Groups Geom. Dyn. 11 (2017), 393[–414](#page-21-0) DOI 10.4171/GGD/401

Groups, Geometry, and Dynamics © European Mathematical Society

Cubulation of Gromov–Thurston manifolds

Anne Giralt

Abstract. In this article we prove that the fundamental group of certain manifolds, introduced by Gromov and Thurston [\[GT87\]](#page-21-1) and obtained by branched cyclic covering over arithmetic manifolds, acts geometrically on a $CAT(0)$ cube complex. We show in particular that these groups are linear over Z.

Mathematics Subject Classification (2010). Primary: 57M50; Secondary: 11F75, 53C23, 53C20.

Keywords. Cube complexes, hyperbolic manifolds, Gromov–Thurston manifolds.

1. Introduction

The main result of this paper concerns the fundamental group of some negatively curved manifolds, introduced by Gromov and Thurston in [\[GT87\]](#page-21-1). Gromov and Thurston constructed infinitely many manifolds which can be equipped with a Riemannian metric with negative sectional curvature less or equal to -1 , arbitrarily close to -1 , but do not admit any Riemannian metric of constant curvature. For the construction, they consider cyclic ramified coverings over a certain hyperbolic manifold V ; an arithmetic hyperbolic manifold of "simple type." The branch locus is a totally geodesic submanifold $K \subset V$ of codimension 2, obtained as the transverse intersection of two codimension-1 totally geodesic submanifolds. It is important to consider ramified covering of arbitrary large degrees to make sure that, among those manifolds, infinitely many do not have a constant curvature metric. On the other hand, the more the normal injectivity radius of K in V is large, the more the sectional curvature of the metric will be close to -1 . A manifold \hat{V} obtained by this construction will be called here a *Gromov–Thurston manifold.*

Our first result is the following theorem.

Theorem 1. Let \hat{V} be a Gromov–Thurston manifold. Then $\pi_1(\hat{V})$ is cubical.

A group is *cubical* if it acts geometrically on a CAT(0) cube complex (see Definition [7](#page-3-0) below). Now a cubical group is said to be *special* – following Haglund and Wise in $[HW08]$ – if the quotient of the CAT(0) cube complex by the group avoids

some global hyperplane pathologies (most importantly hyperplanes have to embed in the quotient), see Section 4 for a precise definition. Similarly a cube complex that avoids these pathologies will be said to be *special*. Finally a group is said to be *virtually special* if it contains a finite index special subgroup. Being virtually special has many consequences: virtually special groups inject in $GL(n, \mathbb{Z})$ for a certain $n \in \mathbb{Z}$, have separable quasi-convex subgroups (see [\[HW08\]](#page-21-2)), are virtually large (see [\[HW08\]](#page-21-2)), are virtually bi-ordonnable (see [\[HW08\]](#page-21-2) and [\[DT92\]](#page-21-3)), etc. Recently Agol [\[AGM12\]](#page-20-0) proved that every hyperbolic cubical group is virtually special. Since the fundamental group of a Gromov–Thurston manifold is hyperbolic, using Agol's Theorem [\[AGM12\]](#page-20-0), Theorem [3](#page-1-0) below follows from Theorem [1.](#page-0-0) Nevertheless, we will prove virtual specialness without using Agol's Theorem.

To prove Theorem [1,](#page-0-0) we will introduce a notion of ramified coverings of cube complexes (see Definition 14). We shall then prove the following theorem.

Theorem 2. *Cyclic ramified coverings of special cube complexes are special cube complexes.*

We shall then deduce our main result from Theorems [1](#page-0-0) and [2.](#page-1-1)

Theorem 3. Let \hat{V} be a Gromov–Thurston manifold. Then $\pi_1(\hat{V})$ is virtually *special.*

Many examples of compact hyperbolic manifolds with constant curvature equal to -1 have virtually special fundamental groups. For example, hyperbolic surfaces are virtually special. In dimension 3, works of Kahn–Markovic, Wise and Agol imply that fundamental groups of compact hyperbolic 3-manifolds are virtually special [\[AGM12\]](#page-20-0). Moreover, in every dimension $n > 4$, Bergeron, Haglund and Wise [\[BHW11\]](#page-20-1) have shown that "simple type" arithmetic hyperbolic manifolds also have a cubical virtually special fundamental group. We will use this to prove Theorem [1.](#page-0-0) As a consequence of Theorem [3](#page-1-0) we can deduce the following corollary.

Corollary 4. Fundamental groups of Gromov–Thurston manifolds are linear (over \mathbb{Z}), contain a finite index bi-ordonnable subgroup, have separable quasiconvex subgroups, are virtually large, etc...

We will in fact prove a more general version of Theorem [1](#page-0-0) (Theorem [5](#page-2-0) below). Let $V = \Gamma \backslash \mathbb{H}^n$ be a hyperbolic manifold, with $\Gamma \subset \text{Isom}^+(\mathbb{H}^n)$. Denote by $p: \mathbb{H}^n \to V$ the covering map. Suppose that there exist two transverse totally geodesic submanifolds V_1 and V_2 of V, and suppose that both of them separate V. We can construct a cyclic ramified covering in the following way. Each submanifold V_i , $i = 1, 2$, splits V into two disjoint submanifolds V_i^+ and V_i^- of V, with boundary V_i with two different orientations. The intersection $W = V_1^+ \cap V_2$ is a

hypersurface of V with boundary. Let \overline{V} be the manifold obtained by cutting V along W. The boundary of \overline{V} is a disjoint union of two copies of W with opposite orientations. For $k \in \mathbb{N}^*$, consider the manifold \hat{V} obtained by cyclically gluing k copies of \overline{V} along the copies of W according to their orientations. Then the natural projection $\tilde{\hat{V}} \rightarrow V$ is a *cyclic ramified covering* of degree k of V above $\partial W = V_1 \cap V_2$.

Figure 1. A cyclic ramified covering of degree 2 above ∂W .

In Gromov–Thurston's construction, V is an arithmetic manifold of "simple" type," as well as V_1 and V_2 . By passing to a finite cover, these two submanifolds satisfy the properties described above. Then Gromov and Thurston construct \hat{V} , a cyclic ramified covering of degree k above the intersection of V_1 and V_2 .

An arithmetic manifold of "simple type" contains many immersed compact hypersurfaces. Choose a finite number of them and denote by H the collection of their preimages in \mathbb{H}^n . A general construction of Sageev associates a CAT(0) cube complex that is "dual" to the Γ -invariant collection of hyperplanes $\mathcal H$ in \mathbb{H}^n . The fundamental group $\Gamma = \pi_1(V)$ acts cocompactly on the resulting cube complex. By choosing enough immersed compact hypersurfaces to start with, one can moreover ensure that the action of Γ on the "dual" cube complex is proper. We then say that V is π_1 -cubulated by H. We provide details for this construction in Section [2.](#page-3-1)

Finally we say that a collection of hyperplanes is *generic* if every pair of intersecting hyperplanes in the collection have transverse intersection and if the intersection between three different hyperplanes is either empty or of codimension 3.

Theorem 5. Let V be an oriented hyperbolic compact manifold, and let V_1 and V_2 *be two totally geodesic separating submanifolds of* V *with transverse non-empty intersection. Let* $k \geq 1$ *be an integer and let* \hat{V} *be the cyclic ramified covering of V of degree k above* $V_1 \cap V_2$ *. Assume furthermore that V is* π_1 *-cubulated by* a collection H of hyperplanes in \mathbb{H}^n , such that the reunion of H with the set of preimages of V_1 and V_2 under p forms a generic collection of hyperplanes of \mathbb{H}^n . *Then the fundamental group* $\pi_1(\hat{V})$ *is cubical.*

We recall Sageev's construction – specialized to our context – in the next section. In Section [3](#page-7-1) we prove Theorem [5,](#page-2-0) in Section [4](#page-15-0) we prove Theorem [2.](#page-1-1) Finally, in Section [5](#page-2-0) we prove Theorems [1](#page-0-0) and [3](#page-1-0) by using Theorems 5 and [2.](#page-1-1)

2. Cubulation

2.1. Some denitions

Definition 6. A *cube complex* is a *CW*-complex, such that each cell is a metric Euclidean cube $[0, 1]^n$, and gluing maps are isometries between subcubes, i.e. cubes obtained by restricting certain coordinates to 0 or 1.

Figure 2. A cube complex.

We shall always equip a cube complex with the metric induced by the Euclidean metric on the cubes. As such it makes sense to speak of a $CAT(0)$ cube complex; we refer to $[BH99]$ for a general study of $CAT(0)$ spaces.

Definition 7. A group is said to be *cubical* if it acts *geometrically, i.e. properly* and *cocompactly*, on a CAT(0) cube complex.

2.2. Sageev's construction. In [\[HP98\]](#page-21-4) Haglund and Paulin introduce the notion of a wallspace. Generalizing a construction of Sageev [\[Sag95\]](#page-21-5), Nica [\[Nic04\]](#page-21-6), Chatterji and Niblo [\[CN05\]](#page-21-7) have then shown how to associate to any wallspace a "dual" $CAT(0)$ cube complex in such a way that a group acting on the wallspace (as defined in $[HP98]$) also acts on the dual $CAT(0)$ cube complex. We now review this construction in the particular case at hand.

Let V be a closed hyperbolic manifold and let W_1, W_2, \ldots, W_ℓ be immersed closed codimension-1 totally geodesic submanifolds in V . Assume that these manifolds intersect each other in a generic way. Any lift of W_i to \mathbb{H}^n is a hyperplane of \mathbb{H}^n , splitting \mathbb{H}^n into two connected components. Let H be the collection of all these hyperplanes and let S be the set of connected components

of the space $\mathbb{H}^n \setminus \bigcup H$. Each hyperplane H of H provides a natural bipartition (a so-called *wall*) of S. We call each element of this partition a *halfspace* of H.

We now construct a cube complex Y as follows. We first describe its 1-skeleton $Y^{(1)}$.

A vertex σ of Y is a collection of halfspaces of S such that

- for all $H \in \mathcal{H}$, exactly one of the two halfspaces of H belongs to σ ;
- for all halfspaces A and B, $(A \subset B$ and $A \in \sigma) \implies B \in \sigma$.

Put an edge between two vertices σ and τ if and only if $|\sigma \Delta \tau| = 2$, i.e. if and only if σ and τ share exactly the same halfspace for every hyperplane of H except for one.

We finally construct Y from $Y^{(1)}$ by adding a *n*-cube each time one sees the 1-skeleton of a *n*-cube in $Y^{(1)}$.

The cube complex Y can be complicated. However to each connected component x of S it corresponds a vertex σ of Y:

$$
\sigma = \{A \text{ halfspace: } x \in A\}.
$$

It is a simple exercise – that we leave to the reader – to check that σ satisfies the two conditions above. Now two such vertices are adjacent if and only if the associated connected components are separated by a unique hyperplane of H . This defines a (connected) subgraph G of $Y^{(1)}$; we denote by X' the square subcomplex of Y obtained from G by gluing a square each time one sees the 1-skeleton of a square in G . The resulting square complex X' is (of course) connected. We define X to be the connected component of X' in Y ; it is the cube complex dual to the collection H of walls of \mathbb{H}^{n} .

2.3. A square complex in \mathbb{H}^n . The hyperplanes of H induce a cellulation of \mathbb{H}^n . And since the collection H is supposed to be *generic* the 2-skeleton of the dual cellulation is a square complex. We realize it in \mathbb{H}^n as follows.

Definition 8. Let $P_{\mathbb{H}^n}$ be the square complex dual to the cellulation of \mathbb{H}^n by \mathcal{H} : choose a vertex in each connected component of S , join every pair of vertices of two adjacent components by a geodesic segment, and for every face K of codimension 2, glue a 2-disc along the four geodesic segments surrounding K .

^{[1](#page-4-0)} [B](#page-4-0)eware that in general $X^{(1)}$ *strictly* contains $G = (X')^{(1)}$!

Figure 3. A cube complex.

Lemma 9. *The square complexes* $P_{\mathbb{H}^n}$ *and* X' *are combinatorially equivalent.*

Proof. By construction the 1-skeleton of $P_{\mathbb{H}^n}$ and X' are combinatorially equivalent: both set of vertices identified with the set S of connected components of $\mathbb{H}^n \setminus \bigcup_{H \in \mathcal{H}} H$ and two vertices are adjacent if and only if they are separated in \mathbb{H}^n by a unique hyperplane of H. Finally, both X' and $P_{\mathbb{H}^n}$ are obtained from their 1-skeleton by adding a square every time one sees its 1-skeleton, i.e. when there are four connected component a, b, c, $d \in S$, and two hyperplanes H and H' in H such that a and b , c and d are separated by H , and b and c , d and a are separated by H' . .

2.4. Cubulation of Γ **.** The natural action of $\Gamma = \pi_1(V)$ on H induces an action on X too. Moreover, the collection H being finite modulo Γ one can prove that Γ acts cocompactly on X ; see $[S_{AG}97]$.^{[2](#page-5-1)} The following lemma gives a criterion on the set of hyperplanes W_1, \ldots, W_ℓ to ensure that Γ also acts properly on X (see e.g. [Dur12], Chapter I).

Lemma 10. *Suppose there exists a number m such that every pair of points* x, y *of* \mathbb{H}^n *at distance* $d(x, y) \geq m$ *is separated by some hyperplane in* H. Then the *action of* Γ *on* X *is proper.*

In our case, one can even prove that this is in fact an equivalence.

Let C be the quotient of X by Γ . The group Γ also acts on $P_{\mathbb{H}^n}$. Let P_V be the quotient of $P_{\mathbb{H}^n}$ by Γ .

^{[2](#page-5-0)} [H](#page-5-0)ere we use that \mathbb{H}^n is (Gromov-)hyperbolic and that – being totally geodesic – the hyperplane in H are quasiconvex.

As $P_{\mathbb{H}^n}$ is the 2-skeleton of the complex dual to the cellulation of \mathbb{H}^n by \mathcal{H} , the complex $P_{\mathbb{H}^n}$ is simply connected.

Lemma 11. *The square complex* P_V *injects combinatorially into* C *, and this injection induces an isomorphism of fundamental groups.*

Proof. By construction, the combinatorial equivalence $P_{\mathbb{H}^n} \simeq X'$ proved in lemma [9](#page-5-2) is Γ -equivariant. The complex $P_{\mathbb{H}^n}$ identifies Γ -equivariantly with a subcomplex of X. Quotienting by Γ identifies P_V with a subcomplex of C. Since $P_{\mathbb{H}^n}$ is simply connected, the inclusion $P_V \hookrightarrow C$ induces an isomorphism of fundamental groups.

2.5. Hyperplanes in cube complexes

Definition 12. A *midcube* of a *k*-cube $[0, 1]^k$ is a $(k - 1)$ -cube obtained by fixing one of the coordinates at $\frac{1}{2}$. In a CAT(0) cube complex X, a *hyperplane H* is a connected subspace of X such that the intersection of H with every cube of X is either a *midcube* or the empty set. In a non positively curved cube complex C, a *hyperplane* is the projection of a hyperplane of the universal cover of C onto C. It immerses in C .

Let X be a CAT(0) cube complex and $Y \subset X$ a subcomplex. We will abusively call hyperplanes of Y the traces of the hyperplanes of X on Y .

Going back to the situations of the preceding paragraphs, there exists a natural bijection between H and the set of hyperplanes of the dual CAT (0) cube complex X. A hyperplane in H can be associated with a hyperplane of the square complex $P_{\mathbb{H}^n}$, and to a hyperplane of X' using the isomorphism between $P_{\mathbb{H}^n}$ and X'. Finally one can extend this hyperplane to a hyperplane of X . This map is well defined and induces a natural bijection between hyperplanes of H and hyperplanes of X .

Figure 4. Two hyperplanes in a cube complex.

We shall finally need the following definition.

Definition 13. Let $C_k = [0, 1]^k$ be a Euclidean cube. The *cubical barycentric* subdivision of C^k is the subdivision of C^k along its hyperplanes. The cube C^k then becomes a cube complex composed of 2^k k-cubes glued together along hyperplanes of C k . In general, the *cubical barycentric subdivision* of a cube complex C is the cube complex described as the union of the *cubical barycentric subdivision* of each of its cubes.

3. Proof of Theorem [5](#page-2-0)

3.1. Construction. To prove Theorem [5](#page-2-0) we shall first construct a ramified covering \hat{C} of the cube complex C. Next – in Section [3.2](#page-8-0) – we will prove that the fundamental groups of \hat{V} and \hat{C} are isomorphic. And finally we will show – see Lemma [25](#page-14-0) – that \hat{C} is locally CAT(0).

Definition 14. Let C be a cube complex and k be an integer. Assume that C contains two separating subspaces C_1 and C_2 , both of them being unions of disjoint hyperplanes of C. Each C_i , for $i = 1, 2$ splits C into two parts: fix a base point x_0 in $C \setminus (C_1 \cup C_2)$; we let C_i^+ (resp. C_i^-) be the set of $x \in C$ such that every path from x to x_0 cuts C_i an even (resp. odd) number of times. Let \overline{C} be C cut along Int $(C_1^+ \cap C_2)$. We define \hat{C} by cyclically gluing k copies of \bar{C} along copies of Int $(C_1^+ \cap C_2)$. We call the complex \hat{C} a *ramified covering* of degree k of C.

A ramified covering as described above is not a cube complex. Nevertheless, passing to the cubical barycentric subdivision of C puts a cube complex structure on the corresponding subdivision of \overline{C} .

Proof of Theorem [5](#page-2-0). The manifold V is π_1 -cubulated by a finite collection of closed immersed codimension-1 submanifolds W_1, W_2, \ldots, W_ℓ . Let \mathcal{H}' be the set of all hyperplanes of \mathbb{H}^n lifting the W_i 's. And let $\mathcal H$ be the reunion of $\mathcal H'$ with the set of hyperplanes of \mathbb{H}^n lifting the connected components of V_1 and V_2 . As each V_i is a closed codimension-1 submanifold of V, it follows that the results of the preceding section apply to H . Let X be the CAT(0) cube complex dual to H . The fundamental group Γ of V acts properly^{[3](#page-7-3)} and cocompactly on X. Denote by C the quotient of X by Γ .

To construct a ramified covering \hat{C} of C, as in Definition [14,](#page-7-0) we first need to define C_1 and C_2 (as unions of hyperplanes of C). The bijection between hyperplanes of H and hyperplanes of X (see the end of Section [2\)](#page-3-1) induces a

 3 [I](#page-7-2)ndeed, adding hyperplanes to \mathcal{H}' , can only improve the necessary condition for properness of Lemma [10.](#page-5-3)

bijection between hyperplanes of V and and hyperplanes of C . We then define C_i (i = 1, 2) to be the union of all the hyperplanes of C in bijection with the connected components of V_i . We now show that C_1 and C_2 separate C.

Let $p_c: X \to C$ is the covering map given by the quotient of X by Γ . The subspace C_1 separates C if and only if $X \setminus p_c^{-1}(C_1)$ has a Γ -invariant bicoloration. Denote by p the projection $\mathbb{H}^n \to V$. As V_1 separates V, then $\mathbb{H}^n \setminus p^{-1}(V_1)$ has a Γ -invariant bicoloration, and so does the complex $P_{\mathbb{H}^n} \setminus (P_{\mathbb{H}^n} \cap p^{-1}(V_1)).$ This complex can be seen as a subcomplex of $X \setminus p_c^{-1}(C_1)$. For each point x of $X \setminus p_c^{-1}(C_1)$ consider an element $x_0 \in P_{\mathbb{H}^n}$ and a path xx_0 in X. Choose for x the color of x_0 if the path xx_0 crosses $p^{-1}(C_1)$ an even number of times, and the other color if it crosses $p^{-1}(C_1)$ an odd number of times. This choice is well defined because $p^{-1}(C_1)$ is a union of hyperplanes of X, which separates X. So does $p^{-1}(C_1)$. By the same argument, C_2 separates C. To complete the proof of Theorem [5,](#page-2-0) it remains to prove that

- (1) the groups $\pi_1(\hat{V})$ and $\pi_1(\hat{C})$ are isomorphic and
- (2) the ramified covering \hat{C} of C is locally CAT(0).

The first statement is proved in Proposition [15](#page-8-1) below and the second statement is proved in Proposition [25](#page-14-0) below.

3.2. Fundamental groups. The goal of this Section is to prove the following proposition.

Proposition 15. *The groups* $\pi_1(\hat{V})$ *and* $\pi_1(\hat{C})$ *are isomorphic.*

To compute the fundamental group $\pi_1(\hat{V})$ (respectively $\pi_1(\hat{C})$) we will use a different construction of \hat{V} (respectively \hat{C}).

Let $N_o(V_1 \cap V_2)$ be an open tubular neighborhood of $V_1 \cap V_2$ in V. Let $V^0 = V \setminus N_o(V_1 \cap V_2)$. V^0 is a submanifold of V with a boundary isomorphic to $(V_1 \cap V_2) \times \mathbb{S}^1$. Consider

$$
\theta_V: \pi_1(V^0) \to \mathbb{Z},
$$

such that for any loop l of V^0 , $\theta_V(l)$ is the algebraic intersection number between l and $V_1^+ \cap V_2$, and let π be projection $\mathbb{Z} \to \mathbb{Z}/k\mathbb{Z}$ where k is the degree of the ramification \hat{V} over V. Denote by \hat{V}^0 the covering of V^0 associated with the group Ker($\pi \circ \theta_V$). In restriction to the boundary $(V_1 \cap V_2) \times \mathbb{S}^1$, this covering is a k -cyclic covering on the first factor and trivial on the second one. Then the manifold \hat{V} is obtained by gluing a product $(V_1 \cap V_2) \times D$ to \hat{V}^0 , where D is a disk, along the boundary isomorphic to $(V_1 \cap V_2) \times \mathbb{S}^1$.

We will compute the fundamental group of \hat{V} using this construction. It will be a quotient of the subgroup $\text{Ker}(\pi \circ \theta_V)$ of $\pi_1(V^0)$. Fix a base point x_0 in V^0 . To any connected component K_i of $V_1 \cap V_2$ we associate a loop γ_i as follows.

Choose a path p_i from x_0 to a point x_i in the boundary of K_i then choose a loop l_i based in x_i which turns once around K_i . Define γ_i as the concatenation $p_i l_i p_i^{-1}$. Note that $\theta_V(\gamma_i) = \pm 1$. Each γ_i represents an element of Ker($\pi \circ \theta_V$) (again abusively denoted γ_i). By the Seifert-Van Kampen Theorem recursively applied to the union of \hat{V}^0 and for each $K_i \times D$ one gets

$$
\pi_1(\widehat{V}) = \operatorname{Ker}(\pi \circ \theta_V) / \langle \langle \gamma_1^k, \ldots, \gamma_p^k \rangle \rangle.
$$

We can construct \hat{C} in the same way. In the cube complex C define a *tubular neighborhood* $N_0(C_1 \cap C_2)$ of $C_1 \cap C_2$ as the interior of the union of every cube which has a non trivial intersection with $C_1 \cap C_2$. Remark that it is isomorphic to the product $(C_1 \cap C_2) \times \square$, with \square the interior of a square. Let $C^0 =$ $C \setminus N_o(C_1 \cap C_2)$. The complex $(C_1 \cap C_2) \times \partial \square$ is called the boundary of C^0 . Define $\theta_C: \pi_1(C^0) \to \mathbb{Z}$ in analogy with θ_V by counting intersections of a loop with $C_1^+ \cap C_2$. Let \hat{C}^0 be the covering corresponding to the subgroup Ker $(\pi \circ \theta_C)$. The preimage of the boundary of $C⁰$ under this map is isomorphic to a product $(C_1 \cap C_2) \times C_{4k}$ where C_{4k} is a cyclic graph with 4k edges. Call this complex the boundary of \hat{C}^0 . The complex \hat{C} is obtained by gluing the product of $(C_1 \cap C_2)$ with a 4k-gon to $(C_1 \cap C_2) \times C_{4k}$.

Now we can calculate the fundamental group of \hat{C} in analogy with the calculation of the fundamental group of \hat{V} . We simply need to define loops passing once around every connected component of $N_o(C_1 \cap C_2)$.

The link between the two complexes will be the subspace P_V^0 described below. The cellulation of V by the W_i 's and by V_1 and V_2 induces a cellulation of V^0 by restricting the W_i 's, V_1 and V_2 to V^0 and by adding several $n-2$ cells on the boundary. Then we define P_V^0 as the cube complex dual to this cellulation of $V⁰$. It can also be described as the complex obtained by removing every square intersecting $V_1 \cap V_2$ from P_V , indeed the 1-skeleton of the two complexes dual to the cellulations of V and V^0 is the same, the only cells of codimension 2 that are in V and not in V^0 are the ones given by $V_1 \cap V_2$. Finally according to Lemma [11](#page-6-0) P_V^0 identifies simultaneously with a subspace of V^0 and of C^0 .

Proof of Proposition [15](#page-8-1). The square complex P_V^0 is a subspace of V^0 and the inclusion induces an isomorphism of fundamental groups by definition. We will prove in Proposition [16](#page-9-0) below that the inclusion of $P_{V_{\alpha}}^{0}$ in C^{0} induces an isomorphism of fundamental groups. Note that V^0 and \dot{C}^0 have isomorphic fundamental groups. For every connected component of $V_1 \cap V_2$, choose γ_i included in P_V^0 and denote by θ the restriction of θ_V and θ_C to P_V^0 . Therefore

$$
Ker(\pi \circ \theta_V) = Ker(\pi \circ \theta) = Ker(\pi \circ \theta_C),
$$

and

$$
\pi_1(\widehat{V}) = \text{Ker}(\pi \circ \theta_V) / \langle \langle \gamma_1^k, \dots, \gamma_p^k \rangle \rangle = \text{Ker}(\pi \circ \theta_C) / \langle \langle \gamma_1^k, \dots, \gamma_p^k \rangle \rangle = \pi_1(\widehat{C}).
$$

Proposition 16. *The inclusion of* P_V^0 *into* C^0 *induces an isomorphism of fundamental groups.*

Denote by $p_c: X \to C$ and by X^0 the preimage of C^0 by p_c .

Proof. Let $P_{\mathbb{H}^n}^0$ be the 2-complex dual to the cellulation of $\mathbb{H}^n \setminus p^{-1}(V_1 \cap V_2)$ by hyperplanes of H. It can be seen as a subcomplex of $P_{\mathbb{H}^n}$. The inclusion of $P_{\mathbb{H}^n}$ in X is Γ -equivariant, and to prove the proposition it suffices to show that the inclusion of $P_{\mathbb{H}^n}^0$ in X^0 is a π_1 -isomorphism.

Proposition 17. The inclusion of $P^{\,0}_{\mathbb{H}^n}$ into X^0 induces an isomorphism of funda*mental groups.*

Proof. Let $x_0 \in P_{\mathbb{H}^n}^0$. The fundamental group of $\mathbb{H}^n \setminus p^{-1}(V_1 \cap V_2)$ is an infinite free group generated by a loop for every connected component of $p^{-1}(V_1 \cap V_2)$. Consider the following system of generators: one can choose the loops in $P_{\mathbb{H}^n}^0$ because it is the 2-skeleton of the dual cellulation. For every connected component K_i of $p^{-1}(V_1 \cap V_2)$ let l_i be a loop of $P_{\mathbb{H}^n}^0$ described as a boundary of a square of $P_{\mathbb{H}^n} \setminus P_{\mathbb{H}^n}^0$ associated with K_i . For each vertex of l_i there exists a path from x_0 to this vertex which does not cross the same hyperplane of X twice, as described in Lemma 18 , and for one of the four vertices y of l_i the path does not cross either the two hyperplanes of $P_{\mathbb{H}^n}$ which form K_i . Denote by a this path and take $\alpha_i = a l_i a^{-1}$ as a generator of $\pi_1(P^0_{\mathbb{H}^n})$ associated with K_i . We prove in Proposition [20](#page-11-0) that the fundamental group of X^0 is an infinite free group generated by the α_i . Then this inclusion induces a π_1 -isomorphism.

We will use combinatorial loops on the 1-skeleton of $X⁰$. The combinatorial loops can be seen as loops of the 1-skeleton of X. If we choose a vertex, this loop is uniquely determined by the sequence of hyperplanes successively dual to the edges of this loop. As X is CAT(0), a path in the 1-skeleton of X is a geodesic in $X¹$ if and only if the associated sequence of hyperplanes of X does not contain the same hyperplane twice.

Lemma 18. For each pair of vertices (x, y) of $P_{\text{H}^n}^0$ there exists an edge path from x to y which crosses each hyperplane of $P_{\mathbb{H}^n}$ at most once.

Proof. To a pair (x, y) of vertices of $P_{\mathbb{H}^n}$ we associate the pair of connected components of \mathbb{H}^n separated by hyperplanes of H which contains respectively x and y. Choose a point for each of these components in \mathbb{H}^n , and consider a geodesic between them. The sequence of hyperplanes of H crossed by this geodesic gives a path of edges of $P_{\mathbb{H}^n}$ which crosses each hyperplane at most once, i.e. the path is a geodesic of the 1-skeleton of $P_{\mathbb{H}^n}$.

Lemma 19. Let γ be a combinatorial path in X^0 with the following sequence of *dual hyperplanes of* X: $ABH_1 \ldots H_nA$ *such that for all* $i = 1, 2, \ldots, n$, $H_i \neq$ A, B, and A, B are not simultaneously in the preimage of C_1 and C_2 under p_c . Then γ is fixed-end-point homotopic in X^0 to the path associated with the sequence $BAH_1 \ldots H_nA$.

Proof. We will show that the first two edges of this path border a square of X^0 . As defined in Section [2,](#page-3-1) a vertex of X is a choice of halfspace for every hyperplane of H, such that if a halfspace \vec{C} is included in another one \vec{D} and if \vec{C} belongs to a certain vertex then \vec{D} belongs to this vertex too. We will say that \vec{D} and \vec{C} are *compatible* if they can belong to a same vertex of X.

Consider the three first vertices v_1 , v_2 and v_3 of the path γ and the two walls $\overline{A} = {\overrightarrow{A}, \overrightarrow{A}}$ and $\overline{B} = {\overrightarrow{B}, \overrightarrow{B}}$ associated with the hyperplanes A and B. Suppose that v_1 contains the halfspaces \vec{A} and \vec{B} . As v_1 and v_2 are separated by an edge dual to A, then v_2 contains halfspaces \overline{A} and \overline{B} . Moreover v_3 contains the halfspaces \overline{A} and \overline{B} . Consider the collection s of halfspaces composed with \overline{A} , \overline{B} and every halfspace which simultaneously belongs to vertices v_1 , v_2 and v_3 . To prove that s is a vertex of X we will show that every pair of hyperplanes of s is compatible. The last vertex of γ contains \vec{A} and \vec{B} because for all $i = 1, 2, ..., n$, $H_i \neq A, B$. The collection of halfspaces associated with v_1 , v_2 and v_3 show that halfspaces \vec{A} , \vec{B} , \vec{A} and \vec{B} are compatible with all halfspaces shared by v_1 , v_2 and v_3 , and that the pairs \vec{A} and \vec{B} , \vec{A} and \vec{B} , \vec{A} and \vec{B} are compatible. Hence s is a vertex of X, and the three first vertices of γ , s, and the edges between them describe the boundary of a square of X . Since A and B are not simultaneously preimages of C_1 or C_2 the square is still in $X⁰$. .

Proposition 20. The fundamental group $\pi_1(X^0)$ of X^0 is an infinite free group *generated by* $\{\alpha_i\}$ *.*

Lemma 21. Let K_i be a connected component of a preimage of $C_1 \cap C_2$ in X, *let* l *be an oriented loop obtained as the boundary of a square of* X *with a non trivial intersection with* Kⁱ *, and let* z *be a vertex of* l*. Then there exists a loop* $\alpha'_i = a' l a'^{-1}$ homotopic to α_i (or α_i^{-1}), with a' geodesic in the 1-skeleton of X^0 *between* x_0 *and* z *.*

Proof. The intersection between two hyperplanes has a natural cube complex structure. The neighborhood of K_i in X is a product $W \times \square$ with \square a square and W a cube complex isomorphic to K_i . The neighborhood of K_i in X^0 will be $W \times \partial(\Box)$. There exists a loop $\alpha_i = a l_i a^{-1}$, one of the generators of $\pi_1(P^0_{\mathbb{H}^n})$, such that l_i turns around K_i . Then there exists w_1 , w_2 in W such that $w_1 \times \partial(\square) = l$ and $w_2 \times \partial(\square) = l_i$. Denote by $w_2 \times \bullet$ the vertex of l_i which is the last vertex of a. Since W is connected, choose a path w' in W from w_1 to w_2 , and consider $w = w' \times \bullet$ a path in X^0 . Denote by c the concatenation of a and w.

Figure 5

We will construct a path c' homotopic to c such that c' is a geodesic in the 1-skeleton of X , i.e. such that c' does not cross the same hyperplane of X twice. The path c does not cross any hyperplane that is a preimage of C_1 or C_2 . Indeed, by construction, neither does a, nor does w because C_1 and C_2 do not self-intersect (because V_1 and V_2 do not self-intersect). Suppose that c is not geodesic and consider the two nearest edges dual to the same hyperplane H . The subpath of c between these edges is not dual to H and we can apply Lemma [19](#page-11-1) several times, until the two edges are next to each other. Then one can delete the two edges by homotopy. By recurrence on these pairs of hyperplanes, we obtain a path c' from x_0 to l homotopic to c which crosses each hyperplane of X at most once. Then consider a' the path obtained from c' to z by adding one or two edges of l. These additional edges are dual to the preimage of C_1 or C_2 , a' is still geodesic in the 1-skeleton of X, and a'/a'^{-1} is homotopic to al_ia^{-1} . — Первый процесс в постановки программа в серверном становки производительно становки производите с производ
В серверном становки производительно становки производительно становки производительно становки производительн

Proof of Proposition [20](#page-11-0). First we prove that $\pi_1(X^0)$ is generated by $\{\alpha_i\}$. For each combinatorial loop γ , denote by $|\gamma|$ the length of the loop, then consider

$$
L: \pi_1(X^0) \longrightarrow \mathbb{N}
$$

$$
L(\gamma) = \min\{|\gamma'|, \ \gamma \sim \gamma'\}.
$$

We will use a recursive argumentation on the length L of homotopy classes of loops. If $L(\gamma) = 0$ then γ is homotopic to x_0 . Suppose that every loop of length

strictly less than N is generated by $\{\alpha_i\}$, and let β be a loop of X^0 , such that $L(\beta) = N$. A loop of X^0 can be described as a concatenation of loops of type blb^{-1} , with l the boundary of a square of the neighbourhood of the preimage of a connected component of $C_1 \cap C_2$. If β is not exactly one of these loops then β is a concatenation of at least 2 such loops of length less than N , and by recurrence β is generated by $\{\alpha_i\}$. Suppose now that $\beta = blb^{-1}$. Applying Lemma [21](#page-11-2) to l and z, the last vertex of b, there exists a loop $\alpha'_i = a' l a'^{-1}$ homotopic to $\alpha_i^{\pm 1}$ such that a' is minimal between x_0 and z.

$$
\beta = blb^{-1} = ba'^{-1}a'da'^{-1}a'b^{-1} = (ba'^{-1})a'da'^{-1}(a'b^{-1}).
$$

Fix $j = |b|$, then $N = |\beta| = 2j + 4$. As a' is a geodesic with the same endpoints as b then $|a'| \leq j$. Finally, $L(ba'^{-1}) \leq |ba'^{-1}| \leq 2j \lt N$, and by recurrence ba'^{-1} is generated by α_i . Furthermore, as $a'la'^{-1}$ is homotopic to α_i , β is also generated by $\{\alpha_i\}$.

To see that $\pi_1(X^0)$ is a free group, we will construct an injective morphism from $\pi_1(X^0)$ to an infinite free group.

Every hyperplane of C_2 in C is divided into several different hyperplanes in C^0 . Let E be the set of all lifts of these hyperplanes in X^0 . For every $e \in E$, H_e will be the hyperplane of X that contains e^4 e^4 . Consider the infinite free group \mathbb{F}_{∞} generated by E .

The elements of E are hyperplanes of $X⁰$, we choose an orientation of each hyperplane of X which induces an orientation of hyperplanes of E . Consider the map *m* such that if γ is a combinatorial loop of X^0 then $m(\gamma)$ is the word in E^{\pm} obtained by juxtaposing hyperplanes of X^0 crossed by γ , to the power of ± 1 depending on the orientation. The map m induces the morphism

$$
h: \pi_1(X^0) \longrightarrow \mathbb{F}_{\infty}.
$$

Homotopies between combinatorial loops can be described as a succession of elementary homotopies: going on an edge and coming back is homotopic to the identity, and for every square of $X⁰$ an edge of its boundary is homotopic to the path which runs along the three other edges of the boundary. Then m is well defined modulo these elementary homotopies.

The map h is injective. Assume that γ is a combinatorial loop of X^0 such that $h(\gamma) = 1$. Since γ is a loop, every hyperplane of X crosses γ an even number of times. If γ does not intersect any hyperplanes of $\{H_e, e \in E\}$ then the hyperplanes dual to γ are not in $p_c^{-1}(C_2)$ and we use Lemma [19](#page-11-1) to gather and eliminate two by two those hyperplanes dual to γ by elementary homotopies in the following way. Each hyperplane of X^0 dual to γ appears an even number of times in the sequence of hyperplanes dual to γ . Consider two repetitions of the same hyperplane as closed as possible. Then every hyperplane contained between

^{[4](#page-13-0)} [T](#page-13-0)he map $e \mapsto H_e$ is not injective

those two repetitions will appear once. If there is not a hyperplane between the two repetitions then γ is homotopic to a loop given by the same sequence minus the two occurrences of this hyperplane. If there are some hyperplanes between the repetitions, we can use Lemma [19](#page-11-1) several times, since no hyperplane of $p^{-1}(C_2)$ belongs to the sequence, bringing us back to the previous case. Then the homotopy class of γ is trivial in $\pi_1(X^0)$.

Now suppose that one of the hyperplanes K of X, crossed by γ , is associated with an element of E. Since $h(\gamma) = 1$, the word $m(\gamma)$ contains a subword ee^{-1} with $e \in E$. One can assume that $K = H_e$. Then the enumeration of hyperplanes of X^0 dual to γ contains a sequence e, h_1, \ldots, h_n, e , where the h_i 's do not belong to E. Denote by c the subpath of γ associated with this sequence. For every $i \in \{1, \ldots, n\}$ denote W_i the hyperplane of X that contains h_i . For every $i \in \{1, ..., n\}$, as h_i is not in E, then W_i is not contained in $p_c^{-1}(C_2)$. Furthermore if W_i is contained in $p_c^{-1}(C_1)$ then the h_i 's do not intersect e, because *e* is a connected component of $p_c^{-1}(C_2)$ cut along $p_c^{-1}(C_1)$. Therefore there exists an even number of h_j 's such that $W_i = W_j$. If such a pair of elements $W_i = W_j \subset p_c^{-1}(C_1)$ exists then by applying Lemma [19](#page-11-1) several times to the sentence $H_i, H_{i+1}, \ldots, H_j$ which does not contain hyperplanes dual to $p_c^{-1}(C_2)$ we get $j = i + 1$, and $H_i H_i$ is homotopic to a point. Finally, applying Lemma [19](#page-11-1) several times to the sentence $H_e, H_1, \ldots, H_n, H_e$ with $H_i \not\subset p_c^{-1}(C_1)$, one can reduce the number of ee^{-1} associated with γ .

3.3. Ramified covering over a locally CAT(0) cube complex is locally CAT(0). We want to prove that if \hat{C} is a ramified covering of a locally CAT(0) cube complex C constructed above the intersection of two unions of hyperplanes (see Definition [14\)](#page-7-0), then \hat{C} is locally CAT(0). We will prove this with a more general definition of a ramified covering.

Definition 22. Let C be a cube complex and L be a subcomplex of C. A cube complex \hat{C} is a *general ramified covering* of C above L if there exists a combinatorial map $f: \widehat{C} \to C$ and a subcomplex \widehat{L} of \widehat{C} such that

- $f_{|\hat{L}} : \hat{L} \stackrel{\cong}{\to} L$ and
- \bullet $f_{|(\widehat{C} \setminus \widehat{L})} : (\widehat{C} \setminus \widehat{L}) \to (C \setminus L)$ is a cover.

Definition 23. A subcomplex L of a cube complex C is *locally convex* if for every cube Q of C the subcomplex $L \cap Q$ is either a unique face of Q or the whole cube Q .

We will use the following characterization of being locally $CAT(0)$ in a cube complex, see [\[BH99\]](#page-20-2).

Proposition 24. *A cube complex C is locally* CAT(0) *if and only if for every* $v \in C⁰$, link (v, C) *is a simplicial flag complex.*

Proposition 25. *Let* (\hat{C}, \hat{L}) *be a general ramified covering of a cube complex* (C, L) *, with* C *locally* CAT(0) and L *locally convex in* \tilde{C} *. Then* \hat{C} *is locally* $CAT(0)$ *.*

Proof. First, we prove that for every vertex v of \hat{C} , the complex link (v, \hat{C}) is simplicial, and not multi-simplicial, i.e. link (v, \hat{C}) is totally determined by its boundary. Suppose that v is not in \hat{L} , then a small ball around $f(v)$ is homeomorphic to a small ball around v, so the $link$ is the same. As C is locally CAT(0), then link(v, \hat{C}) is simplicial. Now suppose that v belongs to \hat{L} . Consider two $(k - 1)$ -simplices of link (v, \hat{C}) for $k \ge 2$ sharing the same boundary. Denote by Q_1 and Q_2 the two k-cubes of \hat{C} associated with these $(k - 1)$ -simplices. As the two simplices have the same boundary, then Q_1 and Q_2 are glued along subcubes of codimension 1 containing v. Let f be the projection associated with the ramified covering $\hat{C} \rightarrow C$. As f is combinatorial then C_1 and C_2 are projected on k-cubes of C. As C is locally CAT(0) then C_1 and C_2 are projected onto the same cube. The map f induces an isomorphism between \hat{L} and L, and L is convex in C. Denote by P_i , $i \in \{1, 2, ..., k-1\}$, codimension 1 subcube of Q. If every P_i belongs to \hat{L} then $Q \subset L$ and $Q_1 = Q_2$. If there exists $i \in \{1, 2, ..., k - 1\}$ such that P_i does not belong to \hat{L} , the restriction of f to $(Q_1 \cup Q_2) \setminus \hat{L}$ is a covering on its image of degree 1, because the preimage of $f(P_i)$ is P_i . Then Q_1 and Q_2 are equal.

It remains to see that for every vertex $v \in \hat{C}$, the simplicial complex link (v, \hat{C}) is flag. Let v be a vertex of C and e_1, \ldots, e_p be two by two connected vertices of link (v, \hat{C}) . The function f projects two such vertices on two different vertices of link $(f(v), C)$ because link $(f(v), C)$ is simplicial and not multi-simplicial. As C is locally CAT(0) link $(f(v), C)$ is flag and there exists a p-simplex of $link(f(v), C)$ which has $f([e_i, e_j])$ as 1-skeleton. The $(p + 1)$ -cube associated with this *p*-simplex lifts to a cube with a 0-skeleton of exactly $\{e_1, \ldots, e_p\}$. \Box

4. The cyclic ramied covering of a special cube complex is special

We will use the following characterization of being special.

Definition 26. (See [\[HW08\]](#page-21-2)) A cube complex is *special* if it does not contain pathologies of hyperplanes such as self-intersection (see Figure [6\)](#page-16-0), self-osculation (see Figure [7\)](#page-16-1) or inter-osculation (see Figure [8\)](#page-16-2), and furthermore if its hyperplanes are two-sided i.e. a neighborhood is homeomorphic to the product of the hyperplane with an interval.

Figure 6. A self-intersecting hyperplane.

Figure 7. A self-osculating hyperplane.

Figure 8. Two inter-osculating hyperplanes.

Proposition 27. Let C be a special cube complex and let C_1 and C_2 be two *separating unions of hyperplanes of C. Then the ramified covering* \hat{C} *(in the sense of Definition* [14](#page-7-0)) *of the cubical barycentric subdivision* C' *of* C *above* $C_1 \cap C_2$ *is special.*

Lemma 28. *Let* C *be a cube complex and let* C ⁰ *be the cubical barycentric subdivision of* C*. If* C *is special then* C 0 *is special.*

Proof. The neighborhood of a hyperplane of C' is the half neighborhood of a certain hyperplane of C . Then a pathology of a hyperplane of C' would imply a pathology of the associated hyperplanes of C.

Proof of the Proposition [27](#page-16-3). We will use the notations from Definition [14,](#page-7-0) and denote by f the projection $\hat{C} \rightarrow C'$. We show that if there is a pathology of hyperplanes as defined in [26](#page-15-1) in \hat{C} then there is a pathology in C' .

A hyperplane of \hat{C} is a union of hyperplanes of some $\overline{C'}^{i}$'s (k copies of the cubical barycentric subdivision of \overline{C} glued together to form \hat{C}) which coincides on the boundary between \overline{C}^i and \overline{C}^{i+1} for every *i*. The projection of all different pieces of this hyperplane on C' forms a unique hyperplane of C' . If \widehat{H} is not a twosided hyperplane of \hat{C} , then there is a loop in \hat{H} such that the parallel transport of a vector orthogonal to \hat{H} along this loop gives a vector of the opposite direction. Then the projection of the loop has the same property, and the projection of the hyperplane to C is not two-sided.

The map f projects a self-intersecting hyperplane of \hat{C} on a self-intersecting hyperplane of C' . This prevents the first pathology from occurring.

Suppose now that there exists two hyperplanes \hat{H} and \hat{K} of \hat{C} which are interosculating. Let \hat{e}_1 and \hat{e}_2 be two edges of \hat{C} respectively transverse to \hat{H} and \hat{K} which share a vertex \hat{v} . Let e_1, e_2, H and K be the images of $\hat{e}_1, \hat{e}_2, \hat{H}$ and \hat{K} under f. If $e_1 = e_2$, then f projects \hat{H} and \hat{K} on a unique self-intersecting hyperplane, contradicting the fact that C' is special. If e_1 and e_2 are two osculating edges of C' , then H and K are two inter-osculating hyperplanes of C' . The case where e_1 and e_2 form the corner of a square Q remains to be seen (see figure 8). In this case, Q has two different lifts \hat{Q}_1 and \hat{Q}_2 which contain respectively \hat{e}_1 and \hat{e}_2 . As there is a unique lift of the vertex $v = f(\hat{v})$ in the union of squares $\hat{Q}_1 \cup \hat{Q}_2$, the vertex v belongs to the ramification locus. However, as there are two lifts of e_i in $\hat{Q}_1 \cup \hat{Q}_2$, the square Q is not included in K. As the cubical neighborhood of $C_1 \cap C_2$ is isomorphic to the cube complex $C_1 \cap C_2 \times \square$, where \Box is a square, and as the square Q of the cubical barycentric subdivision C' of C is not totally included in $C_1 \cap C_2$, the square Q is a quarter of a square of C given by a point times \Box in the neighborhood of $C_1 \cap C_2$. We can assume that e_i belongs to C_i . If not, switch the notation of e_1 and e_2 . Consider the path $\hat{\gamma}$ obtained by the concatenation of a path $\hat{\gamma}_H$ of \hat{H} from the center of \hat{Q}_1 to the

intersection of \hat{H} and \hat{K} , and a path $\hat{\gamma}_K$ of \hat{K} from this intersection to the center of \hat{Q}_2 . Let γ , γ_H and γ_K be the image of $\hat{\gamma}$, $\hat{\gamma}_H$ and $\hat{\gamma}_K$ under the projection f. The path γ is a loop of C'. Since $\hat{\gamma}$ itself is not a loop the (algebraic) intersection number of γ with $C_1^+ \cap C_2$ has to be different from zero, otherwise γ would lift to a loop in the ramified cover. We will reach a contradiction by showing that in fact γ has a trivial intersection with $C_1^+ \cap C_2$. Actually, H and K are disjoint from C_2 and C_1 . For example e_1 is an edge of C', contained in an edge of C dual to the hyperplane C_2 in C. The intersection of every cube D of C with C_2 is obtained by setting one coordinate to $\frac{1}{2}$, and the intersection with H is obtained by setting the same coordinate to $\frac{1}{4}$ or $\frac{3}{4}$, so H is a disjoint copy of C_2 . We can use exactly the same reasoning to prove that K is disjoint from C_1 . Now, there are two possibilities depending on whether K is totally included in C_1^- or in C_1^+ . In the first case, as $\gamma_H \subset H$ which is disjoint from C_2 , and $\gamma_K \subset K \subset C_1^-$, the loop γ never crosses $C_1^+ \cap C_2$. Now, if K is totally included in C_1^+ , as C_2 separates C, the algebraic intersection number of the loop γ with C_2 is zero. Since H is disjoint from C_2 , the path $\gamma_H \subset H$ does not cross C_2 . Then intersections of γ and C_2 are in γ_K and the intersection number of γ_K with C_2 is zero. As γ_K is included in C_1^+ , the intersection number of the loop γ with $C_1^+ \cap C_2$ is zero, and we have a contradiction.

Figure 9. When e_1 and e_2 are two adjacent edges of a square.

Let \hat{H} be a self-osculating hyperplane of \hat{C} . Denote by \hat{e}_1 and \hat{e}_2 two distinct edges, transverse to \hat{H} , sharing a vertex \hat{v} . Denote by e_1, e_2, v and H the image of \hat{e}_1 , \hat{e}_2 , \hat{V} and \hat{H} under f. If $e_1 \neq e_2$ then H will be a self-osculating or a selfintersecting hyperplane of C'. If $e_1 = e_2$, then v will belong to the ramification locus and $e_1 \subset C_1^+ \cap C_2$. A path γ from the center of \hat{e}_1 to the center of \hat{e}_2 is

sent onto a loop of C' which crosses $C_1^+ \cap C_2$ non trivially. As H is transverse to e_1 H is a copy of a hypeplane of C_1 , so H is totally included in C_1^+ , and as C_2 separates C', $f(\gamma)$ has to cross $C_1^+ \cap C_2$ trivially.

5. Gromov–Thurston manifolds

The main result relies on the following Theorem of [\[BHW11\]](#page-20-1).

Theorem 29. *"Simple type" arithmetic manifolds are cubical and virtually special.*

Let V be a "Simple type" arithmetic manifold, containing many (immersed) compact totally geodesic codimension 1 submanifolds. The fundamental group of V acts cocompactly on the cube complex associated with a finite number of such submanifolds. To show the last Theorem, Gromov and Thurston chose these submanifolds such that the action of $\pi_1(V)$ on the dual cube complex is proper, using the following criteria. let H be a collection of lifts of a finite number of hyperplanes W_1, \ldots, W_ℓ of V described as above. For every pair of point x, y, denote by $d_{\mathcal{H}}$ the number of elements of \mathcal{H} witch separate x from y. If $d_{\mathcal{H}}$ and the usual distance on \mathbb{H}^n are quasi-isometric then the action of $\pi_1(V)$ on the dual cube complex is proper.

To choose such a collection of hyperplanes in [\[BHW11\]](#page-20-1), the authors use the fact that hyperplanes of $Hⁿ$ which project to a compact submanifold of V are dense in the set of hyperplanes of H^n (see p. 6 of [\[BHW11\]](#page-20-1)). Later, they prove that by passing to a finite cover of V , the quotient of the cube complex obtained using this construction by the group $\pi_1(V)$ is special.

Let V be an arithmetic manifold. By passing to a finite cover, Gromov and Thurston constructed two totally geodesic manifolds, V_1 and V_2 , which separate V, and then consider \hat{V} a ramified covering of V above $V_1 \cap V_2$. Let us prove that \hat{V} is virtually special.

Proof of Theorem [1](#page-0-0). In the proof of Proposition 2.1 in [\[BHW11\]](#page-20-1), the argument of density for choosing W_1, \ldots, W_ℓ allows to suppose furthermore that the intersections between hyperplanes of H are generic. Then let V' be a finite cover of V such that the quotient of the cube complex dual to H by $\pi_1(V')$ is special. Denote by \hat{V}' the cyclic ramified cover of degree k of V' above the intersection of the preimage of V_1 and V_2 in V'. By Theorem [5,](#page-2-0) $\pi_1(\hat{V}')$ is cubical, and furthermore by Proposition [27,](#page-16-3) it is special. We will show that there exists a finite cover of \hat{V}' and \hat{V} . Then the fundamental group of \hat{V} will be virtually special. To see this we will use covering orbifold theory.

Let V_{orb} be an orbifold. Its underlying space is V and its singular locus is $V_1 \cap V_2$. The orbifold structure is given by the following maps. If x belongs to

 $V \setminus V_1 \cap V_2$, choose a neighborhood sufficiently small which does not intersect the singular locus and take the identity on V. If $x \in V_1 \cap V_2$, a small tubular neighborhood of x is isomorphic to $D^2 \times]-1,1[^{n-2}$. Then choose the quotient of $D^2 \times]-1, 1[^{n-2}$ by the action of $\mathbb{Z}/k\mathbb{Z}$ on D^2 .

Let V_{orb}' be an orbifold with V' as the underlying space obtained by pulling back under the covering map $p: V' \to V$ the orbifold structure of V_{orb} . For every point x of V' , a local map will be the composition of p and of a map of V' at $p(x)$. The projection $V_{\text{orb}}' \rightarrow V_{\text{orb}}$ is a covering orbifold. Ramified covering \hat{V} is a covering orbifold of V_{orb} . Indeed, far from the singular locus, the projection $\hat{V} \rightarrow V$ is the identity, and on a neighborhood of $V_1 \cap V_2$ this projection is a quotient by the cyclic group $\mathbb{Z}/k\mathbb{Z}$. By the same reasoning, the manifold \hat{V}' is a covering orbifold of V' .

Denote by \tilde{V}_{orb} the universal covering orbifold of V_{orb} . There exists two groups G_1 and G_2 such that $\hat{V}' = \tilde{V}_{orb}/G_1$ and $\hat{V} = \tilde{V}_{orb}/G_2$. Note that G_1 is special. Consider now $V'' = \tilde{V}_{orb}/G_1 \cap G_2$. V'' is a manifold and a (classical) cover of \hat{V} since \hat{V} is a manifold. Furthermore, as G_1 and G_2 have a finite index in G, the group $G_1 \cap G_2$ has a finite index in G_2 , and $G_1 \cap G_2$ is special as a subgroup of G_1 . Then $\pi_1(\hat{V}) = G_2$ is virtually special.

References

- [AGM12] I. Agol, The virtual Haken conjecture. *Doc. Math.* **18** (2013), 1045–1087. With an appendix by I. Agol, D. Groves, and J. Manning. [Zbl 1286.57019](http://zbmath.org/?q=an:1286.57019) [MR 3104553](http://www.ams.org/mathscinet-getitem?mr=3104553)
- [BH99] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*. Grundlehren der MathematischenWissenschaften, 319. Springer-Verlag, Berlin, 1999. [Zbl 0988.53001](http://zbmath.org/?q=an:0988.53001) [MR 1744486](http://www.ams.org/mathscinet-getitem?mr=1744486)
- [BHW11] N. Bergeron, F. Haglund, and D. T. Wise, Hyperplane sections in arithmetic hyperbolic manifolds. *J. Lond. Math. Soc.* (2) **83** (2011), no. 2, 431–448. [Zbl 1236.57021](http://zbmath.org/?q=an:1236.57021) [MR 2776645](http://www.ams.org/mathscinet-getitem?mr=2776645)

- [CN05] I. Chatterji and G. Niblo, From wall spaces to CAT(0) cube complexes. *Internat. J. Algebra Comput.* **15** (2005), no. 5-6, 875–885. [Zbl 1107.20027](http://zbmath.org/?q=an:1107.20027) [MR 2197811](http://www.ams.org/mathscinet-getitem?mr=2197811)
- [DT92] G. Duchamp and J.-Y. Thibon, Simple orderings for free partially commutative groups. *Internat. J. Algebra Comput.* **2** (1992), no. 3, 351–355. [Zbl 0772.20017](http://zbmath.org/?q=an:0772.20017) [MR 1189240](http://www.ams.org/mathscinet-getitem?mr=1189240)
- [Duf12] G. Dufour, *Cubulations de variétés hyperboliques compactes.* Ph.D. thesis, Université Paris Sud-Paris XI, Paris, 2012.
- [Gir12] A. Giralt, *Cubulation des variétés arithmétiques.* Master's thesis. UPMC, Paris, 2012.
- [GT87] M. Gromov and W. P. Thurston, Pinching constants for hyperbolic manifolds. *Invent. Math.* **89** (1987), no. 1, 1–12. [Zbl 0646.53037](http://zbmath.org/?q=an:0646.53037) [MR 0892185](http://www.ams.org/mathscinet-getitem?mr=0892185)
- [HP98] F. Haglund and F. Paulin, Simplicité de groupes d'automorphismes d'espaces a courbure négative. In I. Rivin, C. Rourke, and C. Series (ed.), *The Epstein birthday schrift.* Geometry & Topology Monographs, 1. Geometry & Topology Publications, Coventry, 1998, 181–248. [Zbl 0916.51019](http://zbmath.org/?q=an:0916.51019) [MR 1668359](http://www.ams.org/mathscinet-getitem?mr=1668359)
- [HW08] F. Haglund and D. T. Wise, Special cube complexes. *Geom. Funct. Anal.* **17** (2008), no. 5, 1551–1620. [MR 1155.53025](http://www.ams.org/mathscinet-getitem?mr=1155.53025) [Zbl 2377497](http://zbmath.org/?q=an:2377497)
- [LHG90] É. Ghys and P. de La Harpe (eds.), *Sur les groupes hyperboliques d'apres Mikhael Gromov.* (Bern, 1988.) Progress in Mathematics, 83. Birkhäuser Boston, Inc., Boston, MA, 1990. [Zbl 0731.20025](http://zbmath.org/?q=an:0731.20025) [MR 1086648](http://www.ams.org/mathscinet-getitem?mr=1086648)
- [Nic04] B. Nica, Cubulating spaces with walls. *Algebr. Geom. Topol.* **4** (2004), 297–309. [Zbl 1131.20030](http://zbmath.org/?q=an:1131.20030) [MR 2059193](http://www.ams.org/mathscinet-getitem?mr=2059193)
- [Pan86] P. Pansu, Pincement des variétés à courbure négative d'après M. Gromov et W. Thurston. In *Séminaire de Théorie Spectrale et Géométrie.* No. 4. Année 1985–1986. Université de Grenoble I, Institut Fourier, Saint-Martin-d'Hères; Université de Savoie, Faculté des Sciences, Service de Mathématiques, Chambéry, 1986, 101–113. [Zbl 1066.53509](http://zbmath.org/?q=an:1066.53509) [MR 1046064](http://www.ams.org/mathscinet-getitem?mr=1046064)
- [Sag95] M. Sageev, Ends of group pairs and non-positively curved cube complexes. *Proc. London Math. Soc.* (3) **71** (1995), no. 3, 585–617. [Zbl 0861.20041](http://zbmath.org/?q=an:0861.20041) [MR 1347406](http://www.ams.org/mathscinet-getitem?mr=1347406)
- [Sag97] M. Sageev, Codimension-1 subgroups and splittings of groups. *J. Algebra* **189** (1997), no. 2, 377–389. [Zbl 0873.20028](http://zbmath.org/?q=an:0873.20028) [MR 1438181](http://www.ams.org/mathscinet-getitem?mr=1438181)
- [Thu79] W. P. Thurston, *The geometry and topology of three-manifolds.* Lectures notes. Princeton University, Princeton, 1979. <http://library.msri.org/books/gt3m/>

Received May 10, 2011

Anne Giralt, Institut Mathématique de Jussieu-Paris Rive Gauche, 4, place Jussieu, 75005 Paris, France

e-mail: anne.giralt@imj-prg.fr

