternating path

from x to v0 that ends in a matched edge. Extending this path through w0 and

then the initial segment of p, we get an alternating path from S to x. Its length is

obviously at most jpj C c1, hence x 2 zHnCc1=2 and consequently in zHnCc1
, and

this is a contradiction.

That means that any even path from S to w of length at most 2n has to pass

through x. Let p be the shortest such path. Let v0 be the last vertex of p that is in

Fn.x/[¹xº. The vertex v0 divides p into two segments, p1 going from S to v0 and

p2 from v0 to w. Then jp2j D jpj � jp1j � 2n � 2 min¹kW x 2 Tk [ Sº D 2a.x/,

and equality can only happen if x D v0. We claim that p2 becomes part of the

family at time n C c1. For any vertex y 2 p2 we can either go from x to v0

in even steps and then continue along p2, or go from x to v in even steps and

continue backwards on p2 to y. The total length of these two paths is at most

c1 C jp2j C 1 C c1 � 2.a.x/ C c1/ C 1. Since at moment n C c1 the age of x is

exactly a.x/ C c1, the set Fn.x/ [ p2 will satisfy the descendent property, so this

whole set, including w, will be part of FnCc1
.x/. �

De�nition 4.17. We will say that at moment n the family of the vertex x 2 T Tn is

expanding if there is an edge vw such that v 2 Fn.x/ and w 2 Bn nFn.x/. For any

x 2 X , let en.x/ be the number of moments m < n such that 0 < jFm.x/j < c1

and at moment m the family was expanding.

Corollary 4.18. For any x 2 X we have en.x/ � c2
1 independently of n.

Proof. By Claim 4.16 we know that the number of moments in which an expanding

family has a �xed size k < c1 is at most c1. This is because after the �rst such

moment, in c1 time the family either ceases to exist or strictly grows. Thus for

each possible size k there are at most c1 moments of expansion, and thus there are

at most c2
1 such moments in all. �
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4.4. Invariants of growth. Now we are ready to start the proof of Theorem 4.4.

Let

I.n/ D jXnj C jBnj C
1

2

Z

X

en.x/dx

or, in the in�nite connected case,

I.n/ D jXnj C jBnj C
1

2

X

x2X

en.x/:

Proposition 4.19. Suppose that

(1) jXnj � jX n Xnj,

(2) there are no augmenting paths of length at most 2n � 1 in Xn,

(3) the number of forbidden edges is jEk j � d jS j for all 0 � k < n,

(4) the number of non-forbidden edges leaving Xk is at least 1=.d C 1/ portion

of all edges leaving Xk for all k < n;

then

I.n C 1/ �
�

1 C
c3

0

128d 3.d C 1/3

�

I.n/:

Proof. In the following we shall omit the index n from all our notation, except

where it would lead to confusion. Let T T denote the set of tough and TM the

set of not-tough vertices within T [ S . The tough vertices are further classi�ed

according to their families. TB denotes the tough vertices whose families have

size at least c1. For tough vertices with smaller families, TE shall denote the ones

that have expanding families and T G denote the rest. So

S [ T D TM [ T T D TM [ .TB [ TE [ T G/:

First let’s take a tough vertex x 2 T G whose family is small and not expanding.

Let jE.x; F.x//j D k. By the assumption on the size of real odd cuts we know that

the number of edges leaving x [F.x/ (which is a set of odd size!) is at least d C1.

But only d � k of these are adjacent to x, so at least k C 1 have to be adjacent to

F.x/. None of these edges can lead to B because this is a non-expanding family.

Also non of these edges can lead to T T by Corollary 4.15. Hence all these edges

have to go to H , TM , or the outside world O D Xc . This means that

jE.F.x/; T G/j D jE.F.x/; x/j � jE.F.x/; H [ TM [ O/j: (2)

By Claim 4.11 we see that any edge between T G and B has to run between a vertex

in T G and a member of its family. Thus integrating (2) over x 2 T G and using

that families are pairwise disjoint subsets in B we get that

jE.B; T G/j � jE.B; H [ TM [ O/j:
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For any other tough vertex we bound the number of edges between it and B by

the trivial bound d . Adding this to the previous equation we get

jE.B; T T /j � d jTBj C d jTEj C jE.B; H [ TM [ O/j: (3)

We know that jT j D jH j because of the matching, so the total degrees of S [T

is d jS j more than the total degree of H . The following estimate is obtained by

computing the total degrees of H and T [S as the sum of the measures of various

types edges leaving them, plus twice the measure of internal edges. In the worst

case there are no internal edges in H , so jE.H; H/j � 0. This gives the �rst

inequality below:

jE.H; O/j C jE.H; B/j C d jS j � d jH j � jE.H; T [ S/j C d jS j

D d jT [ S j � jE.H; T [ S/j

D 2jE.T [ S; T [ S/j C jE.T [ S; O/j

C jE.TM; B/j C jE.T T; B/j:

Combining it with (3), and subtracting jE.H; B/j from both sides we get

jE.H; O/j C d jS j � 2jE.T [ S; T [ S/j C 2jE.B; TM/j

C jE.B [ T [ S; O/j C d jTBj C d jTEj:

Any vertex in TB has a family of size at least c1, and all these are disjoint by

Claim 4.14 and contained in B . Thus we get that jTBj � jBj=c1. Using this and

adding jE.B [ T [ S; O/j to both sides implies

jE.Xn; O/j C d jS j � 2jE.T [ S; T [ S/ C 2jE.B; TM/j

C 2jE.B [ T [ S; O/j C
d

c1

jBj C d jTEj:
(4)

Any vertex in On that is adjacent to Bn [Tn [S along an edge not in the forbidden

set En is going to be in XnC1, hence

jE.Bn [ Tn [ S; On/ n Enj � d.jXnC1j � jXnj/:

By de�nition, any vertex in TMn that is adjacent to an edge coming from Bn will

be part of BnC1 or yield an augmenting path. Also, by Lemma 4.5, any edge

in E.S [ Tn; S [ Tn/ has to be adjacent to a point in jBnC1j n jBnj or yield an

augmenting path. This implies that

2jE.T [ S; T [ S/j C 2jE.B; TM/j � 2d.jBnC1j � jBnj/:

By the third assumption of the proposition we have jEnj � d jS j. Plugging all this

into (4) we get

jE.Xn; On/ n Enj

d
� 2.jXnC1j � jXnj/ C 2.jBnC1j � jBnj/ C jTEj C

jBnj

c1

: (5)
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By De�nition 4.17, for any vertex x 2 TEn we get enC1.x/ D en.x/ C 1, and thus

Z

X

enC1.x/dx D

Z

X

en.x/dx C jTEj:

Hence the right hand side of (5) is exactly 2.I.n C 1/ � I.n// C jBnj=c1. Further-

more by the 4th and 1st assumptions of the proposition we have

jE.Xn; On/ n Enj �
jE.Xn; On/j

d C 1
�

c0jXnj.1 � jXnj/

d C 1
�

c0

2d C 2
jXnj

in the measurable case and

jE.Xn; On/ n Enj �
jE.Xn; On/j

d C 1
�

c0jXnj

d C 1
�

c0

2d C 2
jXnj

in the connected in�nite case. So in either case we get

c0

4d.d C 1/
jXnj �

jBnj

2c1

� I.n C 1/ � I.n/

Now we can complete the proof of the proposition. First, choose

c1 D 4d
d C 1

c0

:

Then, since jBnj � jXn we get

jXnj

2c1

� I.n C 1/ � I.n/:

On the other hand, we know from Corollary 4.18 that en.x/ � c2
1 . Obviously

en.x/ D 0 if x 2 On. Thus

Z

X

en.x/dx � c2
1 jXnj:

Hence

I.n/ �
�

2 C
c2

1

2

�

jXnj � c2
1 jXnj � 2c3

1.I.n C 1/ � I.n//:

Substituting

c1 D
4d.d C 1/

c0

�nishes the proof. �
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This proposition implies that I.n/ grows exponentially fast. But as we have

seen, jXnj can be bounded from below in terms of I.n/. This will imply fast

growth of jXnj too.

Proof of Theorem 4.4. Since S � X0, we have jS j � I.0/. Then again by

Corollary 4.18 we have I.n/ � c2
1 jXnj. So by Proposition 4.19

X.n/ �
I.n/

c2
1

�
jS j

c2
1

�

1 C
c3

0

128d 3.d C 1/3

�n

:

Substituting c1 D 4d.d C 1/=c0 we get the desired result. �

In the measurable case, when Xn becomes large, the method apparently breaks

down. The main problem is that expansion guarantees only c0jXnj.1�jXnj/ edges

between Xn and On. When Xn is large, the 1 � jXnj term will be the dominant.

It was crucial to choose c1 so that the jBnj=c1 terms becomes comparable to the

lower bound coming from expansion. But for large Bn, hence small 1 � jXnj, this

cannot be done with a constant c1. The smallest c1 that has a chance to work is

roughly on the scale of 1=". But then the upper bound for I.n/ becomes .1="/3

and all of a sudden the time needed for Xn to exceed 1 � " becomes super-linear

in 1=" instead of the desired poly-logarithmic dependence.

This loss of time comes from the part where we argued that any family grows

bigger than c1 in c2
1 time. This observation was su�cient for a constant c1, but is

clearly insu�cient when c1 � 1=". In this part we will show that, in fact, families

grow much faster than what Claim 4.16 asserts. It turns out that in a sense families

grow exponentially, hence it takes much less time than .1="/2 to reach a size of

1=". This will allow us to “�x” the argument in Section 4.4.

4.5. Family business. In this section we shall examine in detail the lifecycle of

a family. Let us �x a vertex x 2 X . At some n0, this x may become an element of

Tn0
. Then later it may start to have neighbors in Bn1

(for a larger value n1 � n0).

At this point it can become tough and start to have a family. This family grows

in time, until at some even larger value of n the vertex �nally becomes part of

Bn. We want to understand the part when x becomes tough and its family starts

growing.

To this end we shall recursively de�ne a sequence of “special moments”

n0 � n1 < n2 < n3 < : : :

and an increasing sequence of sets

; D FX0 � FX1 � FX2 � FX3 � : : :

that control how fast the family grows.
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The de�nition is rather complicated, so we present it step-by-step, along with

the notation. For any ni � n < niC1 we write c.n/ D i , and think of it as a

counter. The sets FXk are going to be de�ned such that the following hold:

(1) FXk is the union of some matched pairs of vertices;

(2) for any matched edge vw � FXk there is an alternating path p that starts in

x, lies entirely in FXk , ends with the matched edge (in either direction) and

has length at most 2k;

(3) FXc.n/ � Fn.x/ holds for all n when x is tough, as shown on the scheme of

evolution

n0

FX0D;
�����! n1

FX1�Fn1
.x/

���������! n2

FX2�Fn2
.x/

���������! n3

FX3�Fn3
.x/

���������! n4 �! � � � :

Suppose we have already �xed nk and FXk .

De�nition 4.20. Let mk denote the earliest moment mk > nk in which there are

at most d edges leaving FXk [ ¹xº that do not end in Bmk
n FXk . Let this set of

edges be denoted by Ek . Now de�ne FXkC1 to be the extension of FXk by those

matched edges in Bmk
that can be the last edge of an alternating path of length at

most 2k starting from x, and lying entirely in FXk except for its last two vertices:

FXkC1 D FXk [ ¹v 2 Bmk
W there exists p 2 AeI jpj � 2k C 2I p0 D xI

p1; : : : ; p2k 2 FXk I p2kC1 D v or p2kC2 D vº:

It is clear that this construction satis�es the �rst two conditions stated just

above De�nition 4.20, but there is no reason for FXkC1 to be a subset of Fmk
.x/.

However, if we choose nkC1 D mk C 2k then the following claim implies that the

third condition will be also satis�ed.

Claim 4.21. While x is tough, FXkC1 � FmkC2k.x/ for all k, hence FXc.n/ �

Fn.x/ for all n.

Proof. This is very similar to Claim 4.16. We argue by induction on k. Then we

can assume that FXk � Fmk
. We need to show that FXkC1 � FmkC2kC1. Take

a matched edge vw � FXkC1 n FXk . By de�nition there is an alternating path p

of length at most 2k C 2 starting in x, ending in the vw edge, and lying in FXk .

Suppose its last vertex is w. Since vw � Bmk
, there has to be a path q proving

this, ending in the same edge, but in the opposite order: wv. Let’s take the shortest

such path. It has to pass through x, otherwise x would not be tough at n D mk Ck.

Denote the part of this path between x and v by q. Now we have two paths from

x. The path p ends with vw while the path q ends with wv. The length of p is at

most 2k C 2, the length of q is at most 2a.x/. We will show that some subset of

q together with Fmk
satis�es the descendent property at n D mk C 2k C 1.
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Lemma 4.22. Suppose p and q are alternating paths, both starting with a non-

matched edge from the same vertex x and ending in a matched edge vw but from

di�erent directions. Then there is a subset U � q containing v and w, such that

for each vertex z 2 U there are two alternating paths between x and z of di�erent

length-parities, lying entirely in U [p, whose total length is at most jqjC2jpj�3.

Before giving the proof of the lemma, let us show how this completes the proof

of the claim. It is easy to see that U [ Fmk
satis�es the descendent property at

time mk C 2k. First of all, by de�nition, the set Fmk
itself satis�es it. On the other

hand for any vertex in U the lemma guarantees the existence of the two alternating

paths lying entirely in U [ p � U [ Fmk
, since p � Fmk

by induction. The sum

of the length of these two paths is at most 2a.x/C2.2k C2/�3 D 2a.x/C4k C1.

The age of x at n D mk C 2k is a.x/ C 2k and so we are done. This completes

the proof of the induction step, hence the claim is true. �

Proof of Lemma 4.22. If p and q are disjoint apart from their endpoints, then the

statement is obvious with U D q, and we even get the stronger upper bound

jqj C jpj on the total length of the two paths for any vertex in U . If p and q

are badly intertwined, we need to be cautious. Let x D q0; q1; : : : ; q2l D v denote

the vertices of q. Since both p and q are alternating paths, their intersection is

necessarily a union of matched edges. For each matched edge q2i�1q2i the path

p may contain this edge, or not. The ones that are contained in p will be called

double edges. For each double edge, p may contain it in the same orientation as

q - these will be called good double edges, or the opposite orientation as q - these

will be called bad double edges.

There are two natural partial orders on the set of matched edges of p and q.

For two such edges e and f will write e <q f if e comes before f on the path q.

We will write e <p f if e comes before f on p. (If one or both of the edges aren’t

on a given path, they are incomparable in the given order.) Now for any matched

edge e on q, we de�ne

Z.e/ D min
<p

¹f W f �q eº:

Note that, since the q-maximal edge vw is a double edge, Z.e/ is always well-

de�ned. Also note that Z.Z.e// D Z.e/. Next, let

f D max
<q

¹e 2 qW Z.e/ D e is a good double edgeº;

and let x0 be the vertex of f further away from x. If there is no such double edge,

then f is not de�ned, and we just choose x0 D x. Let q0 be the part of q from x0

to v, let p0 be the part of p between x0 and w, and let p00 be the part of p between

x and x0. We claim that U D q0 n p is a good candidate.
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First of all, observe that p00 \q0 D x0. When x0 D x this is obvious. Otherwise

it is still true because Z.f / D f , which means that any edge in q0 is visited by p

later than f is visited by p. Second, take any matched edge e 2 q0. By de�nition,

f <q e. Hence

f <q e �q Z.e/ D Z.Z.e//;

so by construction Z.e/ has to be a bad double edge. Now we can exhibit the two

alternating paths between x and the edge e.

From one direction we can simply reach it by going on p00 until x0 and then

continuing on q0 until we reach e. This is a path, since p00 \ q0 D x0. From the

other direction, start at x and go on p00 to x0 and then further on p0 until hitting

Z.e/. Since Z.e/ is a bad double edge, we have just visited it in the ’wrong’

direction on q. So we can now continue on q backwards from Z.e/ until we come

to e. The concatenation of these two segments is still a path, since by de�nition

of Z.e/, the part of p between x and Z.e/ is disjoint from the part of q between

e and Z.e/. The total length of the two paths we have just exhibited is at most

2jp00j C jq0j C jp0j � 1. The �1 comes from the fact that the vw edge is contained

in both p and q, but has to be used at most once. Finally jp0j � 2 thus the total

length is at most jqj C 2jpj � 3. �

Now let’s look at the connected component of x denoted by X 0. It’s a (�nite

or countable) connected d -regular c0-expander graph with a partial matching.

Let’s remove the edge containing x from the matching. Let S 0 D ¹xº and let

X 0

k
D ¹xº [ FXk . We have already de�ned the sets Ek that contain all the edges

leaving X 0

k
not ending in Bmk

, hence in particular containing the once matched

edge coming out of x. The sets X 0

k
were constructed exactly according to the

rules of De�nition 4.2. Clearly jEk j � d jS 0j. But since any odd set, in particular

X 0

k
, has at least d C 1 edges leaving it, of which at most d is forbidden, the 4th

assumption of Theorem 4.4 is also satis�ed. Thus it applies in this situation and

implies that as long as x remains tough and jFn.x/j � jX 0 n Fn.x/j,

jFn.x/j � jFXc.n/j �
c2

0 jS 0j

16d 4

�

1 C
c3

0

128d 6

�c.n/

:

In the countable case the jFn.x/j � jX 0 n Fn.x/j condition is always satis�ed

and jS 0j D 1, while in the �nite case it is satis�ed as long as the family doesn’t

occupy at least half of the graph, and jS 0j D 1=jX j. Thus in both cases we get the

following corollary.

Corollary 4.23. As long as x remains tough and kFn.x/k < jX j=2,

kFn.x/k � kFXc.n/k �
c2

0

16d 4

�

1 C
c3

0

128d 6

�c.n/

;

where k � k denotes the actual size of the set in both the �nite and the countable

cases.
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De�nition 4.24. Let us say, that for such moments when ni � n < mi for some i ,

the family of x 2 X is dormant, whereas for moments that satisfy mi � n < niC1

the family is active. Let fn.x/ denote the number of moments m < n such that

kFm.x/k < c3=" and at moment m the family was active, where " denotes the ratio

of unmatched vertices in X . We will choose c3 D 2 except in the case when X is

�nite and " D 2=kXk. In this case we will choose c3 D 1.

It is clear that fn.x/ � c.n/2. Note that in the �nite case either " � 4=kXk

and thus c3 D 2 and c3=" � kXk=2, or " D 2=kXk and c3=" D kXk=2. Hence

families that haven’t reached the size c3=" are not bigger than half of the graph.

Hence by 4.23 we have in both the measurable and the �nite case that

fn.x/ �

0

B

B

B

@

log
�8c3d 4

"c2
0

�

log
�

1 C
c3

0

128d 6

�

1

C

C

C

A

2

� c4

�

1 C log2
�1

"

��

(6)

for a suitably large c4 depending only on the previous constants and d .

4.6. Proof of Theorem 4.1. The proof will work similarly to that of Theorem 4.4,

but one has to be more careful. This time we are interested only in the measurable

case, and assume that all the sets Ek of forbidden edges are empty. Thus zHk is

simply the set of vertices that can be the end-point of an odd alternating path of

length at most 2k � 1 starting in S . We choose S to be half of set of unmatched

vertices. Then as soon as we have S \ zHk 6D ; or F \ Xn 6D ;, we have found an

augmenting path.

Let

J.n/ D jXnj C jBnj C
1

2

Z

X

fn.x/dx:

We further reintroduce the notation from the proof of Theorem 4.4. As before,

we will often drop the index n, when it does not cause confusion. Let T T denote

the set of tough and TM the set of not-tough vertices within T [ S . The tough

vertices are further classi�ed according to their families. TB denotes the tough

vertices whose families have size at least c3=". For tough vertices with smaller

families, TE shall denote the ones that have active families at the moment, and

T G denote the ones that have dormant families at the moment. So

S [ T D TM [ T T D TM [ .TB [ TE [ T G/ :

First let’s take a tough vertex x 2 T G whose family is small and dormant.

By De�nition 4.20 this means, that there are at least d C1 edges leaving x[FXc.n/

that do not end in Bn. Let jE.x; FXc.n//j D k � d . Then there are d � k edges

leaving x [ FXc.n/ from x. The rest, at least k C 1 must leave from FXc.n/.
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Since these edges do not end in Bn, they actually have to leave the whole family

Fn.x/. The only tough vertex adjacent to the family is x by Corollary 4.15, so the

k C 1 edges we have just exhibited must end in H [ TM [ O . When k � d , then

.k C 1/d=.d C 1/ � k. So we have

jE.F.x/; T G/j D jE.F.x/; x/j �
d

d C 1
jE.F.x/; H [ TM [ O/j:

Integrating over T G we get that

jE.B; T G/j �
d

d C 1
jE.B; H [ TM [ O/j:

For any other tough vertex we bound the number of edges between it and B by the

trivial bound d . Adding this to the previous equation we get

jE.B; T T /j � d jTBj C d jTEj C
d

d C 1
jE.B; H [ TM [ O/j: (7)

Now let us examine the edges running between Bn and its complement. By (7) we

have

jE.B; X n B/ D jE.B; H [ O [ TM/j C jE.B; T T /j

� 2jE.B; H [ O [ TM/j C d jTBj C d jTEj

and hence

jE.B; X n B/j

2.d C 1/
�

jE.B; H [ TM [ O/j

d C 1
C

1

2
.jTBj C jTEj/:

Adding this to (7) then yields

jE.B; X n B/j

2.d C 1/
CjE.B; T T /j � jE.B; H [TM [O/jC.d C1/.jTBjCjTEj/: (8)

We know that jT j D jH j because of the matching, so the total degrees of

S [ T is d jS j more than the total degree of H . The edges between T [ S and H

contribute equally to these total degrees. In the worst case there are no internal

edges in H . This boils down to the following estimate:

jE.H; O/j C jE.H; B/j C d jS j

� 2jE.T [ S; T [ S/j C jE.T [ S; O/j C jE.TM; B/j C jE.T T; B/j:
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Adding

jE.B; X n B/j

2.d C 1/

to both sides, then using (8), and subtracting jE.H; B/j from both sides we get

jE.H; O/j C
jE.B; X n B/j

2.d C 1/
C d jS j

� 2jE.T [ S; T [ S/j C 2jE.B; TM/j

C jE.B [ T [ S; O/j C .d C 1/.jTBj C jTEj/:

Adding jE.B [ T [ S; O/j to both sides implies

jE.Xn; O/j C
jE.B; X n B/j

2.d C 1/
C d jS j

� 2jE.T [ S; T [ S/ C 2jE.B; TM/j

C 2jE.B [ T [ S; O/j C .d C 1/.jTBj C jTEj/:

(9)

Any vertex in On that is adjacent to Bn [ Tn [ S is going to be in XnC1, hence

jE.Bn [ Tn [ S; On/j � d.jXnC1j � jXnj/:

By de�nition, any vertex in TMn that is adjacent to an edge coming from Bn will

be part of BnC1 or yield an augmenting path. Also, by Lemma 4.5, any edge

in E.S [ Tn; S [ Tn/ has to be adjacent to a point in jBnC1j n jBnj or yield an

augmenting path. This implies that

2jE.T; T /j C 2jE.B; TM/j � 2d.jBnC1j � jBnj/:

Plugging all this into (9) we get

jE.Xn; On/j

d C 1
C

jE.B; X n B/j

2.d C 1/2
C jS j

�
2d

d C 1
.jXnC1j � jXnj C jBnC1j � jBnj/ C jTEj C jTBj:

(10)

By De�nition 4.17, for any vertex x 2 TEn we get fnC1.x/ D fn.x/ C 1, and thus

Z

X

fnC1.x/dx D

Z

X

fn.x/dx C jTEj:
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Hence the right hand side of (10) is at most 2.J.nC1/�J.n//CjTBj. Furthermore

by the expander assumption we have

jE.Xn; On/j � c0jXnj.1 � jXnj/

and

jE.Bn; X n Bn/j � c0jBnj.1 � jBnj/;

so from (10) we get

c0jXnj.1 � jXnj/

d C 1
C

c0jBnj.1 � jBnj/

2.d C 1/2
C jS j � jTBj � 2.J.n C 1/ � J.n//: (11)

Any vertex in TB has a family of size at least c3=", and all these are disjoint

by Claim 4.14 and contained in B . Thus we get that jTBj � "jBj=c3 � "=2 D jS j

in the measurable case and in the �nite case when " � 4=kXk. In the �nite case

when " D 2=kXk, then any tough vertex in TB has a family of size at least kXk=2,

and thus there can be at most one tough vertex. We get jTBj � jS j in all cases,

and thus

c0jXnj.1 � jXnj/

2.d C 1/
C

c0jBnj.1 � jBnj/

4.d C 1/2
� J.n C 1/ � J.n/: (12)

If we could prove a similar growth estimate on the size of Xn (or Bn), then the

next lemma would imply that Xn (or Bn) would grow too large in a su�ciently

small number of steps, proving the existence of a short augmenting path.

Lemma 4.25. Let 0 < a0 < a1 < a2; : : : be an increasing sequence of numbers.

Let us �x a constant c and say that an index k is good if akC1 �ak � 2cak.1�ak/

holds. Then if the number of good indices up to N is at least

2

2

6

6

6

6

6

log
� 1

2a0

�

log
� 1

1 � c

�

3

7

7

7

7

7

;

then aN > 1 � a0.

Proof. Let us split the sequence into two parts. The �rst part will be where

ak < 1=2 and the second part where ak � 1=2.

In the �rst part if k is a good index then akC1 � ak.1 C c/. Hence ak �

a0.1 C c/g.k/ where g.k/ denotes the number of good indices up to k. So if

g.k1/ �

&

log
� 1

2a0

�

log.1 C c/

'

we must have ak1
> 1=2, or in other words k1 already has to be in the second part.
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In the second part a good index k implies 1 � akC1 � .1 � ak/.1 � c/, hence

if N is such that

g.N / D g.k1/ C

2

6

6

6

6

6

log
� 1

2a0

�

log
� 1

1 � c

�

3

7

7

7

7

7

� 2

2

6

6

6

6

6

log
� 1

2a0

�

log
� 1

1 � c

�

3

7

7

7

7

7

then we must have 1 � aN < a0. �

The problem is that (12) doesn’t directly imply such a growth estimate on either

Xn or Bn because a priori the integral term in Jn could absorb any growth implied

by the inequality. We need one �nal trick to overcome this di�culty. The idea is

that we don’t need Xn or Bn to grow the desired amount in one single step. If

we can �nd a not so large K such that jXnCK � Xnj � 2c.jXnj/.1 � jXnj/, or

jBnCK � Bnj � 2c.jBnj/.1 � jBnj/, we are still good. So let us �x some K, whose

precise value is to be determined later, and assume that

jXnCK j � jXnj <
c0

2
.jXnj/.1 � jXnj/

and

jBnCK j � jBnj <
c0

2
.jBnj/.1 � jBnj/:

This means that the growth of J.n/ implied by (12) has to largely come from the
R

fn term. But note that once a vertex x has a positive f -value, then it has to

be tough for the rest of its life, until it becomes part of Bm for some later m, and

from that point on its f -value remains constant. Hence if for some x we �nd that

fnCK.x/ > fn.x/, then either x 2 BnCK n Bn, or x 2 T TnCK . Also by (6) we

know that fnCK.x/ � fn.x/ � c4.1 C log2.1="//. Hence we get

Z

X

fnCK.x/dx �

Z

X

fn.x/dx � c4

�

1 C log2
�1

"

��

.jBnCK n Bnj C jT TnCKj/:

(13)

Further it is obvious that jT TnCK j < 1 � jBnCK j � 1 � jBnj and since each

vertex in T TnCK has a unique, non-empty family inside BnCK , we also get that

jT TnCK j � jBnCK j � jBnj C c0=2jBnj.1 � jBnj/ � 2jBnj . Hence we can simply

write

jT TnCK j � 4jBnj.1 � jBnj/

because either jBnj or 1 � jBnj is at least 1/2. We also have by assumption that

jBnCK n Bnj � c0=2jBnj.1 � jBnj/ � jBnj.1 � jBnj/. Plugging all this into (13)

we get

Z

X

fnCK.x/dx �

Z

X

fn.x/dx � c4

�

1 C log2
�1

"

��

5jBnj.1 � jBnj/; (14)
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and by the assumptions on the small growth of Xn and Bn we can further deduce

(assuming c4 is not really small)

J.nCK/�J.n/ �
�

6c4

�

1C log2
�1

"

���

jBnj.1�jBnj/C
c0

2
jXnj.1�jXnj/: (15)

On the other hand we can apply (12) to n; n C 1; : : : ; n C K � 1. By the

assumption on the small growth of Xn and Bn during this time, jXnj.1 � jXnj/

and jBnj.1 � jBn/ do not change too much either. More precisely we can write for

any n � m < n C K that jXnj � jXmj and that 1 � jXnCK j � 1 � jXmj. Also

.1 � jXnj/ � .1 � jXnCK j/ �
c0

2
jXnj.1 � jXnj/

and thus

1 � jXnCK j � .1 �
c0

2
jXnj/.1 � jXn/ �

1 � jXnj

2
:

Putting all this together we get that

jXmj.1 � jXmj/ � jXnj.1 � jXnCK j/ �
1

2
jXnj.1 � jXnj/;

and the exact same equation holds for Bm. Now summing (12) for n; n C 1; : : : ,

n C K � 1 and using the last inequality, we �nd that

K

2

�

c0jXnj.1 � jXnj/

2.d C 1/
C

c0jBnj.1 � jBnj/

4.d C 1/2

�

� J.n C K/ � J.n/: (16)

Now choose K so large that K > 2.d C1/ and c0K > 24c4.d C1/2.1Clog2.1="//,

and we clearly have a contradiction between (15) and (16).

Corollary 4.26. This implies that for any n either

jXnCK j � jXnj �
c0

2
jXnj.1 � jXnj/

or

jBnCK j � jBnj �
c0

2
jBnj.1 � jBnj/:

Let us consider the sequences an D jXnKCn0
j; bn D jBnKCn0

j. Then Corol-

lary 4.26 implies, using the language of Lemma 4.25, that every n is a good mo-

ment for either an or bn. We know that a0jXn0
j D "=2 > "=6. If we also knew

that b0 D jBn0
j � "=8, then by Lemma 4.25 we could deduce that for

k D n0 C 4K

2

6

6

6

6

6

log
�4

"

�

log
� 4

.4 � c0/

�

3

7

7

7

7

7
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we have jXk j > 1 � "=8 � 1 � "=2 or jBk j > 1 � "=8 � 1 � "=2, either of which

implies the existence of an augmenting path. All we need to do to �nish the proof

of Theorem 4.1 is to exhibit a not too large n0 for which jBn0
j > "=8.

To this end we prove that as long as jBnj is very small, the size of Xn has to

increase rapidly. Obviously

Z

fnC1.x/ �

Z

fn.x/ � jTEj � jBnj

since every tough vertex has a nonemtpy family. Hence

J.n C 1/ � J.n/ � jXnC1j � jXnj C
3

2
jBnC1j:

If jS j � 4jBnj then, since clearly jTBj � jBnj, we also have jS j � jTBj � 3jBnj

and thus by (11) we get

c0

2.d C 1/
jXnj.1 � jXnj/ � jXnC1j � jXnj:

Then Lemma 4.25 implies that this cannot hold for more than

2

2

6

6

6

6

6

6

log
�1

"

�

log
� 1

1 � c0

4.dC1/

�

3

7

7

7

7

7

7

steps. So this is a good choice for n0. The dependence of K on log.1="/ is

quadratic, of n0 linear, hence k is of order O.log3.1="//, the implied constant

only depending on c0 and d . This completes the proof of Theorem 4.1.
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