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Abstract. We show that uniformly �nite homology of products of n trees vanishes in all

degrees except degree n, where it is in�nite dimensional. Our method is geometric and ap-

plies to several large scale homology theories, including almost equivariant homology and

controlled coarse homology. As an application we determine group homology with `1-co-

e�cients of lattices in products of trees. We also show a characterization of amenability in

terms of 1-homology and construct aperiodic tilings using higher homology.
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1. Introduction

Uniformly �nite homology is a coarse homology theory for non-compact metric

spaces introduced by Block and Weinberger [2]. It has several interesting appli-

cations, in particular, the vanishing of the uniformly �nite homology in degree 0
characterizes amenability [2]. This fact was further applied to construct aperiodic
tiles and metrics of positive scalar curvature. Later, in [21], uniformly �nite ho-
mology was used to prove a geometric version of the von Neumann conjecture.
It was also used to characterize those quasi-isometries that are close to bijections,
see [7, 21].

While the vanishing in degree 0 is relatively well-understood, uniformly �nite
homology H uf

n in higher degrees n � 1, essentially remains uncharted territory.
The only results known in this direction are discussed in [3], and include sym-
metric spaces, non-vanishing results for amenable groups based on the in�nite
transfer, and recently in [1], where it was shown that higher uniformly �nite ho-
mology of amenable groups is usually in�nite-dimensional.



372 F. Diana and P. W. Nowak

Our main result, motivated by the problem of computing higher large scale
homology, is a geometric method for killing homology classes of products of
trees or, more generally, non-amenable graphs. We denote byH .1/

� the simplicial
�ne uniformly �nite homology and by H ae

� Dranishnikov’s almost equivariant
homology.

Theorem 1. Let �i , i D 1; : : : ; n, be a family of bounded degree non-amenable
graphs and letR D Z;R. LetX D �1�� � ���n be their (triangulated) Cartesian
product. Then

H
.1/

k
.X IR/ D H ae

k .X IR/ D 0 for all k � n� 1:

The method we use also applies to the controlled coarse homology, introduced
in [17], for which a quantitative statement holds. The above three homology
theories have many applications in group theory, geometric topology and index
theory. They are often used to express largeness of manifolds, see [5, 6, 10, 11, 13].

It is worth noting that for any of the above homology theories the homolog-
ical algebra behind the classical Künneth theorem does not generalize naturally.
Indeed, the chains, cycles and boundaries all form in�nite-dimensional spaces.
In such settings tensor products, naturally appearing in Künneth-type theorems,
exhibit fundamental di�culties. A Künneth theorem for another coarse theory,
Roe’s coarse cohomology, is proved in [12]. However, adapting those techniques
to other large scale homology theories seems to be a demanding task, since the
approach used in [12] is based on a special description of coarse chains in terms
of modules having certain geometric properties.

Our approach to proving Theorem 1 is geometric. The main ingredients are
higher-dimensional Eilenberg swindles that we attach in di�erent directions to a
given cycle. This strategy allows us to gradually reduce any cycle on the product
�1 � � � � ��n to a cycle of a speci�c form, representing the same homology class.
The �nal step shows that the cycles of such speci�c form bound. The same method
gives vanishing of H .1/

1 .X � Y;R/, see Theorem 14.
Combining Theorem 1 with the facts that the top-dimensional homology of a

product of trees is in�nite dimensional (see Proposition 13) and that products of
trees are uniformly contractible we obtain

Theorem 2. Let Ti be uniformly locally �nite in�nite trees, in which each vertex
has degree at least 3 and letR D Z;R. Let T1�� � ��Tn be their Cartesian product
endowed with the maximum metric. Then

H uf
k .T1 � � � � � TnIR/ D

´

0 k ¤ n;

in�nite dimensional k D n:
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A result of similar �avor holds for an n-dimensional symmetric space of real
rank k, where vanishing below the rank holds for the uniformly �nite cohomology
[3, p. 558].

Our results have several applications. By the quasi-isometry invariance of
uniformly �nite homology we obtain the computation of the uniformly �nite
homology of an important class of groups. Let � be a lattice in a product of
trees. The class of such groups is extremely rich, see for example [4]. Since
uniformly �nite homology is a quasi-isometry invariant, and it is isomorphic to
group homology with coe�cients in `1-spaces, as a corollary of Theorem 2 we
obtain the complete computation of group homology of such lattices.

Theorem 3. Let � be a group acting properly cocompactly by isometries on a
product of n trees as before and let R D Z;R. Then

Hk.�; `1.�; R// '

´

0 if k ¤ n;

in�nite dimensional if k D n:

Note that there are examples of lattices in products of trees that are cocompact
and irreducible, i.e. they do not split into a product of lattices in the factors.

Another application is a characterization of amenable groups in terms of 1-
homology.

Corollary 4. Let � be a �nitely generated group and let Cay.�/ denote its Cayley
graph (with respect to some �nite generating set). � is amenable if and only if
H

.1/
1 .Cay.�/ � T IR/ ¤ 0 for any uniformly locally �nite in�nite tree T .

We also show a construction of aperiodic tiles using Dranishnikov’s almost
equivariant homology, as well as discuss some questions and conjectures.

Acknowledgements. This work was done during the �rst author’s stay at IMPAN
in Warsaw. We would like to thank Universität Regensburg and especially Clara
Löh for making this collaboration possible. The second author was partially
supported by the Foundation for Polish Science.

We would like to thank the referee for carefully reading the text and suggesting
several improvements.

2. Large scale homology

2.1. Uniformly �nite homology. Uniformly �nite homology was introduced by
Block and Weinberger [2]. Let X be a uniformly locally �nite simplicial complex
equipped with a geodesic metric such that its restriction to any simplex gives the
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regular simplex in the Euclidean space with edges of length 1. All the complexes
to which our arguments will be applied will be �nite-dimensional.

LetR be a normed abelian group and de�ne the �ne uniformly �nite homology
with coe�cient in R as follows. The chains C .1/

n .X IR/ are linear combinations

c D
X

�2�n

c.�/ � �;

where �n D �n.X/ is the collection of all n-simplices in X and c.�/ 2 R for
every � 2 �n, satisfying

kck1 D sup
�2�n

jc.�/jR <1:

Together with the standard combinatorial boundary operator theC .1/
n .X IR/ form

a chain complex, whose homology is the (simplicial) �ne uniformly �nite homol-
ogy theoryH .1/

n .X IR/.
Now letX be a locally �nite discrete metric space. For d � 0 the Rips complex

Pd .X/ is the simplicial complex de�ned as follows. The vertices of Pd .X/ are
the elements of X ; nC 1 vertices x0; : : : ; xn span an n-simplex if d.xi ; xj / � d

for all i; j 2 ¹0; : : : nº.
For a metric space X a net is a subset � � X such that there is C > 0 such

that for every x 2 X there exists 
 2 � with d.
; x/ � C . A (discrete) metric
space X has bounded geometry if for every r > 0 there exists N.r/ > 0 such that
the cardinality of any ball of radius r in X is at most N.r/. See [18]. Given a
metric spaceX containing a net � � X of bounded geometry (i.e. a metric space
of bounded geometry) the uniformly �nite homology of X is the group

H uf
� .X IR/ D lim

�!d H .1/
� .Pd .�/IR/:

In the case of a uniformly locally �nite simplicial complexX , this de�nes a natural
coarsening homomorphism

c�WH
.1/
� .X IR/ �! H uf

� .X IR/; (1)

induced by a natural map cWX ! Pr.�/ for some appropriately chosen su�ciently
large r > 0 (in this case the net � can be taken to be the vertex set of X). Recall
that X is uniformly contractible if for every r > 0 there exists Sr > 0 such that
for every x 2 X the ball B.x; r/ is contractible inside B.x; Sr/. If X is uniformly
contractible then c� is an isomorphism [19, 14].

An important property ofH uf
� is that it is invariant under quasi-isometries [2]:

if metric spaces X and Y are quasi-isometric then H uf
� .X IR/ Š H

uf
� .Y IR/.

2.2. Other coarse homology theories. We brie�y explain how to modify the
above de�nition to obtain other homology theories that are important in large scale
geometry.
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2.2.1. Controlled coarse homology. If we consider chains, whose growth is
bounded by a multiple of a non-decreasing function f WX ! R, in the sense that

jc.�/j � Cf .d.�; x0//;

where C > 0 depends on c, x0 is a �xed vertex and d is the metric on X ,
then we obtain the controlled coarse homology, Hf

� .X/, introduced in [17]. This
homology can be used to quantify amenability and thus has several applications
through the relation with isoperimetric inequalities on groups. The uniformly
�nite homology is then the controlled coarse homology with control function
f Š 1.

2.2.2. Dranishnikov’s almost equivariant homology. If in the above chain
complex, instead of bounded chains we consider only those chains that take �nitely
many values, in the sense that for each such chain c the set

¹c.�/W � 2 �nº

is �nite, we will obtain the almost equivariant homology H ae
� .X/, introduced by

Dranishnikov [5] (in Dranishnikov’s work this homology is considered only for
a group). In our context it will be useful for constructing aperiodic tiles, see
Section 4.2.

2.3. Eilenberg swindles in degree 0. LetX be a uniformly locally �nite simpli-
cial complex and let R D Z;R. The fundamental class of X in the �ne uniformly
�nite homology is the class ŒX� 2 H .1/

0 .X IR/ represented by the 0-cycle

X

x2VX

x;

which assigns the coe�cient 1 to any vertex x 2 VX .

De�nition 5. A metric space of bounded geometry is amenable if it admits a net
� � X with the following property: for every r; � > 0 there exists a �nite subset
U � � such that j@rU j < �jU j, where @rU WD ¹x 2 �W 0 < d.x; U / < rº.

The following was proved by Block and Weinberger.

Theorem 6 ([2]). Let X be a metric space of bounded geometry and let � � X
be a net in X . The following are equivalent:

(1) X is non-amenable,

(2) H uf
0 .X IR/ D 0 for R D Z;R,

(3) Œ�� D 0 in H uf
0 .X IR/ for R D Z;R.
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For the proof we refer to [2, 18]. We consider now X to be a uniformly locally
�nite simplicial complex. Endowed with a metric as before, X is a metric space
of bounded geometry (we can take its vertex set VX � X as a net). Suppose
that ŒX� D 0 inH uf

0 .X IZ/; i.e., that there exists a 1-cycle  2 C .1/
1 .X IZ/whose

boundary is
P

x2X x. It is possible to decompose as an (in�nite) sum of 1-chains
of a special form. We now describe this decomposition as it will be the main tool
in our further considerations.

For any vertex x 2 VX consider a sequence ¹xkºk2Z�0
of pairwise distinct

points such that for any k 2 Z�0 we have Œxk�1; xk� 2 �1.X/ and x0 D x. Now
de�ne

tx D
X

k2Z�0

Œxk�1; xk�: (2)

Clearly, tx 2 C
.1/
1 .X IZ/ for any x 2 X . Moreover,

@tx D x:

We call tx a tail attached to x. Now for any vertex x 2 VX consider a tail tx
constructed as above and consider

X

x2VX

tx:

This is an in�nite sum of simplices in �1.X/. For any 1-simplex � 2 �1.X/,
de�ne

E.�/ WD ¹x 2 VX j tx passes through �º: (3)

Clearly, every 1-simplex � 2 �1.X/ appears in
P

x2VX
tx with coe�cient equal

to the cardinality of E.�/. This number might be unbounded. However one can
construct tails tx using only simplices appearing in 2 C .1/

1 .X IZ/ (see the proof
of Lemma 2.4 [2] for more details). In this way, for any simplex � 2 �1.X/ there
is a uniformly bounded number of tails passing through it. In particular, in this
situation

X

x2VX

tx 2 C
.1/
1 .X IZ/

and @
P

x2VX
tx D

P

x2VX
x. This construction of tails of 1-simplices attached to

points is an instance of an Eilenberg swindle, allowing to push the homological
information o� to in�nity. It follows from Theorem 6 that the above Eilenberg
swindles construction is possible if and only if X is non-amenable.

2.4. Relative homology. LetX be a uniformly locally �nite simplicial complex,
A be a subcomplex of X and let R D Z;R. The natural inclusion A � X induces
a short exact sequence of chain complexes,

0 �! C
.1/

k
.AIR/ �! C

.1/

k
.X IR/ �! C

.1/

k
.X; AIR/ �! 0;
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where as usual,

C
.1/

k
.X; AIR/ D C

.1/

k
.X IR/=C

.1/

k
.AIR/

denotes the relative chains. We get a standard long exact sequence of a pair:

� � � �! H
.1/

k
.AIR/ �! H

.1/

k
.X IR/

�! H
.1/

k
.X; AIR/ �! H

.1/

k�1
.AIR/ �! � � � :

(4)

As usual, classes in H .1/

k
.X; AIR/ are represented by n-chains c 2 C .1/

n .X IR/,

satisfying @c 2 C .1/
n�1 .AIR/. Such a relative cycle c bounds in H .1/

n .X; AIR/ if
and only if

c D @b C a;

for some b 2 C .1/
nC1.X IR/ and a 2 C .1/

n .AIR/.
Consider now a product of n simplicial complexes X D X1 � � � � � Xn. We

assume for now that X is equipped with a simplicial structure and by a k-cube we
will mean a subcomplex which is a product of k edges ei 2 �1.Xi / and n � k
vertices inXi . We additionally assume that the simplicial structure on the product
is such that each k-cube with the induced simplicial structure is one of �nitely
many simplicial structures on a cube Œ0; 1�k, see e.g. [8].

By a boundary of a k-cube we denote the subcomplex given by the union of
the 2k .k � 1/-cubes forming its topological boundary.

Proposition 7. Let Y be the union of a collection of k-cubes in X and let A
be the union of the boundaries of the k-cubes in Y . Then H .1/

i .Y; AIR/ D 0

for i � k � 1 and R D Z;R.

Proof. Let c be a relative cycle; that is @c 2 C .1/
i .AIR/, i � k � 1. Consider cI ,

the restriction of c to a k-cube I D I k � X . Denote by @I k the simplicial
boundary of I k . For such a cube the standard simplicial homology satis�es

Hi .I
k; @I k/ ' Hi.I

k=@I k/ ' Hi .S
k/;

since the boundary @I k is a deformation retract of its neighborhood in I k. There-
fore,

Hi .I
k; @I k/ D 0;

provided i � k � 1.
Now, cI is a relative cycle in Hi.I

k ; @I k/, and as such, vanishes. That is,

cI D @bI C aI ;

where bI 2 CiC1.I
k/ and aI 2 Ci .@I

k/. De�ne

b D
X

I

X

�2�iC1.I k/

bI .�/�;
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where I k runs through all the cubes of dimension k in Y . Then c�@b is supported
on A D

P

I k @I k , where again I k runs through all the cubes of dimension k in Y .
It remains to show that both b and a are bounded. Observe that in the case

of R D Z, the boundedness of c and the assumptions on the simplicial structure
imply that cI is one of �nitely many possible chains in Ci .I

k/. Then there are
�nitely many possibilities for bI . Consequently, the coe�cient of b and c � @b
attain only �nitely many possible values, and, in particular, both b and c � @b are
uniformly bounded.

In the case ofR D R we appeal to the �nite-dimensionality of the chain spaces
Ci .@I

kIR/, Ci .I
kIR/ and Ci .I

k; @I k IR/. Consider the following standard dia-
gram

CiC1.I / CiC1.I; @I / 0

Ci .@I / Ci .I / Ci .I; @I / 0

Ci�1.I / Ci�1.I; @I / 0:

 ! @iC1

 

!
qiC1

 ! @iC1

 

!

 

!
j  

!
qi

 ! @i

 

!

 ! @i

 

!
qi�1  

!

Given an element cI 2Ci .I / representing a relative cycle we have that @iqi .cI /D0.
Thus by exactness, there exists an element bI 2 CiC1.I / such that @iC1qiC1bI D

qi .cI /. Therefore,
qi .cI � @iC1bI / D 0

and consequently there exists aI in Ci .@I / such that

cI � @iC1bI D j.aI /:

Equip the chains Ci .@I / and Ci .I / with the supremum norms,

kck D sup¹jc.�/jW � 2 �d .X/º;

and the relative chains Ci .I; @I / with the corresponding quotient norm. (In fact,
since the dimensions of all these chain groups are �nite, we could choose any other
norm). Since we are working in �nite dimensional spaces, for any linear map

LWV �! W

there is a constant C.L/ > 0 such that

C.L/kvk � kLvk;

for every v 2 .kerL/?, where by X? for a subspace X � V we denote the
complement (e.g., the orthogonal complement with respect to the standard inner
product) of X .
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Now, since @iC1qiC1 is onto ker @i we can choose bI in such a way that

kbIk � C.@iC1qiC1/
�1kqikkcIk;

where kqik denots the standard operator norm of qi . For the same reason we can
choose aI so that

kaIk � C.j /
�1kcI � @bIk

� C.j /�1.kcIk C kbIk/

� C.j /�1.kcIk C C.@iC1qiC1/
�1kqikkcIk/

D KkcIk;

whereK is a constant independent of cI . All the norms and estimates also depend
on the dimension of the chain groups I and @I , i.e. on the triangulation of the cube,
but in our case all of the above are uniform throughout the cube complex. �

From the exact sequence (4) we obtain

Corollary 8. Let R D Z;R and let A; Y be as above. The map

i�WH
.1/
i .AIR/ �! H

.1/
i .Y IR/;

induced by the inclusion i WA! X , is surjective for i � k � 1.

In other words, every class in the homology of Y can be represented by a cycle
supported only on A.

Remark 9. Examining the above proof one can derive that the statement of
Corollary 8 holds without change for the almost equivariant homology H ae

� .

Remark 10. In low dimensions (k D 2; 3) one can prove Corollary 8 directly by
showing that an i-cycle on a triangulated k-cube for i � k � 1 can be represented
by a cycle suported only on the boundary of the cube. In higher dimensions the
same argument is likely possible, however we suspect it would be less e�cient in
higher .

3. Proof of the main theorem

Let �1; : : : ; �n be uniformly locally �nite in�nite graphs with a simplicial struc-
ture. We consider their triangulated Cartesian product, as in e.g. [8, Chapter II.8].
More precisely, for all i 2 ¹1; : : : ; nºwe consider an order� on the vertex set V�i

.
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Then the triangulated Cartesian productX WD �1�t � � ��t �n is an n-dimensional
simplicial complex having vertex set

V�1�t ����t �n
WD V�1

� � � � � V�n
:

and with simplices given by the totally ordered tuples in the product order, see
e.g. [8].

Since the triangulated Cartesian product X is a product of graphs, it has the
structure of an n-dimensional cube complex. For any k 2 ¹0; : : : ; nº we denote by
Xk � X the k-dimensional cube subcomplex given by the union of all the k-cubes
inX . Following the notation given in Section 2.4, we denote by @Xk the collection
of the topological boundaries of all the k-cubes in Xk . It is easy to see that for
any k 2 ¹1; : : : ; nº we have @Xk D Xk�1. Indeed, since each graph is an in�nite
connected simplicial complex, each .k � 1/-cube is contained in some k-cube.
Consider R D Z;R. For any k 2 ¹0; : : : ; nº, applying Corollary 8 .n � k/-times,
we obtain a surjective map

ik WH
.1/

k
.XkIR/ �! H

.1/

k
.X IR/

induced by the inclusion i WXk �! X . This implies that for any ˛ 2 H .1/

k
.X IR/

there exists a cycle c 2 C .1/

k
.Xk IR/ such that ˛ D Œc�. In particular, the cycle c is

an in�nite locally �nite linear combination of simplices supported on the k-cubes
of X .

LetQk be any k-cube in X . Then, by the cycle condition on c it is easy to see
that all the k-simplices contained in Qk appear in c with the same coe�cient. In
particular, the coe�cients of c on each k-cube are constant. Thus, to simplify the
notation, we can proceed by considering the cycle c representing ˛ 2 H .1/

k
.X IR/

as an in�nite sum of k-cubes in X . In particular, we can write c as

c D
X

Qk2Xk

c.Qk/ �Qk; (5)

where c.Qk/ is the coe�cient of c associated to any k-simplex contained in Qk.
For any k 2 ¹0; : : : ; nº, a k-cubeQk is given by the product of k edges and n� k
vertices in X . In particular, any k-cube is determined by

� a choice of ordered indices I D ¹i1; : : : ; ikº � ¹1; : : : ; nº;

� a choice of k edges ei1; : : : ; eik in �i1 ; : : : ; �ik ;

� a choice of n� k vertices xi in �i for all i … I .
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Thus, a k-cube in X can be represented as

x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik � xikC1 � � � � � xn:

Let j 2 ¹1; : : : ; nº. We say that a k-cube lies in the �j -hyperplane if is ¤ j for
any s 2 ¹1; : : : ; kº. In particular, a k-cube lies in the �j -hyperplane if its j -th
coordinate is a vertex. We prove Theorem 1 in two steps.

Step 1. Killing coe�cients in one direction. Let X WD �1 �t � � � �t �n be the
triangulated Cartesian product of graphs as before. We consider the �ne uniformly
�nite homology of X with coe�cients in R D Z;R. For simplicity, we omit the
coe�cients in the notation and we write H .1/

� .X/.
Let k 2 ¹1; : : : ; n � 1º. In the �rst step we prove that for any j 2 ¹1; : : : ; nº

and for any class ˛ 2 H .1/

k
.X/, we can �nd a cycle representing ˛ that is not

supported on cubes lying in the �j -hyperplane. More precisely, we have

Lemma 11. Let k 2 ¹1; : : : ; n � 1º and let c 2 C .1/

k
.X/ be a cycle. Then for

any j 2 ¹1; : : : ; nº there is a chain Tj 2 C
.1/
iC1 .X/ such that

.c � @Tj /.Qk/ D 0;

for each k-cube Qk lying on the �j -hyperplane. Moreover,

Œc� D Œc � @Tj �

in H .1/

k
.X/.

Proof. Following the notation in (5), we write c as a sum of k-cubes. We prove
the statement for j D 1 and the same argument can be used to prove it for any
j 2 ¹1; : : : ; nº. Notice that every k-cube lying on the �1-hyperplane is determined
by a choice of ordered indices i1 < � � � < ik such that i1 > 1. In particular, any
k-cube lying on the �1-hyperplane is of the form

Q
i1>1

k
D x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xn (6)

We construct a .kC1/-chain T1 by constructing “tails” of cubes inX . More pre-
cisely, since �1 is a non-amenable simplicial complex, by the Eilenberg-swindle
construction given in Section 2.3 for any vertex x 2 V�1

we can consider a tail of

1-simplices tx of the form (2) such that
P

x2V�1
tx 2 C

.1/
1 .�1/ and @tx D x.

For any Qi1>1

k
of the form (6) consider

t
Q

i1>1

k

D tx1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xn:
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Figure 1. A 3-cube with a 2-cube in its boundary lying in the �1 hyperplane.

Figure 2. A 3-dimensional panel attached to the gray 2-cube along the tail t1.

This is an in�nite sum of .k C 1/-cubes “attached” to Qi1>1

k
in X and it is

given by the Cartesian product ofQi1>1

k
with tx1

. For each k-cubeQk we call tQk

a panel of .k C 1/-cubes in X attached to Qk . We have

@t
Q

i1>1

k

D@tx1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xn

[ tx1
� @.� � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xn/ (7)

DQ
i1>1

k
[ tx1

� @.� � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xn/:

Notice that tx1
� @.� � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xn/ is an in�nite sum

of k-cubes, where i1 D 1.
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We proceed by constructing t
Q

i1>1

k

for any k-cube appearing in c and lying on

the �1-hyperplane. Then, using the same notation as in (5), we de�ne

T1 D
X

Q
i1>1

k
2Xk

c.Q
i1>1

k
/ � t

Q
i1>1

k

: (8)

Notice that T1 is an in�nite locally �nite linear combination of .k C 1/-simplices
in X . All the simplices contained in a given cube QkC1 appear in T1 with the
same coe�cient. We denote this coe�cient as c.QkC1/. Thus, to prove that T1 is
a well-de�ned element in C .1/

kC1
.X/ it su�ces to show that these coe�cients are

uniformly bounded. Similarly to (3), for any .k C 1/-cube QkC1, we can de�ne
the set

E.QkC1/ WD ¹Qk 2 Xk W tQk
passes through QkC1º:

Recall that
P

x2V�1
tx 2 C

.1/
1 .�1/ is a uniformly bounded chain. In particu-

lar, there exists a constant K > 0 such that for any simplex � 2 �1.�1/ we
have jE.�/j � K. It is immediate to see that, by construction of the panels of
.k C 1/-cubes, for any .k C 1/-cube QkC1 we have

jE.QkC1/j � K:

Thus, any .k C 1/-cube QkC1 appears in T1 with coe�cient

c.QkC1/ D
X

Qk2E.QkC1/

c.Qk/ � K � kck1:

In particular, T1 is a well-de�ned element in C .1/

kC1
.X/. Writing c as a sum of

cubes as in (5), we have

c � @T1 D
X

Qk2Xk

c.Qk/ �Qk �
X

Q
i1>1

k
2Xk

c.Q
i1>1

k
/ � @t

Q
i1>1

k

:

By (7), it is easy to see that .c � @T1/.Q
i1>1

k
/ D 0 for any k-cube Qi1>1

k
lying on

the �1-hyperplane. Clearly, since c and c � @T1 di�er by a boundary, we have

Œc � @T1� D Œc� in H .1/

k
.X/:

Thus the claim follows. �

Step 2. The process in Step 1 does not change vanishing in other hyperplanes.

The second step towards the proof of Theorem 1 is to prove that the operation of
attaching panels of .k C 1/-cubes to a k-cycle c does not change the vanishing of
the coe�cients of c on cubes in other hyperplanes.
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Lemma 12. Let k 2 ¹1; : : : ; n � 1º and let c 2 C .1/

k
.X/ be a cycle. Suppose

there exists i 2 ¹1; : : : ; nº such that c.Qk/ D 0 for all k-cubes Qk lying on the
�i -hyperplane. Let j 2 ¹1; : : : ; nº, j ¤ i and let Tj 2 C

.1/

kC1
.X/ be as in Lemma 11.

Then, c � @Tj is a cycle in C .1/

k
.X/ such that

.c � @Tj /.Qk/ D 0

for all k-cubes Qk lying on the �j -hyperplane and for all k-cubes Qk lying on
the �i -hyperplane. Moreover,

Œc� D Œc � @Tj �

in H .1/

k
.X/.

Proof. Let c 2 C .1/

k
.X/ be a cycle. We can take i D n; more precisely, we

assume that c.Qk/ D 0 for any k-cubeQk lying on the �n-hyperplane. The same
argument can be used to prove the statement for any i 2 ¹1; : : : ; nº. Following the
notation given in (5), c can be written in the form

X

Q
ik Dn

k
2Xk

c.Q
ikDn

k
/ �Q

ikDn

k
;

where QikDn

k
are cubes not lying on the �n-hyperplane; i.e., they are cubes

determined by a choice of ordered indices i1 < � � � < ik such that ik D n. Without
loss of generality, we can take j D 1. Indeed, by reordering the factors �j , we
can always reduce to the case j D 1. In particular, we consider the kC1-chain T1

as given in (8). By Lemma 11, we have that .c � @T1/.Qk/ D 0 for all k-cubes
Qk lying on the �1-hyperplane. Thus, to prove the lemma it su�ces to show that
.c � @T1/.Qk/ D 0 for all the k-cubes Qk lying on the �n-hyperplane.

Notice that T1 is a sum of panels of k C 1-cubes “attached” to k-cubes of the
form (6). These k-cubes can be of the following two types:

(1) Qi1>1;ik<n

k
D x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik � � � � � xnI

(2) Qi1>1;ikDn

k
D x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1

� � � � � en:

Since c is, by assumption, not supported on cubes lying on �n-hyperplanes, T1 is
a sum of panels of kC 1-cubes attached to cubes of the form (2). In particular, we
have

T1 D
X

Q
i1>1;ikDn

k
2Xk

c.Q
i1>1;ikDn

k
/ � t

Q
i1>1;ikDn

k

;

where for any k-cubeQi1>1;ikDn

k
of type (2) the panel t

Q
i1>1;ikDn

k

of .kC1/-cubes

is of the following form:

t
Q

i1>1;ikDn

k

D tx1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1

� � � � � en:
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For every panel t
Q

i1>1;ikDn

k

, we have

F @t
Q

i1>1;ikDn

k

D @.tx1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1

� � � � � en/

D Q
i1>1;ikDn

k
[ tx1

� @.� � � � ei1 � � � � � ei2 � � � � � � � � � eik�1
� : : : / � en

[ tx1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1

� � � � � @en:

Notice that the second term tx1
� @.� � �� ei1 � � � �� ei2 � � � �� � � �� eik�1

� : : : /� en

on the right side of the equation above is a sum of cubes of the form Qi1D1;ikDn;
i.e., cubes neither lying in the �1 nor in the �n-hyperplane. In particular, we have

c � @T1

D
X

Q
ikDn

k
2Xk

c.Q
ikDn

k
/ �Q

ikDn

k
�

X

Q
i1>1;ikDn

k
2Xk

c.Q
i1>1;ikDn

k
/ � @t

Q
i1>1;ikDn

k

D
X

Q
i1>1;ikDn

k
2Xk

c.Q
i1>1;ikDn

k
/ � .tx1

� � � � � ei1 � � � � � � � � � eik�1
� � � � � @en/CR;

where R is an in�nite sum of k-cubes with ik D n, i.e cubes not lying on
�n-hyperplane.

Figure 3. The coe�cients on the horizontal 2-cubes vanish, the coe�cients of the vertical
2-cubes sum up to 0 along x1 � e2 � x3. Consequently, attaching the panel t1 � e2 � e3 to
x1�e2�e3 does not introduce any coe�cients on the 2-dimensional panel t1�e2 attached
to x1 � e2 � x3.

Thus, to prove that .c � @T1/.Qk/ D 0 for all k-cubes Qk lying on the
�n-hyperplane, it su�ces to show that

S WD
X

Q
i1>1;ikDn

k
2Xk

c.Q
i1>1;ikDn

k
/ � .tx1

� � � � � ei1 � � � � � � � � � eik�1
� � � � � @en/ D 0:
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Indeed, it is easy to see that any k-cube appearing in S is lying on the �n-hyper-
plane. In particular, let

SQ D ex1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1

� � � � � xn

be a cube appearing in S , where ex1
is an edge appearing in the tail tx1

attached
to a vertex x1 in �1, while xn is a vertex of some edge en in �n. Notice that the
coe�cient of SQ in S is equal to the sum of c.Qi1>1;ikDn

k
/ for any cubeQi1>1;ikDn

k

whose corresponding tail t
Q

i1>1;ikDn

k

contains SQ in its boundary. In other words,

SQ appears in S with coe�cient

c.SQ/ D
X

Q
i1>1;ikDn

k
2Xk WSQ2@t

Q
i1>1;ikDn

k

c.Q
i1>1;ikDn

k
/: (9)

Thus, to prove that S D 0, it su�ces to show that c.SQ/ D 0 for any k-cube SQ

appearing in S . (Note that we are avoiding writing orientation of simplices and the
corresponding signs in the formulas, in order to keep the notation under control.
It is in fact easy to see that this omission does not a�ect the computations).

Our argument now relies on the fact that c is a cycle. By de�nition, @c D 0.
Moreover, c is supported only on k-cubes of the form Q

ikDn

k
. This implies that

for any k � 1-cube of the form

x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1
� � � � � xn

we have
X

enWxn2@en

c.x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1
� � � � � en/ D 0

Notice that the k-cubes Qi1>1;ikDn

k
which contribute to the coe�cient (9) are all

cubes of the form:

ex1
� � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1

� � � � � Qen;

where Qen is any edge in �n such that xn 2 @ Qen. Thus we have

c.SQ/ D
X

QenWxn2@Qen

c.x1 � � � � � ei1 � � � � � ei2 � � � � � � � � � eik�1
� � � � � Qen/:

In particular, c.SQ/ D 0. We can use the same argument to prove that any k-cube
appears in S with zero coe�cient. In particular, S D 0. Then we have

.c � @T1/.Qk/ D 0

for any k-cubeQk lying on the �n-hyperplane. Since c�@T1 is a cycle that di�ers
from c by a boundary, we have Œc� D Œc � @T1� in H .1/

k
.X/. �
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. The case k D 0 follows from Block and Weinberger (The-
orem 6). Let k 2 ¹1; : : : ; n � 1º and let ˛ 2 H

.1/

k
.X/. Consider a cycle

c 2 C
.1/

k
.X/ such that ˛ D Œc�. Let c1 WD c � @T1, where T1 2 C

.1/

kC1
.X/

is constructed as in Lemma 11. Then by Lemma 11 we have c1.Qk/ D 0 for all
k-cubes lying on the �1-hyperplane. Moreover ˛ D Œc� D Œc1�.

Let c2 WD c1�@T2, where T2 2 C
.1/

kC1
.X/ is constructed as in Lemma 11. Using

Lemma 11 and Lemma 12,

c2.Qk/ D 0 for all k-cubes lying on the �1-hyperplane (Lemma 12)I

c2.Qk/ D 0 for all k-cubes lying on the �2-hyperplane (Lemma 11):

Moreover ˛ D Œc� D Œc2�.
Proceeding in this way, applying Lemma 11 and Lemma 12 at each step, we

obtain a cycle cn WD cn�1 � @Tn such that ˛ D Œc� D Œcn�,

cn.Qk/ D 0 for all k-cubes lying on the �n-hyperplane (Lemma 11)

and such that for all i D 1; : : : ; n� 1

cn.Qk/ D 0 for all k-cubes lying on the �i -hyperplane (Lemma 12):

Notice that, since we have proceeded by adding well-de�ned .k C 1/-chains in a
�nite number of steps, we have that cn D c �

Pn
j D1 @Tj is a cycle in C .1/

k
.X/.

Moreover, since cn vanishes on any k-cube in Xk we have cn D 0. It follows
that ˛ D Œc� D Œcn� D 0. �

3.1. Proof of Theorem 2. We now complete the proof of Theorem 2. Notice
that the triangulated Cartesian product T1 � � � � � Tn is a uniformly locally �nite,
uniformly contractible n-dimensional simplicial complex; moreover, endowed
with the simplicial metric, it is quasi-isometric to the standard Cartesian product
endowed with the maximum metric. Thus the coarsening homomorphism gives

H uf
� .T1 � � � � � TnIR/ Š H

.1/
� .T1 � � � � � TnIR/:

Since T1 � � � � � Tn is non-amenable, by Block and Weinberger (Theorem 6) we
haveH uf

0 .T1�� � ��TnIR/ D 0 forR D Z;R. Since T1�� � ��Tn is n-dimensional
we have H uf

k
.T1 � � � � � TnIR/ D 0 for k � n. From Theorem 1 it follows that

for k � n � 1 we have H uf
k
.T1 � � � � � TnIR/ D 0. Thus, it remains to prove the

following proposition.
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Proposition 13. H
.1/

k
.T1 � � � � � TnIR/ is in�nite-dimensional.

Proof. It su�ces to show that the space of uniformly �nite k-cycles is ini�nite-
dimensional. Consider a bi-in�nite geodesic �i in Ti . The product

Qk
iD1 �i is a

uniformly �nite k-cycle. If we choose �i in Ti such that �i and � 0
i lying in di�erent

branches of the tree and are disjoint, then the resulting k-cycles
Q

�i and
Q

� 0
i

have disjoint supports. �

The same proof gives a similar statement for the controlled coarse homology
and almost equivariant homology.

3.2. Other large scale homologies. We will now indicate how the above con-
structions apply to other large scale homology theories.

3.2.1. Almost equivariant homology. Recall that almost equivariant homology
is obtained by considering only those locally �nite chains that attain �nitely many
values. Such chains are automatically chains in the �ne uniformly �nite homology.
We again observe that the process of attaching panels and beams preserves the
property that a chain has �nitely many values. Therefore, we can conclude that
Theorems 1 and 2 hold when the uniformly �nite homology H uf

� is replaced with
the almost equivariant homology H ae

� .

3.2.2. Controlled coarse homology. Chains in the controlled coarse homology
H

f
� are locally �nite chains, whose growth is controlled by a �xed, non-decreasing

function f , see [17] for details. In this case, the process of attaching panels and
beams can in�uence the control functions, however again in a controlled way. For
instance, in the case of a product for which ŒX� D 0 in Hf

0 .X/ and ŒY � D 0 in
H

g
0 .Y /, our method gives

H
fg
1 .X � Y / D 0:

We leave the details to the reader.

3.3. A vanishing theorem for products of simplicial complexes in degree 1.

We remark that the methods used to prove Theorem 1 also allow to prove the
following

Theorem 14. Let X and Y be non-amenable, locally �nite simplicial complexes
and let R D Z;R. Then H .1/

1 .X � Y;R/ D 0.

We only sketch the proof. The 1-skeleton of X � Y contains edges of two
types: e � v and v � e, where v is a vertex and e is an edge, which we call
horizontal and vertical edges, respectively. As before, we can assume without loss
of generality that a class˛ inH .1/

1 .X�Y;R/ is represented by a cocycle supported
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only on the vertical and horizontal edges. Then attaching 2-dimensional panels
in the direction of X to the vertical edges allows to show that the class ˛ can be
represented by a cocycle c supported only on horizontal edges. Such c is sum of
disjoint cycles cy , each of which is supported on the 1-skeleton of X � ¹vº, for a
vertex y 2 Y . Attaching a panel to each cy along tails in Y shows that c bounds.

4. Applications

4.1. A characterization of amenable groups. Here we prove a characterization
of amenability in terms of 1-homology.

Proof of Corollary 4. If G is non-amenable, then by Theorem 1 we have that
H

.1/
1 .� � T IR/ D 0.

Assume now that G is amenable. Let c be a cycle in C .1/
1 .� � T IR/. Then,

as in the proof of Theorem 1, we can choose c0 representing the same class in
uniformly �nite homology, such that c0 vanishes on all horizontal edges; that is,
on edges of the form e�p, for an edge e in � and a vertex p in T . Then, averaging
c0 over � using the invariant mean on G, we obtain a new 1-cycle, d . There is also
a natural map

i WH
.1/
1 .T IR/ �! H

.1/
1 .� � T IR/;

de�ned by copying a cycle in T onto every vertical edge. The composition of i
with the averaging map is the identity on the cycles in C .1/

1 .GIR/. It follows that

the in�nite-dimensional H .1/
1 .T IR/ injects into H .1/

1 .G � T IR/. �

4.2. Aperiodic tiles. This section owes much to discussions of the second author
with Shmuel Weinberger.

Let X be an in�nite simplicial complex equipped with a metric. A set of tiles
for X is a triple ¹T ;W; mº, where T is a �nite collection of �nite polygons with
boundary, called prototiles or simply tiles, each of which has distinguished faces,
W is the set of all faces of the prototiles in T and mWW ! W is a matching
function, determining which tiles can be neighboring tiles in a tiling. A tiling
of X by the set of tiles T is a cover X D [˛Ti , where each Ti is simplicially
isomorphic to one of the prototiles, every non-empty intersection of two distinct
Ti and Tj is identi�ed with faceswi andwj of the corresponding tiles and satis�es
m.wi / D wj . Such a tiling is aperiodic if no group acting on X cocompactly by
simplicial automorphisms preserves the tiling. An aperiodic set of tiles of X is a
set of tiles admitting only aperiodic tilings. Block and Weinberger used uniformly
�nite homology to construct aperiodic tiles for every non-amenable space [2], see
also [18]. More recently coarse homology was also used to construct aperiodic
tiles for certain amenable manifolds [16].
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Vanishing results for almost equivariant homology allow to construct aperiodic
tiles for products as in [2], but using higher homology instead of 0-homology. Let
M andN be �nite simplicial complexes, such that�1.M/ and�1.N / are both non-
amenable and H1.M � N IR/ ¤ 0. By Theorem 14, the universal cover zM � zN
of M �N satis�es

H ae
1 .
zM � zN/ D 0:

Consider the in�nite transfer

� WH1.M � N IR/ �! H ae
1 .
zM � zN IR/ D 0

into the almost equivariant homology of the universal cover zM � zN of M � N .
Given a chain a onM �N the map � assigns coe�cient a.�/, where � is a simplex
in M �N , to every simplex z� laying over � in zM � zN .

We choose a fundamental polytope for the action of � D �1.M/��1.N / and
consider �.˛/ D Œa� for some class 0 ¤ ˛ 2 H1.�;R/. Then a is �-equivariant
and

a D @ ;

for some almost equivariant 2-chain  on zM � zN . Since  has �nitely many
values, there are �nitely many types of such decoration and the rule we impose
is that tiles match if the restrictions of  to the tiles give a as a boundary on
neighboring tiles. In this way we obtain a �nite set of tiles T of zM � zN .

Proposition 15. The set T is an aperiodic set of tiles of zM � zN .

Proof. Consider a tiling of zM � zN by tiles from T and assume that it is periodic;
that this, it would be preserved by a �nite index normal subgroup H � �. The
restrictions of  to the tiles now form a new almost equivariant chain, call it �,
but the matching rule guarantees that @� D a. Additionally, both � and a are
H -equivariant, and thus pass down to the homology group H1.. zM � zN/=H IR/,
giving

�H .˛/ D 0;

where �H WH1.M � N IR/ ! H1.. zM � zN/=H IR/ is the standard �nite transfer
map. However, this is impossible, since the standard �nite transfer with coe�-
cients in R is always an injection on homology. �

The same argument gives constructions of aperiodic tiles for products of n
trees using k-dimensional homology for k � n � 1.

4.3. Buildings. Another case, in which we believe similar vanishing should take
place is the case of a�ne buildings. Recall that thick a�ne buildings exhibit
branching. This branching allows to make some reductions of general cycles to
cycles of speci�c form, similarly as in the case of products of trees. It is thus
natural to state the following conjecture.
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Conjecture 16. Let X be a thick a�ne building. Then H uf
k
.X/ D 0 for k D

0; : : : ; dimX � 1.
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