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1. Introduction

A classical way of studying isometries of a symmetric space S is to decompose

them as products of involutions. The most comfortable situation is to have a class

C of isometric involutions with the following properties:

(1) any two involutions in C are conjugate in Isom.S/;

(2) any element of Isom.S/ can be written as a product s1s2, with si 2 C.

For example, if such a family of involutions exists, describing the �xed points

of an isometry A D s1s2 of S amounts to studying the relative position of the �xed

point sets of s1 and s2 which are totally geodesic subspaces and are isometric to

one another. If such a family C exists, one usually says that Isom.S/ has involution
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length 2 with respect to C. Of course this requirement is too optimistic in general

(for example, it fails in Euclidean space of dimension at least 3).

Assuming that a symmetric space has this property, the next question is to

decide when two isometries A and B can be decomposed using a common involu-

tion. We will call such a pair decomposable with respect to C (see De�nition 2.1;

the term linked is also commonly used, see [BM]). This property simpli�es the

understanding of the group hA; Bi as it reduces to studying the relative position

of 3 pairwise isometric totally geodesic subspaces.

One of the most elementary cases is that of the Poincaré disk �. There are two

classes of involutions in Isom.�/, namely half-turns and re�ections. Viewing

� as the unit disk in C, half-turns are conjugate in IsomC.�/ to z 7! �z and

re�ections to z 7! Nz. It is a classical fact that IsomC.�/ has involution length 2

with respect to re�ections, and 3 with respect to half-turns. Moreover, any pair of

orientation-preserving isometries of the Poincaré disk can be decomposed in the

form

A D s1s2 and B D s2s3; (1.1)

with the si either all half-turns or all re�ections. This makes the description of

many properties of the group hA; Bi easier. For instance, when the si are all

orientation-reversing, the group hA; Bi has index two in � D hs1; s2; s3i. In

particular, hA; Bi is discrete if and only if � is. The decomposition property we

are interested in shares many features with this example, as our involutions are

antiholomorphic.

In [BM], Basmajian and Maskit have studied this question for any space form,

that is for Euclidean space, real hyperbolic space and the sphere. In particular,

they prove that any orientation-preserving isometry is a product of two involu-

tions. They also show for instance that pairs in IsomC.Hn
R

/ are generically non

decomposable when n > 4.

In this paper we study the question of decomposability in the complex hy-

perbolic plane, which can be seen via a projective model as the unit ball in C2

equipped with a PU.2; 1/-invariant metric. In fact, PU.2; 1/ is the group of holo-

morphic isometries of H2
C
; it is the identity component of Isom(H2

C
), the other

connected component consisting of all antiholomorphic isometries. In particular,

PU.2; 1/ has index two in Isom(H2
C
) and in this context holomorphicity plays the

role of preservation of orientation for space forms. The class of involutions we

are interested in consists of antiholomorphic involutions, which are all conjugate

in PU.2; 1/ to the map given in a�ne ball coordinates by

�0W .z1; z2/ 7�! .Sz1; Sz2/:

Clearly, �0 �xes pointwise the set of real points of H2
C
, and conjugates of �0 by

elements of PU.2; 1/ �x pointwise real planes, which are (totally real) totally ge-

odesic embedded copies of the Poincaré disk. We will refer to these antiholomor-

phic involutions as real re�ections.
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It has been known since Falbel and Zocca (see [FZ]) that the involution length

of PU.2; 1/ with respect to real re�ections is 2, and this fact has been generalized

to all dimensions by Choi [Cho]. The main question we address in this paper is

the following.

When is a pair of elements of PU.2; 1/ decomposable with respect to real re-
�ections?

We will abbreviate this by saying that a pair .A; B/ 2 PU.2; 1/2 is R-de-
composable (see De�nition 2.1). There is no hope that generic pairs of ele-

ments in PU.2; 1/ are R-decomposable. A rough argument for this is the fol-

lowing dimension count. The group PU.2; 1/ has dimension 8, thus the product

PU.2; 1/ � PU.2; 1/ has dimension 16. On the other hand, the set of real planes

in H2
C

has dimension 5 (to see this note that the stabilizer of the set of real points

of the ball is PO.2; 1/ which has dimension 3). As a real re�ection is determined

by its �xed real plane, the set of triples of real re�ections has dimension 15 (and

therefore cannot be di�eomorphic to PU.2; 1/�PU.2; 1/). In fact this count leads

us to expect that R-decomposability of a pair of isometries is determined by a

single (codimension 1) condition, and this will turn out to be the case.

This question has been examined in [W2], where it was proved that, under

the assumption that A and B are loxodromic, the pair .A; B/ is R-decomposable

provided that the trace of the commutator ŒA; B� is real. However, this result was

obtained as a byproduct of a classi�cation of pairs of elements of PU.2; 1/ by

traces; namely the data .Tr A; Tr B; Tr AB; Tr A�1B/ determines the pair .A; B/

up to PU.2; 1/-conjugation (modulo an order two indetermination, corresponding

to the sign of the imaginary part of TrŒA; B�). The present approach is more

natural, and in particular it allows us to remove the assumption that A and B are

loxodromic.

Our main result (Theorem 4.1) is the following theorem.

Theorem. Let A; B 2 PU.2; 1/ be two isometries not �xing a common point in

H2
C
. Then the pair .A; B/ is R-decomposable if and only if the commutator ŒA; B�

has a �xed point in H2
C

whose associated eigenvalue is real and positive.

Note that the eigenvalues of ŒA; B� do not depend on the choice of lifts of A

and B to U(2,1). We now sketch our strategy . Any �xed point p1 of ŒA; B� in H2
C

gives rise to a cycle of points

p1
B�1

�! p2
A�1

�! p3
B�! p4

A�! p1: (1.2)

A key fact is that a real re�ection � decomposes A and B if and only if it

satis�es �.p1/ D p3 and �.p2/ D p4 (Lemma 4.3). Thus we see that the
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decomposability of .A; B/ is equivalent to a speci�c symmetry of the above

4-cycle. Now, the existence of this symmetry can be detected via cross-ratios.

Goldman has proved that an ideal tetrahedron has this symmetry if and only if the

cross-ratio X.p2; p4; p1; p3/ is real and positive (Lemma 7.2.1 of [G]). We extend

this fact to quadruples of points in Hn
C

(Proposition 3.1). The last ingredient is to

connect the cross-ratio of the 4-cycle (1.2) to the eigenvalue of ŒA; B� associated

to the �xed point p1. Denoting this eigenvalue by �1, we will see that the product

�1 � X.p2; p4; p1; p3/ is real and positive for any pair .A; B/ (this is Relation 4.1).

This means that �1 is real if and only if X.p2; p4; p1; p3/ is, and both quantities

have the same sign, which gives the result. For the sake of completeness we then

analyze what happens in the two special cases where �1 is negative (Section 4.3),

and when A and B have a common �xed point (Section 4.2).

� When �1 is negative, the �xed point of ŒA; B� is always on the boundary of

H2
C and the group hA; Bi preserves a complex line. This is an example of

a maximal representation of the fundamental group of the once punctured

torus, in the sense of [BIW].

� To describe the situation when A and B have a common �xed point, the

main ingredient is a detailed description of conditions guaranteeing that a

real re�ection decomposes a given isometry (this is Proposition 2.5). Most

cases already appear in the literature, except when A and B are parabolic

with a common �xed point. In particular, when A and B are both 3-step

unipotent (see the de�nitions in Section 2.1), we use the relative position of

their invariant fans, as de�ned by Goldman and Parker in [GP].

A classical and di�cult question in complex hyperbolic geometry is to deter-

mine the discreteness or non-discreteness of a given �nitely generated subgroup

� of PU.2; 1/, and to obtain a presentation of �. Even when discreteness is known

from general results (for instance in the case of arithmetic lattices), �nding a pre-

sentation of the group is a di�cult problem. In fact, the most frequent method

is to construct a fundamental domain and use the Poincaré Polyhedron theorem.

This is a very technical task which requires a detailed understanding of the action

of � on H2
C
.

There are not so many examples of explicit discrete subgroups of PU.2; 1/,

and most of them are obtained from groups with 2 generators. In this case, the ex-

istence of a decomposition as in (1.1) connects an algebraic property of the group

(being an index 2 subgroup of a group generated by 3 involutions) to a geometric

property (the existence of totally geodesic �xed point sets in a certain con�gu-

ration). In other words, � appears as a re�ection group. Such decompositions

appeared for instance naturally in [FalPar2] or [W3] which studied certain repre-

sentations of Fuchsian groups in PU.2; 1/. They were also central in the construc-

tions of fundamental domains for Mostow’s lattices ([M]) in [DFP], as well as for

the new non-arithmetic lattices obtained in [ParPau], [Pau], [DPP1], and [DPP2].
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In all these occurrences, the existence of the real re�ections decomposing the

generators required some work (part of the detailed geometric construction of the

fundamental domains), whereas the concrete criterion given by Theorem 4.1 al-

lows us to easily reprove that the Mostow and Deraux–Parker–Paupert lattices are

generated by real re�ections. More importantly, the careful analysis of decompos-

ability conditions for parabolic isometries in Proposition 2.5 (c) allows us to show

that new lattices are generated by real re�ections, namely certain Picard modular

groups.

The Picard modular groups �d D SU.2; 1;Od / (the subgroup of SU.2; 1/

consisting of matrices with entries in Od , where d is a positive squarefree integer

andOd denotes the ring of integers ofQŒ
p

�d�) are the simplest kind of arithmetic

lattice in SU.2; 1/. However their explicit algebraic or geometric properties such

as generators, fundamental domains and presentations are still unknown in all

but very few cases. (Much is known however concerning their volumes, see [H],

[St], and more generally Prasad’s volume formula [Pra]). More speci�cally,

presentations and fundamental domains have been obtained for PU.2; 1;Od / when

d D 3 (the so-called Eisenstein–Picard modular group) in [FalPar] and when

d D 1 (the Gauss-Picard modular group) in [FFP]. More recently, generators

for PU.2; 1;Od/ with d D 2; 7; 11 were given in [Z] (these values of d are the

ones for which the ring Od is Euclidean). Note that, for d ¤ 3, SU.2; 1;Od / '
PU.2; 1;Od / as there are no non-trivial cube roots of unity in Od .

The Picard modular groups PU.2; 1;Od / are analogous to the Bianchi groups

PGL.2;Od / in PGL.2;C/. Bianchi proved in the seminal paper [Bi] that the

Bianchi groups are re�ective, i.e. generated by re�ections up to �nite index,

for d 6 19, d ¤ 14; 17. At the end of the 1980’s, Shaiheev extended these

results in [Sh], using results of Vinberg, proving in particular that only �nitely

many of the Bianchi groups are re�ective. (The �niteness result now follows from

Agol’s result, [Ag]). The classi�cation of re�ective Bianchi groups was recently

completed in [BeMc].

We prove that the Picard modular groups PU.2; 1;Od/ with d D 1; 2; 3; 7; 11

are re�ective; more precisely that they have a subgroup of index 1,2 or 4 which is

generated by real re�ections (Corollary 5.1).

The paper is organized as follows. We start with some geometric preliminaries

in Section 2, then study con�gurations of points and cross-ratios in Section 3.

Section 4 contains the statement and proofs of our main results, which we then

apply to various discrete subgroups of PU.2; 1/ in Section 5.

Acknowledgments. The �rst author was partially supported by NSF grant DMS

1007340 and SNF grant 200021-131967/1. We would like to thank Hugo Parlier for

asking whether our criterion could be applied to arithmetic lattices.
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2. Geometric preliminaries

2.1. Complex hyperbolic space and isometries. The standard reference for

complex hyperbolic geometry is [G]. For the reader’s convenience we include

a brief summary of key de�nitions and facts. Our main result concerns the case

of dimension n D 2, but the general setup is identical for higher dimensions so

we state it for all n > 1.

Distance function. Consider Cn;1, the vector space CnC1 endowed with a Her-

mitian form h� ; �i of signature .n; 1/. Let V � D
®
Z 2 Cn;1jhZ; Zi < 0

¯
. Let

� WCnC1 � ¹0º ! CPn denote projectivization. De�ne Hn
C

to be �.V �/ � CPn,

endowed with the distance d (Bergman metric) given by

cosh2 1

2
d.�.X/; �.Y // D jhX; Y ij2

hX; XihY; Y i : (2.1)

Di�erent choices of Hermitian forms of signature .n; 1/ give rise to di�erent

models of Hn
C
. The two most standard choices are the following. First, when the

Hermitian form is given by hZ; Zi D jz1j2 C� � �Cjznj2 �jznC1j2, the image of V �

under projectivization is the unit ball of Cn, seen in the a�ne chart ¹znC1 D 1º
of CP n. This model is referred to as the ball model of Hn

C. Secondly, when

hZ; Zi D 2 Re.z1znC1/ C jz2j2 C � � �C jznj2, we obtain the so-called Siegel model
of Hn

C
, which generalizes the Poincaré upper half-plane. More details on the Siegel

model in dimension 2 will be given in the next section.

Isometries. From (2.1) it is clear that PU.n; 1/ acts by isometries on Hn
C
, where

U.n; 1/ denotes the subgroup of GL.n C 1;C/ preserving h�; �i, and PU.n; 1/ its

image in PGL.n C 1;C/. In fact, PU.n; 1/ is the group of holomorphic isometries

of Hn
C
, and the full group of isometries is PU.n; 1/ Ë Z=2, where the Z=2 factor

corresponds to a real re�ection (see below). Holomorphic isometries of Hn
C can

be of three types, depending on the number and location of their �xed points.

Namely, g 2 PU.n; 1/ is

� elliptic if it has a �xed point in Hn
C
;

� parabolic if it has (no �xed point in Hn
C

and) exactly one �xed point in @ Hn
C
;

� loxodromic if it has (no �xed point in Hn
C and) exactly two �xed points in

@ Hn
C
.

Totally geodesic subspaces and related isometries. A complex k-plane is a

projective k-dimensional subspace of CP n intersecting �.V �/ non-trivially (so,

it is an isometrically embedded copy of Hk
C

� Hn
C
). Complex 1-planes are usually

called complex lines. If L D �.zL/ is a complex .n�1/-plane, any v 2 CnC1 �¹0º
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orthogonal to zL is called a polar vector of L. Such a vector satis�es hv; vi > 0,

and we will usually normalize v so that hv; vi D 1.

A real k-plane is the projective image of a totally real .k C 1/-subspace W of

Cn;1, i. e. a .k C 1/-dimensional real vector subspace such that hv; wi 2 R for

all v; w 2 W . We will usually call real 2-planes simply real planes, or R-planes.

Every real n-plane in Hn
C is the �xed-point set of an antiholomorphic isometry of

order 2 called a real re�ection or R-re�ection. The prototype of such an isometry

is the map given in a�ne coordinates by .z1; : : : ; zn/ 7! .Sz1; : : : ; Szn/ (this is an

isometry provided that the Hermitian form has real coe�cients).

An elliptic isometry g is called regular if any of its matrix representatives

A 2 U.n; 1/ has distinct eigenvalues. The eigenvalues of a matrix A 2 U.n; 1/

representing an elliptic isometry g have modulus one. Exactly one of these

eigenvalues has eigenvectors in V � (projecting to a �xed point of g in Hn
C), and

such an eigenvalue will be called of negative type. Regular elliptic isometries have

an isolated �xed point in Hn
C
. A non regular elliptic isometry is called special.

Among the special elliptic isometries are the following two types (which exhaust

all special elliptic types when n D 2).

(1) A complex re�ection is an elliptic isometry g 2 PU.n; 1/ whose �xed-point

set is a complex .n � 1/-plane. In other words, any lift such an isometry to

U(n,1) has n equal eigenvalues, one of which has negative type.

(2) A complex re�ection in a point is an elliptic isometry having a lift with

n equal eigenvalues, the remaining one being of negative type. In other

words, such an isometry is conjugate to some � Id 2 U.n/, where U.n/ is

the stabilizer of the origin in the ball model. Complex re�ections in a point

with order 2 are also called central involutions; these are the symmetries that

give Hn
C

the structure of a symmetric space.

A parabolic isometry is called unipotent if it has a unipotent lift in U.n; 1/.

If not, it is called screw-parabolic, and it can be uniquely decomposed as g D
pe D ep with p unipotent and e elliptic (see Theorem 2.2 below). In dimensions

n > 1, unipotent isometries are either 2-step or 3-step, according to whether the

minimal polynomial of their unipotent lift is .X �1/2 or .X �1/3 (see Section 3.4

of [ChGr]).

2.2. Models in dimension 2

2.2.1. The ball model of H2

C
. The ball model of H2

C
arises from the choice of

Hermitian form

H D

2
4

1 0 0

0 1 0

0 0 �1

3
5:
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It is classical, and we refer the reader to Chapter 3 of [G]. We only emphasize

the following fact: any elliptic isometry of H2
C is conjugate to one given in

ball coordinates by .z1; z2/ 7! .ei˛z1; eiˇz2/ for some ˛; ˇ 2 R=Z. A matrix

representative in SU(2,1) for the latter is

E.˛;ˇ/ D

2
4

ei.2˛�ˇ/=3 0 0

0 ei.2ˇ�˛/=3 0

0 0 e�i.˛Cˇ/=3

3
5: (2.2)

2.2.2. The Siegel model of H2

C
. In the presence of parabolic elements, it is very

convenient to use the Siegel domain, as the stabilizer of the point at in�nity (see

below) consists of upper triangle matrices. As mentioned in the previous section,

this model corresponds to the Hermitian form given by the matrix

H D

2
4

0 0 1

0 1 0

1 0 0

3
5:

In this model, any point m 2 H2
C

admits a unique lift to C2;1 of the following form,

called its standard lift:

m D

2
4

.�jzj2 � u C i t /=2

z

1

3
5 with .z; t; u/ 2 C � R��0; 1Œ : (2.3)

The triple .z; t; u/ is called the horospherical coordinates of m. The boundary of

H2
C

is the level set ¹u D 0º, together with the distinguished point at in�nity, given

by

q1 �

2
4

1

0

0

3
5:

Level sets ¹u D u0º with �xed u0 > 0 are called horospheres based at q1. The

boundary @ H2
C

n¹q1º is a copy of the Heisenberg group N of dimension 3, with

group law given in Œz; t � coordinates by

Œz1; t1� � Œz2; t2� D Œz1 C z2; t1 C t2 C 2 Im.z1 Sz2/�: (2.4)
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The stabilizer of q1 in SU.2; 1/ consists of upper triangular matrices, and is

generated by the following 3 types of isometries: Heisenberg translations TŒz;t�

(.z; t / 2 R�C), Heisenberg rotations R� (� 2 R=2�Z) and Heisenberg dilations

Dr (r > 0), where

TŒz;t� D

2
4

1 �Nz �.jzj2 � i t /=2

0 1 z

0 0 1

3
5; (2.5a)

R� D

2
4

e�i�=3 0 0

0 e2i�=3 0

0 0 e�i�=3

3
5; (2.5b)

Dr D

2
4

r 0 0

0 1 0

0 0 1=r

3
5: (2.5c)

In Heisenberg coordinates, they correspond respectively to the following transfor-

mations

� TŒz;t� is the left multiplication by Œz; t �,

� R� is given by Œw; s� 7! Œei�w; s�,

� Dr is the Heisenberg dilation Œw; s� 7! Œrw; r2s�.

Note that Heisenberg translations and rotations preserve each horosphere based

at q1 whereas Heisenberg dilations permute horospheres based at q1. We will

denote by Isom.N/ the non-loxodromic stabilizer of q1 in SU.2; 1/, which is

generated by the TŒz;t� and R� . The notation Isom.N/ comes from the fact it is the

isometry group of the Cygan metric, which we will not use here (see [FalPar]).

The group Isom.N/ consists exactly of those matrices of the form

P.z;t;�/ D TŒz;t�R� D

2
4

e�i�=3 �e2i�=3 Nz �e�i�=3.jzj2 � i t /=2

0 e2i�=3 e�i�=3z

0 0 e�i�=3

3
5:

It is sometimes more convenient to work with the lift of P.z;t;�/ to U(2,1) given by

2
4

1 �Nzei� �.jzj2 � i t /=2

0 ei� z

0 0 1

3
5: (2.6)
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In terms of these parameters the various parabolic conjugacy classes are easily

described. Any parabolic isometry is conjugate in PU.2; 1/ to exactly one of the

following:

� P.1;0;0/ D TŒ1;0� if it is 3-step unipotent,

� P.0;˙1;0/ if it is 2-step unipotent,

� P.0;1;�/ for some non-zero � 2 R=2�Z if it is screw parabolic.

Remark 1. Screw and 2-step unipotent parabolics share the property of preserving

a (unique) complex line. In the case of P.0;1;�/, it is the line polar to the vector�
0 1 0

�T
. As we will see in the next section, the situation is slightly more

complicated for 3-step unipotent parabolics.

Finally, recall from [FalPar] for future reference that the exact sequence

1 �! R �! N
…�! C �! 1 (2.7)

induces an exact sequence

1 �! IsomC.R/ �! Isom.N/
…��! IsomC.C/ �! 1: (2.8)

Explicitly,

…�.P.z;t;�// D
�

ei� z

0 1

�
;

acting on C by

w 7�! ei�w C z:

2.3. The invariant fan of a 3-step unipotent parabolic. The Siegel model is

very well adapted to describing the action of parabolic isometries. To do so, we

give a few more details on the structure of the boundary of H2
C
. It is equipped with

a (CR) contact structure, which is given in Heisenberg coordinates as the kernel

of the 1-form

˛ D dt � 2xdy C 2ydx:

We will denote by Cm the contact plane at a point m 2 @ H2
C
. For any real plane

R of H2
C
, the intersection xR \ @ H2

C
is a closed curve, which is called an R-circle

(see [G]). These curves are Legendrian: they are everywhere tangent to the contact

distribution. The following lemma concerns those R-circles containing the point

q1, called in�nite R-circles. We refer to Chapter 4 of [G] for proofs.

Lemma 2.1. (1) Let R be a real plane containing the point q1 of the Siegel
model. Then in Heisenberg coordinates, the R-circle @R is an a�ne line in the
Heisenberg group, which is contained in the contact plane at any of its points,
and the restriction to the boundary of the re�ection about R is the (Euclidean)
half-turn about this a�ne line.
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(2) More precisely, an a�ne line in the Heisenberg group is an in�niteR-circle
if and only if it is contained in the contact plane at one of its points.

Viewing the boundary of H2
C as the one point compacti�cation of the Heisen-

berg group N D C Ë R endows the set of complex lines through q1 with the

stucture of the a�ne space C. Indeed, for any z 2 C there exists a unique complex

line through q1 which contains q1 and the point Œz; 0� (which is polar to the vec-

tor
�
Nz 1 0

�T
). This induces a projection z…W H2

C
n q1 7! C whose �bers are the

complex lines through q1. In restriction to the boundary, this projection is just

the vertical projection … de�ned in Equation (2.7), which is given in Heisenberg

coordinates by

…W Œz; t � 7�! Œz; 0�: (2.9)

A fan through q1 is the preimage of any a�ne line in C under the projection
z…. In view of (2.9), if L is an a�ne line in C, the fan z…�1.L/ intersects the

boundary of H2
C

along the vertical plane containing L in the Heisenberg group.

A general fan is the image of a fan through q1 by an element of PU.2; 1/. These

objects were de�ned by Goldman and Parker in [GoP] (see also Chapter 4 of [G]).

As stated in [GoP], fans enjoy a double foliation, by real planes and complex lines.

We now make this foliation explicit in the case of a fan F through q1 in H2
C
, with

@F projecting to an a�ne line L � C � @ H2
C
.

(1) First, the foliation by complex lines is given by the �bers of z… above the

a�ne line L. In the boundary, this foliation correspond to the foliation of the

vertical plane above L by vertical lines.

(2) Consider a point m in the vertical plane @F . The contact plane at m intersects

@F along an a�ne line L0 D Cm\@F in the Heisenberg group, which projects

vertically onto L. By Lemma 2.1, the line L0 is the boundary of a real plane.

Then @F is foliated by the family of lines parallel to L0 contained in @F .

In other words, the foliation of @F is obtained by taking all lifts of L to

the contact structure. All these lines are boundaries of real planes, and this

foliation of @F extends inside H2
C

as a foliation of F by real planes.

We can be a bit more explicit.

Lemma 2.2. Let Lw;k be the a�ne line in C parametrized by Lw;k D¹w.s C ik/,
s 2 Rº, for some unit modulus w and k � 0. Then the boundary foliation of the
fan above Lw;k is given by the lines parametrized in Heisenberg coordinates by
Lt0 D ¹Œw.s C ik/; t0 C 2sk�; s 2 Rº.

Proof. The lines Lt0 all project onto L by the vertical projection. A tangent vector

to Lt0 is given by .Re.w/; Im.w/; 2k/. Evaluating the 1-form ˛ on this vector at

the point of parameter s D 1, and using jwj D 1 shows that the line Lt0 is in the

kernel of ˛ at this point, thus in the contact plane. Therefore Lt0 is an R-circle by

Lemma 2.1. �
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Our interest in fans comes from the following fact.

Proposition 2.1. Let P be a 3-step unipotent parabolic isometry of H2
C
. There

exists a unique fan FP through the �xed point of P such that

(1) the fan FP is P -invariant and

(2) every leaf of the foliation of FP by real planes is P -invariant.

Moreover, when P �xes q1 and thus corresponds to left-translation by Œz; t � with
z ¤ 0 in Heisenberg coordinates, the fan FP is the one above the a�ne line Lw;k,
where w D z=jzj, and k D t=.4jzj/.

Given a 3-step unipotent parabolic isometry P , we will refer to the fan FP as

the invariant fan of P , even though all the fans corresponding to distinct parallel

vertical planes are P -invariant (but their leaves are not P -invariant).

Proof. First assume that P D TŒ1;0�, acting on the Heisenberg group as

Œz; t � 7�! Œz C 1; t � 2 Im.z/�:

Then every vertical plane Im.z/ D k is globally preserved. The real foliation of

the fan corresponding to the vertical plane Im.z/ D k is given by the family of

lines Lt0 D ¹Œs C ik; t0 C 2sk�; s 2 Rº. Since

Œ1; 0� � Œs C ik; t0 C 2sk� D Œs C 1 C ik; t0 C 2.s � 1/k�;

we see that the real foliation of the vertical plane Im.z/ D k is preserved by P

if and only if k D 0, which gives the result for this normalization of P . The �rst

part of the proposition is then obtained by using the fact that any 3-step unipotent

parabolic is conjugate in PU.2; 1/ to TŒ1;0�. To check the last part, write w D z=jzj
and k D t=.4jzj/; then by a direct calculation

Œz; t � � Œw.s C ik; t0 C 2sk� D Œw.jzj C s C ik/; t0 C t C 2sk � 2jzjk�

D Œw.jzj C s C ik/; t0 C 2.jzj C s/k�;

which proves that the real leaves of the fan above Lw;k are preserved. �

In fact the proof of Proposition 2.1 gives us a little more information, which we

summarize in the following corollary.

Corollary 2.1. Let P be a 3-step unipotent parabolic.

(1) A real plane is P -invariant if and only if it is a leaf of the real foliation of its
invariant fan.

(2) P is characterized by its invariant fan F , and its restriction to F .
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For future reference, let us state the following proposition, which is just gathering

together what we just exposed.

Proposition 2.2. Let P be a parabolic isometry in PU.2; 1/.

(1) If P is screw parabolic or 2-step unipotent, it has a unique invariant complex
line.

(2) If P is 3-step unipotent parabolic, then there exists a unique fan F centered
at the �xed point of P which is P -invariant and such that every leaf of the
foliation of F by real planes is P -invariant.

We will also use the following characterization of commuting parabolic isome-

tries.

Lemma 2.3. Let P1 and P2 be two parabolic isometries �xing q1. Then P1 and
P2 commute if and only if one of the following possibilities occurs.

(1) Both P1 and P2 are either 2-step unipotent or screw parabolics with the same
invariant complex line.

(2) Both P1 and P2 are 3-step unipotent with the same �xed point and their
invariant fans intersect @ H2

C along parallel vertical planes.

Proof. We only prove the second part, the �rst one being classical. Two 3-step

unipotent maps �xing q1 are respectively conjugate to the left translations by

Œz1; t1� and Œz2; t2�. Using (2.4), we see that these two translations commute if

and only if z2 Sz1 2 R, which is equivalent to saying that their invariant fans are

parallel. �

2.4. Eigenvalues and traces. The following classi�cation of conjugacy classes

in U.n; 1/ is due to Chen–Greenberg (Theorem 3.4.1 of [ChGr], where the real

and quaternionic cases are treated as well).

Theorem 2.2 (Chen–Greenberg). (a) Any elliptic element is semisimple, with
eigenvalues of norm 1. Two elliptic elements are conjugate in U.n; 1/ if and only
if they have the same eigenvalues and the same eigenvalue of negative type.

(b) Any loxodromic element is semisimple, with exactly n � 1 eigenvalues of
norm 1. Two loxodromic elements are conjugate in U.n; 1/ if and only if they have
same eigenvalues.

(c) Any parabolic element is not semisimple, and all its eigenvalues have
norm 1. It has a unique decomposition g D pe D ep with p strictly parabolic
and e elliptic. Two parabolic elements are conjugate in U.n; 1/ if and only if their
strictly parabolic and elliptic components are conjugate.

(d) There are three classes of strictly parabolic elements for n > 1: two classes
of vertical Heisenberg translations, and one class of horizontal ones.
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Note that two elliptic elements may be conjugate in GL.n C 1;C/ but not in

U.n; 1/ (if they have the same eigenvalues but di�erent eigenvalues of negative

type). It will be useful for future reference to have matrix representatives in

SU(2,1) of the di�erent conjugacy classes of isometries when n D 2.

(1) Any elliptic isometry of H2
C

is conjugate to one given in the ball model by

the matrix E.˛;ˇ/ given in (2.2).

(2) Any loxodromic isometry of H2
C

is conjugate to one given in the Siegel model

by the matrix DrR� where Dr and R� are as in (2.5).

(3) Any parabolic isometry of H2
C

is conjugate to one given in the Siegel model by

the matrix P.z;t;�/ D TŒz;t�R� . The isometry associated to P.z;t;�/ is unipotent

if and only if � D 0 and 2-step unipotent if and only if � D 0 and z D 0.

As in the classical case of the Poincaré disc, the isometry type of an isometry

is closely related to the trace of a lift to SU(2,1). The characteristic polynomial of

a matrix A in SU(2,1) is given by

�A.X/ D X3 � z � x2 C Nz � x � 1; where z D Tr A: (2.10)

Computing its discriminant, we obtain

f .z/ D Res.�A; �0
A/ D jzj4 � 8 Re.z3/ C 18jzj2 � 27: (2.11)

This function provides the following classi�cation of holomorphic isometries via

the trace of their lifts to SU(2,1) (see ch. 6 of [G]), which is analogous to the

classical SL(2,C) case. Denote by C3 the set of cube roots of unity in C.

Theorem 2.3 (Goldman). Let A 2 SU.2; 1/ and g 2 PU.2; 1/ the corresponding
isometry of H 2

C
. Then

� g is regular elliptic () f .Tr.A// < 0;

� g is loxodromic () f .Tr.A// > 0;

� g is special elliptic or screw-parabolic () f .Tr.A//D0 and Tr.A/…3C3;

� g is unipotent or the identity () Tr.A/ 2 3C3.

The null-locus of the polynomial f can be seen in Figure 1.

We now focus on the special case of elements of SU(2,1) having real trace.

Proposition 2.3. Let A 2 SU.2; 1/ satisfy Tr A 2 R. Then A has an eigenvalue
equal to 1. More precisely,

� if A is loxodromic then A has eigenvalues ¹1; r; 1=rº for some r 2 Rn Œ�1; 1�;

� if A is elliptic then A has eigenvalues ¹1; ei� ; e�i�º for some � 2 Œ0; ��;

� if A is parabolic then A has eigenvalues ¹1; 1; 1º or ¹1; �1; �1º.
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Figure 1. The null-locus of the polynomial f inscribed in the circle of radius 3 centered at

the origin.

Proof. If Tr A is real, then �A has real coe�cients, therefore the eigenvalue

spectrum of A is invariant under complex conjugation. The result follows. �

Remark 2. (a) Any loxodromic or parabolic element of SU(2,1) with real trace is

conjugate to its inverse; for elliptic isometries this is true under the additional

assumption that the eigenvalue 1 has negative type. This follows from Propo-

sition 2.2. An element of a group which is conjugate to its inverse is some-

times called achiral or reversible in the context of isometry groups. In [GonP],

Gongopadhyay and Parker have studied and classi�ed these isometries in PU.n; 1/

for all n > 1.

(b) For later use, let us note that matrix representatives of the conjugacy

classes of elements of PU.2; 1/ having a �xed point in H2
C

with associated positive

eigenvalue are given by, in the notation of (2.2) and (2.5),

� E.�;��/ with � 2 R (in the ball model) for elliptic classes,

� Dr with r > 1 (in the Siegel model) for loxodromic classes, and

� P.z;t;0/ with z 2 C and t 2 R (in the Siegel model) for parabolic classes.

2.5. Antiholomorphic isometries. The following lemma is useful when com-

puting with antiholomorphic isometries (see [FalPau] in the elliptic case, where

the corresponding matrix was called a Souriau matrix). To simplify the statement,

we consider a projective model (for example the ball or Siegel model) for which

complex conjugation in a�ne coordinates �0W .z1; : : : ; zn/ 7! .Sz1; : : : ; Szn/ is an

isometry (i.e. the Hermitian form has real coe�cients).
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Lemma 2.4. Let f be an antiholomorphic isometry of Hn
C
. Then there exists

M 2 U.n; 1/ such that, for any m 2 Hn
C with lift m 2 CnC1 (denoting xm the

componentwise complex conjugate of m),

f .m/ D M � xm:

Any matrix M 2 U.n; 1/ with this property will be called a lift of f .

Proof. f ı �0 is a holomorphic isometry, i.e. corresponds to an element of

PU.n; 1/. Any of its lifts M 2 U.n; 1/ satis�es the required property. �

De�nition 2.1. Given a real re�ection � and an isometry A 2 PU.n; 1/, we say

that � decomposes A if A D �� for some real re�ection � (equivalently, A D � 0�
where � 0 D ��� is also a real re�ection).

Given two isometries A; B 2 PU.n; 1/, we say that the pair .A; B/ is

R-decomposable if there exists a real re�ection which decomposes both A and B .

Note that when writing the two isometries A and B as products of real re-

�ections, the order in which the re�ections appear is not important. As an ap-

plication of Lemma 2.4, we obtain a necessary condition on a pair .A; B/ to be

R-decomposable, namely that the commutator ŒA; B� must have real trace. Note

that the trace of an element of PU.n; 1/ is not well-de�ned in general. However,

if A and B are in PU.n; 1/, then the matrix Œ zA; zB� does not depend on the choice

of lifts zA and zB made for A and B . This allows us to consider the condition of

having real trace for a commutator.

Lemma 2.5. If a pair .A; B/ 2 PU.n; 1/ � PU.n; 1/ is R-decomposable, then the
commutator ŒA; B� is the square of an anti-holomorphic isometry.

Proof. If A D �1�2 and B D �2�3 with each �i a real re�ection, then ŒA; B� D
.�1�2/.�2�3/.�2�1/.�3�2/ D .�1�3�2/2, where �1�3�2 is an antiholomorphic

isometry. �

Corollary 2.4. If a pair .A; B/ 2 PU.n; 1/ � PU.n; 1/ is R-decomposable, then
Tr.ŒA; B�/ 2 R.

Proof. First note that if f1 and f2 are antiholomorphic isometries with lifts M1

and M2, then f1 ı f2 is holomorphic with lift M1M2 2 U.n; 1/. Using this

fact together with Lemma 2.5, we see that if .A; B/ is R-decomposable, then the

commutator can be lifted to SU.n; 1/ as M xM , with M D M1M3M2, where Mk

is a lift of �k. As a consequence, we see that

Tr.M xM/ D Tr. xMM/ D Tr.M xM/ 2 R: �
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Note that this necessary condition holds in any dimension n. However, to

obtain a su�cient condition, we will need Lemma 2.7 below, which is false in

dimensions n > 2.

Lemma 2.6. Any antiholomorphic isometry of H1
C

having a �xed point in H1
C

is
a real re�ection.

Proof. Let f be an antiholomorphic isometry of H1
C

with a �xed point p. Then, for

any point q ¤ p, the angles .f �1.q/; p; q/ and .q; p; f .q// are opposite (because

f is antiholomorphic), therefore f �1.q/ D f .q/ (because f is an isometry), and

f is an involution and �xes pointwise a geodesic. �

Lemma 2.7. If g is an antiholomorphic isometry of H2
C

which exchanges two

points of H2
C
, then g is an R-re�ection.

Proof. Let p and q be the two points exchanged by g. Then g has a �xed point m

on the geodesic .pq/ (which is the midpoint of the geodesic segment Œpq� when

p and q are in H2
C
). Then g stabilizes the complex line C spanned by p and q, as

well as the complex line C 0 orthogonal to C at m. By Lemma 2.6, the restrictions

of g to C and C 0 are real re�ections, �xing geodesics 
 and 
 0. Now 
 and 
 0 are

geodesics contained in orthogonal complex lines, therefore they span a Lagrangian

plane, which is �xed pointwise by g. �

Lemma 2.7 is false as soon as n � 3. Indeed, consider an element M 2 SU(n,1)

given in the Siegel model by

M D

2
4

.0/ z

U

1= Nz .0/

3
5;

where z 2 C? and U 2 U.n � 1/ is a matrix such that U xU ¤ Id, that is a non-

symmetric matrix in U.n � 1/ (such matrices only exist when n > 2). Then

M xM D

2
4

1 .0/

U xU
.0/ : : : 1

3
5 ¤ Id :

Therefore the antiholomorphic isometry assciated with M is not a real re�ection,

though it exchanges the two points corresponding to the �rst and last vectors in

the canonical basis of CnC1, which are both on the boundary of Hn
C.

The following proposition describes which elements of PU.2; 1/ can arise as

squares of antiholomorphic isometries.

Proposition 2.4. Let A 2 PU.2; 1/ be an isometry admitting a lift zA to SU.2; 1/

such that for any �xed point A in H2
C
, the corresponding eigenvalue of zA is positive.

Then A is the square of an antiholomorphic isometry unless A is a 2-step unipotent
parabolic isometry.
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Proof. Being the square of an antiholomorphic isometry is preserved by conjuga-

tion, therefore we only need to prove the result for representatives of each conju-

gacy class. We �rst provide matrices M such that M xM is equal to the lifts listed

in Remark 2(b) in the elliptic and loxodromic cases.

(1) If A is elliptic the following M satis�es the above condition,

M D

2
4

0 ei�=2 0

e�i�=2 0 0

0 0 1

3
5:

(2) If A is loxodromic, then we can take

M D

2
4

p
r 0 0

0 1 0

0 0 1=
p

r

3
5:

We now examine the case where A is parabolic, thus unipotent in view of the

assumptions. Assume that A is unipotent and that A D �2 with � an antiholo-

morphic isometry. First, � has at least one �xed point in the closure of H2
C

and

�2 has exactly one �xed point there. This implies that � has only one �xed point,

which is the same as that of A. Conjugating by an element of PU.2; 1/, we can

assume that this �xed point is q1. Consider a lift M of � to SU.2; 1/ in the sense

of Lemma 2.4. The fact that M xM is a unipotent map �xing q1, which corre-

sponds to the vector
�
1 0 0

�T
implies that M is an upper triangular matrix in

SU.2; 1/ with unit modulus diagonal entries. Therefore M is of the form P.z;t;�/.

Computing M xM D P.z;t;�/P. Nz;�t;��/, we obtain that A has a lift to SU(2,1) of the

form
2
64

1 �. Nz C ze�i� / �Nz.z C Nzei�/

0 1 .z C Nzei� /

0 0 1

3
75: (2.12)

This matrix can only be 3-step unipotent or the identity. This proves the result as

there is only one PU.2; 1/-conjugacy class of 3-step unipotents. �

2.6. Decomposing isometries. The following proposition summarizes results

characterizing which real re�ections decompose a given holomorphic isometry.

Parts (e1-e3) are Proposition 2.4 of [FalPau], part (l) is Proposition 4(2) of [W2]

(and follows from Proposition 3.1 of [FZ]), and part (p) is new.
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Proposition 2.5. Let A 2 PU.2; 1/ and � a real re�ection with �xed R-plane L.

(e1) If A is a complex re�ection with �xed complex line C , then � decomposes A

if and only if L \ C is a geodesic.

(e2) If A is a complex re�ection in a point pA, then � decomposes A if and only
if pA 2 L.

(e3) If A is regular elliptic with �xed point pA and invariant complex lines C1; C2,
then � decomposes A if and only if pA 2 L and L \ Ci is a geodesic for
i D 1; 2.

(l) If A is loxodromic then � decomposes A if and only if � exchanges the 2 �xed
points of A.

(p) If A is parabolic one of the following cases holds.

(1) If A is screw-parabolic or 2-step unipotent with �xed point p and
invariant complex line L then � decomposes A if and only if �.p/ D p

and �.L/ D L.

(2) If A is 3-step unipotent with �xed point p and invariant fan F (see
Proposition 2.2), then � decomposes A if and only if �.p/ D p,
�.F / D F , and the restriction of � to @F is a half-turn.

Proof. Parts (e1–e3) are Proposition 2.4 of [FalPau], part (l) is Proposition 4(2)

of [W2] (and follows from Proposition 3.1 of [FZ]). Let us prove part (p).

Denote by p the �xed point of A. Assume that A D �� 0 where � 0 is another

real re�ection. Because both � and � 0 are involutions, either � and � 0 �x p, or

there exists q ¤ p in @ H2
C

such that � and � 0 both swap p and q. In this case, A

would �x two distinct points in @ H2
C
, which is not possible for a parabolic. Thus

the �xed real plane of � contains p. Replacing p by V and using the fact that V

is the unique invariant complex line or invariant fan of A, we obtain that � and � 0

both preserve V .

Conversely, let � be such a real re�ection.

(1) If A is 2-step unipotent or screw parabolic, then V is a complex line. The

restriction of � to V is an involution �xing a boundary point of V . As V is a

copy of the Poincaré disk, this implies that the restriction �jV is a symmetry

about a geodesic, and therefore L intersects V along a geodesic 
 , one of

whose endpoints is the �xed point of A. Let us call a the other endpoint of 
 ,

and b D A.a/. It is a simple exercise to check that A ı � exchanges a and b.

Therefore Aı� , which is an antiholomorphic isometry, exchanges two points

of @ H2
C. By Lemma 2.7, it is a real re�ection and therefore � decomposes A.
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(2) If A is 3-step unipotent, we may assume by conjugating that A D TŒ1;0�; then

the boundary of its invariant fan FA is the vertical plane ¹y D 0º, on which

A acts as a horizontal translation by 1. In view of Lemma 2.8, the �xed R-

circle of � is either a horizontal line ¹t D t0º contained in the plane @FA, or

an in�nite R-circle orthogonal to this vertical plane.

In the �rst case � ı A acts on @FA by .x; t / 7! .x C 1; t0 � t / which is not

an involution, and therefore � cannot decompose A. In the second case, the

restriction of � to @FA is a half-turn, and so is the restriction of � ı A. The

latter is also the restriction to @FA of a re�ection � 0 about a in�nite R-circle;

then A D � ı � 0 by Corollary 2.1, as A and � ı � 0 agree on their common

invariant fan. �

The following lemma describes real re�ections that preserve a given fan.

We state it only for fans through q1, as this is all we will need. Let F be a fan

through q1 and .Lt /t2R be the foliation of its boundary by in�nite R-circles. Let

L be an in�nite R-circle not contained in or parallel to @F , and Lt0 be the unique

leaf of @F such that L\Lt0 is nonempty. We will say that L and F are orthogonal

whenever L and Lt0 are orthogonal in the contact plane at the point L \ Lt0 . It

is a direct consequence of Lemma 2.1 that the re�ection about an in�nite R-circle

preserves any fan which is orthogonal to it.

Lemma 2.8. Let F be a fan through q1. Let � be the real re�ection about a real
plane R. Then � preserves F if and only R contains the point q1 on its boundary
and one of the following occurs:

(1) the real plane R is one of the leaves of F , in which case � acts on the vertical
plane @F as the re�ection across the a�ne line @R;

(2) the real plane R intersects the Heisenberg group along an a�ne line orthog-
onal to the vertical plane @F . In that case, it acts on @F as a Euclidean
half-turn.

Proof. First, � �xes the point q1. Indeed, as it preserves F , � preserves globally

the (singular) foliation of F by real planes and therefore �xes the intersection of all

leaves, which is q1. This means that R contains q1, and that the corresponding

R circle is in�nite. Conjugating by an element of Isom.N/, we can assume that �

is the real re�ection about the real plane H2
R \ H2

C, which acts on the boundary by

�.Œz; t �/ D Œ Nz; �t �. A vertical plane is �-invariant if and only if it is the vertical

plane ¹y D 0º, in which case R is a leaf of the corresponding fan, or a plane

orthogonal to the x-axis, which corresponds to the second case. �
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3. Con�gurations of points and cross-ratios

3.1. Triples of points

De�nition 3.1. Given a triple .p1; p2; p3/ of distinct points in Hn
C

[@ Hn
C

and lifts

Pi 2 Cn;1 of the pi , the ratio

T .p1; p2; p3/ D hP1; P2ihP2; P3ihP3; P1i
hP1; P3ihP3; P2ihP2; P1i

does not depend on the lifts Pi . We will call T .p1; p2; p3/ the triple-ratio of

.p1; p2; p3/.

Note that T .p1; p2; p3/ is also well-de�ned if 2 or more of the points are equal

in Hn
C (but not in @ Hn

C).

Observe that holomorphic isometries (elements of PU.n; 1/) clearly preserve

the triple-ratio, whereas for any antiholomorphic isometry g, we have

T .g.p1/; g.p2/; g.p3// D T .p1; p2; p3/:

The triple-ratio is related to the classical Cartan angular invariant A (see [C]) and

Brehm’s shape invariant � (see [Br]) for triangles as follows.

� The Cartan angular invariant of three points p1; p2; p3 2 @ Hn
C

is de�ned as

A.p1; p2; p3/ D arg.�hP1; P2ihP2; P3ihP3; P1i/:

It relates to the triple-ratio by

T .p1; p2; p3/ D e2iA.p1;p2;p3/:

� Brehm’s shape invariant � of three points in Hn
C

is related to the normalized

triple product

zT .p1; p2; p3/ D hP1; P2ihP2; P3ihP3; P1i
hP1; P1ihP2; P2ihP3; P3i :

Namely, � D � Re. zT /. Note that

T .p1; p2; p3/ D
zT .p1; p2; p3/

zT .p1; p3; p2/
:

We refer the reader to Chapter 7 of [G] for classical properties of the Cartan

invariant. Note in particular that the Cartan invariant satis�es A.p1; p2; p3/ 2
Œ��=2; �=2�, and that A.p1; p2; p3/ D ˙�=2 (resp. A.p1; p2; p3/ D 0) if and

only if the three points are contained in a complex line (resp. a real plane). Also,

the Cartan invariant classi�es triples of pairwise distinct points in @ Hn
C

up to

holomorphic isometries.
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The following classi�cation of triples of points in Hn
C

is due to Brehm ([Br]).

Theorem 3.1 (Brehm). Let .x1; x2; x3/, .y1; y2; y3/ be two triples of points in Hn
C
.

There exists g 2 Isom.Hn
C/ such that g.xi / D yi ( for i D 1; 2; 3) if and only if

� d.x1; x2/ D d.y1; y2/, d.x2; x3/ D d.y2; y3/, d.x1; x3/ D d.y1; y3/ and
T .x1; x2; x3/ D T .y1; y2; y3/, in which case g is holomorphic,

or

� d.x1; x2/ D d.y1; y2/, d.x2; x3/ D d.y2; y3/, d.x1; x3/ D d.y1; y3/ and
T .x1; x2; x3/ D T .y1; y2; y3/, in which case g is antiholomorphic.

In fact Brehm’s formulation is slightly di�erent as he considers � Re. zT / in-

stead of zT (so his statement doesn’t include our 2 cases). This is equivalent be-

cause the norm of zT is determined by the 3 side-lengths.

3.2. The complex cross-ratio. The following de�nition is due in this form to

Goldman ([G]) (following Koranyi and Reimann ([KR])) in the case of boundary

points.

De�nition 3.2. Let .p1; p2; p3; p4/ be a quadruple of distinct points in Hn
C

[@ Hn
C
.

The quantity de�ned by

X.p1; p2; p3; p4/ D hP3; P1ihP4; P2i
hP4; P1ihP3; P2i (3.1)

does not depend on the choice of lifts Pi of the pi ’s, and is called the complex
cross-ratio of .p1; p2; p3; p4/.

Note that X.p1; p2; p3; p4/ is also well-de�ned when some of the 4 points

coincide, as long as at most 2 of them coincide in @ Hn
C
.

The complex cross-ratio of boundary points has been studied in detail in [G]

(pp. 224–228), to which we refer the reader for more details. As for the triple-

ratio, it is a direct observation that holomorphic isometries preserve X whereas

antiholomorphic ones change it to its complex conjugate. One of our main tools

will be �nding conditions under which such a cross-ratio is real, in the spirit of

the following result (Theorem 7.2.1 of [G]).

Theorem 3.2 (Goldman). Let .p1; p2; p3; p4/ be a quadruple of distinct points in
@ Hn

C
. Then X.p1; p2; p3; p4/ is real and positive if and only if there exists a real

re�ection � such that �W p1 $ p2 and p3 $ p4.
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Note that, if there exists such a real re�ection �, then

X.p1; p2; p3; p4/ D X.�.p1/; �.p2/; �.p3/; �.p4// D X.p2; p1; p4; p3/:

Going back to the de�nition of X, it is straightforward that X.p2; p1; p4; p3/ D
X.p1; p2; p3; p4/, and we see that the condition that X 2 R is indeed necessary.

In [G] the assumption that X > 0 is omitted, but it must be added for the following

reason. X is related to triple products by

X.p1; p2; p3; p4/ D hP1; P2ihP2; P3ihP3; P1i
hP1; P2ihP2; P4ihP4; P1i � jhP4; P2ij2

jhP3; P2ij2 : (3.2)

Because the Cartan invariant belongs to Œ��=2; �=2�, we see that if X is real and

negative the two triple products hP1; P2ihP2; PiihPi ; P1i (i D 3; 4) must have

arguments either both equal to �=2 or both equal to ��=2. This means that p3

and p4 belong to the complex line spanned by p1 and p2, and are on the same

side of the geodesic .p1p2/. See Proposition 2 of [KR] and property 7 on p. 226

of [G]. However, if p1; p2; p3; p4 are in such a con�guration then there cannot

exist a real re�ection � such that �W p1 $ p2 and p3 $ p4. Indeed, if a real

re�ection preserves a complex line then it acts on it by re�ection in a geodesic.

The following basic observation will allow us to project orthogonally onto the

complex sides of the quadrilateral .p1; p2; p3; p4/.

Lemma 3.1. Let p1; p2; p3; p4 2 H n
C

with p1 ¤ p2, and let �12 denote or-
thogonal projection onto the complex line L12 spanned by p1 and p2. Then
X.p1; p2; p3; p4/ D X.p1; p2; �12.p3/; �12.p4//.

Proof. Let c12 be a polar vector for L12, normalized so that hc12; c12i D 1. Then

�12 is the projectivization of the linear projection in C2;1 given by …12.z/ D
z � hz; c12ic12. Then, for any point p in Hn

C
[@ Hn

C
,

h…12.p/; pii D hp � hp; c12ic12; pii D hp; pi i .i D 1; 2/:

The result follows by substituting p3 and p4 in this expression. (Here and when-

ever it is convenient we will slightly abuse notation by using the same letter for

points in CP n and their lifts to Cn;1; we will however insist that lifts of points

inside Hn
C

have norm �1 and lifts of points outside Hn
C

have norm 1.) �

3.3. Cross-ratios and real re�ections. Recall that the classical cross-ratio of 4

distinct points in CP 1 D C [ ¹1º is de�ned by (see for instance [G])

Œz1; z2I z3; z4� D .z4 � z1/.z3 � z2/

.z4 � z2/.z3 � z1/
: (3.3)
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It is invariant under the diagonal action of PGL.2;C/, and is real if and

only if the 4 points are cocylic or collinear. Moreover, Œz1; z2I z3; z4� is positive

if and only if the pairs .z1; z2/ and .z3; z4/ do not separate each other on the

common circle/line. The KR cross-ratio generalizes the classical cross-ratio in

the following sense.

Lemma 3.2. If p1; p2; p3; p4 lie in a common complex line C � CP n, then

X.p1; p2; p3; p4/ D Œ�.p1/; �.p2/I p4; p3�

where � denotes inversion in the boundary circle of C .

Proof. By applying an element of PU.n; 1/, we may assume that the complex

line C containing the pi is the �rst coordinate axis of Cn (seen as an a�ne

chart of CP n) in the ball model. Each point of C has a lift to Cn;1 of the form

Œz; 0; : : : ; 0; 1�, and in these coordinates, � is given by z 7! 1= Nz. We lift each pi as

a vector Pi D Œzi ; 0; : : : ; 0; 1�T (the standard lift in the ball model), and compute

X.p1; p2; p3; p4/ D .z3 Sz1 � 1/.z4 Sz2 � 1/

.z4 Sz1 � 1/.z3 Sz2 � 1/

D .z3 � 1=Sz1/.z4 � 1=Sz2/

.z3 � 1=Sz2/.z4 � 1=Sz1/

D Œ�.z1/; �.z2/I z4; z3�: �

From Lemma 3.1 and 3.2 and the properties of the classical cross-ratio we

obtain the following reality condition for X.

Proposition 3.1. Let p1; p2; p3; p4 2 Hn
C with p1 ¤ p2, and let �12 denote

orthogonal projection onto the complex line L12 spanned by p1 and p2. Then

(1) the complex cross-ratio X.p1; p2; p3; p4/ is real and positive if and only if

� either the points p1; p2; �12.p3/; �12.p4/ are all equidistant from a
geodesic 
 in L12, with p1; p2 on one side of 
 and �12.p3/; �12.p4/

on the other,

� or the pi are on the boundary of a common complex line and ¹p1; p2º
does not separate ¹p3; p4º on this circle;

(2) X.p1; p2; p3; p4/ is real and negative if and only if p1; p2; p3; p4 are on the
boundary of a common complex line and ¹p1; p2º separates ¹p3; p4º on this
circle.
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Note that the second statement with the pi on the boundary of Hn
C

is one half of

Proposition 2 of [KR] and of property 7 on p. 226 of [G]. However the statement

of the other half (so, our �rst statement) is di�erent when some of the pi are in Hn
C
.

Proof. Normalize as in Lemma 3.2 so that the complex line L12 containing p1 and

p2 is the �rst coordinate axis in the ball model of Hn
C. Denote by z1; : : : ; z4 the

respective coordinates in this unit disk of the points p1; p2; �12.p3/, and �12.p4/.

According to Lemma 3.2 and Proposition 3.1,

X.p1; p2; p3; p4/ 2 R

() Œ1=Sz1; 1=Sz2I z4; z3� 2 R

() 1=Sz1; 1=Sz2; z4; z3 lie on a common circle C in CP 1.

(3.4)

Note that z1; z2; z3; z4 are in the closed unit disk of C, so that 1=Sz1 and 1=Sz2 are

outside the open unit disk. In particular, either C intersects the unit circle in 2

points p and q, or C is the unit circle.

(1) In view of (3.4), if X.p1; p2; p3; p4/ < 0, then .z1; z2/ and .1= Nz3; 1= Nz4/

separate each other on C . The latter remark tells us that this is only possible

when C is the unit circle. Therefore p1, p2, p3 and p4 all belong to the

boundary of L12 and the pairs .p1; p2/ and .p3; p4/ separate each other on C .

(2) Assume that X.p1; p2; p3; p4/ > 0.

(a) If C is the unit circle, then zi D 1= Nzi for i D 1; 2 and thus

X.p1; p2; p3; p4/ D Œz1; z2; z4; z3�;

which is positive if and only if ¹p1; p2º do not separate ¹p3; p4º in C .

(b) If C intersects the unit circle in two points p and q, let 
 denote the

geodesic whose endpoints are p and q. Then �12.z3/ and �12.z4/ are

on a hypercycle with endpoints p and q (the part of C which is inside the

unit disk), and z1, z2 are on the image of this hypercycle by re�ection in


 (this is the image of the other half of C by inversion in the unit circle),

see the top part of Figure 2. Therefore p1; p2; �12.p3/; �12.p4/ are all

equidistant from 
 , with p1; p2 on one side of 
 and �12.p3/; �12.p4/

on the other. �

The following result is the analogue of Theorem 3.2 in the case where the four

points are inside H2
C.

Theorem 3.3. Let p1; p2; p3; p4 2 H2
C

with p1 ¤ p2 or p3 ¤ p4. There
exists a real re�ection � such that �W p1 $ p2 and p3 $ p4 if and only if
X.p1; p2; p3; p4/ > 0, d.p1; p3/ D d.p2; p4/ and d.p1; p4/ D d.p2; p3/.
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Figure 2. Projections of quadruples .p1; p2; p3; p4/ to L12.
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Proof. Let p1; p2; p3; p4 2 H2
C

satisfy X.p1; p2; p3; p4/ > 0, d.p1; p3/ D
d.p2; p4/ and d.p1; p4/ D d.p2; p3/. Consider the 2 ordered triples .p1; p2; p3/

and .p2; p1; p4/; these have equal side-lengths by our assumptions. We now com-

pare the corresponding triple-ratios, T1 D T .p1; p2; p3/ and T2 D T .p2; p1; p4/.

Observe that, taking lifts P1; : : : ; P4 of p1; : : : ; p4 respectively in C2;1,

T2 D hP2; P1ihP1; P4ihP4; P2i
hP1; P2ihP4; P1ihP2; P4i

D hP2; P1ihP3; P2ihP1; P3i
hP1; P2ihP2; P3ihP3; P1i � hP2; P3ihP1; P4i

hP2; P4ihP1; P3i � hP3; P1ihP4; P2i
hP3; P2ihP4; P1i

D T1 � X.p1; p2; p3; p4/

X.p1; p2; p3; p4/
:

Now by assumption X.p1; p2; p3; p4/ > 0, so that T2 D T1. Then, by Theorem 3.1,

there exists an antiholomorphic isometry g sending p1 to p2, p2 to p1 and p3 to

p4. But such an isometry must be an R-re�ection by Lemma 2.7, assuming that

p1 ¤ p2. If p1 D p2 but p3 ¤ p4, the same argument applies, permuting the

indices by the permutation .13/.24/. �

It may seem that we only used the assumption that X was real in the above

proof. Recall however that if X is negative, the four points are on the boundary

of a complex line, and the two pairs ¹p1; p2º and ¹p3; p4º separate each other.

In that case, as observed above, there cannot exist a real re�ection � such that

�.p1/ D p2 and �.p3/ D p4.

4. Commutators, decomposable pairs, and traces

4.1. Main results. Recall that a pair of holomorphic isometries .A; B/ 2
PU.n; 1/2 is said to be R-decomposable if there exist 3 R-re�ections �1, �2 and

�3 such that A D �1�2 and B D �1�3. We are now ready to prove our main result.

Theorem 4.1. Let A; B 2 PU.2; 1/ be two isometries not �xing a common point in

H2
C
. Then the pair .A; B/ is R-decomposable if and only if the commutator ŒA; B�

has a �xed point in H2
C

whose associated eigenvalue is real and positive.

Note that the eigenvalues of elements of PU.2; 1/ are not well-de�ned (up to

change of lift in U.2; 1/, or even SU.2; 1/), but the eigenvalues of a commutator

are well-de�ned (the commutator itself is independent of lifts). Using Goldman’s

classi�cation of isometries by trace and Proposition 2.3, this criterion can be

reduced to the following theorem.
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Theorem 4.2. Let A; B 2 PU.2; 1/ be two isometries not �xing a common point

in H2
C
. Then .A; B/ is R-decomposable if and only if

� ŒA; B� is loxodromic and TrŒA; B� > 3,

or

� ŒA; B� is unipotent,

or

� ŒA; B� is elliptic, TrŒA; B� 2 R and the eigenvalue 1 of ŒA; B� is of negative
type.

The extra assumption in the elliptic case means that the eigenvalue 1 corre-

sponds to the �xed point of ŒA; B�. The other eigenvalues of ŒA; B� are then e˙i�

for some � , by the assumption that TrŒA; B� 2 R and Proposition 2.3.

Proof of Theorem 4.1. Let p1 be a �xed point of ŒA; B� in H2
C
, P1 a lift of p1 in

C2;1 and �1 the associated eigenvalue, so that ŒA; B�P1 D �1P1. Consider the

cycle of four points de�ned as follows. Let P2 D B�1P1, P3 D A�1P2 and

P4 D B.P3/. First assume for simplicity that these 4 points are all distinct. Then

opposite sides of the quadrilateral .P1P2P3P4/ are identi�ed by A and B as on

Figure 3.

Figure 3. The 4-cycle associated to a �xed point of ŒA; B�.
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Note that AP4 D ŒA; B�P1 D �1P1. Then

X.p2; p4; p1; p3/ D hP1; P2ihP3; P4i
hP3; P2ihP1; P4i

D h��1
1 AP4; AP3ihP3; P4i
hP3; P2ihBP2; BP3i

D ��1
1

jhP3; P4ij2
jhP3; P2ij2 :

(4.1)

This proves the following:

Lemma 4.1. The cross ratio X.p2; p4; p1; p3/ is real and positive if and only if
�1 2 RC

For the next step we use Theorem 3.2 or 3.3, depending on whether p1 (and

hence all other pi ’s) is on @ H2
C

or in H2
C
. In the latter case, by construction of the

4 points we have d.p1; p2/ D d.p3; p4/ and d.p1; p4/ D d.p2; p3/. Therefore

Theorem 3.3 tells us:

Lemma 4.2. There exists a real re�ection � such that �.p1/ D p3 and �.p2/ D
p4 if and only if the cross-ratio X.p2; p4; p1; p3/ is real and positive.

The following lemma concludes the proof of Theorem 4.1.

Lemma 4.3. .A; B/ is R-decomposable () there exists a real re�ection � such
that �W p1 $ p3 and p2 $ p4.

Proof. Indeed, if A D �2�1 and B D �3�1 then �1 D � satis�es �W p1 $ p3 and

p2 $ p4. Conversely, if such a � exists then by Lemma 2.7 above, Aı� and B ı�

are real re�ections. Indeed they are both antiholomorphic, and A ı � (resp. B ı �)

exchanges p1 and p2 (resp. p1 and p4). Therefore .A; B/ is R-decomposable. 4

Finally we examine the case where some of the 4 points p1; : : : ; p4 are equal.

The cross-ratio appearing in Lemma 4.1 is well-de�ned as long as no three of

the points are on @ H2
C

and equal, in which case all four of them would be equal,

contradicting the assumption that A and B do not have a common �xed point. The

proofs of Lemmas 4.2 and 4.3 carry through as long as p1 ¤ p3 or p2 ¤ p4.

Now if p1 D p3 D p and p2 D p4 D q, then A and B both exchange p and

q (if they are distinct). If p and q are in H2
C

then A and B both �x the midpoint

of the segment Œpq� which is again assumed not to be the case. If p and q are on

@ H2
C

then A and B both have a �xed point on the geodesic line .pq/ and act as

a half-turn on the complex line spanned by p and q. In that case, on one hand

by Proposition 2.5 (a1–a3), any real plane containing .pq/ decomposes A and B ,
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therefore .A; B/ is R-decomposable. On the other hand, the commutator ŒA; B�

is loxodromic (because it acts by translation along the geodeesic .pq/) and has

an eigenvalue equal to 1 (because A and B have a common eigenvector as they

both preserve the complex line spanned by p; q), therefore ŒA; B� has 3 real and

positive eigenvalues. In particular, the conclusion of Theorem 4.1 holds in this

case as well. �

4.2. Groups �xing a point. When A and B have a common �xed point in H2
C

the results are the following:

Proposition 4.1. If A; B 2 PU.2; 1/ have a common �xed point in H2
C

then .A; B/

is R-decomposable.

Proposition 4.1 is the �rst part of Theorem 2.1 of [FalPau]; it essentially

follows from the fact that, given two complex lines in C2, there exists a Lagrangian

subspace intersecting each of them in a line (see Proposition 2.5 (e1-e3)).

Proposition 4.2. Let A; B 2 PU.2; 1/ have a common �xed point on @ H2
C
.

(a) If A or B is loxodromic then .A; B/ is R-decomposable if and only if A and
B commute.

(b) If A and B are both non-loxodromic and one of them is not 3-step unipotent
then .A; B/ is R-decomposable.

(c) If A and B are both 3-step unipotent then .A; B/ is R-decomposable if and
only if A and B commute.

Note that the 3 parts of Proposition 4.2 cover all cases where A and B have

a common �xed point on @ H2
C
, because screw-parabolic isometries have 2-step

unipotent part (this follows from the fact that their elliptic and unipotent parts

commute in the classi�cation theorem of Chen-Greenberg, our Theorem 2.2(c)).

Proof of Proposition 4.2. (a) First note that if A and B are both loxodromic with

a common �xed point, then by Proposition 2.5 (l): .A; B/ is R-decomposable if

and only if A and B have the same �xed points, that is they commute.

� Assume that one of A, B is loxodromic but not the other, say A is loxodromic

and B is parabolic or a complex re�ection, and that A and B commute. In

particular, A has distinct eigenvalues, therefore B must also be diagonalizable

by the assumption that A and B commute. Moreover B �xes the �xed

points of A, which means that the �xed line of B contains the axis of

A. Therefore any real re�ection which decomposes A also decomposes B

(by Proposition 2.5 (e2) and (l)). In particular, .A; B/ is R-decomposable.
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� Conversely, assume that A is loxodromic and B is not, and that .A; B/ is

R-decomposable. By part (p) of Proposition 2.5, B cannot be parabolic.

It is thus a complex re�ection. Denote by C the complex line �xed by B , and

by pA; qA the �xed points of A. Then by Proposition 2.5 (e2) and (l), there

exists a real re�ection � with �xed R-plane R such that � exchanges pA and

qA, and such that R \ C is a geodesic. Then � preserves xC which contains

one of pA and qA, therefore xC also contains the other, and A and B commute.

(b) Assume that A is not 3-step unipotent. Conjugating if necessary, we may

assume that the common �xed point is q1. Denote by C the invariant complex

line of A, and pick a point p in the vertical line @C . Any a�ne line through p

contained in the contact plane at p is the boundary of a real plane R such that

R \ C contains p and q1. This implies that for any such R, R \ C is the geodesic

connecting p to q1, and therefore R decomposes A by part (p) of Proposition 2.5.

� If B preserves a complex line, that is B is a complex re�ection or screw

parabolic, then its invariant complex line C 0 is such that @C 0 is a vertical

complex line. If C D C 0 then the result is clear. If not, one of the

in�nite R-circles through p intersects @C 0 and therefore the corresponding

real re�ection decomposes B .

� If B is 3-step unipotent then one of the in�nite R-circles through p inter-

sects the invariant fan of B orthogonally, therefore the corresponding real

re�ection decomposes B .

(c) If both A and B are 3-step unipotent then in view of Proposition 2.5 and

Lemma 2.8, the pair .A; B/ is R-decomposable if and only if there exists a real

plane R such that the in�nite R-circle @R is orthogonal to both invariant fans of

A and B . This is equivalent to saying the these two fans are parallel, which by

Lemma 2.3 means that A and B commute. �

4.3. Maximal representations: C-Fuchsian punctured torus groups. The

case where the cross-ratio X.p2; p4; p1; p3/ is real and negative corresponds to

a rigidity phenomenon, giving the following result which holds in all dimensions.

Proposition 4.3. If ŒA; B� has a �xed point in Hn
C

whose associated eigenvalue
is real and negative, then the group hA; Bi stabilizes a complex line L in Hn

C.
Moreover in that case the corresponding �xed point of ŒA; B� is on the boundary
@ Hn

C, so that hA; Bi is a C-Fuchsian punctured torus group.
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Proof. Indeed, with the notation of the proof of Theorem 4.1, we have the follow-

ing variation of lemma 4.1:

X.p2; p4; p1; p3/ 2 R� () �1 2 R�:

Now by assumption �1 < 0, so that by Proposition 3.1 p1; p2; p3; p4 are on the

boundary of a common complex line L and the pairs .p2; p4/ and .p1; p3/ separate

each other. But A sends .p3; p4/ to .p2; p1/ and B sends .p2; p3/ to .p1; p4/, so

A and B both stabilize L. It is then a simple exercise in the hyperbolic plane to

check that this combinatorics implies that A and B must both be loxodromic, with

axes meeting inside the ideal quadrilateral Q D .p1; p2; p3; p4/. Therefore, Q

is disjoint from all its images by elements of the group generated by A and B .

This proves that hA; Bi is discrete. Note that in general this quadrilateral is not a

fundamental domain for hA; Bi, as its images only tessellate the complex line L

if ŒA; B� is parabolic. See Figure 4. �

Figure 4. A fundamental domain for the discrete punctured torus group in the case where

�1 < 0.

One can also interpret Proposition 4.3 in terms of the Toledo invariant of the

corresponding type-preserving representation of the fundamental group of the

once-punctured torus. Given a representation � of the fundamental group of a

surface † into PU.n; 1/, the Toledo invariant �.�/ is de�ned as the integral over

† of the pullback of the Kähler 2-form on Hn
C

by an equivariant map f W z† ! Hn
C
:

�.�/ D
Z

†

f ?!: (4.2)
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In the case where † is non-compact, one should be careful that this integral is

well-de�ned. This is guaranteed for instance by the condition that the map f

has �nite energy (see [KM]). The existence of a such a �nite-energy equivariant

map is guaranteed by the assumption that all peripheral loops on † are mapped

to parabolics by the representation ([KM]). This assumption being made, it is

possible to use an ideal triangulation of † D
F

i �i to compute the Toledo

invariant, as in [GP]. The result is that the Toledo invariant can be written as

�.�/ D
X

i

Z

f .�i /

!; (4.3)

where each integral is computed over any 2-simplex with boundary f .@�i/. But

the integral of ! over any 2-simplex with boundary @� is equal to twice the Cartan

invariant of � (this is Theorem 7.1.11 of [G]). As a consequence, we see that for

a type-preserving representation of the fundamental group of the once-punctured

torus, the Toledo invariant is given by

�.�/ D 2 .A.p1; p2; p3/ C A.p1; p3; p4// ; (4.4)

with p1; : : : ; p4 de�ned as previously. On the other hand, taking arguments in

equation (3.2) gives

arg.X.p2; p4; p1; p3// D A.p2; p4; p1/ � A.p2; p1; p3/

D A.p1; p2; p4/ C A.p1; p2; p3/:

Therefore, if the cross-ratio X.p2; p4; p1; p3/ is negative, then A.p1; p2; p4/ and

A.p1; p2; p3/ must both be equal to either �=2 or ��=2. In view of (4.4), this

means that j�.�/j D 2� . But the Toledo invariant satis�es the Milnor–Wood

inequality:

j�.�/j � 2�.2g � 2 C p/; (4.5)

where equality holds if and only if the representation is discrete and preserves a

complex line. In that case, the representation is called maximal (see [T, BIW]).

In the case of the once punctured torus g D p D 1, and therefore if j�.�/j D 2�

the representation is maximal.

5. Groups generated by real re�ections

We now use the criterion from Theorem 4.2 to show that various subgroups of

PU.2; 1/ are generated by real re�ections. More accurately this means that they

are the index 2 holomorphic subgroup of a group of isometries generated by real

re�ections.
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5.1. Mostow’s lattices and other non-arithmetic lattices in SU.2 ;1/. Mostow’s

lattices from [M] (revisited in [DFP]) as well as the new non-arithmetic lattices

in SU.2; 1/ studied by Deraux, Parker and the �rst author (see [ParPau], [Pau],

[DPP1] and [DPP2]) are all symmetric complex re�ection triangle groups. This

means that they are generated by 3 complex re�ections R1, R2 and R3 which are in

a symmetric con�guration in the sense that there exists an isometry J of order 3

such that JRiJ
�1 D RiC1 (with i mod 3). These groups are in fact contained

(with index 1 or 3, depending on the parameters) in the group � generated by R1

and J .

It was shown in [DFP] that Mostow’s lattices are generated by real re�ections,

and in [DPP2] this is extended to all symmetric complex re�ection triangle groups.

In both cases though, one �nds an explicit real re�ection which decomposes both

holomorphic generators R1 and J , which requires knowing explicit geometric

properties of the group. Now the existence of such a real re�ection follows

immediately from the following consequence of Theorem 4.1.

Proposition 5.1. If R 2 PU.2; 1/ is a complex re�ection or a complex re�ection
in a point, then for any A 2 PU.2; 1/, the pair .R; A/ is R-decomposable.

Proof. First assume that R is a complex re�ection about a complex line L. Then

ŒR; A� D RR0, where R0 D AR�1A�1 is a complex re�ection conjugate to R�1.

We denote by L0 its �xed complex line. The extensions of L and L0 to CP 2

intersect at a unique point p 2 CP 2, unless L D L0, in which case ŒR; A� D Id

and the result follows from Theorem 4.2. In general, p is �xed by both R and R0,

thus by ŒR; A�; we distinguish 2 cases, depending on whether p is in H2
C

or outside

of H2
C
.

(1) First assume that p 2 H2
C. Consider lifts of R and R0 to SU(2,1) such that

the lift of R has eigenvalues e2i� ; e�i�; e�i� (where the rotation angle of R

is 3�), with p corresponding to a e�i�-eigenvector. Likewise, the lift of R0

has eigenvalues e�2i� ; ei�; ei�, with p corresponding to a ei�-eigenvector

of R0. Then p is a �xed point of ŒR; A� D RR0 in H2
C

with corresponding

eigenvalue 1. The result follows from Theorem 4.1.

(2) If p is outside of H2
C
, then L and L0 are ultraparallel and p is polar to

their common perpendicular line, which we denote by zL. The isometries

R and R0 act on zL by rotation through angles 3� and �3� respectively. It is

an elementary fact from plane hyperbolic geometry that the product of two

elliptic elements with opposite rotation angles and distinct �xed points must

be hyperbolic (it follows for instance from Lemma 7.38.2 of [Be]). Therefore

RR0 is loxodromic; moreover its eigenvalue of positive type is 1 (it is the

product of those of R and R0 which are inverse of one another). Therefore

its eigenvalue spectrum must be either ¹r; 1; 1=rº or ¹�r; 1; �1=rº for some
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r > 0. Geometrically, this means that the rotation angle of the loxodromic

isometry ŒR; A� is 0 or � . By continuity, the rotation angle of ŒR; A� must

be the same for any value � and any relative position of L and L0 (with the

restriction that they are ultraparallel). It is 0 when L D L0 (as R and A are

inverse of one another in this case). This means that ŒR; A� has only positive

eigenvalues, and the result follows from Theorem 4.1.

Now assume that R is a complex re�ection about a point. As above, we write

ŒR; A� D RR0 with R0 D AR�1A�1. The eigenvalues of R (respectively R0)
are ¹ei�; ei�; e�2i�º (resp. ¹e�i�; e�i�; e2i�º), with e2i� (resp. e�2i�) of negative

type. This means that R (resp. R0) acts on any complex line through its �xed point

as a rotation of angle 3� (resp. �3�). Consider the complex line zL spanned by

the �xed points of R and R0. The action of R and R0 on zL is the same as in the

second item above, and this leads to the same conclusion. �

5.2. Groups with more than two generators. Applying the criterion from The-

orem 4.1 to a 2-generator subgroup of PU.2; 1/ is completely straightforward. For

subgroups generated by more elements (e.g. Picard modular groups) one needs to

be a bit more careful, as being generated by real re�ections is stronger than having

generators which are pairwise R-decomposable. The following observation gives

a way to bridge this gap, however its hypotheses are in general too restrictive and

in practice we will need some more work to show that a given group is generated

by real re�ections.

Lemma 5.1. Let � be a subgroup of PU.2; 1/ generated by A1; : : : ; Ak. If there
exist real re�ections �1; : : : ; �kC1 such that

(a) Ai D �i�iC1 for 1 6 i 6 k, or

(b) Ai D �1�iC1 for 1 6 i 6 k

then � has index 2 in y� D h�1; : : : ; �kC1i. In particular such a � is generated by
real re�ections.

Proof. In each case, pairwise products of the �i are in �, therefore � is the index 2

holomorphic subgroup of y�. �

5.3. Picard modular groups. We denote �d D SU.2; 1;Od/ the subgroup of

SU.2; 1/ consisting of matrices with entries inOd , where d is a positive squarefree

integer and Od denotes the ring of integers of QŒ
p

�d�. Recall that Od D ZŒi
p

d�

when d � 1; 2 (mod 4) and Od D ZŒ1Ci
p

d
2

� when d � 3 (mod 4). The groups

�d are usually called Picard modular groups. Denote by �1.d/ the stabilizer of

q1 in �d and I0 2 �d given by

I0 D

2
4

0 0 1

0 �1 0

1 0 0

3
5 : (5.1)
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The isometry I0 is a complex re�ection of order 2 about the complex line polar to

the vector v0 D
�
1 0 1

�T
.

Elements of �1.d/ are upper triangular matrices with units of Od on the

diagonal. In particular, �1.d/ contains no Heisenberg dilations (see (2.5)); in

other words �1.d/ < Isom.N/. Restricting the exact sequence (2.8)

1 �! IsomC.R/ �! Isom.N/
…��! IsomC.C/ �! 1

to the subgroup �1.d/ < Isom.N/ gives

1 �! �v
1.d/ �! �1.d/

…��! �h
1.d/ �! 1; (5.2)

with �v
1.d/ < IsomC.R/ and �h

1.d/ < IsomC.C/ (denoting as usual IsomC.X/

the group of orientation-preserving isometries of a space X). The following

complete description of the subgroups �h
1.d/ and �v

1.d/ was given in [FFPn]

for d ¤ 1; 3 (see [FFP] for d D 1 and [FalPar] for d D 3).

Lemma 5.2 ([FFPn]). For d > 1, denote as above �v
1.d/, resp. �h

1.d/, the
vertical, resp. horizontal, part of �1.d/ appearing in the exact sequence (5.2).
Then

(a) �v
1.d/ D hT0i, with T0 D T

Œ0;
p

d�
as in (2.5);

(b) �h
1.d/ D IsomC.Od / if d � 3 .mod 4/ (d ¤ 3); �h

1.d/ has index 2 in
IsomC.Od / if d � 1; 2 .mod 4/ (d ¤ 1).

Proof. We sketch the proof given in [FFPn]. First, note that an element P.z;t;�/

of Isom.N/ is in the kernel of …� if and only if z D � D 0, see (2.8). This gives

part .a/. Next, when d ¤ 1; 3, the only units of Od are ˙1 and thus the rotational

part of an element P.z;t;�/ 2 �1.d/ must satisfy � D 0 or � D � . In particular the

subgroup of �1.d/ formed by Heisenberg translations has index two. The same

observation holds for the translation subgroup IsomC.Od /, which is an extension

of its translation subgroup �t
d

by the central involution w 7! �w. The strategy

used in [FFPn] is to try to lift the generators of �t
d

to �1.d/. The existence of

such a lift can be veri�ed using the explicit form of the map …� given (2.8).
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(I) Assume that d � 3 (mod 4) (and d ¤ 3) . Then �t D h bT1; bT2i with

bT1 D
�

1 1

0 1

�
; bT2 D

�
1 .1 C i

p
d/=2

0 1

�
:

Both bT1 and bT2 lift to �1.d/, and their lifts T1 and T2 satisfy ŒT2; T1� D T0

which generates �v
1.d/. Therefore, hT1; T2i has index 2 in �1.d/, and

�h
1.d/ D h yT1; yT2i D IsomC.Od /.

(II) Assume that d � 2 (mod 4). Then �t D h bT1; bT2i with

bT1 D
�

1 1

0 1

�
; bT2 D

�
1 i

p
d

0 1

�
:

Now bT2 lifts to �1.d/, bT1 does not but bT1
2 does. This implies that �h

1.d/ D
h bT1

2; bT2i. The lifts T2 and T 0
1 satisfy ŒT2; T 0

1� D T 4
0 which generates an index

4 subgroup of �v
1.d/. Therefore, hT 0

1; T2i has index 8 in �1.d/.

(III) Assume that d � 1 (mod 4) (and d ¤ 1). Then �t D h bT1; bT2i with

bT1 D
�

1 1

0 1

�
; bT2 D

�
1 i

p
d

0 1

�
:

Now bT1 and bT2 do not lift to �1.d/, but bT1
2 and bT2

2 do. This implies that

�h
1.d/ D h bT1

2; bT2
2i, which has index 4 in h bT1; bT2i. The lifts T 0

1 and T 0
2 satisfy

ŒT 0
2; T 0

1� D T 4
0 which generates an index 4 subgroup of �v

1.d/. Therefore,

hT 0
1; T 0

2i has index 16 in �1.d/. �

Remark 3. In cases (II) and (III) above, the translation directions of T1 and T2 are

orthogonal, and so are the translation directions of the generating pairs of �h
1.d/.

In case (I) this is not true. However, the two elements bT1 and bT2
2 bT1

�1 have this

property and generate an index two subgroup of �h
1.d/. Therefore in view of the

previous discussion if we make the following changes:

� in case (I), . bT1; bT2/ 7! . bT1; bT2
2 bT1

�1/,

� in case (II), . bT1; bT2/ 7! . bT1
2; bT2/,

� in case (III), . bT1; bT2/ 7! . bT1
2; bT2

2/,

we obtain �nite index subgroups of �h
1.d/ generated by pairs of translations that

lift to �1.d/ and have orthogonal directions. We will denote the lifts of the new
yT1 and yT2 by T1 and T2, and from now on we will only consider the group hT1; T2i.
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The central involution w 7! �w lifts to �1.d/ as the transformation given by

R1 D

2
4

�1 0 0

0 1 0

0 0 �1

3
5: (5.3)

In particular, �1.d/ is generated by R1 and its Heisenberg translation subgroup.

Note that R1 is a complex re�ection of order 2 about the complex line polar to the

vector v1 D
�
0 1 0

�T
.

Lemma 5.3. (1) The real re�ection �0 about the standard real plane R2 \ H2
C

decomposes R1, I0 and T2.

(2) The real re�ection R1�0 decomposes T1.

Proof. (1) Clearly, �0 �xes the polar vector to the mirrors of R1 and I0. Therefore

it decomposes these two transformations. Indeed the two transformations I0�0 and

R1�0 �x the vectors v0 and v1 respectively and thus preserve the corresponding

complex lines. They are therefore real re�ections, by Lemmas 2.6 and 2.7. On

the other hand, T2 is a lift to �1.d/ of a translation by a multiple of i
p

d . This

implies that T2 is a Heisenberg translation by Œik
p

d; t2�, where k is an integer and

t2 is chosen so that T2 2 �1.d/. In particular, this implies that the invariant fan of

T2 intersects the boundary of H2
C

along a vertical plane of the type ¹x D x2º, for

some x2 2 R. The �xed R-circle of �0 is the x-axis of the Heisenberg group, and

is therefore orthogonal to this vertical plane. This implies that �0 decomposes T2

by Proposition 2.5.

(2) A direct computation shows that in horospherical coordinates R1�0 acts as

.z; t; u/ 7! .�Nz; �t; u/. Its restriction to the boundary is thus the re�ection about

the in�nite R-circle ¹.iy; 0/; y 2 Rº. As T1 is the Heisenberg translation by some

Œk; i t1�, where k 2 Z, its invariant fan intersects the boundary along a vertical

plane ¹y D y1º for some y1 2 R, and is therefore orthogonal to the �xed R-circle

of R1�0. Again, by Proposition 2.5, this implies that R1�0 decomposes T1. �

We will denote the corresponding real re�ections as follows:

�1 D R1�0; �2 D T2�0; �4 D I0�0; �3 D T1�1 D T1R1�0:

Proposition 5.2. For all d > 1, the subgroup h�1.d/; I0i of �d is generated by
real re�ections up to �nite index.

Proof. Consider the group �� D h�j ; j D 0 : : : 4i. By construction �� contains

the group hT1; T2; R1; I0i which has �nite index in h�1.d/; I0i. On the other hand,

we claim that all pairwise products of the �i are in h�1.d/; I0i. Indeed, each of

the �i is of the form Ai�0 with Ai 2 h�1.d/; I0i, therefore �i�j D Ai�0Aj �0 D
AiAj . The result follows by noting that �1.d/ and I0 are preserved under complex

conjugation of entries. �
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Note that from the previous discussion, denoting by T1; T2 the lifts to �1.d/

of generators of the orthogonal re�ection subgroup of IsomC.Od / (or their square

when applicable), the index of hT1; T2; R1; I0i in h�1.d/; I0i is 2 when d �
3 (mod 4) (and d ¤ 3), 4 when d � 2 (mod 4), and 8 when d � 1 (mod 4)

(and d ¤ 1). For d D 3 the index is 6 and for d D 1 it is 16 (as there is an

additional rotational part of order 3, 2 respectively). However in the latter cases

we can recover the rotational part in the real re�ection group by replacing R1 in

the de�nition of �1 by the appropriate complex re�ection of order 4 or 6.

For d D 1; 2; 3; 7; 11 it is known from [FalPar], [FFP], and [Z] that

h�1.d/; I0i D �d ;

giving the following corollary.

Corollary 5.1. For d D 3; 7; 11 (respectively 2 and 1), �d D PU.2; 1;Od/ has a
subgroup of index 2 (respectively 4 and 8) which is generated by real re�ections.

Note that for d D 3, the full group �3 is in fact generated by real re�ections by

Proposition 5.1, as it was shown in [FalPar] (Proposition 5.11) that �3 D hJ; R1i
with J regular elliptic of order 3 and R1 a complex re�ection of order 6.

Question. Are all Picard modular groups PU.2; 1;Od/ generated by real re�ec-
tions up to �nite index?
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