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In�nite unicorn paths and Gromov boundaries

Witsarut Pho-On1

Abstract. We extend the notion of unicorn paths between two arcs introduced by Hensel,

Przytycki and Webb to the case where we replace one arc with a geodesic asymptotic to a

lamination. Using these paths, we give new proofs of the results of Klarreich and Schleimer

identifying the Gromov boundaries of the curve graph and the arc graph, respectively, as

spaces of laminations.
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1. Introduction

The goal of this paper is to provide direct elementary proofs of results of Klarreich

and Schleimer identifying the Gromov boundaries of the arc and curve graph

AC.S/ and the arc graph A.S/, respectively. Our proofs use the tools developed

by Hensel, Przytycki and Webb in their elementary proofs of hyperbolicity of both

AC.S/ andA.S/[10]. We begin by recalling Klarreich’s Theorem [12]; see also [7]

and [20].

Theorem 1.1 (Klarreich). There is a Mod.S/-equivariant homeomorphism

F W EL.S/ �! @AC.S/:

Furthermore, if ¹anº 2 AC.S/ is a sequence converging to F.L/, then any

Hausdor� accumulation point of ¹anº in G.S/ contains L.

Here Mod.S/ is the mapping class group of S , G.S/ is the set of all geodesic

laminations, and EL.S/ is the set of all ending laminations. Recently, Schleimer

proved the analogous result for A.S/, see [19]. To state this, we must consider

a larger space of laminations EL0.S/ � EL.S/. The topology on EL0.S/ and

EL.S/ is the Thurston topology [5], also called the coarse Hausdor� topology

in [7].

1 The author was partially supported by the NSF grant DMS-1207183.



354 W. Pho-On

Theorem 1.2 (Schleimer). There is a Mod.S/-equivariant homeomorphism

F W EL0.S/ �! @A.S/:

Furthermore, if ¹anº 2 A.S/ is a sequence converging to F.L0/, then any

Hausdor� accumulation point of ¹anº in G.S/ contains L0.

The outline of this paper is as follows. In section 2, we recall some basic

de�nitions and results about Gromov boundaries, laminations, arc and curve

graphs, and arc graphs. Some de�nitions and results about unicorn paths are also

included in this section. In section 3, we de�ne in�nite unicorn paths and the proof

of Theorem 1.2 is given. In Section 4, we provide the slight modi�cation of the

proof of Theorem 1.2 necessary for Theorem 1.1.

Acknowledgments. I would like to thank my advisor Christopher J. Leininger

for guidance, support and encouragement. I would also like to thank the referee

for his/her suggestions. My thanks also goes to Ashley Weber for her valuable

comments.

2. Preliminaries

2.1. Gromov boundaries. Let X be a ı-hyperbolic geodesic metric space. Fix

a base point o in X . For x; y 2 X , de�ne the Gromov product

.x � y/o D
1

2
.d.x; o/ C d.y; o/ � d.x; y//:

If Œx; y� is a geodesic from x to y, then jd.o; Œx; y�/ � .x � y/oj � 2ı. Given

two sequences of points in X , ¹xnº and ¹ynº, they are said to be equivalent if

lim inf
i;j !1

.xi � yj /o D 1. Denote Œ¹xnº� the equivalence class of ¹xnº. De�ne the

Gromov boundary of X by

@X D ¹Œ¹xnº�j lim inf
i;j !1

.xi � xj /o D 1º:

There is a metric on @X such that distinct points Œ¹xnº� and Œ¹ynº� in @X are close

if and only if lim infi;j !1.xi � xj /o is large. See [4] for more details.

2.2. Arc and curve graph and arc graph. Throughout, we let S be an ori-

ented connected hyperbolic surface of �nite area with �nitely many punctures.

We consider proper arcs and closed curves on S that are simple and essential.

The arc and curve graph AC.S/ is the graph whose vertices are isotopy classes of

proper arcs and curves on S . Two vertices are connected by an edge in AC.S/ if

they are realized disjointly. There are two subgraphs of AC.S/ we will consider.
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The curve graph C.S/ is the largest subgraph whose vertex set is the set of isotopy

classes of curves, and the arc graph A.S/ is the largest subgraph whose vertex

set is the set of isotopy classes of arcs. The inclusion of C.S/ into AC.S/ is a

quasi–isometry while A.S/ into AC.S/ is not. See [15] and [17] for more details.

We say that two arcs or curves are in minimal position if they intersect mini-

mally in their isotopy classes. We always realize isotopy classes of arcs and curves

by their complete geodesic representatives, which are in minimal position. Let S0

be a compact subsurface of S obtaining by removing small open horoball cusp

neighborhoods around each puncture so that any simple complete geodesic in S

is contained in S0 or intersects S X S0 in rays. Whenever we parametrize a bi–

in�nite geodesic l with one end at a puncture, we require this to have unit speed,

and to have l.�1; 0/ being a ray in S X S0 with l.0/ 2 @S0.

2.3. Laminations. A geodesic lamination on S is de�ned to be a closed subset

of S which is a disjoint union of simple complete geodesics, called leaves of the

lamination. Let L be a geodesic lamination. We say L �lls a subsurface Y of S

if L � Y and every simple closed geodesic on Y intersects L transversely, and

L is called minimal if every leaf of L is dense in L. Any minimal lamination

is connected. For a parametrized simple geodesic l starting at a puncture (see

Section 2.2 for our convention on parametrization), l is said to be asymptotic to

L if l t L D ¿ and lim
t!1

d.l.t /; L/ D 0. We let L0 � L be L with all isolated

leaves removed, and call it the derived lamination of L. For more on geodesics

laminations, see [5] and [3].

To state the following proposition, we �rst de�ne a crown and a punctured

crown to be complete hyperbolic surfaces with �nite area and geodesic boundary,

which are homeomorphic to .S1 � Œ0; 1�/ n A and .S1 � .0; 1�/ n A, respectively,

where A is a �nite subset of S1 �¹1º; see Figure 1. Let L be a minimal lamination

which is not a simple closed geodesic and P be a maximal collection of disjoint

simple closed geodesics such that P \ L D ¿. We can see that each component

of S n .P [ L/ is the interior of a complete surface of �nite area with geodesic

boundary. By Theorem 2.10 of [3], such a complete hyperbolic surface is the

complement of a �nite set of points in a compact surface with boundary. Let Y

be the component of S n P containing L. Note that any simple closed geodesic

c in Y intersects L transversely (i.e. L �lls Y ), otherwise we could add c to P ,

contradicting maximality.

Proposition 2.1. Every component of Y n L is isometric to the interior of a �nite

sided ideal polygon, a crown, or a punctured crown.

For closed surfaces, this basically follows from Lemma 4.4 of [3]. Here we

sketch an alternate proof for any surface.
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Figure 1. A crown (left) and a punctured crown (right).

Sketch of proof. By maximality of P , each component Y 0 of S n .P [ L/ is a

disk, an annulus, or a pair of pants. If Y 0 is a disk, then it is the interior of a �nite

sided ideal polygon. If Y 0 is an annulus, Y 0 must be isometric to the interior of

a crown or a punctured crown: otherwise, it contains a simple closed geodesic,

which contradicts the maximality of P .

Suppose Y 0 is a pair of pants. We note that Y must be the interior of a compact

hyperbolic surface with closed geodesic boundary: otherwise it contains a simple

closed geodesic, again contradicting the maximality of P . Since L contains no

closed geodesics, Y 0 \ L D ¿, hence Y 0 ª Y . So, every component of Y n L has

the required type. �

Every geodesic lamination on S consists of a �nite set of minimal sublamina-

tions together with a �nite set of additional bi–in�nite geodesics (isolated) where

each end goes out a cusp of S or is asymptotic to one of the minimal sublamina-

tions; see [5] or [3]. If L0 � L is a minimal component of a geodesic lamination

L on S which is not a closed geodesic, we write YL0
for the subsurface of S �lled

by L0 described above. If L0 is a closed geodesic, let YL0
be a small annular

neighborhood of L0.

The set of all geodesic laminations on S is denoted by G.S/. The Hausdor�

distance dH between closed subsets of S0 determines a metric on G.S/ (any

lamination L is determined by L \ S0). This makes G.S/ into a compact metric

space. The notation
H
�! means convergence in this Hausdor� metric.

A geodesic lamination L is called an ending lamination if it is minimal and

�lls S ; so every principle region is an ideal polygon or a punctured crown (which

also refer to as a punctured ideal polygon). The set of all ending laminations

is denoted by EL.S/. We de�ne another subset of G.S/ called the peripherally

ending laminations by

EL0.S/ D ¹L 2 G.S/ j L is minimal

and �lls a subsurface YL containing all puncturesº:
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Note that EL.S/ � EL0.S/ � G.S/, and for L 2 EL0.S/, every puncture is

contained in a unique principle region which is a punctured ideal polygon; see

Figure 2.

Figure 2. A punctured crown (left) viewed as a punctured ideal polygon. All possible arcs

from the puncture asymptotic to the sublamination (right).

Next, we will describe the topology on EL0.S/ and EL.S/ that we will be

interested in. Set

U�.L0/ D ¹L 2 EL0.S/ j N�.L/ � L0º

where N�.L/ is the �-neighborhood of L on S .

Lemma 2.2. If L 2 U�.L0/, then there exists ı > 0 such that Uı.L/ � U�.L0/.

Proof. Assume that L 2 U�.L0/. By de�nition, L0 � N�.L/. There is 0 < �0 < �

such that N�0.L/ � L0. Set ı D � � �0, and let L1 2 Uı.L/ so that L � Nı.L1/ .

Then

L0 � N�0.L/ � N�0.N���0.L1// � N�.L1/:

This means L1 2 U�.L0/, hence Uı.L/ � U�.L0/, as required. �

Let B D ¹U�.L0/j� > 0 and L0 2 EL0.S/º. Since the elements in B cover

EL0.S/, Lemma 2.2 implies that B is the basis for a topology, and ¹U�.L0/º�>0

is a basis at L0 (consequently, the topology is 1st countable).

For ¹Lnº1

nD1 � EL0.S/, say ¹Lnº coarse Hausdor� converges to L0 2

EL0.S/, written Ln
CH
��! L0, if for any subsequence ¹Lnk

º such that Lnk

H
�! L,

we have L � L0; see [7]. The next proposition tells us that convergence in

the topology on EL.S/ and EL0.S/ just de�ned is precisely coarse Hausdor�

convergence, and in particular, this is the Thurston topology; see Section 4.1 of [5].
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Proposition 2.3. Ln
CH
��! L if and only if Ln ! L in the topology of EL0.S/

de�ned above.

Proof. Assume that Ln
CH
��! L. Suppose that ¹Lnº does not converge to L. Then

there exist � > 0 and a subsequence ¹Lnk
º such that Lnk

… U�.L/ for all nk , i.e.

N�.Lnk
/ « L. By passing to a further subsequence if necessary, we may assume

that Lnk

H
�! L0 � L. By de�nition, there is N > 0 such that for all nk > N ,

dH .Lnk
; L0/ < �. Therefore L � L0 � N�.Lnk

/ which is a contradiction.

Conversely, suppose that Ln ! L in the above topology. Pass to any subse-

quence such that Lnk

H
�! L0. Let d 0

k
> dH .Lnk

; L0/ so that d 0

k
! 0, and let d 00

k

be such that L � Nd 00

k
.Lnk

/, and so that d 00

k
! 0. Now set dk D max¹d 0

k
; d 00

k
º.

Observe that L � \kNdk
.Lnk

/. On the other hand, we can show that this inter-

section is exactly L0. To see this, �rst note that L0 is contained each Ndk
.Lnk

/

for all k, and so is contained in the intersection. On the other hand, any point

x 2 Ndk
.Lnk

/ has distance at most 2dk to a point of L0. Therefore, the distance

of any point x in the intersection to a point in L0 is zero, hence x 2 L0. It follows

that L � L0, and hence Ln
CH
��! L. �

Corollary 2.4. For any topological space Y , f W EL0.S/ ! Y is continuous if

and only if f .Ln/ ! f .L0/ whenever Ln
CH
��! L0.

2.4. Unicorn arcs, unicorn paths and their properties. Given two arcs a and

b that are in minimal position, choose an endpoint of a and of b. A unicorn arc

between a and b is an embedded arc obtained from a segment of a from the

endpoint and a segment of b from the endpoint up to a point in a \ b. If c is a

unicorn arc between a and b. We call the segments of a and b of c a-arc and

b-arc of c, respectively. Note that not all points in a \ b determine unicorn arcs.

Given two unicorn arcs ai and aj , we say that ai < aj if ai contains a longer

segment of a than aj . Let ¹a1; a2; : : : ; an�1º be the ordered set of all unicorn arcs.

The sequence P.a; b/ D ¹a D a0; a1; a2; : : : ; an D bº is called the unicorn path

between a and b. See [10] for further details.

The following lemmas and propositions are some key properties of unicorn

paths. One is that unicorn paths stay close to any geodesics connecting the

endpoints in A.S/; see Proposition 2.7. Some lemmas will be used to prove a

similar property in AC.S/; see Lemma 2.8.

Lemma 2.5 ([10]). For every 0 � i < j � n, either P.ai ; aj / is a subpath of

P.a; b/ D ¹a D a0; a1; a2; : : : ; an D bº, or j D i C 2 and ai and aj represent

adjacent vertices of A.S/.
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Lemma 2.6 ([10]). Let x0; : : : ; xm with m � 2k be sequence of vertices in A.S/.

Then for any c 2 P.x0; xm/, there is 0 � i < m with c� 2 P.xi ; xiC1/ at distance

at most k from c.

Proposition 2.7 ([10]). Given two arcs a and b in A.S/ and g a geodesic in A.S/

connecting a to b, every arc in P.a; b/ is within distance 6 of g. Consequently,

the Hausdor� distance between g and P.a; b// is at most 12.

Proof. The �rst statement is proved in [10]. The last claim follows easily from

this as we now explain. Consider consecutive points x and y of P.a; b/ and

corresponding points x0 and y0 of g with distance at most 6 from x and y,

respectively. By the triangle inequality, we have d.x0; y0/ � d.x0; x/ C d.x; y/ C

d.y; y0/ D 6C1C6 D 13: Thus any point in g between x0 and y0 is distance at most

6 from one of x0 or y0, and hence the distance to one of x or y is at most 12. If we

consider all pairs of consecutive points x and y of P.a; b/ and all corresponding

pairs of points x0 and y0 in g, union of all subpaths of g connecting such pair x0 and

y0 covers g. This together with Lemma 2.5 imply that dH .g; P.a; b// � 12. �

Lemma 2.8. Given two arcs a and b in AC.S/ and g a geodesic in AC.S/ con-

necting a and b, then every curve in P.a; b/ is within distance 7 of g. Conse-

quently, the Hausdor� distance between g and P.a; b/ is at most 14.

Proof. Let c 2 P.a; b/ be at maximal distance k > 0 from g. Let Na0 Nb0 be the

maximal subpath of P.a; b/ containing c with Na0 and Nb0 at distance 2k from c. If

no Na0 exists, then d.c; a/ < 2k, and we set Na0 D a, and similarly for Nb0. Then,

by Lemma 2.5, P. Na0; Nb0/ � P.a; b/. Let a0 and b0 be vertices on g closest to

Na0 and Nb0, respectively. In the case when Na0 D a and/or Nb0 D b, let a0 D a

and/or b0 D b, respectively. We have d.a0; Na0/ � k and d.b0; Nb0/ � k. Thus

d.a0; b0/ � 6k. Concatenate the geodesic segment a0b0 of g with any geodesics

paths a0 Na0 and b0 Nb0. Let Na0 D x1; x2; : : : ; xm D Nb0 be the consecutive vertices of the

concatenation where m � 8k. For 1 � i � m � 2, let Nxi be an arc adjacent to both

xi and xiC1. By Lemma 2.6, c is at distance � dlog2 8k � 1e C 1 from some xi .

If xi 2 g, then k � dlog2 8k � 1e C 1. Otherwise, if x … g, x 2 a0 Na0 or b0 Nb0. Since

d.c; xi / � d.c; Na0/ � d.a0; Na0/ � k, we also have k � dlog2 8k � 1e C 1. Thus

k � 7. �

3. Arc graph

3.1. In�nite unicorn paths. Assume that S has at least one puncture. Take

an arc a 2 A.S/ and a lamination L0 2 EL0.S/. Pick an endpoint of a, note

that pick a puncture p. Orient a such that a ends at p. Then take a bi-in�nite

geodesic l , starting at p such that l is asymptotic to L0. A unicorn arc for a
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and l is a simple arc consisting of a segment of a and a segment of l from the

endpoints up to a point of intersection. For any two distinct unicorn arcs ai and

aj constructed from a and l , we say that ai < aj if ai contains a longer segment

of a than aj . We consider all unicorn arcs from a and l in order and write this

as ¹a D a0; a1; a2; : : : º D ¹anº D P.a; l/. We call this the in�nite unicorn path

de�ned by a and l . Set ¹x1; x2; : : : º � a \ l to be the set of intersection points

corresponding to each unicorn, appearing in order along a. We write ai D aı

i [ lı

i

where aı

i � ai and lı

i � li are rays (i.e. subarcs) and aı

i \ lı

i D xi . For each i , we

will use ai to denote both the arc consisting of the subarcs aı

i and lı

i as well as its

isotopy class, and its geodesic representative, with context clarifying the meaning.

When necessary, we will use di�erent notation.

Proposition 3.1. For any arc a, L0 2 EL0.S/, and l asymptotic to L0, P.a; l/

contains in�nitely many arcs.

Proof. The last point of intersection z of a with L0 is at a boundary leaf which is

one side of a punctured ideal polygon (since L0 2 EL0.S/). Observe that a cannot

intersect l after z (compare with Figure 2). However, the points of intersection

a \ l must accumulate on z since l is asymptotic to L0 and any leaf of L0 is dense

hence l is dense in L0 [ l . So, given ai 2 P.a; l/ de�ned by xi 2 a \ l , the next

time l intersects the arc of a between xi and z is the point xiC1, and hence aiC1

is de�ned. Since i was arbitrary, this completes the proof. �

The way we de�ne in�nite unicorn paths P.a; l/ is also valid for any lamination

L and any geodesic l asymptotic to L. However, we cannot guarantee that P.a; l/

will contain in�nitely many arcs in general.

For the next lemma, recall our convention about our parameterizations of

geodesics; see Section 2.2

Lemma 3.2. Let a 2 A.S/. Given � > 0 and R > 0, there is N > 0 such

that for any L 2 EL0.S/, if l is asymptotic to L and P.a; l/ D ¹a0; a1; : : : º,

then as parametrized geodesics ai .t / and l.t /, we have d.ai .t /; l.t // < � for all

t 2 .�1; R� and for all i � N .

Proof. Since a \ S0 is a compact arc, there is �0 > 0, so that the �0-neighborhood

of a in S0, N�0.a \ S0/ � S0, is a tubular neighborhood homeomorphic to

.a \ S0/ � Œ��0; �0�. Observe that the angle of intersection between L and a has a

lower bound �0 where �0 depends only on a. If not, some L0 2 EL0.S/ has a leaf

l0 intersecting a at such a small angle that l0 \ S0 � N�0.a \ S0/. Then l0 D a,

contradicting L0 2 EL0.S/.

Now the distance between consecutive points of intersection l \ a is bounded

below by 2�0, so if 0 < t1 < t2 < � � � are such that l.ti / D xi 2 l \ a, the

intersection point de�ning ai , then ti > .2�0/.i � 1/. Let a�

i be the geodesic

representative of ai D l.�1; ti � [ aı

i D lı

i [ aı

i . Since the angle of intersection
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is greater than �0, there are lifts Qa�

i of a�

i and Qai of ai to the universal cover

that have uniformly bounded Hausdor� distance (with the bound depending only

on a). In particular, there is a constant K > 0 (depending only on a) such that

d. Qa�

i .t /; Qai.t // � K, for all t 2 .�1; ti/. On the other hand, the lift Ql of l agreeing

with Qai on its initial segment has d. Qa�

i .t /; Ql.t // < etı for t < 0, where ı is the

length of @S0. Since ti > .2�0/.i � 1/, there is an N > 0 so that if i > N , we

have ti >> R, and hence by convexity of the hyperbolic distance function, we

have d. Qa�

i .t /; Ql.t // < � for all t 2 .�1; R�. Consequently, d.a�

i .t /; l.t // < � for

all t 2 .�1; R�. �

Corollary 3.3. If L 2 EL0.S/ and l is asymptotic to L, then any Hausdor�

accumulation point of the sequence P.a; l/ contains l , and hence L.

3.2. Construction of a continuous map. Here we use in�nite unicorn paths to

construct a continuous map from EL0.S/ to @A.S/. In the next two lemmas, we

assume a is an arc, L0 2 EL0.S/ and l is a simple geodesic asymptotic to L0.

Lemma 3.4. In�nite unicorn paths restrict to �nite unicorn paths. More precisely,

if aj 2 P.a; l/ and j � 3, then P.a; aj / � P.a; l/.

Here P.a; aj / is a unicorn path as in Section 2.4.

Proof. Let P.a; l/ D ¹a0; a1; a2; : : : º, realizing each ai by the geodesic represen-

tative of lı

i [ aı

i , and let xi D lı

i \ aı

i . Assume that aj 2 P.a; l/ with j � 3. By

Lemma 3.2, there is m � j such that am is close to l for all intersection points of

l with a up to xj . Then the �rst j C1 points of P.a; am/ are exactly a0; a1; : : : ; aj .

By Lemma 2.5, P.a; aj / � P.a; am/, so P.a; aj / D ¹a0; a1; : : : ; aj º. Thus

P.a; aj / � P.a; l/ as required. �

The next lemma is similar to the proof that the curve graph has in�nite diameter

given in [9].

Lemma 3.5. lim
n!1

d.a; an/ D 1 where ¹anº D P.a; l/.

Proof. To prove the lemma, suppose for a contradiction that lim
n!1

d.a; an/ ¤ 1.

By Proposition 2.7 and Lemma 3.4, d.a; an/ � d.a; am/ C 6 for all m > n, so

sup d.a; an/ < 1. Then there is some N > 0 and an in�nite subsequence ¹anº

with d.a; an/ D N . By Corollary 3.3, we may pass to a further subsequence

¹anº so that an
H
�! L with L � L0 2 EL0.S/. For each n, we have a1

n with

d.an; a1
n/ D 1 and d.a; a1

n/ D N � 1. We may assume that a1
n

H
�! L1 where

L1 is a lamination (pass to a subsequence if necessary). Since d.an; a1
n/ D 1,

L t L1 D ¿, and so L0 t L1 D ¿. Since L0 � L and L0 is minimal and �lls

YL0
, a subsurface containing all punctures, a leaf of L1 intersects YL0

. Thus the
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leaf has to be a leaf of L0 or asymptotic to L0. These facts imply that L1 � L0.

Proceeding inductively, for each k D 1; : : : ; N we get sequences ¹ak
nº1

nD1 so

that d.a; ak
n/ D N � k, ak

n

H
�! Lk , and Lk � L0. But aN

n D a for all n, a

contradiction. �

For arcs a and b, a geodesic in A.S/ connecting a and b is denoted by Œa; b�.

The following Proposition tells us that for L 2 EL0.S/, P.a; l/ D ¹anº de�nes a

point in @A.S/ which we denote ŒP.a; l/� 2 @A.S/.

Proposition 3.6. Let L 2 EL0.S/ and l be a geodesic ray asymptotic to L. Then

P.a; l/ D ¹anº de�nes a point in @A.S/. Moreover, for any two geodesic rays l

and l 0 asymptotic to L, we have ŒP.a; l/� D ŒP.a; l 0/� 2 @A.S/.

Proof. For any R > 0, Lemma 3.5 gives N > 0 such that d.a; an/ > R for all

n � N . For all m; n � N , we have .an; am/a � d.a; Œan; am�/ � 2ı. Since Œan; am�

and P.an; am/ have Hausdor� distance at most 12, by Proposition 2.7, this implies

that .an; am/a � d.a; P.an; am// � 12 � 2ı � R � 12 � 2ı. For jm � nj > 2,

P.an; am/ is contained in P.a; l/ by Lemma 3.4, so ŒP.a; l/� 2 @A.S/.

It remains to show the latter part. First note that l; l 0 are disjoint. Let ai 2

P.a; l/. We write ai D aı

i [lı

i . Since L is minimal, l 0\aı

i ¤ ¿. If we parametrize

l 0, the �rst time l 0 intersects aı

i de�nes a unicorn arc in P.a; l 0/ disjoint from ai .

Similarly, for each point in P.a; l 0/, we can �nd a point in P.a; l/ disjoint from it.

Consequently, the Hausdor� distance between P.a; l/ and P.a; l 0/ is one which

�nishes the proof. �

Proposition 3.7. Consider the map

F W EL0.S/ �! @A.S/

de�ned by F.L/ D ŒP.a; l/� where l is any geodesic asymptotic to L. Then F is

continuous.

Proof. Let ¹Lkº be a sequence of laminations in EL0.S/ and L0 2 EL0.S/ such

that Lk ! L0. By Proposition 2.3, Lk

CH
��! L0. Let ¹lkº be a sequence of bi-

in�nite geodesics with lk asymptotic to Lk for each k. Then each lk intersects

a small compact circle of around the cusp, so up to subsequence, lkj
! l as

parametrized geodesics. Any Hausdor� limit of any subsequence of ¹Lkº contains

L0, which �lls a subsurface YL0
containing all punctures. Since l must intersect

YL0
and have no transverse intersection with L0, it follows that l is asymptotic to

L0. This means ¹lkº spits into �nitely many convergent subsequences. Since lkj

limits to l , it follows that P.a; lkj
/ and P.a; l/ agree on longer and longer initial

intervals, hence F.Lkj
/ D ŒP.a; lkj

/� ! ŒP.a; l/� D F.L0/ (this follows from

Proposition 2.7, Lemma 3.4, and the fact that every geodesic triangle is thin). This

holds for any of the �nitely many subsequences ¹Lkj
º with lkj

! l for some l as

a parametrized geodesic and hence F.Lk/ ! F.L0/. �
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3.3. Homeomorphism and Theorem 1.2. Now that we have constructed a con-

tinuous map F W EL0.S/ ! @A.S/, we set about proving that it is a homeomor-

phism. We begin with the proof of injectivity of F .

Lemma 3.8. The map F W EL0.S/ ! @A.S/ is an injection.

Proof. Let L1 ¤ L2 in EL0.S/. Set l1 and l2 to be bi–in�nite geodesics asymp-

totic to L1 and L2, respectively. Then we have jl1 \ l2j D 1. Parametrize l1 and

l2 (recall our convention on parametrization of geodesic) and let t be the smallest

real number such that l1.Œ�1; t �/ \ l2.Œ�1; t �/ ¤ ¿. Let b be the arc de�ned by

segments of l1 and l2 up to a point in l1.Œ�1; t �/ \ l2.Œ�1; t �/ (if there are two

such points, pick one). Let P.a; li/ D ¹ai
j º1

j D1, i D 1; 2: By Lemma 3.2, ai
j stays

close to li for a very long time, for each i D 1; 2: In particular, it follows that for

all su�ciently large n and m, b is in P.a1
m; a2

n/. Therefore, the geodesic from a1
m

to a2
n passes within distance 6 of b for all n and m that are su�ciently large. Hence

.a1
m; a2

n/a � d.a; b/ C 6 C 2ı, so that ŒP.a; l1/� ¤ ŒP.a; l2/�. �

To show that F is also surjective, we need the following lemma.

Lemma 3.9. If Œ¹cnº� 2 @A.S/, then cn
CH
��! L0 and L0 2 EL0.S/ with

F.L0/ D Œ¹cnº�.

Proof. Let ¹cnº be a sequence in A.S/ that de�nes a point in @A.S/. Suppose

¹cnº is any subsequence Hausdor� converging to a lamination L. We may assume

cn ! l as parameterized geodesics, where l � L. Let L0 be the derived lamination

of L. If there is a component L1 � L0 �lling a subsurface YL1
containing all the

punctures, then l is asymptotic to L1 since l has one end at a puncture. Suppose

there is no such component of L0. The geodesic l is asymptotic to some component

L0 � L0 �lling a subsurface YL0
, and by assumption YL0

cannot contain all the

punctures.

By assumption, there exists an arc a outside YL0
such that ja\ l j < 1. Indeed,

there is an initial subarc l0 � l so that l n l0 � YL0
, and hence a \ l D a \ l0.

Since cn ! l , there is an N > 0 so that for all n � N , cn has an initial arc c0
n so

that c0
n is isotopic to l0 in S n YL0

. Hence, for all n � N , P.a; cn/ � P.a; l/. For

each n � N , the arc cn returns to the cusp after entering YL0
, so must intersect

l at some point, necessarily in YL0
before leaving YL0

. Thus, there is mn > n so

that cmn
follows l closely until this point of intersection, and hence P.cn; cmn

/

contains an arc bn built from subarcs of cn and cmn
whose respective intersections

with S n YL0
are precisely c0

n and c0
mn

. Therefore, ja \ bnj � 2ja \ l j. This gives a

uniform distance from P.cn; cmn
/ to a for all n > N . Therefore from Section 2.1

and Proposition 2.7, we have

.cn; cmn
/a � d.a; Œcn; cmn

�/ C 2ı � d.a; P.cn; cmn
// C 2ı C 12
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which contradicts the fact Œ¹cnº� 2 @A.S/. Hence, L0 2 EL0.S/. Fix any arc a.

In any subsequence as above with n su�ciently large, cn and l are very close on

long initial segments. Consequently, P.a; l/ and P.a; cn/ are agree on long initial

intervals. It follows that cn ! ŒP.a; l/� D F.L0/, hence Œ¹cnº� D F.L0/. Since

we passed to an arbitrary Hausdor� convergent subsequence and F is injective,

we have cn
CH
��! L0. �

By Lemma 3.8 and 3.9, we immediately have the next proposition.

Proposition 3.10. The map F W EL0.S/ ! @A.S/ is a bijection.

Next we show that F �1 is continuous.

Lemma 3.11. Let ¹Lnº1

nD1 be a sequence in EL0.S/. If F.Ln/ ! F.L0/ in

@A.S/, then Ln
CH
��! L0.

Proof. For all n � 0, set F.Ln/ D ŒP.a; ln/� D Œ¹ai;nº1

iD0� where ln is asymptotic

to Ln. Consider a Hausdor� convergent subsequence Ln
H
�! L where L is a

lamination. By passing to a further subsequence we may suppose that ln ! l

where l is asymptotic to L. Since F.Ln/ ! F.L0/ in @A.S/, for any r > 0,

there is nr such that aj;nr
2 N2ıC24.¹ai;0ºi / for all j with d.a; aj;nr

/ � r (we

are using the fact that subsegments of unicorn paths have Hausdor� distance

at most 12 from geodesics connecting their endpoints). For each r > 0, pick

ir > 0 so that d.a; air ;nr
/ D r , and consequently air ;nr

2 N2ıC24.¹ai;0º/.

For any R > 0 and � > 0, Lemma 3.2 guarantees that for r su�ciently large,

d.air ;nr
.t /; lnr

.t // < � for all t 2 .�1; R�. On the other hand, ln ! l as

parameterized geodesics. Therefore, air ;nr
! l as r ! 1, also as parameterized

geodesics. Since Œ¹air ;nr
º� D F.L0/, by Lemma 3.9 the closure of l contains L0.

Since l is asymptotic to L, L[ l is a lamination containing l , and l ª L0, we have

L0 � Nl n l � .L [ l/ n l D L. �

Proof of Theorem 1.2. That F is a homeomorphism follows immediately from

Proposition 3.7, 3.10, and Lemma 3.11. Furthermore, if ¹anº 2 A.S/ is a sequence

converging to F.L0/, by Lemma 3.9, any Hausdor� accumulation point of ¹anº

in G.S/ contains L0.

To see that F is Mod.S/-equivariant, note that for any f 2 Mod.S/ and

point Œ¹cnº� D F.L0/, the Hausdor� accumulation points of ¹f .cn/º are precisely

the f -image of the Hausdor� accumulation points of ¹cnº, and hence all contain

f .L0/ 2 EL0.S/. Thus, by the �rst part, it follows that f .F.L0// D f .Œ¹cnº�/ D

Œ¹f .cn/º� D F.f .L0//, as required �
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4. Arc and curve graph

In this section, we prove Theorem 1.1. We �rst use the same technique as to

prove Theorem 1.2 when S is a punctured surface. Then we use the result for the

punctured surfaces to prove Theorem 1.1 for the case when S is a closed surface.

Note that EL.S/ � EL0.S/. It follows that some results in Chapter 2 can be used

in this section.

4.1. Punctured surface. Assume that S is a connected hyperbolic surface of

�nite area with �nitely many punctures. We observe that if l is asymptotic to

L 2 EL.S/, P.a; l/ represents a point in the Gromov boundary, and this can be

used to de�ne a continuous map. The notation ŒP.a; l/� is still used to distinguish

between the path P.a; l/ and the point in the boundary. The next two propositions

are analogous to Lemma 3.5 and Proposition 3.6 and 3.7. The proofs are essential

identical, so we omit them.

Proposition 4.1. Let L 2 EL.S/ and l be a simple geodesic asymptotic to L. Then

P.a; l/ D ¹anº de�nes a point in @AC.S/. Moreover, for any two geodesic rays

l; l 0 asymptotic to L, we have ŒP.a; l/� D ŒP.a; l 0/� 2 @AC.S/.

Proposition 4.2. Consider the map

F W EL.S/ �! @AC.S/

de�ned by F.L/ D ŒP.a; l/� where l is any geodesic asymptotic to L. Then F is

continuous.

We note here that F is injective (this follows directly from the arguments

of Proposition 3.10 combining with Lemma 2.8). The next lemma mimics

Lemma 3.9. The proof is slightly di�erent, so we have included the relevant de-

tails.

Lemma 4.3. If Œ¹bnº� 2 @AC.S/, then bn
CH
��! L0 where L0 2 EL.S/ and

F.L0/ D Œ¹bnº�.

Proof. Let ¹bnº be a sequence in AC.S/ that de�nes a point in @AC.S/ and ¹cnº

be a sequence in A.S/ such that ci is adjacent to bi for all i . Then Œ¹cnº� is also

a point in @AC.S/ with Œ¹bnº� D Œ¹cnº�. We may pass to a subsequence to get

cn
H
�! L where L is a lamination. We will �rst show that L � L0 2 EL.S/.

Suppose for a contradiction that L0, the derived lamination of L, is not an ending

lamination.
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As parametrized geodesics, cn ! l � L up to subsequence where l is a

geodesic asymptotic to L1 � L0. Since L0 is not an ending lamination, YL1
is

not S (see Section 2.3 for discussion on the structure of laminations). Then there

exists an essential simple closed curve a in S n YL1
such that ja \ l j < 1. We can

use this a as in the proof of Lemma 3.9 and get a contradiction in the same way,

hence L0 D L0 2 EL.S/. Similar to the proof of Lemma 3.9, we have cn
CH
��! L0

and F.L0/ D ŒP.a; l/� D Œ¹cnº� D Œ¹bnº�. Since cn and bn have no transverse

intersection, any Hausdor� limit of ¹bnº has no transverse intersection with L0,

hence contains L0. Therefore bn

CH
��! L0. �

Proof of Theorem 1.1. The map F given by Proposition 4.2 is surjective by

Lemma 4.3. Continuity of F �1 follows the same basic argument as in Lemma 3.11.

Also, F is Mod.S/-equivariant since for any f 2 Mod.S/ and point Œ¹bnº� D

F.L0/, f .F.L0// D f .Œ¹bnº�/ D Œ¹f .bn/º� D F.f .L0// as in the proof of Theo-

rem 1.2. �

4.2. Closed surface. In this section, we show that the Gromov boundary of C.S/

is the space EL.S/ when S is a closed surface. Consider a hyperbolic metric m0

on S . According to [1], the set of simple geodesics on .S; m0/ is nowhere dense.

Then we can �nd a disk neighborhood D around a point x in S which is disjoint

from all geodesic laminations on S . Next, we use metric interpolation to modify

the metric m0 on S X x to a metric m1 which is complete, pinched negatively

curved, and so that

(1) m1 D m0 on S X D and

(2) in a neighborhood of x in D X x, m1 is hyperbolic.

This is an explicit calculation in polar coordinates about x. The same calculation

in 3–dimensions is attributed to Kerckho� and appears in the proof Theorem 1.2.1

of [13].

Now, we realize every simple closed curve on S as an m0-geodesic and note

that they are also m1-geodesics on S Xx. Hausdor� convergence in G.S; m0/ (that

is, using the metric m0) of any sequence of such geodesics is the same as Hausdor�

convergence in G.S Xx; m1/. Hence .G.S/; m0/ and .EL.S/; m0/ embed as closed

subsets of .G.S X x/; m1/ and .EL.S X x/; m1/, respectively. For the next lemma,

let m2 be any complete hyperbolic metric on S X x.

Lemma 4.4. There is a bi–Lipschitz homeomorphism

f W .S X x; m1/ �! .S X x; m2/

isotopic to the identity on S Xx, which is an isometry on some cusp neighborhood

and f lifts to a quasi–isometry Nf of the universal covers.
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Proof. We �rst isotope the identity so that it is a di�eomorphism with respect to

the smooth structure for m1 and for m2. Next, note that any two hyperbolic cusps

contain possibly smaller cusps which are isometric. Now after an isotopy, we can

assume that the di�eomorphism f W .S n x; m1/ ! .S X x; m2/ is an isometry on

some cusp neighborhood. Since the complement of the cusp is compact, there

is a bound on the bi–Lipschitz constant of the derivative, and hence the map is

K–bi–Lipschitz for some K > 1. So, f increases lengths of curves by at most a

factor of K and decreases them by a factor of at worst 1=K. Since the pull back

metric on the universal covers are path metrics so that the universal covering is a

local isometry, this means that lengths of paths in the universal cover are distorted

by at worst K and 1=K. This implies that distances are also distorted by at worst

K and 1=K, so the lift of f is a bi–Lipschitz in the universal covering, hence it is

a quasi–isometry. �

Since laminations, ending laminations, and Hausdor� convergence can be

de�ned in terms of the circle at in�nity of the universal covering, the lemma

proves:

Corollary 4.5. There is a homeomorphism f 0WG.S X x; m1/ ! G.S X x; m2/

which induces a homeomorphism from EL.S X x; m1/ to EL.S X x; m2/.

We know that the realization by geodesics de�nes an isometric embedding of

C.S/ into C.S X x/; see [10]. This also realizes @C.S/ as a subset of @C.S X x/.

Lemma 4.6. The isometric embedding C.S/ ! C.S X x/ induces an embedding

@C.S/ ! @C.S X x/ onto a closed subspace.

Proof. Let ¹Œ¹cn;kº1

nD1�º1

kD1
be a sequence of points in @C.S/ converging to

Œ¹cnº1

nD1� 2 @C.S X x/. We want to show that Œ¹cnº1

nD1� 2 @C.S/. For each r > 0,

there are kr and nr such that .cnkr ;kr
�cnr

/o > r . Thus Œ¹cnkr ;kr
º1

rD1� D Œ¹cnº1

nD1�.

Since cnkr ;kr
2 C.S/ for all r , Œ¹cnº1

nD1� D Œ¹cnkr ;kr
º1

rD1� 2 @C.S/. �

We now identify G.S/, EL.S/, and @C.S/ with their respective images in

G.S X x/, EL.S X x/, and @C.S X x/. Let F W EL.S X x/ ! @C.S X x/ be

the homeomorphism from Theorem 1.1, already proved in the punctured case.

Suppose Œ¹cnº� is a point in @C.S/. This is also a point in @C.S X x/, so any

Hausdor� accumulation point of ¹cnº contains L 2 EL.S X x/ where F.L/ D

Œ¹cnº�. On the other hand, any Hausdor� accumulation point of ¹cnº is in G.S/

since G.S/ is closed in G.S X x/. Since L is in EL.S X x/, every leaf of L is

dense and all complementary regions are ideal polygons or once–punctured ideal

polygons, so in fact L is in EL.S/. Let ˝ D F �1.@C.S// which is a closed

subset of EL.S/. If Œ¹cnº� D F.L/, then any Hausdor� accumulation point of

¹cnº contains L. Let F 0 D F j˝ W ˝ ! @C.S/ be the restricted homeomorphism.
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Lemma 4.7. ˝ is a Mod.S/-invariant subset of EL.S/ and F 0 is Mod.S/-equi-

variant.

Proof. To prove the �rst statement, let L 2 ˝, f 2 Mod.S/, and F 0.L/ D Œ¹cnº�.

We need to show that f .L/ 2 ˝. Any Hausdor� accumulation points of ¹f .cn/º

are precisely the f -image of the Hausdor� accumulation points of ¹cnº, and hence

all contain f .L/. Since F 0W ˝ ! @C.S/ is a bijection, Œ¹fcnº� D F 0.L0/, for some

L0 2 ˝ � EL.S/ (L0 is the unique ending lamination such that any Hausdor�

accumulation point of ¹fcnº contains L0). Since f .L/ is an ending lamination,

we must have f .L/ D L0 2 ˝, as required.

Since f .F 0.L// D f .Œ¹cnº�/ D Œ¹f .cn/º� D F 0.L0/ D F 0.f .L//, F 0 is

Mod.S/-equivariant. �

The proof of the following lemma is essentially the same as Theorem 6.19

of [6], so we omit it here.

Lemma 4.8. For L 2 EL.S/, Mod.S/ � L D EL.S/.

Proof of Theorem 1.1 for closed case. Since F is a homeomorphism, we deduce

by Lemma 4.6 that ˝ � EL.S X x/ is a closed subset, and so is closed in

EL.S/. By Lemma 4.7 and 4.8, ˝ D EL.S/. Thus, F 0W EL.S/ ! @C.S/ is a

homeomorphism which is Mod.S/-equivariant by Lemma 4.7. �

Remark. It seems likely that one could also gives a direct proof in the closed

case, using bicorn paths introduced in [18]. To avoid developing this theory,

we gave this alternative proof.
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