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Abstract. We de�ne a “nice representation” of a �nitely presented group � as being a non-

degenerate essentially surjective simplicial map f from a “nice” space X into a 3-complex

associated to a presentation of � , with a strong control over the singularities of f , and

such that X is wgsc (weakly geometrically simply connected), meaning that it admits a

�ltration by simply connected and compact subcomplexes. In this paper we study such

representations for a very large class of groups, namely qsf (quasi-simply �ltered) groups,

where qsf is a topological tameness condition of groups that is similar to, but weaker than,

wgsc. In particular, we prove that any qsf group admits a wgsc representation which is

locally �nite, equivariant and whose double point set is closed.
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1. Introduction

The present paper deals with �nitely presented groups satisfying a rather mild

tameness condition, the qsf property introduced and studied by Brick and Mihalik

in [1]. Roughly speaking, a space is qsf (quasi-simply �ltered) if any compact

subspace of it can be “approximated” by an (abstract) simply connected compact

space; in particular this means that a qsf space admits a “quasi-�ltration” by

compact and simply connected subspaces. We may also give for it the following

equivalent de�nition (that is actually a theorem of the �rst author (D. Otera) with

L. Funar [5]): the �nitely presented group � is qsf if and only if there exists a

smooth compact manifold M such that �1M D � and whose universal cover
zM is weakly geometrically simply connected (wgsc), meaning that zM admits a

�ltration by compact and simply connected submanifolds. But one should keep

in mind that this simpler condition is not group-presentation invariant, while the

original de�nition of Brick and Mihalik, which we will de�ne properly in the next

section, is. This is actually one of the important virtues of the concept qsf.
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Although usually a (topological) presentation of a �nitely presented group �

is just any �nite simplicial complex K such that �1K D �, in this present paper,

we will be very choosy for them (see Section 2). Actually, all along the paper, a

presentation of � will always be a particular 3-dimensional complex obtained by

a suitable thickening of a 2-complex (or, in other words, a compact 3-manifold

with singularities, locally as (the wedge of three lines)�R2; this is enough for

catching all �nitely presented groups.) Let us denote by M.�/ such a 3-complex

with �1M.�/ D �, and by AM.�/ its universal cover (we will not recall anymore

they are 3-dimensional spaces).

Our basic tool for dealing with �nitely presented groups will be the notion of

wgsc-representation, which we will de�ne formally in the next section. It will

su�ce to say, for right now, that contrary to the more usual group representations

which, for a group �, take the general form “� ! something,” our represen-

tations, which we will always write in capital letters, take the dual form “some

space X with special features
f
�! AM.�/” (and note that the universal covering

space AM.�/ is the same thing as the group �, up to quasi-isometry).

This triple, X
f
�! AM.�/, is endowed with the following properties: X is

a simplicial complex which is weakly geometrically simply connected (wgsc),

f is a non-degenerate simplicial map, meaning that f .d -simplex/ D d -simplex,

and, furthermore, the map f is zippable, by which we intend that the “smallest”

equivalence relation on X which is compatible with f and which is also such that

the quotient space immerses into AM.�/, via the obviously induced map, is the triv-

ial equivalence relation induced by f itself, namely: x � y () f .x/ D f .y/.

In other words, what zippability means is that the “cheapest” way to kill all the

singularities of f (that are the points x 2 X where f is not locally an embedding,

i.e. the non-immersive points of X), is to kill all the double points of f ; and this

will actually happen via folding maps.

Here are some additional explanations concerning this de�nition, which was

given now rather informally, and which will be restated rigorously in the next

section. First of all, the notion of weak geometric simple connectivity (wgsc) has

been introduced by L. Funar (see [3]), and also studied by him and the �rst author

(D. Otera), in the context of geometric group theory (see [5]).

De�nition 1. A locally �nite simplicial complex X is said to be weakly geomet-

rically simply connected (wgsc), if it has an exhaustion by �nite (compact) and

simply connected subcomplexes K1 � K2 � � � � � X D
S

i Ki .

But when it comes to groups, wgsc is not the more appropriate condition, since

it is not presentation independent, and the good one is the qsf property introduced

by Brick and Mihalik [1] (see also [5] and [9]).
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De�nition 2. A locally compact simplicial complex X is qsf (i.e. quasi-simply

�ltered) if for any compact subcomplex k � X there is a simply-connected

compact (abstract) complex K endowed with an inclusion k
j
�! K and with a

simplicial map K
f
�! X satisfying the “Dehn condition”: M2.f / \ j.k/ D ;

(where M2.f / � K denotes the set of double points of f ), and entering in the

following commutative diagram:

k K

X
 

!

i

 - !
j

 !
f

(1)

where i is the canonical injection.

Then, being qsf means that the space X can just be “approximated” by a

�ltration of simply connected and compact subspaces; but what one gains is very

valuable, since, unlike wgsc, qsf turns out to be a group theoretical, presentation-

independent notion: if K1; K2 are two presentations (i.e. presentation complexes)

for the same �nitely presented group �, then zK1 2 qsf () zK2 2 qsf (see [1]),

and in such a case � is said qsf. Recently, in the group theoretical context,

L. Funar and the �rst author (D. Otera) [5] have proved that if � has a presentation

K1 such that zK1 2 qsf, then it also has a presentation K2 such that zK2 2 wgsc.

Coming back to the non-degeneracy of f , note that this means, among other

things, that the dimension of the representation space X , source of f , is

restricted to dim X � 3; and the only serious cases are actually dim X D 2

and dim X D 3, each interesting in its own right.

So, we will speak about 2d - and 3d -representations, and the capital letters

should remind the reader that we are not talking about the mundane group rep-

resentations, where the dimension of the representation means quite a di�erent

thing. Retain also that our wgsc-representations X
f
�! AM.�/ are sort of reso-

lutions of AM.�/ into a wgsc space X .

With all these things, here is our main result, whose statement will become

more precise (see Theorem 2) in the next sections, after the representations are

more formally de�ned.

Theorem 1. For any �nitely presented qsf group �, there exists a 2d -wgsc-

representation X2
f
�! AM.�/, where the simplicial complex X2 is locally-�nite

and wgsc, such that
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(i) both f .X2/ � AM.�/ and the double point set

M2.f / D ¹x 2 X2 j ]¹f �1.f .x//º > 1º � X2

are closed subsets;

(ii) moreover, one can get an X2 with a free �-action � �X2 ! X2 such that f

is equivariant, i.e. f .x/ D x for all  2 �, x 2 X2.

De�nition 3. A representation satisfying condition (i) above will be called

easy.

Thus, we may also rephrase Theorem 1 as follows: �nitely presented qsf groups

admit easy wgsc-representations.

Since wgsc is a weak and simpli�ed version of the more known gsc (geometric

simple connectivity) concept, which stems from di�erential topology, and which

concerns handle decompositions without handles of index 1 (for more on this

important notion see e.g. [3, 5, 6, 8, 12, 18]), we propose, at least informally,

the following de�nition and the associated conjecture:

De�nition 4. A �nitely presented group � is easy (or easily-representable) if it

admits a 2-dimensional gsc-representation X2
f
�! AM.�/ (namely with a gsc

X2) which is easy, in the sense just de�ned (i.e. with closed f .X/ � AM.�/ and

M2.f / � X2).

Conjecture 1. All �nitely presented qsf groups are easy (i.e. easily-representable).

Remark 1.1. (1) The converse implication is already a theorem proved by the

authors in [7].

(2) The second author (V. Poénaru) has developed a program [17, 18, 19] aiming

to prove that all �nitely presented groups are qsf.

(3) From papers like [12, 13, 15], it can be extracted a proof of the following

general form: if a �nitely presented group satis�es a nice geometric condition (like

e.g. Gromov-hyperbolicity, almost-convexity, automaticity, combability etc.),

then it is easy.

Coming back now to the representations, with which this paper deals, they

were already present in the paper [14], where homotopy 3-spheres †3 were repre-

sented. Then, in [12, 13, 15, 16], universal covering spaces of compact 3-manifolds

have been represented, while in [20], representations of the classical White-

head manifold W h3 [25] were investigated and what was found there, was that

for the simplest and most natural 2d -representations of it, X2
f
�! W h3, the

M2.f / � X2 is not a closed subset. (Hence, the M2.f / being closed can be

viewed as on obstruction for a complex to admit a cocompact free action of an

in�nite group).
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Note also that the notion of representation of a group �, X
f
�! AM.�/, has

a-priori nothing group-theoretical about it, except that it allows the possibility of

a free action � �X �! X , with an equivariant f , i.e. f .gx/ D gf .x/; point (ii)

in Theorem 1 brings this option to life.

In the next section we will state more formally, and with more details, what the

paper actually proves. Then Theorem 1 will appear as a piece of some bigger, more

comprehensive statement. This will deal with 3-dimensional representations

too, and then the “Whitehead nightmare” appearing in the title of this paper will

be explained too.

Acknowledgments. We wish to thank Louis Funar, David Gabai, Frédéric

Haglund, and Barry Mazur for very useful conversations and remarks. In partic-

ular Louis Funar helped us to �x up a �rst version of our paper. We are also very
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2. De�nitions and statements of the results

We will give now, with full details, the de�nition of the representations for

�nitely presented groups �, which were only very informally presented in the last

section.

To begin with, like in [17], we consider (topological) presentations for � which

are singular compact 3-manifolds with non-empty boundary, denoted by M.�/.

The structure of such an M.�/ is very simple (see e.g. [7]). Start with a compact

3-dimensional handlebody of some appropriate genus g, call it H ; this embodies

the generators of the group �. Then 2-handles are attached to H , embodying the

relations of �. Explicitly, the attaching zones are given by an immersion

k
X

jD1

.S1j � Œ0; 1�/
�
�! @H; (2)

which injects on each individual S1j �I , the double points coming from (singular)

little squares S 2 @H , where �.S1
l
� I / and �.S1m � I /, for m ¤ l , go through

each other. These immortal singularities S are the points where M.�/ fails to be

a 3-manifold.
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Now we are ready to give the precise and formal de�nition of wgsc-repre-

sentations for �nitely presented groups, leaving more details and comments just

after the de�nition.

De�nition 5. A wgsc-representation of a �nitely presented group � is a sim-

plicial map

X
f
�! AM.�/; (3)

where AM.�/ is the universal cover of M.�/, which satis�es the following list of

conditions:

the space X is a countable simplicial complex which is not necessarily

assumed to be locally-�nite; but it is assumed to be weakly geometrically

simply connected (wgsc);

(3-1)

the simplicial map f is non-degenerate, which also means that

dim X � 3. Hence, once the meaningless case dim X D 1 is discarded,

we are left with the two meaningful cases dim X D 2 and dim X D 3,

namely with 2- and 3-dimensional representations;

(3-2)

the equality ‰.f / D ˆ.f / holds (see the explanation here below),

and in this case we say that f is zippable;

(3-3)

the map f is “essentially surjective,” which means the following:

if dim X D 3, then Im f D AM.�/, and if dim X D 2, then
AM.�/ D Im f C ¹cells of dimension 2 and 3º.

(3-3)

Here, some remarks and details are needed. First of all, concerning (3-3) above,

consider a non-degenerate simplicial map gWA! B , like, for instance, our map f

from (3); for any such a map we de�ne the set of mortal singularities, Sing.g/�A,

as being the set of those points x 2 A, at which g fails to be immersive. There are

two interesting equivalence relations on A, in this context. To begin with, we have

the trivial one ˆ.g/ � A�A, where .x; y/ 2 ˆ.g/ () g.x/ D g.y/. Then (and

see here [11, 17] for more details) there is the following more subtle equivalence

relation ‰.g/ � ˆ.g/, which is de�ned as follows (and it can be proved that this

de�nition makes sense, see [11]): ‰.g/ � A � A is the “smallest” equivalence

relation compatible with g, which kills all the mortal singularities, i.e. which is

such that in the following diagram the map g1 is an immersion (i.e. Sing.g1/ D ;)

A B

A=‰.g/:

 

!�

 

!
g

 !

g1
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It can be shown that there is a uniquely well-de�ned equivalence relation ‰.g/

(constructed via a sequence of folding maps) with the properties listed above, and

that it has the additional property that the following induced map is surjective

�1.A/
.g1/�
���! �1.A=‰.g//:

Details concerning the equivalence relations ‰ and ˆ can be found in [11, 17].

Remark 2.1. It should be stressed that, the general de�nition of representation

X
f
! Y is such that the object Y which is represented, automatically comes

with �1Y D 0.

For any �nitely presented group, it can be shown that representations always

exist [17]; but usually, the simplest representations which one stumbles upon

fail to be locally �nite. On the other hand, in this paper, only representations of

groups with a locally-�nite X will be considered.

Many other objects can be represented, provided they are simply con-

nected. The de�nition is always exactly the same, but what is special when

one represents groups, which comes automatically with the canonical action

� � AM.�/ �! AM.�/, is that there is then the possibility that the representa-

tion X
f
�! AM.�/ may be equivariant, meaning that there may be a second free

action � �X �! X , coming with f .x/ D f .x/ for all  2 �; x 2 X .

Without any additional assumption on the triple X
f
�! AM.�/ from (3) above,

there is a metric structure, well-de�ned up to quasi-isometry, which permeates

this whole story. Chose any Riemannian metric on M.�/, and what we mean by

this is the following. On each individual 3-dimensional handle H�
i of M.�/, a

Riemannian metric is given and, whenever two handles are incident, it is required

that the induced metrics on the intersection should coincide. Then, using the non

trivial free group action � �AM.�/ �! AM.�/, the arbitrarily chosen Riemannian

metric on M.�/ lifts to an equivariant metric on AM.�/. Finally, one lifts this

metric on X , via the non-degenerate map f WX ! AM.�/. Thus, X becomes

a metric space and, up to quasi-isometry, this metric on X is canonical, i.e.

independent of the original choice of Riemannian metric on M.�/.

Let us �x now a compact fundamental domain ı � AM.�/, such that AM.�/ D
S

2� ı. In a similar vein, we consider “large fundamental domains” � � X ,

and a locally �nite decomposition of X into such domains, X D
S

j2J �j , where

J is some countable set of indices. Since there is no group action on X (in the

general case, at least), what we will ask now from the compact pieces �j above,

apart from the obvious condition that their interiors should be disjoined, is the

existence of two positive constants C2 > C1 > 0 such that we should have

C1 � k�jk � C2; for all j 2 J: (3-5)
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Here k�j k is the diameter of �j . Our large fundamental domains �j could

be, for instance, maximal dimensional cells of the cell-decomposition of the

representation space X occurring in (3), satisfying the metric condition (3-5),

when j ! 1. The next Theorem 2, stated below, has two parts corresponding

to the dimension of X , in a 3-dimensional representation this is X D X3,

while in a 2-dimensional representation it is X D X2. In both cases we

have also immortal singularities, Sing
�

AM.�/
�

� AM.�/, and mortal singularities,

Sing.f / � X .

At least in the 2d case, we will want to be a bit more speci�c about the singu-

larity issues, and so, when it comes to the 2-dimensional part of the Theorem 2

stated below, the following condition will be imposed too

the set of mortal singularities Sing.f / � X2 is discrete and, at each

x 2 Sing.f /, there is the following local model.

(3-6)

There is an open neighborhood P D P1 [ P2 of x in X2 and an embedding

R
3 �! AM.�/ (which, a priori, might happily go through Sing AM.�/), through

which P
f
�! AM.�/ factorizes. At the source X2, the P1; P2 are two planes R

2

glued along a half-line Œ0;1/ with x D 0, x being here our mortal singularity.

In the diagram below

P R
3

AM.�/

 

!
f

 

!
j

 !

each j jP1
; j jP2

injects, the two being transverse. So, there is a double line in

M2.f / starting at the mortal singularity x. This is a local model already used by

the second author (V. Poénaru) in [14], where, according to a suggestion of Barry

Mazur, these singularities were called “undrawable.”

For our representation (3), we will also assume that

f .Sing.f // \ Sing.AM.�// D ;: (3-7)

But, at the later stages in the zipping of f , this condition may be violated. Then,

besides the Sing.f / � X2, there is also another set of immortal singularities,

Sing.X2/ � X2 � Sing.f /, which is also discrete. This comes with the inclusion

f .Sing.X2// � Sing.AM.�//. At the points x 2 Sing.X2/, there are no local

factorizations

V � R
3

X2 � U AM.�/;

 

!

 

!
f

 

!



Finitely presented groups and the Whitehead nightmare 299

and it is their absence which makes the x 2 Sing.X2/ be an immortal singularity,

never to be killed by the zipping. But, in purely topological terms, and forgetting

about f , at one immortal singularity x 2 X2, the X2 looks exactly alike as at a

mortal singularity. This ends our digression on Sing.f /.

We are now ready to state with all details the main result of the present paper.

Theorem 2 (main theorem). (1) (3d -part) For any �nitely presented qsf group �,

there exists a locally �nite 3d -wgsc-representation, X3
f
�! AM.�/, such that the

following conditions are satis�ed for any  2 �:

there is a free action � � X3 �! X3, and f is equivariantI (4)

there is a constant C D C.kk/ > 0 depending on the word-length of  such that

#¹�i j f .�i / \ ı ¤ ;º < C: (5)

In particular, any given domain ı � AM.�/ D
S

2� ı downstairs, can only be

hit �nitely many times by the image of a large domain � � X3 D
S

j2J �j from

upstairs.

(2) (2d -part) For any �nitely presented qsf group �, there exists a locally �nite

2d -wgsc-representation X2
f
�! AM.�/ which is both equivariant, like in (4), and

which also satis�es the following condition:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

both

f .X2/ � AM.�/

and

M2.f / D ¹x 2 X2 j ]¹f �1.f .x//º > 1º � X2

are closed.

(6)

Remark 2.2. For a generic 3d -representation X3
f
�! AM.�/, one normally

�nds the following situation, at the opposite pole with respect to our (5) above, and

which, in papers like [16], the second author (V. Poénaru) has called the Whitehead

nightmare

#¹�i W f .�i/ \ ı ¤ ;º D 1; for all  2 �: (5�)

Our present Whitehead nightmare under discussion, should remind the reader of

the basic structure of the classical Whitehead manifold W h3, see [25] (whence

the name of our nightmare), of the Casson Handle [4], or of the gropes of

M. Freedman and F. Quinn [2].

So, the �rst part of our Theorem means that qsf �nitely presented groups can

avoid the Whitehead nightmare, and this is what the title of the present paper

refers to.
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The 2d counterpart of the Whitehead nightmare (5�) is the following condition

M2.f / � X2 is not closed: (6�)

This is the generic situation for 2d -representations and one has to start by living

with it and look at the accumulation pattern of M2.f / inside X2, all this being

studied in [17, 18, 19].

Remark 2.3. (1) The representation spaces X occurring in the two points above

are, of course, distinct spaces, although not quite totally unrelated, as we shall see.

(2) Equation (5) in Theorem 2 can also be replaced by the following variant:

there exist equivariant triangulations for AM.�/ and for X3, and also a constant C 0

such that, for any simplex � � AM.�/, we should have

#¹simplexes S � X3W f .S/\ � ¤ ;º < C 0: (5-bis)

3. Preliminaries lemmas

We give now the beginning of the proof of Theorem 2. Some technicalities will

be postponed until the next section. Since � is qsf, this also means that AM.�/ 2

qsf (because M.�/ is a compact 2-complex associated to a presentation of �).

Since our 3-dimensional complex AM.�/ has singularities, we prefer to replace it

by a smooth, albeit higher dimensional, object.

Let R be a resolution of the singularities of AM.�/ induced by a resolution of

M.�/ (and see here [14], or better, our recent joint work [7], where all this issue

is explained in a context which is very much akin to the present one). Given a

choice of R, we get a smooth 4-manifold

‚4.M.�/;R/; (7)

and, as soon as one takes the product with Bm, for m � 1, and one goes

to ‚4.M.�/;R/ � Bm, then the R-dependence is washed away, and every-

thing becomes then canonical. In particular, there is now a free action of � on

‚4.AM.�/;R/� Bm, for m � 1, and one has that

.‚4.AM.�/;R/ � Bn/=� D ‚4.M.�/;R/ � Bn: (8)

We take now n D mC 4 � 5, and then we get the manifold

M n def
D ‚4.AM.�/;R/ � Bn�4 � the universal cover of .‚4.M.�/;R/ � Bn�4/:

(9)

This M n is a smooth non-compact manifold, of very large boundary. Also,

because � 2 qsf, we also have M n 2 qsf.
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Lemma 1. If N >> n, then the manifold W p def

D M n � BN , for p D n C N ,

is wgsc.

Proof. The proof of this lemma is rather standard (see e.g. [3, 5]). Hence we

omit it. �

Lemma 2. It su�ces to prove Theorem 2 in the case of one-ended groups.

Proof. When e.�/ D 0, then � is �nite, AM.�/ is compact, and the canonical

representation idWAM.�/ ! AM.�/ (i.e. with X D AM.�/ and f D id) satis�es

our main theorem for �.

When e.�/ D 2, then we have a very good explicit description of � (as �nite

extension of Z), with which the main theorem for � is easily proved, directly.

Finally, when e.�/ D 1, we need to appeal to the celebrated theorem of J.

Stallings (see [24, 10]), which tells us that � is gotten by amalgamation from one

or two groups G with e.G/ D 1 and a �nite group F (with e.F / D 0). Now,
AM.G/ contains (a lot of) copies of AM.F /. For each G with e.G/ D 1, assuming

that Theorem 2 holds for one-ended groups, we have a wgsc-representation

f WX ! AM.G/ like in the main theorem and it may be assumed that, for each
AM.F / � AM.G/, the map f j

f �1 eM.F /
is the identity map.

Now, we got the AM.�/ by taking in�nitely many copies of the G’s, each coming

with its wgsc-representation fi WXi ! BM.G/i like in the main theorem, and

then AM.�/ is an in�nite tree-like union of these AM.G/i ’s, glued along the common
AM.F /’s.

With these things the following map

[

f �1 eM.F /

Xi

S

i fi
���!

[

eM.F /

BM.G/i D AM.�/ (10)

is a wgsc-representation of � satisfying Theorem 2. �

Now, Lemma 1 tells us that there is an exhaustion by compact, simply-

connected, codimension zero submanifolds, each embedded in the interior of the

next

K1 � K2 � � � � � W p D

1
[

1

Ki : (11)

While, by Lemma 2, we can suppose e.�/ D 1. Hence, W p has one end too, and

so the sets

.@Ki � @W / are disjoined, (12)

and, for each i ,

both .@Ki � @W / and .KiC1 �Ki/ are connected: (13)
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Lemma 3. Given �, we can chose our presentation M.�/ so that, for any desin-

gularization R, the smooth 4-manifold Y 4 def

D ‚4
�

M.�/;R
�

is parallelizable and

there is a smooth submersion

Y 4 �1
�! R

4: (14)

Proof. Along each singular square S � Sing.M.�//, the M.�/ has three smooth

branches

U1 � H.D the 3d handlebody/; U2 � D2
j1
� Œ0; 1�; U3 � D2

j2
� Œ0; 1�;

coming with S D S1j1
� Œ0; 1�\ S1j2

� Œ0; 1� � @H , where @Dj D S1j (see (2)).

Each of the U1[U2 and U1[U3 is a smooth 3-manifold, and, for each x 2 S ,

there is a canonical identi�cation Tx.U1 [ U2/ D Tx.U1 [ U3/, de�ning the

Tx
�

M.�/
�

for x 2 S . For the smooth points of M.�/ this tangent space is obvious.

Sublemma 1. For each �, we can chose the M.�/ so that there is a smooth

submersion into the Euclidean 3-space

M.�/
 0
�! R

3: (15)

Proof. Start with an arbitrary chosen presentation for our �

M.�/0 D H [

k
X

jD1

D2
j � Œ0; 1�

where each D2
j � Œ0; 1� is glued to H via the �jS1

j
�Œ0;1� in (2), with, of course,

S1j D @D2
j . Next, take any embedding H � R

3, the standard one if one wants,

but it does not matter. If �.S1j � Œ0; 1�/ � R
3 extends now to a submersion, we

are ok, in the sense that our H � R
3 extends to a submersion of H [D2

j � Œ0; 1�.

If not, we can change the embedding S1j � Œ0; 1� � H by letting it spiral around

H so that now we get a regular homotopy class �jS1j � Œ0; 1� �! R
3 which does

extend to an immersion D2
j � Œ0; 1� �! R

3:

This process can be performed in such a way that the homotopy class of
Pk
i S1j �! H should stay unchanged. Of course, more singularities S get created,

the S1j � Œ0; 1�’s are only immersed and not embedded, but all this is ok. 4

Sublemma 1 provides us with a smooth �eld of frames

F 3.x/ 2 ¹Frames of Tx.M.�//º ' SO.3/; (16)

for each x 2M.�/. We consider now the composite map

M.�/
�0
�! R

3 D R
3 � ¹0º � R

4 D R
3 � .�1 < t < C1/; (17)
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starting from which, any desingularization R of M.�/

¹U2; U3º
RS
�! ¹s; nº; (18)

produces a smooth immersion

M.�/
ˆ0
�! R

4; (19)

simply by pushing the s-branch in (18) towards t D C1 and the n-branch towards

t D �1. With this (as explained in [7, 14]), we have

Y 4 def
D ‚4.M.�/;R/ D ¹the 4d smooth regular neighborhood of M.�/;

induced by ˆ0º:
(20)

At each x 2 M.�/, the .ˆ0/�F 3.x/ (with F 3 like in (16)) is a 3-frame of the

tangent space Tˆ0.x/R
4. By adding appropriately a fourth orthogonal vector, we

can complete this 3-frame into an oriented 4-frame. This is then a trivialization

of the tangent space T .Y 4/jM.�/, which then easily induces a parallelization for

Y 4. Hence, via the h-principle for immersions and/or submersions (which in this

particular case boils down to the standard Smale–Hirsh theory), it follows that

there exists our smooth submersion �1. This ends Lemma 3. �

When the �1 of (14) is extended to a larger version of Y 4,

Y 4
1

def
D Y 4 [

�

@Y 4 � Œ0; 1/
�

� Y 4

we get a locally �nite a�ne structure on the extension Y 4
1 of Y4, i.e. a Riemannian

(not necessarily complete) metric with sectional curvature K D 0. There exists

also a second structure on Y 4, namely a foliated structure, to be described next.

Both the a�ne and the foliated structures are compatibles with the natural Diff

structure of Y 4.

Let L3 D @Y 4 and let consider the following natural retraction r coming

from (20):

L3 � Y 4 M.�/:

 !
r j

L3

 

!
r

(21)

Lemma 4. (1) The map r jL3 is simplicially non-degenerate, and, outside of some

very simple fold-type singularities, it is an immersion into M.�/.

(2) There is an isomorphism

.Y 4; L3/ '
�

M.�/
[

L3�¹0º

L3 � Œ0; 1�; L3 � ¹1º
�

; (22)

where the map r jL3�¹0º is used for glueing together M.�/ and L3 � Œ0; 1�.
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The proof is trivial, and we left it to the reader. Lemma 4 tells us that Y 4 admits

a codimension-one foliation F , given by

Y 4 D
[

t2Œ0;1�

L3t ;

where, for t > 0, we have L3t D L3 and where L30 �M.�/ is the unique singular

leaf.

Returning now to the a�ne structure which �1, equation (14) induces on

Y 4
1 � Y 4, we endow R

4 with a very �ne a�ne triangulation, which we afterwards

pull back on Y 4
1 , so that L3 D @Y 4 becomes a polyhedral hypersurface. Next,

with an appropriate N1 2 ZC, in the context of the Lemma 1, we have that

M n � BN D . zY 4 � BN1/ DD
Y 4 � BN1

and BN1 D Œ0; 1�N1 has its own canonical a�ne structure, putting now a�ne

structures on Y 4 � BN1 and on M n � BN (here M n is like in (9)).

Remember that Lemma 1 tells us that there is a wgsc cell decomposition

of M n � BN , call it H.0/. Without any loss of generality, there is an a�ne

triangulation ‚ of Y 4�BN1 such that H.0/ � z‚
def
D ¹the lift of ‚ from Y 4�BN1

to DY 4 � BN1º.

Our strategy will be now to work downstairs, at the level of Y 4 �BN1
�
�! Y 4

and use only admissible subdivisions for our cell-decompositions (by admissi-

ble we mean subdivisions which are baricentric or stellar or Siebenmann bisec-

tions [22]). When we will lift these things, afterwards, at the level M n � BN D
DY 4 � BN1 , equivariance will be automatic, the admissible condition, which is lo-

cal, is veri�ed upstairs too, and there it will preserve the wgsc property which

H.0/ D z‚ initially had.

We will be interested now in 3- and 4-dimensional skeleta of the triangulation

‚ of Y 4 � BN1 . For notational convenience, we denote them by Z� , for � D 3

or 4. These come with maps

Z4
FD�j

Y 4

������! Y 4 and Z3 fDrıF
�����! M.�/: (23)

Lemma 5. After a small perturbation of the 0-skeleton, ‚.0/, of ‚, followed by a

global isotopic perturbation of ‚, which leaves it a�ne, we can make so that the

maps

Z4 F
�! Y 4 and Z3 � F �1@Y 4

F j
F �1@Y 4

�������! @Y 4 (24)

are non-degenerate simplicial surjections, the restrictions of which, on each sim-

plex, are a�ne.
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Proof. The proof is left to the reader (see e.g. the argument analogous to this one

in [12]). �

So, in the context of (24), we have now two a�ne triangulations, ‚.Z4/ and

‚.Y 4/, connected by a simplicial non-degenerate map F .

We introduce now a second class of triangulations, compatible with the same

di�erential structure as the ‚.Y 4/, but related now to the foliation F too. These

triangulations are denoted ‚F.Y 4/, and will be subjected to the following condi-

tions:

M.�/ is a subcomplex of ‚F.Y 4/; (24-1)

there is a distinguished, quite dense, set of leaves, all subcomplexes of

‚F.Y 4/,

L30 DM.�/; L31; L32; : : : ; L3q D L3 � ¹1º D @Y 4;

such that every 4-simplex �4 of ‚F.Y 4/ rests on two consecutive

distinguished leaves L3i ; L3iC1;

(24-2)

the 3-simplexes of ‚F.Y 4/ are all essentially parallel to F , always

transversal to the �bers of the retraction r (from (21)), and such that

r j�3 injects.

(24-3)

Moreover, it is assumed that the triangulation ‚F .Y 4/jM.�/ is su�ciently �ne

so that r.�3/ is a subcomplex.

In the context of ‚F we will have F-admissible subdivisions

‚F .Y 4/
F-admissible
���������!

subdivisions
‚1

F
.Y 4/ (25)

which are both admissible and respect the conditions (24-1) to (24-3), with a

possibly denser, bigger subset of distinguished leaves.

Lemma 6. Once both ‚.Y 4/ and ‚F.Y 4/ are given, there exist then admissible,

respectively F-admissible, subdivisions for each of them, yielding isomorphic

cell-decompositions, like in the diagram below (where all the vertical arrows are

subdivisions)

‚F.Y 4/ Y 4 ‚.Y 4/ ‚.Z4/

M.�/ ‚1
F

‚1.Y 4/ ‚1.Z4/

 !

 

!cell dec.  

!
cell dec.

 !

 

!F

 !

 

!r
 

! isomorphism I

 

!F 1

(26)

where both F and F 1 in the diagram are simplicial and non-degenerate.
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Proof. Both ‚.Y 4/ and ‚F.Y 4/ are compatible with the same Diff structure

on Y 4, and, via the smooth Hauptvermutung, they have isomorphic subdivisions.

From there on, one uses Siebenmann’s cellulations and his very transparent ver-

sion of the old Alexander lemma [22]. �

3.1. Proof of the main theorem, part 1. By taking the universal cover of the

lower long composite arrow in (26), we get the following map

X3 def
D ¹the 3-skeleton of the universal cover of ‚1.Z4/º

f
�! AM.�/; (27)

where f
def
D .r ı I ı F 1/�, which has the following features:

since both F 1 and r are non-degenerate, so is f ; (27-1)

we have started from H.0/ D z‚ which was wgsc and, from there on,

all the subdivisions were admissible: this implies that X3 is also wgsc;

(27-2)

the map f is surjective and, moreover, it admits the section

sWAM.�/ �! X3

(see (24-1)), which is such that f j
s.eM.�//

D id.

(27-3)

From this point on, there is a standard argument showing that ‰.f / D ˆ.f /

(and see here e.g. the proof of Lemma 2.8 in [12] too). In a nutshell, this argument

is the following. Assume ‰.f / ¨ ˆ.f /, then the induced map

X3=‰.f / �! AM.�/

would have singularities, which is a contradiction.

So, by now, we have already shown that (27) is an equivariant, wgsc 3d -rep-

resentation of AM.�/. It remains to check equation (5) of Theorem 2, or, equiv-

alently, (5-bis).

Since the �bers of Y 4 � BN1
rı�
��! M.�/ are compact, then so are also those

of ‚1.Z4/
rıIıF 1

�����!M.�/ and of

the 3-skeleton of ‚1.Z4/
rıIıF 1

�����! M.�/: (28)

This means that, in the context of (28), for any 3-simplex �3 of M.�/, the

inverse image consists of a �nite number of 3-simplexes, this number being clearly

uniformly bounded.

By equivariance, the same is true for

X3 f
�! AM.�/;

and point (1) in Theorem 2 is by now proved.
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3.2. Proof of the main theorem, part 2. We want to move now from the

3-dimensional representation (27) to a 2-dimensional one

X2 r
�! AM.�/; (29)

which should be wgsc, equivariant, and also satisfying (6).

The general idea is that, for the passage (27) H) (29), there is a similar step

in [18], and the techniques used there can be adapted here too. Hence, we will only

give here the main lines of the argument. Since we want to have equivariance, we

will work downstairs at level M.�/, taking universal coverings in the end. From

the lower line in (26), we pick now the map

Y 3 def
D The 3-skeleton of ‚1.Z4/

g
def
D rıIıF 1

���������!M.�/ .where Y 3 D X3=�/;

(30)

choosing to read Y 3 like a singular handlebody decomposition (see here [17, 18,

21]). For each 3-handle of our Y 3 of (30), there are three mutually orthogonal,

not everywhere well-de�ned foliations

F0.blue/; F1.red/; F2.black/: (31)

Each 3-handle is endowed with the three foliations, but, F�.color/ is natural for

the handles of index �. There, it is essentially a product foliation of copies of the

lateral surface of the handle in question, namely @.cocore/� core. The reader is

invited to look at the �gures in [21]. The paper [21] was written, of course, in the

non-singular context of zM 3 rather then of AM.�/, but, for these individual handles,

the story is the same. In [21], zM 3 was non-singular and the three foliations

were global, although of course not everywhere well-de�ned. While here, our
AM.�/ is singular and the 3d equivariant context corresponds to [17] rather than

to [21]. Each individual handle has now its own three foliations. We can use these

foliations, like in [21], in order to got from the 3d -representation (27) to the

2d -representation (29).

Since the map (30) is devoid of any pathology at in�nity, we can a�ord to work

with usual compact handles H�, of index � and dimension 3. For each of these

handles H� we consider now a very dense 2-skeleton, which uses only �nitely

many leaves of the foliations (31).

Putting these things together, we get a simplicial non-degenerate map

hWY 2 �!M.�/ (32)

about which the following items may be assumed without any loss of generality:
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we have subsets Sing.h/ � Y 2; Sing.Y 2/ � Y 2 � Sing.h/, just

like in (3-6) and (3-7), and, outside Sing.h/, the double points of h,

M2.h/ � Y 2, are transversal intersection points;

(32-1)

the image h.Y 2/ � M.�/ is very dense, that is, the complement

M.�/�h.Y 2/ consists of a disjoint union of three copies of R3C glued

along their common @R3C D R
2.

(32-2)

Next, we take the universal cover of (32),

X2 def
D zY 2

Qh
�! AM.�/: (33)

Here is what we can say about (33). Our (33) is automatically equivariant and,

since the X3 in (27) was wgsc, so is our present X2 too, since it is essentially

the 2-skeleton of it. The fact that in the context of (27) we had ‰.f / D ˆ.f /,

together with the fact that X2 is very dense, make that in the context of (33) we

also have ‰. Qh/ D ˆ. Qh/, so that (33) is an equivariant wgsc 2d -representation,

for which local �niteness should be obvious.

Locally, (33) is exactly like (32), where Y 2 is a �nite complex. Hence,

equation (6) in Theorem 2 follows automatically. Theorem 2 is by now completely

proved.
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